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1
PROGRAMMABLE MICRO-CORE
PROCESSORS FOR PACKET PARSING

FIELD

The present disclosure is directed towards circuits for
network traffic processing.

BACKGROUND

To support high performance networking, networking
components within computing and telecommunications sys-
tems must be able to effectively process numerous different
flows (e.g. groups of packets originating from a common
source). As performance expectations for such systems
increase over time, these systems are challenged to imple-
ment more and more complex packet-handling tasks at ever
greater speeds.

One common task to be handled in order to implement a
networking system is to process and analyze the packets in
a communications flow. A parser is used to review the header
of the packet, which allows the communications system to
understand how that packet should be directed and handled.
Accordingly, there is a need for an improved approach to
implement a parser for networking systems.

SUMMARY

An approach is described for implementing a flexible
parser for a networking system. According to some embodi-
ments, a micro-core parser is implemented to process pack-
ets in a networking system. The micro-cores of the parser
read the packet headers, and perform any suitably pro-
grammed tasks upon those packets and packet headers. One
or more caches may be associated with the micro-cores to
hold the packet headers.

Other and additional objects, features, and advantages are
described in the detailed description, figures, and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a system for processing packets using a
parser that is implemented with one or more micro-cores in
accordance with some embodiments.

FIG. 2 illustrates a more detailed architectural diagram of
a parser that utilizes micro-cores in accordance with some
embodiments.

FIG. 3 shows a flowchart of an approach for utilizing one
or more micro-cores in a parser in accordance with some
embodiments.

FIG. 4A illustrates an example dependency list structure.

FIG. 4B shows a flowchart of an approach for adding
information to a dependency list structure in accordance
with some embodiments.

FIGS. 5A-D provide an illustrative example for adding
information to a dependency list structure.

FIG. 6 shows a flowchart of an approach for using a
dependency list structure in accordance with some embodi-
ments.

FIGS. 7A-G provide an illustrative example for using a
dependency list structure.

FIG. 8 shows a flowchart of an approach for allocating
packets to a specific micro-core in accordance with some
embodiments.

FIGS. 9A and 9B illustrate example systems in which a
micro-core based parser may be employed.
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FIG. 10 illustrates an example ingress path subsystem in
which a micro-core based parser may be employed.

FIG. 11 illustrates the architecture of an example micro-
core.

FIG. 12 illustrates functional components of an example
micro-core.

DETAILED DESCRIPTION

Embodiments of the present invention will now be
described in detail with respect to the drawings, which are
provided as illustrative examples. Notably, the figures and
examples below are not meant to limit the scope of the
embodiments to a single embodiment, but other embodi-
ments are possible by way of interchange of some or all of
the described or illustrated embodiments. Whenever conve-
nient, the same reference numbers will be used throughout
the drawings to refer to the same or like parts. Where certain
elements of these embodiments can be partially or fully
implemented using known components, only those portions
of known components that are necessary for understanding
of the embodiment will be described, and details descrip-
tions of other portions of such known components will be
omitted so as to not obscure the description. In the present
specification, an embodiment showing a singular component
should not be considered to be limiting; rather, other
embodiments may include a plurality of the same compo-
nents, and vice versa, unless explicitly stated otherwise.
Moreover, applicants do not intend to for any term in the
specification or claims to be ascribed an uncommon or
special meaning unless explicitly set forth as such. Further,
embodiments may encompass present and future known
equivalents to the components referred to by way of illus-
tration.

An approach is described for implementing a flexible
parser for a networking system. According to some embodi-
ments, a micro-core parser is implemented to process pack-
ets in a networking system. The micro-cores of the parser
read the packet headers, and perform any suitably pro-
grammed tasks upon those packets and packet headers. One
or more caches may be associated with the micro-cores to
hold the packet headers.

FIG. 1 shows a system 20 for processing packets 12 using
a parser 2 that is implemented with one or more micro-cores
4a-n (also referred to herein as “ucores”) in accordance with
one embodiment. The parser may be used in conjunction
with any processing system, such as a multi-core host
processor 6. A multi-core processor is an integrated circuit
that contains multiple microprocessor cores, which effec-
tively multiplies the performance of the circuit in correspon-
dence to the number of cores 8a-j. Therefore, the cores 8a-j
shown in FIG. 1 correspond to conventionally understood
microprocessor cores that are used to implement a multi-
core processor. These cores 8a-j are distinguishable from the
micro-cores 4a-r in the parser 2, which have a smaller
layout footprint as compared to conventional processor
cores that are included as processing blocks within a larger
integrated circuit. The micro-cores may include elements
similar to standard processors cores (such as an instruction
RAM and data RAM), but are small enough to allow
placement as needed within specialized processing engines/
accelerators on a processing system, and which can work in
conjunction with the main host processors and processor
cores. A micro-core is a small microprocessor, with, for
example, a standard single issue pipe-line (e.g., a single
issue, 5-stage pipe-line). In some embodiments, a micro-
core only has access to local resources, so that the execution
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latency is deterministic. In some embodiments, the instruc-
tion RAM, data/stack RAM, and packet RAM are all local
to a micro-core, and there is no access to off-chip resources
or other accelerators that can make per-packet execution
latency unpredictable.

The parser 2 is operable to parse the plurality of packets
12 to gather packet information. Each of the micro-cores
4a-n within parser 2 may be implemented as a program-
mable state machine capable of parsing packets from one or
more networks and of one or more protocol types. One or
more instruction caches are used to hold programming logic
for the microcores 4a-n, to provide the parsing functionality
of the micro-cores 4a-n.

