a2 United States Patent

Sun et al.

US009430198B2

US 9,430,198 B2
Aug. 30, 2016

(10) Patent No.:
45) Date of Patent:

(54) DATA PROCESSING METHOD AND

APPARATUS
(71) Applicant: Huawei Technologies Co., Ltd.,
Shenzhen (CN)
(72) Inventors: Dongwang Sun, Beijing (CN); Jijun
Wen, Beijing (CN); Chuanting Wang,
Beijing (CN)
(73) Assignee: Huawei Technologies Co., Ltd.,
Shenzhen (CN)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 14/753,232
(22) Filed: Jun. 29, 2015
(65) Prior Publication Data
US 2015/0301810 Al Oct. 22, 2015
Related U.S. Application Data
(63) Continuation of application No.
PCT/CN2014/081141, filed on Jun. 30, 2014.
(30) Foreign Application Priority Data
Feb. 19,2014 (CN) .ccoevviicieeee 2014 1 0055711
(51) Imt. ClL
GO6F 9/45 (2006.01)
GO6F 17/30 (2006.01)
GO6F 21/62 (2013.01)
(52) US. CL
CPC GO6F 8/41 (2013.01); GO6F 17/30312
(2013.01); GOGF 21/6227 (2013.01)
(58) Field of Classification Search

CPC .. GO6F 9/5027; GOG6F 8/70; GOG6F 17/30557,
GOG6F 8/41
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
5,619,696 A * 4/1997 Nakagawa ... GOG6F 9/4426
711/3

6/2001 Hollandcccoee. GOG6F 8/41
717/111

6,243,860 Bl *

(Continued)

FOREIGN PATENT DOCUMENTS

CN 1573759 A 2/2005
CN 101499093 A 8/2009

(Continued)
OTHER PUBLICATIONS

Partial English Translation and Abstract of Chinese Patent Appli-
cation No. CN101504613A, Apr. 29, 2015, 3 pages.

(Continued)

Primary Examiner — Chameli Das
(74) Attorney, Agent, or Firm — Conley Rose, P.C.; Grant
Rodolph

(57) ABSTRACT

A data processing method and apparatus, which relate to the
computer field and are capable of effectively improving
scalability of a database system. The data processing method
includes: receiving source code of an external routine, where
the source code of the external routine is compiled by using
an advanced programming language; compiling the source
code to obtain intermediate code, where the intermediate
code is a byte stream identifiable to a virtual machine on any
operating platform; converting, according to an instruction
set on the operating platform, the intermediate code into
machine code capable of running on the operating platform;
and storing the machine code to a database. The data
processing method and apparatus provided by the embodi-
ments of the present invention are used to process data.

18 Claims, 7 Drawing Sheets

Receive a database access request sent by a first user
equipment that sends the source code of the external

routine

111
}_/

Determine, according to the database access request,
‘whether the first user equipment has a permission to
access the database

112
/

!

If the first user equipment has the permission to access
the database, receive the source code of the external
routine sent by the first user equipment, so as to convert
the source code into the machine code and store the
machine code to the database

113
b

!

Receive the source code of the external routine, where the
source code of the external routine is compiled by vsing
an advanced programming language

!

Compile the source code to obtain intermediate code,
‘where the intermediate code is a byte stream identifiable
10 a virtual machine on any operating platform

115

!

Convert, according to an instruction set on the operating
platform, the intermediate code into machine code
capable of ranning on the operating platform

116

117

‘ Store the machine code to the database

US 9,430,198 B2

Page 2
(56) References Cited CN 102419714 A 4/2012
CN 103309779 A 9/2013
U.S. PATENT DOCUMENTS CN 103838614 A 6/2014
WO 2010014323 Al 2/2010
6,711,579 B2 3/2004 Balakrishnan
2003/0110467 Al* 6/2003 Balakrishnan ... GO6F 17/30557 OTHER PUBLICATIONS
2004/0225747 AL* 11/2004 Kadi oo G0761F7é§1/241‘ Partial English Translation and Abstract of Chinese Patent Appli-
709/232 cation No. CN102419714A, Apr. 29, 2015, S pages.
2004/0260691 Al 12/2004 Desai et al. Partial English Translation and Abstract of Chinese Patent Appli-
2007/0038662 Al 2/2007 Bendel et al. cation No. CN103838614A, Apr. 29, 2015, 3 pages.
2009/0083271 Al* 3/2009 Day ..o GO6F 8/52 Foreign Communication From a Counterpart Application, PCT
2009/0113402 Al 4/2009 Chen et al. Application No. PCT/CN2014/081141, International Search Report
2009/0241128 Al* 9/2009 Curbera G067Flgggg dated Nov. 28, 2014, 8 pages.
Foreign Communication From a Counterpart Application, PCT
L AL s (o 10 Adler GosE o/s0p7 Application No. PCT/CN2014/08 1141, Written Opinion dated Nov.
"""""""""""" 717/151 28, 2014, S pages.
2011/0296386 Al* 12/2011 Woollen ..covovvvvvvvviin, GO6F 8/70 Gendler-Fishman, M., et al., “A Compile-time Model for Safe
717/124 Information Flow in Object-Oriented Databases,” Jan. 1997, 15
2012/0284696 Al 11/2012 Koskinen et al. pages.
2013/0124686 Al* 5/2013 Hurlinn wvevvevvvno, GOG6F 11/3664 Foreign Communication From a Counterpart Application, European
709/218 Application No. 14856790.2, Extended European Search Report
dated Mar. 17, 2016, 11 pages.
FOREIGN PATENT DOCUMENTS Foreign Communication From A Counterpart Application, Euro-
pean Application No. 201410055711.9, Chinese Office Action dated
CN 101504613 A 8/2009 Jun. 20, 2016, 7 pages.
CN 101836188 A 9/2010
CN 102144230 A 8/2011 * cited by examiner

U.S. Patent Aug. 30, 2016 Sheet 1 of 7 US 9,430,198 B2

Receive source code of an external routine, where the 1/04
source code of the external routine is compiled by using —
an advanced programming language

Compile the source code to obtain intermediate code, 105
where the intermediate code is a byte stream identifiable ,/
to a virtual machine on any operating platform

Convert, according to an instruction set on the operating 106
platform, the intermediate code into machine code
capable of running on the operating platform

107
Store the machine code to a database /

FIG 1A

U.S. Patent Aug. 30, 2016 Sheet 2 of 7 US 9,430,198 B2

Receive a database access request sent by a first user W,

equipment that sends the source code of the external | —
routine

Determine, according to the database access request, /1}12

whether the first user equipment has a permissionto —
access the database

v

If the first user equipment has the permission to access
the database, receive the source code of the external 113
routine sent by the first user equipment, so as to convert ~_
the source code into the machine code and store the
machine code to the database

v

Receive the source code of the external routine, where the 1/1 4
source code of the external routine is compiled by using —
an advanced programming language

v

Compile the source code to obtain intermediate code, 115
where the intermediate code is a byte stream identifiable /
to a virtual machine on any operating platform

v

Convert, according to an instruction set on the operating 116
platform, the intermediate code into machine code _/
capable of running on the operating platform

; 117

Store the machine code to the database

FIG. 1B

U.S. Patent Aug. 30, 2016 Sheet 3 of 7 US 9,430,198 B2

201

\,

‘Receive a database access request sent by a first user equipment‘

202 o ~—_
_~"Determine, according to the database ~—.__ No
<<access request, whether the first user equipment has a>>—i 2021
T &rmission to access a databtg o 7
T o Forbid .the first user
203 equipment to
\ES access the database

Receive source code of an external routine sent by the first user
equipment

204

Check whether a range

of an object, in the database, accessed by the No
source code is in a preset range of an object —¢
accessedin the 2041
database __| Stop compiling

the source code
A

205

Check whether an operation
performed by the Source code on the object in the database
is a preset operation performed on the object
in the database

}7

Acquire machine
code of the

206

*Yes

| Compile the source code to obtain intermediate code

intermediate code
209
N 208
| Store the intermediate code to the database |
2001 Store the

machine code to
the database

2092

T

Generate a target name
of the intermediate code

Generate a target address
of the intermediate code

|/

FI1G. 2

U.S. Patent Aug. 30, 2016 Sheet 4 of 7 US 9,430,198 B2

3 (&
Receive a request, which is sent by a second user
equipment, for invoking an external routine

v

302 T T

/ \

—— . . T~
\>/ Determine, according to \\\
//t/he request for invoking the external routine, whether—~ No 3021
\\\the second user equipment has a permission to///)

— . . s
invoke the external routine
\\ //

Forbid the second user

303 equipment to invoke the
K Yes external routine

‘ Acquire a result of the invoking request ‘
304
\

Invoke a virtual machine to execute intermediate code of
the external routine

FIG. 3

U.S. Patent Aug. 30, 2016 Sheet 5 of 7 US 9,430,198 B2

41&
Reccive a request, which is sent by a second user
equipment, for invoking an external routine

.