The parser 2 may be instructed to perform any suitable
processing function upon the packets 12. For example, the
micro-cores 4a-n in the parser 2 may parse packet header
information for the packet 12 to provide inputs for hash logic
16. Hash logic 16 is operable to perform a hash algorithm
utilizing a key to generate a hash. The packets 12 are
allocated for subsequent processing based at least in part on
the key/hash generated by the parser 2 and hash logic 16. For
example, the packets 12 may be allocated for processing to
a specific core 8a-j within a multi-core processing system 6,
and/or to a specific thread within one of the cores 8a-j. Some
reasons for allocating the packets 12 to different cores 8a-j
or to different threads within the cores 8a-j include, for
example, to implement load-balancing and/or flow-binding.
Load balancing refers to balancing a processing load equally
or nearly equally among a group of cores/threads. Flow-
binding refers to directing a flow of processing to specific
threads or processor cores.

The allocation of the packets to the different cores 8a-j is
performed by utilizing the key generated by the hash logic
16, where the key refers to any suitably unique identifier. In
one embodiment, the key may be formed by performing
multiple field extractions from at least one of the packets. In
another embodiment, the key may be formed using the
packet information. Any suitable hash algorithm may be
utilized to generate the hash. For example, in one embodi-
ment, the hash logic 16 may include a cyclic redundancy
check (CRC) algorithm. As an option, the hashing logic 16
may include a CRC algorithm with a programmable poly-
nomial.

The system 20 may further include memory 10 to which
the packets 12 are written. In some embodiments, the
packets 12 are parsed before the packets 12 are written to the
memory 10. In addition, the hash logic 16 may also be
performed before the packets 12 are written to the memory
10. Additionally, the packets 12 may be allocated to the
cores 8a-j before the packets 12 are written to the memory
10. In another embodiment, the packets 12 may be written
to the memory 10 simultaneously or nearly simultaneously
with the parsing, hashing, and/or allocation.

In operation, the packets 12 may be transferred to the
parser 2 and written to the memory 10. While packets are
being received and transferred to the memory 10, the parser
2 may examine the arriving packet data and extract certain
data (e.g. user-definable fields, keys, and/or identifiers) from
the packet header. The parser 2 may then concatenate these
fields together to form a key (e.g. a 128-bit key, etc.) used
by a packet director to classify and dispatch the packet. The
key may be dispatched to a messaging network (e.g., mes-
saging network 1E02, FIG. 9B) for use in allocating the
packets. In addition, the key may be padded in front of the
packet, and a descriptor (containing the start address) of the
packet may be dispatched to a thread using the messaging
network. In this case, the descriptor may be allocated to
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processor threads or a plurality of processing cores for
executing the threads. Using the descriptor, the packet data
may be retrieved from the memory 10, where the packet may
be stored in the memory 10 (e.g. a cache) and a location of
the packet is passed through the messaging network in the
key, as opposed to passing all of the packet data through the
messaging network. The key may be provided to one or
more threads or processing cores utilizing a work queue, e.g.
a first in, first out (FIFO) queue.

Each of the micro-cores 4a-n can be instructed to perform
one or more packet processing tasks, e.g., by reading in
instructions from an instruction cache that is associated with
the micro-cores 4a-n. This permits the parser 2 to be flexible
enough to operate upon any packet format or to perform any
instructable task, simply by changing or updating the
instructions that are sent to the parser 2. For example, the
packets may include packets of different and multiple pro-
tocol types. The parser 2 may extract multiple fields (e.g., for
multiple protocols) and identify multiple layer headers (e.g.
layer headers in a multi-layer network protocol design).
Furthermore, the parser 2 may support TCP/UDP and IP
checksum verification.

FIG. 2 illustrates a more detailed architectural diagram of
a parser 201 that utilizes micro-cores. There may be any
number of micro-cores 204a-n in the parser 201. For
example, a parser in some embodiments may implement
sixteen separate micro-cores 204a-n. Packets 212 are
received into a buffer 252, where the buffer 252 includes a
bank of FIFOs that forms an input queue of packets waiting
to be processed by the parser 201.

The incoming packets 212 that have been received within
the buffer 252 are scheduled/assigned to respective micro-
cores 204a-n. Any suitable scheduling algorithm may be
employed to assign packets in the queue to the micro-cores
204a-n. For example, a round-robin scheduling algorithm
may be employed to assign packets 212 to micro-cores
204a-n as they become available. In addition, as described
in more detail below, it is possible to schedule packets to
specific ones of the micro-cores, e.g., because certain micro-
cores are specifically programmed to handle certain tasks,
protocols, or packet types differently from the other micro-
cores.

Each micro-core 204a is associated with one or more
caches 214a and 2145. In some embodiments, the cache
214a/b is limited to a sufficient size to store the header of an
incoming packet 212. As such, the entirety of a packet 212
is not sent to the micro-core 204a. Instead, only the first n
bytes of the packet 212 (e.g., the bytes forming the header)
are directed to the micro-core 204a. In some embodiments,
the cache 214a/b is sized at 512 bytes, so that the first 512
bytes of a packet 212 would be loaded into the cache 214
a’b.

Multiple caches 2144 and 2145 may be associated with a
single micro-core 204a, to allow that micro-core 204a to
operate at or near its full capacity with minimal downtime.
During the time that the micro-core 204q is operating upon
a packet in a first cache 214a, the second cache 2145 can be
filled in with a new packet or emptied of a completed packet.
As soon as the micro-core 204a has finished processing the
packet in the first cache 214a, that micro-core 204a can
immediately begin processing the packet that had been
concurrently loaded into the second cache 214b. The first
cache 214a can then repeat the cycle of emptying the
completed packet and loading a new packet. Each of the
caches 2144 and 2145 can be sized to the maximum thresh-
old memory size to store the packet header.
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In some embodiments, each micro-core 204a is associated
with a instruction cache/memory 254. The instruction cache/
memory 254 stores the operational programming that the
micro-core 204a performs to process the packet headers.
The programming in the instruction cache/memory 254 may
be used to perform any suitable task by the micro-core 204a
upon a packet. For example, the micro-core 204a can
operate to perform classification operations on the packets.
In addition, the micro-core 204a can operate to drop packets
and ensure that the packets are not forwarded to subsequent
engines or processing cores.