402 T
» . \
—Determine, according to ~~___
//>'tﬁe request for invoking the external routine, ™~ No 4021
T~

“— whether the second user equipment has a permission.—
T~__to invoke the external routine _—
S /

4({ ?es
—

Forbid the second user
equipment to invoke the
external routine

Acquire a result of the invoking request

404
<

‘ Directly execute machine code of the external routine

FIG. 4
50
k Authenticating Language front-end ,/501
module - module
504 ¥ 503
\\ Storage management Intermediate code
module o module
505 \ Vil " jé
. irtual machine
K{ Operating platform } Lexecuting module

FIG. 5

U.S. Patent Aug. 30,2016

Sheet 6 of 7 US 9,430,198 B2
Data processing jo
apparatus

/603
‘ First receiving unit "/
| 606
‘ Compiling unit F/
|

‘ Conveltling unit I_/607

| 608
Storing unit L/

FIG. 6A

U.S. Patent

Aug. 30, 2016 Sheet 7 of 7
Data processing
apparatus
601

B -{ Second receiving unit ‘

602\% First determining unit }—|

603._|

604 |

606 «_|

607._|

608._|

ﬁo

ﬁ First receiving unit

ﬂ First checking unit ‘

Invoking unit %/

6011
e

unit

Second checking | |

605

Compiling unit ‘7

Converting unit

First

generating
unit

—{ Storing unit

609

L1

Second

generating
unit

jOlO

[

FIG. 6B

. 7
Data processing /0

apparatus

~]
[}
—

Receiver F/

Processor P

.

FIG. 7

US 9,430,198 B2

US 9,430,198 B2

1
DATA PROCESSING METHOD AND
APPARATUS

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of International Appli-
cation No. PCT/CN2014/081141, filed on Jun. 30, 2014,
which claims priority to Chinese Patent Application No.
201410055711.9, filed on Feb. 19, 2014, both of which are
hereby incorporated by reference in their entireties.

TECHNICAL FIELD

The present invention relates to the computer field, and in
particular, to a data processing method and apparatus.

BACKGROUND

An external routine (External Routine) is generally a
program that is compiled by using an advanced program-
ming language and may be embedded in a structured query
language (SQL) statement. Source code of the external
routine, after being compiled, may be invoked by a database
management system, so that a database function is extended.
A database system includes a database and a database
management system, where the database is used to store
data, and the database management system is used to oper-
ate, manage, and maintain the database. Generally, the
database management system may be a structured query
language database management system (MySQL) and so on,
and the database may be a structured query language data-
base (SQL Server), an Oracle database (Oracle), and so on,
and the database provides extensive support for the
advanced programming language, where the advanced pro-
gramming language may be a C language, a C++ language,
a JAVA language, a Common Business Oriented Language
(COBOL), and so on.

In the prior art, the database system may compile, by
using an embedded database management system and an
embedded extended language compiling module, the source
code of the external routine compiled by using the advanced
programming language, to obtain target code of the external
routine, where the database management system may be a
MySQL, Teradata, and so on, and the extended language
compiling module may be a DB2, a PostgreSQL, and so on.
Then, the target code of the external routine is stored to the
database according to a target name and target address set by
a user, where the target name is used to uniquely identify the
target code of the external routine, and the target address is
used to identify an address of the target code of the external
routine stored in the database, so that the target code of the
external routine is invoked according to the target name and
the target address. Alternatively, after the source code of the
external routine is compiled by using a programming tool of
the advanced programming language, the target code of the
external routine is copied to the database according to the
target name and target address set by the user, and it is
necessary to register information such as the target name and
target address with the database, so that the database man-
agement system identifies and invokes the target code of the
external routine.

However, central processors on different operating plat-
forms are different, and instruction sets of different central
processors are also different. Therefore, the external routine
compiled by using the advanced programming language,
when running on different operating platforms, needs to be

10

15

20

25

30

35

40

45

50

55

60

65

2

compiled by different compilers to obtain target code of the
external routine which is suitable for running on a current
operating platform, where the operating platform is hard-
ware and/or software required for running the target code of
the external routine. The instruction set is used to convert the
external routine into the target code of the external routine
which is suitable for running on the operating platform. For
example, when an external routine is compiled into target
code of an x86 version, the target code can only run on a
central processor that supports an x86 instruction set. There-
fore, different compilers need to be embedded into the
database system to compile the source code of the external
routine, which limits scalability of the database system, and
a security problem exists when the external routine is
compiled.

SUMMARY

Embodiments of the present invention provide a data
processing method and apparatus, which can effectively
improve scalability of a database system.

To achieve the foregoing objectives, the following tech-
nical solutions are adopted in embodiments of the present
invention:

According to a first aspect, a data processing method is
provided, including receiving source code of an external
routine, where the source code of the external routine is
compiled by using an advanced programming language,
compiling the source code to obtain intermediate code,
where the intermediate code is a byte stream identifiable to
a virtual machine on any operating platform, converting,
according to an instruction set on the operating platform, the
intermediate code into machine code capable of running on
the operating platform; and storing the machine code to a
database.

According to the first aspect, in a first possible imple-
mentation manner, before the receiving source code of an
external routine, the method further includes receiving a
database access request sent by a first user equipment that
sends the source code of the external routine, determining,
according to the database access request, whether the first
user equipment has a permission to access the database; and
if the first user equipment has the permission to access the
database, receiving the source code of the external routine
sent by the first user equipment, so as to convert the source
code into the machine code and store the machine code to
the database.

With reference to the first aspect or the first possible
implementation manner of the first aspect, in a second
possible implementation manner, before the compiling the
source code to obtain intermediate code, the method further
includes checking whether a range of an object, in the
database, accessed by the source code is in a preset range of
an object accessed in the database, and if the range of the
object, in the database, accessed by the source code is in the
preset range of the object accessed in the database, compil-
ing the source code to obtain the intermediate code.

With reference to the first aspect or the first possible
implementation manner of the first aspect, in a third possible
implementation manner, before the compiling the source
code to obtain intermediate code, the method further
includes checking whether an operation performed by the
source code on an object in the database is a preset operation
performed on the object in the database, where the operation
includes modifying, adding, or deleting the object, and if the
operation performed by the source code on the object in the

US 9,430,198 B2

3

database is the preset operation performed on the object in
the database, compiling the source code to obtain the inter-
mediate code.

With reference to the first aspect or any one of the first
possible implementation manner to the third possible imple-
mentation manner of the first aspect, in a fourth possible
implementation manner, after the compiling the source code
to obtain intermediate code, the method further includes
storing the intermediate code to the database.

With reference to the fourth possible implementation
manner of the first aspect, in a fifth possible implementation
manner, after the storing the intermediate code to the data-
base, the method further includes generating a target name
of the intermediate code, where the target name is used to
uniquely identify the intermediate code, and generating a
target address of the intermediate code, where the target
address is used to identify an address of the intermediate
code in the database.

With reference to the first aspect or any one of the first
possible implementation manner to the fifth possible imple-
mentation manner of the first aspect, in a sixth possible
implementation manner, after the storing the machine code
to a database, the method further includes receiving a
request, which is sent by a second user equipment, for
invoking the external routine, determining, according to the
request for invoking the external routine, whether the second
user equipment has a permission to invoke the external
routine, and if the second user equipment has the permission
to invoke the external routine, running the machine code, so
as to invoke the external routine from the database.

According to a second aspect, a data processing apparatus
is provided, including a first receiving unit configured to
receive source code of an external routine, where the source
code of the external routine is compiled by using an
advanced programming language, a compiling unit config-
ured to compile the source code to obtain intermediate code,
where the intermediate code is a byte stream identifiable to
a virtual machine on any operating platform, a converting
unit configured to convert, according to an instruction set on
the operating platform, the intermediate code into machine
code capable of running on the operating platform, and a
storing unit configured to store the machine code to a
database.

With reference to the second aspect, in a first possible
implementation manner, the data processing apparatus fur-
ther includes a second receiving unit configured to receive a
database access request sent by a first user equipment that
sends the source code of the external routine, and a first
determining unit configured to determine, according to the
database access request, whether the first user equipment has
a permission to access the database, where the first receiving
unit is specifically configured to receive, when the first
determining unit determines that the first user equipment has
the permission to access the database, the source code of the
external routine sent by the first user equipment, so as to
convert the source code into the machine code and store the
machine code to the database.

With reference to the second aspect or the first possible
implementation manner of the second aspect, in a second
possible implementation manner, the data processing appa-
ratus further includes a first checking unit configured to
check whether a range of an object, in the database, accessed
by the source code is in a preset range of an object accessed
in the database, where the compiling unit is specifically
configured to compile the source code to obtain the inter-
mediate code when the first checking unit determines that

10

15

20

25

30

35

40

45

50

55

60

65

4

the range of the object, in the database, accessed by the
source code is in the preset range of the object accessed in
the database.

With reference to the second aspect or the first possible
implementation manner of the second aspect, in a third
possible implementation manner, the data processing appa-
ratus further includes a second checking unit configured to
check whether an operation performed by the source code on
an object in the database is a preset operation performed on
the object in the database, where the operation includes
modifying, adding, or deleting the object; where the com-
piling unit is specifically configured to compile the source
code to obtain the intermediate code when the second
checking unit determines that the operation performed by
the source code on the object in the database is the preset
operation performed on the object in the database.

With reference to the second aspect or any one of the first
possible implementation manner to the third possible imple-
mentation manner of the second aspect, in a fourth possible
implementation manner, the storing unit is further config-
ured to store the intermediate code to the database.

With reference to the fourth possible implementation
manner of the second aspect, in a fifth possible implemen-
tation manner, the data processing apparatus further includes
a first generating unit configured to generate a target name
of the intermediate code, where the target name is used to
uniquely identify the intermediate code, and a second gen-
erating unit configured to generate a target address of the
intermediate code, where the target address is used to
identify an address of the intermediate code in the database.

With reference to the second aspect or any one of the first
possible implementation manner to the fifth possible imple-
mentation manner of the second aspect, in a sixth possible
implementation manner, the data processing apparatus fur-
ther includes an invoking unit, where the second receiving
unit is further configured to receive a request, which is sent
by a second user equipment, for invoking the external
routine, the first determining unit is further configured to
determine, according to the request for invoking the external
routine, whether the second user equipment has a permission
to invoke the external routine, and the invoking unit is
configured to run the machine code when the first determin-
ing unit determines that the second user equipment has the
permission to invoke the external routine, so as to invoke the
external routine from the database.

Embodiments of the present invention provide a data
processing method and apparatus. The data processing
method includes: receiving source code of an external
routine, where the source code of the external routine is
compiled by using an advanced programming language;
compiling the source code to obtain intermediate code,
where the intermediate code is a byte stream identifiable to
a virtual machine on any operating platform; converting,
according to an instruction set on the operating platform, the
intermediate code into machine code capable of running on
the operating platform; and storing the machine code to a
database. In this way, the received source code of the
external routine is compiled to obtain the intermediate code.
In comparison with the prior art, the intermediate code is
independent from the operating platform, and is a type of
unified code for the operating platform, that is, a virtual
machine on any operating platform can identify the inter-
mediate code. Therefore, it is unnecessary to embed different
compilers into a database system to compile the source code
of'the external routine, and convert, according to the instruc-
tion set on the operating platform, the intermediate code into

US 9,430,198 B2

5

the machine code capable of running on the operating
platform. Thereby, scalability of the database system is
effectively improved.

BRIEF DESCRIPTION OF DRAWINGS

To describe the technical solutions in the embodiments of
the present invention more clearly, the following briefly
introduces the accompanying drawings required for describ-
ing the embodiments. Apparently, the accompanying draw-
ings in the following description show merely some embodi-
ments of the present invention, and a person of ordinary skill
in the art may still derive other drawings from these accom-
panying drawings without creative efforts.

FIG. 1A is a flowchart of a data processing method
according to an embodiment of the present invention;

FIG. 1B is a flowchart of another data processing method
according to an embodiment of the present invention;

FIG. 2 is a flowchart of still another data processing
method according to an embodiment of the present inven-
tion;

FIG. 3 is a flowchart of yet another data processing
method according to an embodiment of the present inven-
tion;

FIG. 4 is a flowchart of yet another data processing
method according to an embodiment of the present inven-
tion;

FIG. 5 is a schematic structural diagram of a data pro-
cessing apparatus according to an embodiment of the present
invention;

FIG. 6A is a schematic structural diagram of another data
processing apparatus according to an embodiment of the
present invention;

FIG. 6B is a schematic structural diagram of still another
data processing apparatus according to an embodiment of
the present invention; and

FIG. 7 is a schematic structural diagram of yet another
data processing apparatus according to an embodiment of
the present invention.

DESCRIPTION OF EMBODIMENTS

The following clearly describes the technical solutions in
the embodiments of the present invention with reference to
the accompanying drawings in the embodiments of the
present invention. Apparently, the described embodiments
are merely a part rather than all of the embodiments of the
present invention. All other embodiments obtained by a
person of ordinary skill in the art based on the embodiments
of the present invention without creative efforts shall fall
within the protection scope of the present invention.

As shown in FIG. 1A, an embodiment of the present
invention provides a data processing method, including the
following steps:

Step 104: Receive source code of an external routine,
where the source code of the external routine is compiled by
using an advanced programming language.

Step 105: Compile the source code to obtain intermediate
code, where the intermediate code is a byte stream identi-
fiable to a virtual machine on any operating platform.

When the source code of the external routine is compiled,
first, whether a range of an object, in a database, accessed by
the source code is in a preset range of an object accessed in
the database is checked; and if the range of the object, in the
database, accessed by the source code is in the preset range
of the object accessed in the database, the source code is
compiled to obtain the intermediate code. Alternatively,

20

30

40

45

6

compiling the source code to obtain the intermediate code
may further include: checking whether an operation per-
formed by the source code on the object in a database is a
preset operation performed on the object in the database,
where the operation includes modifying, adding, or deleting
the object; and if the operation performed by the source code
on the object in the database is the preset operation per-
formed on the object in the database, compiling the source
code to obtain the intermediate code, so that the virtual
machine on any operating platform can identify the inter-
mediate code. After the source code is successfully compiled
to obtain the intermediate code, the intermediate code is
stored to the database, and a target name and a target address
of the intermediate code are generated, where the target
name is used to uniquely identify the intermediate code, and
the target address is used to identify an address of the
intermediate code in the database.

Step 106: Convert, according to an instruction set on the
operating platform, the intermediate code into machine code
capable of running on the operating platform.

The instruction set is a hardware program that is stored in
a central processor and guides and optimizes an operation of
the central processor, and the instruction set may enable the
central processor to run more effectively.

Step 107: Store the machine code to a database.

A target name and a target address of the machine code are
generated, where the target name is used to uniquely identify
the machine code, and the target address is used to identify
an address of the machine code in the database.