The output from the micro-core 204a is sent to any
downstream component 260 that consumes the output from
the parser 201. For example, the packet header (when
suitably combined with the packet data) can be sent to a
DMA 230 for storage and later access. The micro-core 204a
can also output information to assist a descriptor generator
232 in generating a descriptor for the packet. For example,
the micro-core 204a can be used to forward identification of
free FIFOs to the descriptor generator 232. The micro-core
204a may be used to generate a key that is used by hash logic
234 to generate a hash value. The information generated by
the micro-core 204a may also be directed to a packet
ordering engine 236 to assist in ordering the packets to be
processed by the networking system. Generally, the micro-
core 204a may provide data used by other packet processing
engines and mechanisms 238 within the networking system.

A dependency list 220 is employed to make sure packets
212 are processed and released by the micro-cores 204a-n in
their proper order. This dependency list is used to make sure
that a later packet within a given flow is not released unless
an earlier packet has already been processed and released.

FIG. 3 shows a flowchart of an approach for utilizing a
micro-core based parser (e.g., parser 201, FIG. 2) to process
packets in a networking system. At 302, a packet is received
in the networking system for processing. The packet may be
received over one or more physical interface connections
and/or data channels. The packet may also be stored and/or
queued in various interface and receiving buffers (e.g.,
buffer 252) when it has been received for processing.

At 304, the packet is scheduled to a selected micro-core
for processing. Any suitable scheduling algorithm may be
employed to schedule the packets. For example, a simple
round robin scheduling algorithm may be employed to
assign packets to micro-cores. In addition, more complicated
queuing and scheduling algorithms may be employed to
ensure fair scheduling of the packets. The scheduling activ-
ity may also be performed in reliance upon available hard-
ware resources, where scheduling is delayed until sufficient
resources are available to handle the processing results from
the micro-cores. Packets can also be assigned to individual
micro-cores that have been programmed to perform specific
tasks. For example, one of the micro-cores may be specially
programmed to handle a unique protocol, and every packet
compliant with that unique protocol would be assigned to
that micro-core.

At 306, the packet header is loaded into the cache (e.g.,
cache 214qa or 214b) for its assigned micro-core. The cache
can be automatically populated with new packet headers as
it becomes available. One example criteria that may be used
to automatically populate the cache is a determination of the
number of bytes received, e.g., a number greater than a
programmed threshold could be used to control whether the
cache is loaded with the packet header. In some embodi-
ments, the maximum value of this threshold is 512 bytes.
Another example criteria that can be considered is whether
there are sufficient hardware resources to process the packet.
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For example, a determination can be made whether there are
sufficient free descriptors that are available for that packet to
be able to exit the microcode once the processing is com-
pleted.

At 308, the micro-core processes the packet header, e.g.,
where the micro-core performs one or more ingress func-
tions to process the packet in a networking engine. For
example, the micro-core may operate to parse the first n
bytes of the packet (e.g., up to the first 512 bytes) to
determine the destination of the packet within a host pro-
cessor or host processor core. If appropriate, the micro-core
may also operate to drop the packet, e.g., if the micro-core
performances analysis that determines that it is appropriate
to drop the packet for lack of a suitable destination. The
micro-core may also be operated to modify one or more bits
in an ingress descriptor to communicate information derived
from the ingress (e.g., an ingress MAC or parsed header) to
a downstream component, such as downstream host proces-
sor/core.

In addition, the micro-core may add a pre-pad to the
packet. For example, consider an example packet format in
which a certain portion of the packet is left open, e.g., such
that the first 64 bytes of the packet are left open. This open
portion of the packet can be occupied by data inserted by the
micro-core to communicate parsed information to a down-
stream component, such as a host processor/core. For
example, the 64 bytes pre-pad can be filled in 16, 32, 48 or
64 byte portions before the packet data.

At 310, after processing by the micro-cores, the packets
may be released to downstream components (e.g., compo-
nents 260). A dependency list (e.g., list 220) is used to ensure
that the packets are released in an appropriate order.

FIG. 4A illustrates an example structure 400 that can be
used to implement a dependency list in some embodiments.
Structure 400 is implemented as a set of rows and columns,
where each row of the structure 400 corresponds to a bit
vector that identifies the dependencies of a specific packet in
a micro-core. Each bit in a row can be used to identify
whether the packet corresponding to that row has a depen-
dency to another packet, e.g., by setting a “1” value in a bit
position to indicate a dependency and a “0” value to indicate
no dependency. Therefore, a row having all “0” values
means that the corresponding packet does not have any
dependencies, and can be released upon completion of
processing by the micro-core. However, the presence of one
or more “1” values for the bit vector in a row means that the
corresponding packet has a dependency to at least one other
packet, and hence cannot be released until the other
packet(s) have been released.

Each column corresponds to the dependencies that other
packets have to a given packet. As a packet is added to a row
in the structure 400, it will include “1” values in the columns
for the earlier packets in the same flow. Subsequent packets
in the same flow will have rows that are modified to include
a “1” value in the column that corresponds to that earlier
packet.

The example structure 400 shown in FIG. 4 is organized
for a parser that utilizes sixteen micro-cores (micro-cores
0-15). Therefore, there are sixteen separate rows that cor-
respond to packets which are received for each of the sixteen
micro-cores, where each row identifies the dependencies for
its associated packet. Similarly, there are sixteen columns
that correspond to each of the sixteen micro-cores, where
each column identifies any other packets that have a depen-
dency on the packet associated with that column.

Each packet may be associated with queue identifiers
401a-n that identify the packet’s positioning in a scheduling
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queue. When that packet is received/scheduled for process-
ing by a micro-core, the specific queue identifier for that
packet is associated with the row in the structure 400.

Any hardware, software, or combination of hardware and
software may be employed to implement dependency list
structure 400. For example, the dependency list structure
400 may be implemented using a content addressable
memory (CAM).