In this way, first, source code of an external routine is
received, and then, the source code is compiled to obtain
intermediate code, where the intermediate code is a byte
stream identifiable to a virtual machine on any operating
platform. In comparison with the prior art, the intermediate
code is independent from the operating platform, and is a
type of unified code for the operating platform, that is, the
virtual machine on any operating platform can identify the
intermediate code. Therefore, it is unnecessary to embed
different compilers into a database system to compile the
source code of the external routine, and convert, according
to an instruction set on the operating platform, the interme-
diate code into machine code capable of running on the
operating platform. Thereby, scalability of the database
system is effectively improved.

As shown in FIG. 1B, an embodiment of the present
invention provides a data processing method, including the
following steps:

Step 111: Receive a database access request sent by a first
user equipment that sends source code of an external routine.

Step 112: Determine, according to the database access
request, whether the first user equipment has a permission to
access a database.

Step 113: If the first user equipment has the permission to
access the database, receive the source code of the external
routine sent by the first user equipment, so as to convert the
source code into machine code and store the machine code
to the database.

If the first user equipment has the permission to access the
database, the source code of the external routine sent by the
first user equipment is received, which includes: parsing a
data packet of the source code of the external routine to
obtain a first identifier of the data packet, where the first
identifier is used to identify a source address of the data
packet; determining whether the first identifier of the data
packet is a preset identifier, where the preset identifier is
used to identify an address of the first user equipment; and
if the first identifier of the data packet is the preset identifier,

US 9,430,198 B2

7

receiving a data packet sent by the first user equipment,
where the data packet includes the source code of the
external routine, where the source code of the external
routine is compiled by using an advanced programming
language, where the advanced programming language may
be a C language, a C++ language, a JAVA language, and so
on.

Step 114: Receive the source code of the external routine,
where the source code of the external routine is compiled by
using an advanced programming language.

Step 115: Compile the source code to obtain intermediate
code, where the intermediate code is a byte stream identi-
fiable to a virtual machine on any operating platform.

Step 116: Convert, according to an instruction set on the
operating platform, the intermediate code into machine code
capable of running on the operating platform.

Step 117: Store the machine code to the database.

In this way, before source code of an external routine is
received, first, a database access request sent by a first user
equipment that sends the source code of the external routine
is received, and then after it is determined that the first user
equipment has a permission to access a database, the source
code of the external routine sent by the first user equipment
is received, so that the source code is converted into a
machine code and that the machine code is stored to the
database. Thereby, security of the database is effectively
enhanced, and the user equipment is prevented from unau-
thorizedly accessing the database.

As shown in FIG. 2, an embodiment of the present
invention provides a data processing method. It is assumed
that source code of an external routine is compiled by using
a C language, where the method includes the following
steps:

Step 201: Receive a database access request sent by a first
user equipment.

If a first user is a local user, the first user may send the
database access request to a database by using the first user
equipment, where the database access request sent by the
first user equipment includes a user name, a login password,
and a permission level. The user name is a login name used
by the first user to log in to the database, the login password
is a login password used by the first user to log in to the
database, and the permission level is a level of an operation
that can be performed by the first user on the database when
the first user logs in to the database. For example, a
permission level such as an administrator, a senior user, an
intermediate user, or a junior user has different permissions
to operate the database. Exemplarily, the administrator may
add or delete a user to or from the database, and perform any
compiling operation such as deleting, adding, or modifying
on a source program or an object in the database; the senior
user may invoke the source program in the database to
perform any compiling operation such as deleting, adding,
or modifying on the object in the database; the junior user
may only access the object in the database.

If the first user is not a local user and needs to access the
database remotely, the first user may first send, by using the
first user equipment, an access request to a server on which
the database is located, where the access request includes an
Internet Protocol (IP) address and a port number of the
server on which the database is located. After successfully
accessing the server on which the database is located, the
first user may send the database access request to the
database again by using the first user equipment, and in this
case, the database access request includes the user name, the
login name, and the permission level.

10

15

20

25

30

35

40

45

50

55

60

65

8

It should be noted that the user may access the database
in a form of command inputting in a disk operating system
(DOS) environment, and may add, delete, or modify the
source program or data in the database in the form of
command inputting; the user may further access the database
in a visual window interface.

Step 202: Determine, according to the database access
request, whether the first user equipment has a permission to
access a database.

If the first user equipment does not have the permission to
access the database, step 2021 is performed to forbid the first
user equipment to access the database.

If the first user equipment has the permission to access the
database, step 203 is performed.

If the first user is not registered with the database, when
the first user accesses the database by using the first user
equipment, the database determines that the first user is an
unauthorized user of the database, and forbids the first user
to access the database by using the first user equipment.

If the first user equipment has the permission to access the
database, that is, the first user is registered with the database
by using the first user equipment, when the first user
accesses the database by using the first user equipment, the
database determines that the first user is an authorized user
of the database, and allows the first user to access the
database by using the first user equipment.

Specifically, if the first user equipment has the permission
to access the database, the source code of the external
routine sent by the first user equipment is received, which
includes: parsing a data packet of the source code of the
external routine to obtain a first identifier of the data packet,
where the first identifier is used to identify a source address
of the data packet, namely, an address of a user equipment
sending the data packet; determining whether the first iden-
tifier of the data packet is a preset identifier, where the preset
identifier is used to identify an address of the first user
equipment; and if the first identifier of the data packet is the
preset identifier, receiving a data packet sent by the first user
equipment, where the data packet includes the source code
of the external routine.

Step 2021: Forbid the first user equipment to access the
database.

In the embodiment of the present invention, it is assumed
that the first user equipment has the permission to access the
database, and step 203 is performed.

Step 203: Receive source code of an external routine sent
by the first user equipment.

Step 204: Check whether a range of an object, in the
database, accessed by the source code is in a preset range of
an object accessed in the database.

If the range of the object, in the database, accessed by the
source code is in the preset range of the object accessed in
the database, step 2041 is performed to stop compiling the
source code.

For example, it is possible that the object, in the database,
accessed by the source code includes an object forbidden to
be accessed, causing unauthorized access to the object in the
database. It is assumed that the object accessed by the source
code is critical business data, leak of a major business secret
may be caused, resulting in serious economic losses. If the
range of the object, in the database, accessed by the source
code is in the preset range of the object accessed in the
database, the source code is compiled to obtain an interme-
diate code.

Specifically, first, a permission level of the object in the
database is preset. Objects of different permission levels are
of different importance, that is, permission levels of the

US 9,430,198 B2

9

objects may be set to confidential, high-level, or low-level,
and so on. For example, a confidential object cannot be
accessed randomly, and can only be accessed by a program
or user having a confidential permission. The object may be
data in the database. Alternatively, data stored in the data-
base may be classified into different types of objects, where
each type of data is a type of object, for example, a data type
and an information type. Then, after receiving the source
code of the external routine, when compiling the source
code, the database checks whether an object, in the database,
accessed by the source program is a preset object in the
database allowed to be accessed; compiles the source code
to obtain the intermediate code if the object, in the database,
accessed by the source program is the preset object in the
database allowed to be accessed; and stops compiling the
source code if the object, in the database, accessed by the
source program is a preset object in the database not allowed
to be accessed.

Further, if the range of the object, in the database,
accessed by the source code is in the preset range of the
object accessed in the database, step 205 is performed to
check whether an operation performed by the source code on
the object in the database is a preset operation performed on
the object in the database.

Step 2041: Stop compiling the source code.

In the embodiment of the present invention, it is assumed
that the range of the object, in the database, accessed by the
source code is in the preset range of the object accessed in
the database, and step 205 is performed.

Step 205: Check whether an operation performed by the
source code on the object in the database is a preset
operation performed on the object in the database.

If it is determined that the operation performed by the
source code on the object in the database is not the preset
operation performed on the object in the database, step 2041
is performed to stop compiling the source code.