FIG. 4B shows a flowchart of an approach for populating
a dependency list structure 400 according to some embodi-
ments. At 402, a packet is received for processing. This
action is taken, for example, when the cache associated with
a micro-core has been populated with the packet header, and
is ready to be parsed by the micro-core for processing.

At 404, the row in the dependency list structure that
corresponds to the micro-core is associated with the packet.
This occurs, for example, by associating the queue identifier
for the packet to the specific bit vector for that micro-core’s
row in the dependency list structure.

The bit vector in the row is then populated at 406 with bit
values that appropriately identify the dependencies for the
packet associated with the bit vector. For example, the
column position for each earlier packet in the same flow is
marked with a “1” value to indicate the dependency and the
column position for a packet for which there is no depen-
dency is marked with a “0” value.

FIGS. 5A-D provide an illustration of this process. FIG.
5A shows a dependency list structure 500 that has not yet
been populated with bit vectors associated with any packets.
In other words, there are currently no packets being pro-
cessed by any micro-cores represented by the dependency
list structure 500.

Assume that a packet has been received for processing by
a given micro-core (e.g., micro-core 0). As shown in FIG.
5B, the row 504 in the dependency list structure 500
associated with micro-core 0 is populated with a bit vector
for that packet. In the current situation, each bit position in
the bit vector is marked with a “0” value to indicate that
there are no current dependencies for this packet, which
makes sense since there are no earlier packets in this flow
which are currently being processed by another micro-core.

Next, assume that another packet is received in the same
flow for processing, but this time by micro-core 7. As shown
in FIG. 5C, the row 506 in the dependency list structure 500
associated with micro-core 7 is populated with a bit vector
for that packet. Since the packet associated with row 506 is
within the same flow as the packet associated with row 504
but is later in time, a dependency is indicated in the bit
vector associated with row 506. Column 507 is associated
with the micro-core 0 that is handling the earlier packet (i.e.,
the micro-core 0 handling the earlier packet represented in
row 504). Therefore, the bit value in column 507 for row 506
is marked with a “1” value to indicate the dependency. Each
other bit position in the bit vector for row 506 is marked with
a “0” value to indicate that there are no other current
dependencies for this packet.

Assume that yet another packet is received in the same
flow for processing, this time by micro-core 12. As shown in
FIG. 5D, the row 508 in the dependency list structure 500
associated with micro-core 12 is populated with a bit vector
for that new packet. Since the packet associated with row
508 is later in the same flow as compared to the packets
associated with rows 504 and 506, multiple dependencies
need to be indicated in the bit vector associated with row
508. Like the bit vector for the packet associated with row
506, the column 507 associated with the micro-core 0 is
modified to include a bit value in this column for row 508
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(e.g., a “1” value) to indicate the dependency. Column 509
is associated with the micro-core 7 that is handling the
earlier packet (i.e., the micro-core 7 handling the earlier
packet represented in row 506). Therefore, the bit value in
column 509 for row 508 is marked with a “1” value to
indicate the dependency. Each other bit position in the bit
vector for row 508 is marked with a “0” value to indicate that
there are no other current dependencies for this packet.

When a packet is to be released, the dependency list
structure is checked to determine whether that packet is
associated with any dependencies that should prevent
release of that packet. This is to make sure that a packet later
in a flow is not released until any earlier packets in that same
flow have already been released.

FIG. 6 shows a flowchart of an approach for using a
dependency list structure to manage release of packets
according to some embodiments. Release of a packet
includes release of the portion of packet data provided to the
parser. For example, in some embodiments only the packet
header is provided to the parser; release of the packet thus
includes release of the header from the parser. At 602, a
packet is identified for which packet parsing has been
completed. This action may be taken, for example, when the
micro-core associated with a packet has completed its pro-
cessing, and provides a signal indicating that it is ready to
release the packet to one or more downstream components.

At 604, the bit vector associated with the packet is
checked to determine whether there are any dependencies
for that packet. This action is taken by reviewing the bit
values in the bit vector associated with the packet, and
checking whether there are any bit values indicative of a
dependency, e.g., by checking whether there are any “1”
values for any bits in the bit vector.

The action to be taken at this point depends on whether
any dependencies have been identified. From decision box
606, if there are no identified dependencies, then the packet
can be immediately released at 608. However, if there are
any identified dependencies, then the packet cannot be
immediately released. Instead, a wait state 610 occurs to
wait for the release of the earlier packet(s). After waiting, the
procedure loops back to 604 to re-check the status of any
dependencies. If all dependencies have been cleared, then
the packet can be released at 608. The loop is repeated if
there are still any remaining dependencies.

FIGS. 7A-F provide an illustration of this process. FIG.
7A reproduces the dependency list structure 500 from FIG.
5D, which has already been populated with bit vectors
associated with packets. Recall from the earlier discussion
that the first packet in the flow is being handled by micro-
core 0, and hence is represented by the bit vector associated
with row 504. The second packet in the same flow is being
handled by micro-core 7, and hence is represented by the bit
vector associated with row 506. The bit vector associated
with row 506 includes a bit value in column 507 indicative
of'a dependency on the packet being handled by micro-core
0. The third packet in the same flow is being handled by
micro-core 12, and hence is represented by the bit vector
associated with row 508. The bit vector associated with row
508 includes a bit value in column 507 indicative of a
dependency on the packet being handled by micro-core 0,
and also includes a bit value in column 509 indicative of a
dependency on the packet being handled by micro-core 7.

At the current moment in time, the packets associated
with micro-cores 7 and 12, represented by rows 506 and 508,
respectively, cannot be released since the bit vectors for each
of these packets indicates at least one dependency, e.g.,
because there is at least one “1” values for a bit in each of
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these bit vectors. However, the bit vector represented in row
504 for the packet being handled by micro-core 0 does not
show any dependencies, e.g., because every bit position
shows a value of “0” in the bit vector.

Assume that micro-core 0 has completed the required
processing for its packet represented by row 504, and
therefore is to release this packet. The bit vector in row 504
for this micro-core 0 is checked to see if there are any
dependencies. Since there are no dependencies indicated by
the bit vector (e.g., because all bit values are “0”), the packet
can be immediately released. As shown in FIG. 7B, the bit
vector in row 504 associated with this packet/micro-core is
cleared, and the micro-core 0 can now be assigned to process
another packet. In addition, any dependencies by other
packets upon this packet can also be cleared. This is accom-
plished by setting the bit values in the column associated
with the micro-core to indicate release of the packet. Here,
column 507 is associated with micro-core 0. Therefore, the
values that had previously been set in this column to indicate
dependencies can now be changed to indicate release of the
dependency, e.g., by changing bit value “1” in column 507
for rows 506 and 508 to a bit value of “0”.

FIG. 7C shows the current state of the dependency list
structure 500 after these changes to the bit vectors. At the
current moment in time, the packet associated with micro-
core 12 represented by row 508 cannot be released since the
bit vectors for this packet indicates at least one dependency,
e.g., because there is at least one “1” values for a bit in this
bit vectors. However, the bit vector represented in row 506
for the packet being handled by micro-core 7 does not show
any dependencies, e.g., because every bit position shows a
value of “0” in the bit vector.

Assume that an instruction is received to release the
packet being handled by micro-core 7. The bit vector in row
506 for micro-core 7 is checked to see if there are any
dependencies. Since there are no dependencies indicated by
the bit vector (e.g., because all bit values are “0”), the packet
can be immediately released. As shown in FIG. 7D, the bit
vector in row 506 associated with this packet is cleared, and
the micro-core 7 can now be assigned to process another
packet. In addition, any dependencies by other packets upon
this packet can also be cleared. This is accomplished by
setting the bit values in the column associated with the
micro-core to indicate release of the packet. Here, column
509 is associated with micro-core 7. Therefore, the values
that had previously been set in this column to indicate
dependencies can now be changed to indicate release of the
dependency, e.g., by changing bit value “1” in column 509
for row 508 to a bit value of “0”.

FIG. 7E shows the current state of the dependency list
structure 500 after these changes to the bit vectors. At the
current moment in time, the packet associated with micro-
core 12 represented by row 508 can be released since the bit
vectors for this packet indicates that there are no dependen-
cies for this packet, e.g., because every bit position shows a
value of “0” in the bit vector.

Assume that an instruction is received to release the
packet being handled by micro-core 12. The bit vector in
row 508 for micro-core 12 is checked to see if there are any
dependencies. Since there are no dependencies indicated by
the bit vector (e.g., because all bit values are “0”), the packet
can be immediately released. As shown in FIG. 7F, the bit
vector in row 508 associated with this packet is cleared, and
the micro-core 12 can now be assigned to process another
packet. In addition, any dependencies by other packets upon
this packet can also be cleared. Here, there are no depen-
dencies by other packets upon this packet, therefore, no bits
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are reset at this time. FIG. 7G now shows the current state
of the dependency list structure 500 after this change to the
bit vectors.

When assigning packets to micro-cores, packets can be
scheduled to specific ones of the micro-cores. FIG. 8 shows
a flowchart of an approach for directing packets to specific
micro-cores according to some embodiments. At 802, a
packet is received for scheduling. For example, the packet
may have been received into a receive buffer 252 (FIG. 2)
having a set of FIFOs, where the packet is placed into one
or more of the FIFOs.

When the packet is received for scheduling, then at 804
that packet can be checked to see if it should be assigned to
a specific micro-core (e.g., a specific one of micro-cores
2044a-204n). For example, certain micro-cores may be spe-
cifically programmed to handle certain tasks, protocols, or
packet types differently from the other micro-cores. The
packet can be analyzed to determine whether it pertains to
one of the specially programmed micro-cores.

One approach that can be taken to implement this action
is to use an interface mask to spray the incoming packets to
different ones/sets of micro-cores based on the specific
interface through which the incoming packet was received.
The mask bits differentiate the packets between the different
interfaces, so that certain packets from certain interfaces are
directed to corresponding micro-cores. The parsing function
can be different for the different micro-cores, e.g., because
of different contents of the instruction RAMs for different
interfaces for the different micro-cores.

At 806, the packet is thereafter scheduled for the identi-
fied micro-core. When the cache for the micro-core is
available, the packet header for the packet is loaded into that
cache for parsing/processing by the micro-core.

Embodiments may be utilized in any suitable network
processing system or subsystem. For example, the micro-
core-based parser can be used in a network acceleration
engine (NAE) of a network processor.

FIG. 9A is a diagram illustrating an exemplary system 900
that employs a micro-core-based parser, in accordance with
at least one embodiment of the present disclosure. In par-
ticular, this figure shows a network acceleration engine
(NAE) 910, which includes a packet ingress subsystem 930
that performs parsing and classification of incoming packets
that are received from the ingress ports 946 of the network
interface 904. In some embodiments, the packet ingress
subsystem 930 performs its parsing and classification func-
tions using a dedicated hardware parser and a number of
programmable micro-core processors, e.g., sixteen micro-
core processors.

The NAE 910 provides packets to a packet ordering
engine (POE) 920 that is responsible for ensuring that data
packet fragments belonging to a specific flow are transmitted
by the packet egress subsystem 940 in the same order in
which they were received by the packet ingress subsystem
930. The packet egress subsystem 940 transmits packets
outward through the egress ports 948 in the network inter-
face 904. The packet data path to communicate packets in
system 900 includes an I/O distributed interconnect 942. The
message data path to communicate messages in system 900
includes a messaging network 933.

System 900 employs free descriptor queues that are
divided into any number (e.g., twenty) descriptor pools.
Descriptors are message units of specially formatted words
(e.g., 64-bit formatted words). For the NAE 910, each
descriptor points to a pre-allocated data buffer in memory
where packet data will be stored. Free-in messages are used
to initialize the descriptors in the pools. The micro-core
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processors in the NAE Packet Ingress Subsystem 930 are
used to determine which descriptor pool to draw descriptors
from for each data packet, which thereby determines where
each data packet will be written in memory.