If it is checked that the operation performed by the source
code on the object in the database is the preset operation
performed on the object in the database, step 206 is per-
formed.

Specifically, first, a permission to operate the object in the
database is preset, where the operation includes moditying,
adding, or deleting the object. That is, some important
objects in the database may be accessed but any operation
such as modifying cannot be performed on the objects,
where the important objects are objects of a confidential or
high permission level, some ordinary objects may be
accessed and any operation such as modifying, deleting, or
adding may also be performed on the objects, where the
ordinary objects are objects of a low permission level. Then,
if the object, in the database, accessed by the source code is
the preset object in the database allowed to be accessed, it
is checked whether the operation performed by the source
code on the object in the database is the preset operation
performed on the object in the database; if the operation
performed by the source code on the object in the database
is the preset operation performed on the object in the
database, the source code is compiled to obtain the inter-
mediate code; if the operation performed by the source code
on the object in the database is not the preset operation
performed on the object in the database, compiling of the
source code is stopped.

Exemplarily, it is assumed that the source code of the
external routine is used to calculate actually paid after-tax
salaries of company employees whose basic salaries are
higher than 3500 Renminbi (RMB). Specifically, it is
assumed that the source code can access basic salaries of all

10

15

20

25

30

35

40

45

50

55

60

65

10

employees in the database, where the basic salaries of the
employees include 1000 to 5000. However, only data of
basic salaries of employees which are higher than 3500
among the basis salaries of all the employees is calculated,
and the actually paid after-tax salaries are obtained. If the
source code calculates the basic salaries of all the employees
to obtain actually paid after-tax salaries, a salary actually
received by an employee whose basic salary is lower than
3500 is an actually paid after-tax salary, which does not
comply with stipulations of the country, and causes an error
in issuing the salary of the employee.

In the prior art, when the source code of the external
routine is compiled, it is unnecessary to check the range of
the object, in the database, accessed by the source code of
the external routine, and the operation performed by the
source code of the external routine on the object in the
database is also not checked; therefore, stability of the object
in the database may be affected, or data is inconsistent when
another source program in the database makes reference to
the source program.

In the data processing method according to the embodi-
ment of the present invention, first, a permission level of an
object in the database is set, and an operation on the object
is set. When the source code of the external routine is
compiled, by checking the range of the object, in the
database, accessed by the source code of the external routine
and checking the operation performed by the source code of
the external routine on the object in the database, it is
determined whether the range and the operation comply with
the preset permission to access the object in the database and
the preset operation performed on the object in the database,
which effectively enhances operation security of the data-
base and security of data in the database.

In the embodiment of the present invention, it is assumed
that the operation performed by the source code on the
object in the database is the preset operation performed on
the object in the database, step 206 is performed to compile
the source code to obtain the intermediate code.

Step 206: Compile the source code to obtain intermediate
code.

Specifically, a language front-end module may be used to
compile the source code to obtain the intermediate code,
where the language front-end module may be a C language
front-end module, a Python language front-end module, or a
Fortran language front-end module, and so on.

In the embodiment of the present invention, it is assumed
that the source code of the external routine is compiled by
using the C language, a C language front-end module is used
to parse the source code to obtain a parse tree, and then the
parse tree is compiled to obtain the intermediate code, so
that a virtual machine on any operating platform can identify
the intermediate code. The parse tree includes a root node,
a root element node, a node, and so on. That is, the source
code is analyzed, and the process of generating the parse tree
pertains to the prior art, which is not further described herein
in the embodiment of the present invention.

Particularly, after the source code is compiled to obtain
the intermediate code, step 209 is performed to store the
intermediate code to the database, or the intermediate code
may also be converted into machine code and step 207 is
performed.

Step 207: Acquire machine code of the intermediate code.

The operating platform includes an integrated circuit
chipset using a central processor as a core, where an
instruction set on any operating platform is packaged for a
virtual machine on the operating platform. The instruction
set is a hardware program that is stored in the central

US 9,430,198 B2

11

processor and guides and optimizes an operation of the
central processor, and the instruction set may enable the
central processor to run more effectively. The machine code
of the intermediate code is acquired by using the operating
platform. The operating platform may be an x86 operating
platform, a performance optimization with enhanced
reduced instruction set computing (RISC)—performance
computing (PowerPC) operating platform, an Acorn RISC
Machine (ARM) operating platform, and so on. Specifically,
the intermediate code of the external routine generated by
the language front-end module may be input to the operating
platform, and the operating platform may convert the inter-
mediate code of the external routine into machine code that
is suitable for running on an operating platform such as the
x86 operating platform, the PowerPC operating platform, or
the ARM operating platform, that is, machine code run by
each operating platform is different.

Step 208: Store the machine code to the database.

After the machine code of the intermediate code is
acquired, similarly, the database may generate a target name
of the machine code, where the target name is used to
uniquely identify the machine code, and generate a target
address of the machine code, where the target address is used
to identify an address of the machine code in the database.
The target name and the target address are invisible to the
user and are stored in the database. When the machine code
of the external routine is invoked, the machine code of the
external routine is invoked according to the target name and
the target address.

Step 209: Store the intermediate code to the database.

Step 2091: Generate a target name of the intermediate
code.

The target name is used to uniquely identify the interme-
diate code.

Step 2092: Generate a target address of the intermediate
code.

The target address is used to identify an address of the
intermediate code in the database.

It should be noted that when step 2091 and step 2092 are
performed, there may be no sequence for differentiation, that
is, the target address of the intermediate code may be
generated first, and then the target name of the intermediate
code is generated.

Particularly, when the database generates the target name
and the target address of the intermediate code, to better
ensure security of the intermediate code of the external
routine, a creator who compiles the external routine may
further set an invoking password, that is, only a user who has
both the invoking password and a permission to invoke the
intermediate code of the external routine may invoke the
intermediate code of the external routine.

In the prior art, after the source code of the external
routine is compiled, the target code of the external routine is
obtained; when the target code of the external routine is
stored to the database, the target name and the target address
set by the user need to be received; the target code of the
external routine is stored to the database according to the
target name and the target address. Therefore, risks such as
deleting, replacing, or tampering the target code of the
external routine may exist when the target code of the
external routine is managed.

In the data processing method according to the embodi-
ment of the present invention, when the intermediate code of
the external routine is stored to the database, the database
generates the target name of the intermediate code, where
the target name is used to uniquely identify the intermediate
code, and generates the target address of the intermediate

20

30

40

45

50

12

code, where the target address is used to identify the address
of the intermediate code in the database. The target name
and the target address are invisible to the user and are stored
in the database. When the intermediate code of the external
routine is invoked, the intermediate code of the external
routine is invoked according to the target name and the
target address. Therefore, the intermediate code of the
external routine is stored and managed by using a method
controlled by the database, which may effectively avoid the
risks such as deleting, replacing, or tampering the external
routine when the intermediate code of the external routine is
managed, and not only improve rigorousness of manage-
ment but also improve security of data in the database.

The source code of the external routine in the embodiment
of the present invention is only exemplary, and in an actual
application, the source code may also be compiled by using
another advanced programming language, where a process
of compiling source code of an external routine compiled by
using the another advanced programming language to obtain
intermediate code and then converting the intermediate code
into machine code is the same as the method in the embodi-
ment of the present invention, and is not further described
herein.

In the data processing method according to the embodi-
ment of the present invention, first, a database access request
sent by a first user equipment is received; it is determined,
according to the database access request, whether the first
user equipment has a permission to access a database; if the
first user equipment has the permission to access the data-
base, source code of an external routine sent by the first user
equipment is received; then, when the source code is com-
piled, it is checked whether a range of an object, in the
database, accessed by the source code is in a preset range of
an object accessed in the database; if the range of the object
in the database accessed by the source code is in the preset
range of the object accessed in the database, the source code
is compiled to obtain intermediate code, and meanwhile, it
may also be checked whether an operation performed by the
source code on the object in the database is a preset
operation performed on the object in the database; if the
operation performed by the source code on the object in the
database is the preset operation performed on the object in
the database, the source code is compiled to obtain the
intermediate code; machine code of the intermediate code is
acquired; the machine code is stored to the database; and
meanwhile, the intermediate code is stored to the database.
In comparison with the prior art, the intermediate code is
independent from an operating platform, and is a type of
unified code for the operating platform, that is, a virtual
machine on any operating platform can identify the inter-
mediate code. Therefore, it is unnecessary to embed different
compilers into a database system to compile the source code
of the external routine, and convert, according to an instruc-
tion set on the operating platform, the intermediate code into
the machine code capable of running on the operating
platform. Thereby, scalability of the database system is
effectively improved. Meanwhile, when the source code is
compiled, checking the range of the object, in the database,
accessed by the source code and checking an operation of
accessing the object in the database by the source code
effectively enhance operation security of the database and
security of data in the database. In addition, the intermediate
code and the machine code of the external routine are stored
and managed by using a method controlled by the database,
which effectively avoids risks such as deleting, replacing, or
tampering the external routine when the intermediate code
and the machine code of the external routine are managed,

US 9,430,198 B2

13

and not only improves rigorousness of management but also
improves the security of the data in the database.

As shown in FIG. 3, an embodiment of the present
invention provides a data processing method. It is assumed
that a database stores intermediate code of an external
routine, and the external routine is compiled by using a C
language, where the method includes the following steps:

Step 301: Receive a request, which is sent by a second
user equipment, for invoking an external routine.

It is assumed that a second user is registered with the
database by using the second user equipment. When the
second user accesses the database by using the second user
equipment, the database determines that the second user is
an authorized user of the database, and allows the second
user to access the database by using the second user equip-
ment. Then, when the second user needs to invoke the
external routine, the second user may send, by using the
second user equipment, the request for invoking the external
routine to the database, and the database receives the
request, which is sent by the second user equipment, for
invoking the external routine, is received.

Step 302: Determine, according to the request for invok-
ing the external routine, whether the second user equipment
has a permission to invoke the external routine.

An administrator of the database may set a permission of
the second user in the database. If the second user equipment
does not have the permission to invoke the external routine,
the second user who invokes the source program is an
unauthorized user, and step 3021 is performed.

If the second user equipment has the permission to invoke
the external routine, the external routine is invoked from the
database. It should be noted that the database stores a
function name of the external routine. The external routine
may be invoked according to the function name of the
external routine. Then, inside the database, according to a
target name and a target address of intermediate code or
machine code of the stored external routine, the intermediate
code or the machine code of the external routine is invoked
to run the external routine, so as to return an invoking result
to a user.

Step 3021: Forbid the second user equipment to invoke
the external routine.

A database system may prompt the second user equipment
with an operation error, and forbid the second user equip-
ment to invoke the external routine.

Exemplarily, it is assumed that the external routine is a
program that needs to be used when a financial personnel in
a financial department of a company prepares salaries. When
the financial personnel in the financial department of the
company prepares salaries of company employees in a
current month every month, the external routine may be
invoked to calculate and modify the salaries of the employ-
ees, and then an employee payroll is stored to the database,
where the employee payroll includes a salary of every
employee in the company in the current month. The admin-
istrator of the database specifies that: only the financial
personnel who prepares the employee payroll and Chairman
of the Board of the company may access the employee
payroll in the database by using a user equipment, and may
perform an operation such as modifying on the employee
payroll by invoking the external routine, and a department
leader of the company may access, by using the user
equipment, the database to view salaries of employees in the
department and a salary of this department leader in the
employee payroll, but cannot invoke the external routine to
perform an operation such as modifying on the salaries of
the employees in the department and the salary of this

10

15

20

25

30

35

40

45

50

55

60

65

14

department leader, and ordinary employees in the company
can only access, by using the user equipment, the database
to view their own salaries in the employee payroll, and
cannot invoke the external routine to perform an operation
such as modifying on their own salaries, either.

In the embodiment of the present invention, it is assumed
that the second user equipment has the permission to invoke
the external routine, and step 303 is performed.

Step 303: Acquire a result of the invoking request.

Step 304: Invoke a virtual machine to execute interme-
diate code of the external routine.

When the result of the invoking request is the intermedi-
ate code of the external routine, a virtual machine on an
operating platform is invoked to execute the intermediate
code of the external routine.

In the prior art, when the user invokes the external routine
by using the user equipment, a user permission to invoke the
external routine does not need to be determined, and the
external routine is directly invoked, which may affect secu-
rity or stability of an object in the database.

In the data processing method according to the embodi-
ment of the present invention, when the user invokes the
external routine by using the user equipment, first, the user
permission to invoke the external routine needs to be deter-
mined, and only a user who has the permission to invoke the
external routine can invoke the external routine by using the
user equipment. In comparison with the prior art, before the
user equipment invokes the external routine, a step of
determining a user invoking permission is added, which
effectively improves security or stability of the object in the
database.

Exemplarily, it is assumed that the database is a structured
query language (SQL) database. When a user equipment A
needs to access the SQL database, first, a server on which the
SQL database is installed checks whether the user equipment
A has a permission to connect to the SQL database, and if the
user equipment A has the permission to connect to the SQL
database, after the user equipment A successfully accesses
the SQL database, the SQL database checks again whether
the user has a permission to log in to the SQL database; if
the user has the permission to log in to the SQL database, the
user may operate an object in the SQL database; then, the
SQL database determines whether the user has a permission
to operate the object. For example, if a table needs to be
updated or queried, the SQL database determines a permis-
sion of the user to the table, or the user needs to run a stored
procedure, and the SQL database determines whether the
user has a permission to execute the stored procedure. For
example, a permission of the SQL database is shown in
Table 1.

TABLE 1

Permission of the SQL Server database

Permission level Permission

Database, table, or index CREATE (create a database, a table, or an
index)
DROP(delete a database or a table)

GRANT OPTION (grant a permission option)

Database or table
Database, table, or stored

program

Table ALTER (alter a table, such as adding a field
and an index)

Table DELETE (delete data)

Table Index (index)

Table INSERT (insert)

Table SELECT (query)

Table UPDATE (update)

US 9,430,198 B2

15
TABLE 1-continued

Permission of the SQL Server database

Permission level Permission

View
View
Stored procedure
Stored procedure

CREATE VIEW (create a view)

SHOW VIEW (show a view)

ALTER ROUTINE (alter a stored procedure)
CREATE ROUTINE (create a stored
procedure)

EXECUTE (execute a stored procedure)
FILE (file access)

Stored procedure

File access on a server
host

Server management CREATE TEMPORARY TABLES (create a
temporary table)

LOCK TABLES (lock a table)

CREATE USER (create a user)

PROCESS (show a process)

RELOAD (execute a reloading command)
REPLICATION CLIENT (replicate)
REPLICATION SLAVE (replicate)

SHOW DATABASES (show a database)
SHUTDOWN (shut down a database)
SUPER (execute a thread)

Server management
Server management
Server management
Server management
Server management
Server management
Server management
Server management
Server management

In the data processing method according to the embodi-
ment of the present invention, first, a request, which is sent
by a second user equipment, for invoking an external routine
is received; then, it is determined, according to the request
for invoking the external routine, whether the second user
equipment has a permission to invoke the external routine;
if the second user equipment has the permission to invoke
the external routine, the external routine is invoked from a
database to acquire a result of the invoking request; and a
virtual machine is invoked to execute intermediate code of
the external routine. In comparison with the prior art, when
a user equipment invokes the external routine, a step of
determining a user invoking permission is added, which
effectively improves security or stability of an object in the
database.

As shown in FIG. 4, an embodiment of the present
invention provides a data processing method. It is assumed
that a database stores machine code of an external routine,
and the external routine is compiled by using a C language,
where the method includes the following steps:

Step 401: Receive a request, which is sent by a second
user equipment, for invoking an external routine.