FIG. 9B depicts an example processing system 100E that
may utilize the network acceleration engine 900 of FIG. 9A.
The processing system 100E has three bidirectional com-
munication rings (each depicted as a bold-line oval), a
plurality of CPUs (e.g. Core-0, Core-1, etc), a plurality of
accelerators (e.g. Network Acceleration Engine, POE, Inter-
laken-LAI) to perform a set of operations, and a plurality of
10 blocks (e.g. ICI, general purpose /O 1E06, etc). The
three rings can be used for referring to and/or moving
packets within the context of an on-chip network.

As shown, each instance of the plurality of CPUs (e.g.
Core-0, Core-1, etc) comprises its respective level two cache
(e.g. the respective L2 cache, as shown), and comprises its
respective level one cache for instructions (e.g. the respec-
tive L1-I cache) and its respective level one cache for data
(e.g. the respective L1-D cache). Each of the CPUs has a
virtual CPU (e.g. 1E04,, . . . 1E04;) depicted as an oval
within a core. These CPUs are separate from the micro-cores
in the parser in the Network Acceleration Engine.

In some embodiments, the Memory Distributed Intercon-
nect 1E32 (MDI) comprises a memory interconnect ring, the
messaging network 1E02 comprises a messaging ring, and
the 1/O distributed interconnect 1E42 (IODI) comprises an
10 interconnect ring. Also shown is a packet ordering engine
(POE) to distribute packets in a particular order to a net-
working output. In this embodiment, the POE connects to
the network acceleration engine (shown as, Network Accel
Engine).

In the embodiment shown, the processing system 100E
includes an [.3 cache to connect to the MDI ring 1E32. The
interconnect serves to connect memory elements to other
memory elements, possibly using a message station or direct
memory access logic. For example, in some embodiments,
an instance of a CPU (e.g. Core-0) includes one or more
cache memories local to the CPU, and the local cache can be
connected to the Memory Distributed Interconnect 1E32
ring. A memory interconnect ring 1E32 can be configured to
any width, including any width of any interconnected
memory, or even multiples of widths of any interconnected
memory, or even fractions of the width of any intercon-
nected memory.

The processing system 100E depicts an /O distributed
interconnect 1E42, which I/O distributed interconnect 1E42
serves to connect IO blocks (e.g. PCI-E, POE, etc) and
accelerators (e.g. network acceleration engine, security
engines) to each other, and to the messaging network 1E02
(as shown).

The accelerators can be located and configured to perform
any specific operation. In some cases, one or more accel-
erators can be configured to perform such a specific opera-
tion autonomously (e.g. without intra-operation intervention
by a CPU) and, in some cases, one or more accelerators can
be configured to perform operations under programmatic
control, which programmatic control can be implemented in
any combination of configuration registers and sequencing
units (e.g. a finite state machine, a micro-sequencet, etc).
The Interlaken LA/PCI-E (104) may be a single module or
two separate modules. The Interlaken LA of 104 may be
individually enabled or disabled while the PCI-E is always
enabled in some embodiments. The Interlaken LA/PCI-E
(104) interacts with a number of devices that are outside the
boundary of the processing system 100E, and the number of
devices may include, for example, a knowledge-based pro-
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cessor or any look-aside devices 102 (identified as a content-
addressable memory or CAM), a host, and peripherals and
1/O.

Further details regarding an exemplary processing system
that may be used to implement the system of FIG. 9B is
described in U.S. patent application Ser. No. 13/107,809
filed May 13, 2011, entitled “IMPLEMENTING INTE-
GRATED NETWORKING FUNCTIONS AT WIRE
SPEED”, which is hereby expressly incorporated by refer-
ence in its entirety.

FIG. 10 depicts a block diagram of an ingress path
subsystem for a NAE according to some embodiments. The
main function of the ingress path subsystem in this example
is to receive packets from the network interface and store
those packets, via the DMA 1036, into pre-allocated buffers
in a memory subsystem.

The packet data is received through one or more inter-
faces 1008 (e.g., through the four Quads 1002). Quads 1002
may be implemented as Serdes lines, where the Quads 1002
take care of the networking interface protocols for receiving
the incoming packets over the network interface 1008. The
incoming packets are placed into interface FIFOs 1010, e.g.,
twenty interface FIFOs having a total of 16 KBytes. The slot
generator 1006 generates slots based on interface bandwidth
requirements. The slot generator 1006 can be programmed
to divide up the bandwidth usage as appropriate. A credit
mechanism can be utilized to prevent overflows at the
interface FIFOs 1010. The SGMII interface 1004 is provided
to receive control/management input to the system.

The packet data is read from the interface FIFOs 1010 into
a receive buffer (RX buffer 1020). In the current example,
the Rx Buffer is carved into 524 “contexts”, where a context
refers to a separation of the incoming packet streams, e.g.,
based at least in part on physical input ports and/or stateless
packet parsing, such as VLAN-priority for Ethernet inter-
face or the channel number for an Interlaken interface. The
packets from the interface FIFOs 1010 can be mapped into
the different FIFOs within the RX buffer 1020. For example,
a given packet in an interface FIFO may be mapped to a base
0/1 set of RX FIFOs 1011 in the RX buffer 1020.

An arbiter 1022 acts as a scheduler to read packet data
from the RX buffer 1020 and to feed the packet data for
parsing to parser 1028. Any suitable scheduling algorithm
may be employed at the arbiter 1022. For example, a
round-robin approach can be taken to read out of the Rx
Buffer 1020. Interface masking may also be applied to direct
packets from specific interfaces to specific micro-cores in
the parser 1028. In addition, scheduling by the arbiter 1022
may also be dependent upon available of hardware resources
and free descriptors. Before being considered eligible for
scheduling, the total Rx bytes in a context should be greater
than a programmable threshold or an end-of-packet (EOP)
indication for that section should be present in the Rx buffer.