It is assumed that a second user is registered with the
database by using the second user equipment, when the
second user accesses the database by using the second user
equipment, the database determines that the second user is
an authorized user of the database, and allows the second
user to access the database by using the second user equip-
ment. Then, when the second user needs to invoke the
external routine, the second user may send, by using the
second user equipment, the request for invoking the external
routine to the database, and the database receives the
request, which is sent by the second user equipment, for
invoking the external routine, is received.

Step 402: Determine, according to the request for invok-
ing the external routine, whether the second user equipment
has a permission to invoke the external routine.

An administrator of the database may set a permission of
the second user in the database. If the second user equipment
does not have the permission to invoke the external routine,
the second user who invokes the source program is an
unauthorized user, and step 4021 is performed.

If the second user equipment has the permission to invoke
the external routine, the external routine is invoked from the
database. It should be noted that the database stores a

10

15

20

30

40

45

55

16

function name of the external routine. The external routine
may be invoked according to the function name of the
external routine. Then, inside the database, according to a
target name and a target address of intermediate code or
machine code of the stored external routine, the intermediate
code or the machine code of the external routine is invoked
to run the external routine, so as to return an invoking result
to a user.

Step 4021: Forbid the second user equipment to invoke
the external routine.

A database system may prompt the second user equipment
with an operation error, and forbid the second user equip-
ment to invoke the external routine.

In the embodiment of the present invention, it is assumed
that the second user equipment has the permission to invoke
the external routine, and step 403 is performed.

Step 403: Acquire a result of the invoking request.

Step 404: Directly execute machine code of the external
routine.

When the result of the invoking request is the machine
code of the external routine, an operating platform corre-
sponding to the machine code is used to run the machine
code of the external routine.

In the prior art, when the user invokes the external routine
by using the user equipment, a user permission to invoke the
external routine does not need to be determined, and the
external routine is directly invoked, which may affect secu-
rity or stability of an object in the database.

In the data processing method according to the embodi-
ment of the present invention, when the user invokes the
external routine by using the user equipment, first, the user
permission to invoke the external routine needs to be deter-
mined, and only a user who has the permission to invoke the
external routine can invoke the external routine by using the
user equipment. In comparison with the prior art, before the
user equipment invokes the external routine, a step of
determining a user invoking permission is added, which
effectively improves security or stability of an object in the
database.

In the data processing method according to the embodi-
ment of the present invention, first, a request, which is sent
by a second user equipment, for invoking an external routine
is received; then, it is determined, according to the request
for invoking the external routine, whether the second user
equipment has a permission to invoke the external routine;
if the second user equipment has the permission to invoke
the external routine, the external routine is invoked from a
database; a result of the invoking request is acquired; and
machine code of the external routine is directly executed. In
comparison with the prior art, when a user equipment
invokes the external routine, a step of determining a user
invoking permission is added, which effectively improves
security or stability of an object in the database.

Exemplarily, as shown in FIG. 5, a process of compiling
source code of an external routine to obtain intermediate
code or machine code and running the intermediate code or
the machine code is described by using a logical frame
diagram of the external routine. First, the source code of the
external routine is input to a language front-end module 501;
the language front-end module 501 parses and compiles the
source code to obtain a parse tree, and compiles the parse
tree; meanwhile, an authenticating module 502 determines
whether an operation or access and so on performed by the
source code on an object in a database is secure; if the
operation or the access and so on performed by the source
code on the object in the database is secure, the intermediate
code of the source code is obtained; then, the intermediate

US 9,430,198 B2

17

code is input to an intermediate code module 503; the
intermediate code module 503 stores, by using a storage
management module 504, the intermediate code of the
source code to the database; finally, the intermediate code
module 503 inputs the intermediate code of the source code
to an operating platform 505; the operating platform 505
converts the intermediate code of the source code into the
machine code, so as to execute the external routine on the
operating platform to obtain an expected result. Alterna-
tively, if the intermediate code of the source code is not
converted into the machine code, when the external routine
needs to be invoked, the intermediate code of the source
code is input to a virtual machine executing module 506, and
the virtual machine executing module 506 executes the
machine code when converting the intermediate code of the
source code into the machine code.

It should be noted that the language front-end module 501
may be a language front-end module such as a C language
front-end module, a Python language front-end module, or a
Fortran language front-end module, and so on. The operat-
ing platform 505 may be an x86 operating platform, a
PowerPC operating platform, or an ARM operating plat-
form, and so on, and machine code run on each operating
platform is different.

As shown in FIG. 6A, an embodiment of the present
invention provides a data processing apparatus 600, includ-
ing a first receiving unit 603 configured to receive source
code of an external routine, where the source code of the
external routine is compiled by using an advanced program-
ming language, a compiling unit 606 configured to compile
the source code to obtain intermediate code, where the
intermediate code is a byte stream identifiable to a virtual
machine on any operating platform, a converting unit 607
configured to convert, according to an instruction set on the
operating platform, the intermediate code into machine code
capable of running on the operating platform, and a storing
unit 608 configured to store the machine code to a database.

In this way, first, source code of an external routine is
received, and then, the source code is compiled to obtain
intermediate code, where the intermediate code is a byte
stream identifiable to a virtual machine on any operating
platform. In comparison with the prior art, the intermediate
code is independent from the operating platform, and is a
type of unified code for the operating platform, that is, the
virtual machine on any operating platform can identify the
intermediate code. Therefore, it is unnecessary to embed
different compilers into a database system to compile the
source code of the external routine, and convert, according
to an instruction set on the operating platform, the interme-
diate code into the machine code capable of running on the
operating platform. Thereby, scalability of the database
system is effectively improved.

As shown in FIG. 6B, the data processing apparatus 600
further includes a second receiving unit 601 configured to
receive a database access request sent by a first user equip-
ment that sends the source code of the external routine, and
a first determining unit 602 configured to determine, accord-
ing to the database access request, whether the first user
equipment has a permission to access the database.

The first receiving unit 603 is specifically configured to
receive, when the first determining unit 602 determines that
the first user equipment has the permission to access the
database, the source code of the external routine sent by the
first user equipment, so that the converting unit 607 converts
the source code into the machine code and stores the
machine code to the database.

10

15

20

25

30

35

40

45

50

55

60

65

18

The data processing apparatus 600 further includes a first
checking unit 604 configured to check whether a range of an
object, in the database, accessed by the source code is in a
preset range of an object accessed in the database.

The compiling unit 606 is specifically configured to
compile the source code to obtain the intermediate code
when the first checking unit 604 determines that the range of
the object, in the database, accessed by the source code is in
the preset range of the object accessed in the database.

The data processing apparatus 600 further includes a
second checking unit 605 configured to check whether an
operation performed by the source code on an object in the
database is a preset operation performed on the object in the
database, where the operation includes modifying, adding,
or deleting the object.

The compiling unit 606 is specifically configured to
compile the source code to obtain the intermediate code
when the second checking unit 605 determines that the
operation performed by the source code on the object in the
database is the preset operation performed on the object in
the database.

The storing unit 608 is further configured to store the
intermediate code to the database.

The data processing apparatus 600 further includes a first
generating unit 609 configured to generate a target name of
the intermediate code, where the target name is used to
uniquely identify the intermediate code, and a second gen-
erating unit 6010 configured to generate a target address of
the intermediate code, where the target address is used to
identify an address of the intermediate code in the database.

It should be noted that after the storing unit 608 stores the
intermediate code to the database, at the same time when the
first generating unit 609 generates the target name of the
intermediate code, where the target name is used to uniquely
identify the intermediate code, the second generating unit
6010 may generate the target address of the intermediate
code, where the target address is used to identify the address
of the intermediate code in the database, without differen-
tiating a sequence of generating the target name and gener-
ating the target address.

The data processing apparatus 600 further includes an
invoking unit 6011.

The second receiving unit 601 is further configured to
receive a request, which is sent by a second user equipment,
for invoking the external routine.

The first determining unit 602 is further configured to
determine, according to the request for invoking the external
routine, whether the second user equipment has a permission
to invoke the external routine.