The parser sequencer 1016 receives control information
for the packets. For example, the parser sequencer may
receive information about the packets such as the length or
start address of the packets. This information is used by the
arbiter 1022 to schedule reads of packet data from the RX
buffer 1020 into the parsers.

A hardware parser 1024 may be employed to perform
parsing on the packet data, in conjunction with the activities
of the micro-core parser 1028. For example, the hardware
parser 1024 may be used to generate a classification key for
each incoming packet. The classification key for the incom-
ing packet is sent to one of the programmable micro-cores
in the micro-core parser 1028 for any extra classification
processing that may be needed.
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In some embodiments, the micro-cores within the micro-
core parser 1028 are fully programmable processors, as
described in more detail below. The programmability of
these micro-core processors allows for great flexibility and
expansion of the capabilities of the system to perform packet
parsing.

As data moves from the RxBuffer 1020 to the parser 1028
and DMA 1036, the Rx descriptor generator 1032 detects
when a packet crosses a page boundary. When a start of
packet (SOP) indication is received, or when a packet
crosses a page boundary, the Rx descriptor generator 1032
generates a new free descriptor from the free descriptor
queue 1014 and sends the pointer to DMA 1036. Packet
descriptors for the same packet can be from the same Free
Descriptor Queue 1014. The DMA block 1036 will pre-pad
information to the packet buffer and store the packet data via
an [/O distributed Interconnect. The Rx descriptor generator
1032 also adds the new descriptor to a descriptor list. The
RX descriptor generator 1032 may also create a descriptor
that points to the list of descriptors where the packet was
stored and sends this descriptor along with the Flow ID,
Class ID, and other control information 1038 to the Packet
Ordering Engine (POE) 1040.

The free descriptor queue 1014 accepts messages over the
messaging network 1012 for returning the freed packet
descriptors. Descriptors pointing to the packet data are sent
to the Packet Ordering Engine (POE) 1040. The POE 1040,
in turn, appends its own information to the front of the
messages and forwards them to a host processor/processor
core.

The packet data may be processed by certain specialized
processing engines 1034. For example, checksumming or
CRC processing may occur at engines 1034. These activities
may be controlled based on instructions from the micro-
cores in the micro-core parser 1028. In addition, CRC key
hashing may be performed at block 1030, which provide a
flow identifier to the RX descriptor generator 1032.

FIG. 11 shows a diagram of a micro-core architecture
1100 according to some embodiments. The micro-core
architecture 1100 provides a framework that not only has a
small silicon footprint, but also contains enough processing
and expansion capability to support packet processing tasks.
In some embodiments, the micro-core architecture 1100 is
compliant with standard and/or well known specifications
and instruction sets. For example, the micro-core architec-
ture 1100 can be implemented to support the MIPS32
Release2 user space instruction set.

The micro-core architecture 1100 in some embodiments is
a five pipe stage, single issue 32-bit processor unit 506,
which supports CISC-style enhanced instructions that per-
form simple ALU functions directly on data stored in
memory as well as register files, and can write processing
result either to the register file or memory. The memory and
registers include a general purpose register (GPR) 1104, as
well as a RAM 1108 that may be incorporated either as part
of'the micro-core or external to the micro-core. The registers
within the micro-core may be used to communicate infor-
mation to the micro-core about the current incoming packet.
The registers may also be used by the micro-core to com-
municate specific tasks for downstream hardware to conduct
on the current packet. A memory mapped control register
1106 provides management and control functionality over
the micro-core architecture 1100. In some embodiments, the
control register 1106 and RAM 1108 are not located within
the micro-core itself.

The data is copied into the GPR 1104 for processing by
the execution unit 1106. In some embodiments, the data is
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divided into multiple segments, e.g., where a register of 128
bits is divided into four segments of 32 bits each. This
implementation for the micro-core provides for very effi-
cient processing, since the packet data can therefore be
operated upon on a segment basis. If some portion of the
data is needed, the micro-core only needs to read in the
necessary segment(s), modify or operate upon just that
portion of the data, and then write it back to memory. The
micro-core operates over multiple stages, including (a)
instruction fetch (IF); (b) instruction decode (ID); (c) reg-
ister memory read (REG/MEM1); (d) execute/address gen-
eration (EXEC/AGN); and (e) memory writeback (WRB/
MEM1).

FIG. 12 shows functional components of a micro-core
1202 when implemented within an ingress path subsystem,
according to some embodiments. An instruction cache 1204
(e.g., a 4 KB cache) is employed to hold instructions for the
micro-core 1202. One or more packet caches 1206 are
employed to hold packet header data to be processed by the
micro-core 1202. In some embodiments, two separate packet
caches 1206 (e.g., 512 KB data caches) may be utilized to
maintain a constant set of data ready to be processed by the
micro-core 1202. A content addressable memory (CAM)
1208 (e.g., a 3 KB CAM) may be shared across multiple
micro-cores 1202. The CAM 1208 may be used to imple-
ment a dependency list structure according to some embodi-
ments; alternatively, the dependency list is implemented in
a separate CAM (not shown). The micro-core 1202 may also
be associated with a shared memory 1210 (e.g., 32 KB
shared SRAM) and DCache 1212 (e.g., 512 KB DCache).
The Shared RAM (1210) and the Shared CAM can be used
to store state data, such as a forwarding table. The D-Cache
(1212) is used to store local-variables, if they do not fit
inside the GPR.

One or more output buffers 1214 may be used to hold the
outputs from the micro-core 1202. These outputs include,
for example, IP and TCP/IP flags that are sent to a CRC or
checksum block. The output may also include a key that is
sent to a hash logic unit. In addition, the micro-core 1202
may output information (e.g., a prepad, discard, or EOP) that
is used by a RX descriptor generator to generate descriptors.
The output can also be the destination for the message. The
destination can be either a CPU (main host CPU) or can be
a Transmit queue inside NAE. In case it is a transmit queue,
then the packet will be sent out without host CPU interven-
tion.

Therefore, what has been described is an improved
approach for implementing a flexible parser for a network-
ing system, where the parser includes one or more micro-
cores to process packets in a networking system. The
micro-cores of the parser read the packet headers, and
perform any suitably programmed tasks upon those packets
and packet headers.

While various embodiments have been described above,
it should be understood that they have been presented by
way of example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited
by any of the above-described exemplary embodiments, but
should be defined only in accordance with the following
claims and their equivalents.

The invention claimed is:

1. A system for parsing a plurality of packets, comprising:

an interface configured to receive the plurality of packets;

a parser, coupled to the interface, configured to parse the

plurality of packets and to release the plurality of

packets for further processing, the parser comprising:

an instruction memory configured to store instructions;

a plurality of micro-cores configured to parse the
plurality of packets based on the instructions stored
in the instruction memory; and
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a memory, in communication with the parser, configured
to store a dependency list that maintains an order in
which the plurality of packets are to be processed and
released,

wherein the dependency list comprises a plurality of rows
and a plurality of columns such that each micro-core of
the plurality of micro-cores is associated with a row of
the plurality of rows and a column of the plurality of
columns,

wherein the row of the plurality of rows is configured to
hold data identifying whether a packet, of the plurality
of packets, associated with the row has a dependency
on another packet of the plurality of packets, and

wherein the column of the plurality of columns is con-
figured to hold data identifying whether the packet
associated with the column creates a dependency for
the other packet.

2. The system of claim 1, further comprising:

hash logic configured to generate a hash to direct the
plurality of packets to specific destinations within the
system based on a key provided by the parser.

3. The system of claim 2, wherein the hash logic is further
configured to allocate the plurality of packets to specific
Processors Or processor cores.

4. The system of claim 1, further comprising:

a cache, associated with one of the plurality of micro-
cores, the cache being configured to store at least one
header of at least one of the plurality of packets.

5. The system of claim 4, wherein a size of the cache is

sufficient to store the at least one header.

6. The system of claim 4, wherein the cache comprises:

a first cache; and

a second cache separate from the first cache,

wherein the first cache is configured to store the packet for
current processing and the second cache is configured
to concurrently load a further packet of the plurality of
packets for future processing.

7. The system of claim 1, wherein the parser is further
configured to receive only portions of the plurality of
packets that are related to corresponding headers of the
plurality of packets.

8. The system of claim 1, wherein the parser is further
configured to perform classification actions on the plurality
of packets.

9. The system of claim 1, further comprising:

a scheduler configured to allocate the plurality of packets

from a receive buffer to the plurality of micro-cores.

10. The system of claim 9, wherein the scheduler is
configured to assign the plurality of packets to one of the
plurality of micro-cores that is configured to perform a
defined processing task.

11. The system of claim 1, wherein one of the plurality of
micro-cores is part of an ingress path subsystem for a
network accelerator engine.

12. The system of claim 1, wherein the instructions for
one of the plurality of micro-cores comprises:

an operation configured to add a pre-pad for the plurality
of packets.

13. The system of claim 1, further comprising:

a register, associated with the parser, configured to com-
municate between the parser and external hardware.

14. A method for parsing a plurality of packets, compris-
ing:

receiving the plurality of packets;

defining an order in which the plurality of packets are to
be processed and released in a dependency list such that
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each micro-core of a plurality of micro-cores is asso-
ciated with a row of a plurality of rows and a column
of a plurality of columns of the dependency list;

holding, by the row of the plurality of rows, data identi-
fying whether a packet, of the plurality of packets,
associated with the row has a dependency on an another
packet of the plurality of packets;
holding, by the column of the plurality of columns, data
identifying whether the packet associated with the
column creates a dependency for the other packet;

parsing the plurality of packets using the plurality of
micro-cores based on instructions stored in correspond-
ing instruction memories; and

releasing the parsed packets after the dependency list

indicates that the parsed packets are ready to be
released.

15. The method of claim 14, further comprising:

generating a key using one of the plurality of micro-cores;

and

using, by a hash logic, the key to generate a hash to direct

the plurality of packets to specific destinations within a
system.

16. The method of claim 15, further comprising:
allocating, by the hash logic, the plurality of packets to
one or more specific processors or processor cores.

17. The method of claim 14, further comprising:

storing, in a cache associated with one of the plurality of

micro-cores, headers for the plurality of packets.

18. The method of claim 17, further comprising:

selecting a cache size for the cache that is sufficient to

hold a packet header of the packet.

19. The method of claim 17, further comprising:

storing the packet in a first cache of the cache for current

processing; and

concurrently loading, in a second cache that is separate

from the first cache, a further packet of the plurality of
packets for future processing.

20. The method of claim 17, further comprising:

populating the cache by checking for available hardware

resources or checking for an amount of data received.

21. The method of claim 14, further comprising:

receiving, by one of the plurality of micro-cores, only

portions of the plurality of packets that relate to respec-
tive packet headers.

22. The method of claim 14, further comprising:

performing, using one of the plurality of micro-cores,

classification actions on the plurality of packets.

23. The method of claim 14, further comprising:

allocating, using a scheduler, the plurality of packets from

a receive buffer to the plurality of micro-cores.

24. The method of claim 23, further comprising:

assigning a portion of the packet to a specific micro-core

of the plurality of micro-cores that is adapted to per-
form defined processing tasks.

25. The method of claim 14, wherein one of the plurality
of micro-cores is part of an ingress path subsystem for a
network accelerator engine.

26. The method of claim 14, wherein the instructions for
one of the plurality of micro-cores includes an operation to
add a pre-pad for the plurality of packets.

27. The method of claim 14, further comprising: using a
register, by the plurality of micro-cores, to communicate
between the plurality of micro-cores and external hardware.
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