The invoking unit 6011 is configured to run the machine
code when the first determining unit 602 determines that the
second user equipment has the permission to invoke the
external routine, so as to invoke the external routine from the
database.

In the data processing apparatus according to the embodi-
ment of the present invention, first, a database access request
sent by a first user equipment is received; it is determined,
according to the database access request, that the first user
equipment has a permission to access a database, and source
code of an external routine is received; then, when the
source code is compiled, it is checked that a range of an
object, in the database, accessed by the source code is in a
preset range of an object accessed in the database, and the
source code is compiled to obtain intermediate code; and
meanwhile, it may also be checked that an operation per-
formed by the source code on the object in the database is
a preset operation performed on the object in the database;

US 9,430,198 B2

19

the source code is compiled to obtain the intermediate code;
machine code of the intermediate code is acquired; and the
machine code is stored to the database; and meanwhile, after
the machine code or the intermediate code of the external
routine is stored, and when it is determined that a second
user equipment has a permission to invoke the external
routine, the machine code or the intermediate code is run, so
as to invoke the external routine from the database. In
comparison with the prior art, the intermediate code is
independent from an operating platform, and is a type of
unified code for the operating platform, that is, a virtual
machine on any operating platform can identify the inter-
mediate code. Therefore, it is unnecessary to embed different
compilers into a database system to compile the source code
of the external routine, and convert, according to an instruc-
tion set on the operating platform, the intermediate code into
the machine code capable of running on the operating
platform. Thereby, scalability of the database system is
effectively improved. Meanwhile, when the source code is
compiled, checking the range of the object, in the database,
accessed by the source code and checking an operation of
accessing the object in the database by the source code
effectively enhance operation security of the database and
security of data in the database. In addition, the intermediate
code and the machine code of the external routine are stored
and managed by using a method controlled by the database,
which effectively avoids risks such as deleting, replacing, or
tampering the external routine when the intermediate code
and the machine code of the external routine are managed,
and not only improves rigorousness of management but also
improves the security of the data in the database.

As shown in FIG. 7, an embodiment of the present
invention provides a data processing apparatus 70, including
a receiver 701 configured to receive source code of an
external routine, where the source code of the external
routine is compiled by using an advanced programming
language, and a processor 702 configured to compile the
source code to obtain intermediate code, where the inter-
mediate code is a byte stream identifiable to a virtual
machine on any operating platform.

The processor 702 is further configured to convert,
according to an instruction set on the operating platform, the
intermediate code into machine code capable of running on
the operating platform.

The processor 702 is further configured to store the
machine code to a database.

In this way, first, source code of an external routine is
received, and then, the source code is compiled to obtain
intermediate code, where the intermediate code is a byte
stream identifiable to a virtual machine on any operating
platform. In comparison with the prior art, the intermediate
code is independent from the operating platform, and is a
type of unified code for the operating platform, that is, a
virtual machine on any operating platform can identify the
intermediate code. Therefore, it is unnecessary to embed
different compilers into a database system to compile the
source code of the external routine, and convert, according
to an instruction set on the operating platform, the interme-
diate code into the machine code capable of running on the
operating platform. Thereby, scalability of the database
system is effectively improved.

The receiver 701 is further configured to receive a data-
base access request sent by a first user equipment that sends
the source code of the external routine.

The processor 702 is further configured to determine,
according to the database access request, whether the first
user equipment has a permission to access the database.

25

40

45

55

20

The processor 702 is further configured to receive, when
the processor 702 determines that the first user equipment
has the permission to access the database, the source code of
the external routine sent by the first user equipment, so as to
convert the source code into the machine code and store the
machine code to the database.

Specifically, the processor 702 parses a data packet of the
source code of the external routine to obtain a first identifier
of'the data packet, where the first identifier is used to identify
a source address of the data packet; and then determines
whether the first identifier of the data packet is a preset
identifier, where the preset identifier is used to identify an
address of the first user equipment.

The processor 702 is further configured to check whether
a range of an object, in the database, accessed by the source
code is in a preset range of an object accessed in the
database.

The processor 702 is specifically configured to compile
the source code to obtain the intermediate code when the
processor 702 determines that the range of the object, in the
database, accessed by the source code is in the preset range
of the object accessed in the database.

The processor 702 is further configured to check whether
an operation performed by the source code on the object in
the database is a preset operation performed on the object in
the database, where the operation includes modifying, add-
ing, or deleting the object.

The processor 702 is specifically configured to compile
the source code to obtain the intermediate code when the
processor 702 determines that the operation performed by
the source code on the object in the database is the preset
operation performed on the object in the database.

The processor 702 is further configured to store the
intermediate code to the database.

The processor 702 is further configured to generate a
target name of the intermediate code, where the target name
is used to uniquely identify the intermediate code.

The processor 702 is further configured to generate a
target address of the intermediate code, where the target
address is used to identify an address of the intermediate
code in the database.

The receiver 701 is further configured to receive a request,
which is sent by a second user equipment, for invoking the
external routine.

The processor 702 is further configured to determine,
according to the request for invoking the external routine,
whether the second user equipment has a permission to
invoke the external routine.

The processor 702 is further configured to run the
machine code when the processor 702 determines that the
second user equipment has the permission to invoke the
external routine, so as to invoke the external routine from the
database.

In the data processing apparatus according to the embodi-
ment of the present invention, first, a database access request
sent by a first user equipment is received; it is determined,
according to the database access request, that the first user
equipment has a permission to access a database, and source
code of an external routine is received; then, when the
source code is compiled, it is checked that a range of an
object, in the database, accessed by the source code is in a
preset range of an object accessed in the database; the source
code is compiled to obtain intermediate code; and mean-
while, it may also be checked that an operation performed by
the source code on the object in the database is a preset
operation performed on the object in the database; the source
code is compiled to obtain the intermediate code; machine

US 9,430,198 B2

21

code of the intermediate code is acquired; and the machine
code is stored to the database; and meanwhile, after the
intermediate code or the machine code of the external
routine is stored, and when it is determined that a second
user equipment has a permission to invoke the external
routine, the machine code or the intermediate code is run, so
as to invoke the external routine from the database. In
comparison with the prior art, the intermediate code is
independent from an operating platform, and is a type of
unified code for the operating platform, that is, a virtual
machine on any operating platform can identify the inter-
mediate code. Therefore, it is unnecessary to embed different
compilers into a database system to compile the source code
of the external routine, and convert, according to an instruc-
tion set on the operating platform, the intermediate code into
the machine code capable of running on the operating
platform. Thereby, scalability of the database system is
effectively improved. Meanwhile, when the source code is
compiled, checking the range of the object, in the database,
accessed by the source code and checking an operation of
accessing the object in the database by the source code
effectively enhance operation security of the database and
security of data in the database. In addition, the intermediate
code and the machine code of the external routine are stored
and managed by using a method controlled by the database,
which effectively avoids risks such as deleting, replacing, or
tampering the external routine when the intermediate code
and the machine code of the external routine are managed,
and not only improves rigorousness of management but also
improves the security of the data in the database.

It may be clearly understood by a person skilled in the art
that, for the purpose of convenient and brief description, for
a detailed working process of the foregoing apparatus and
unit, reference may be made to a corresponding process in
the foregoing method embodiments, and details are not
described herein again.

In the several embodiments provided in the present appli-
cation, it should be understood that the disclosed apparatus
and method may be implemented in other manners. For
example, the described apparatus embodiment is merely
exemplary. For example, the unit division is merely logical
function division and may be other division in an actual
implementation. For example, a plurality of units or com-
ponents may be combined or integrated into another system,
or some features may be ignored or not performed. Further-
more, the displayed or discussed mutual couplings or direct
couplings or communication connections may be imple-
mented through some interfaces. The indirect couplings or
communication connections between the apparatuses or
units may be implemented in electronic, mechanical, or
other forms.

The units described as separate parts may or may not be
physically separate, and parts displayed as units may or may
not be physical units, may be located in one position, or may
be distributed on a plurality of network units. A part or all
of the units may be selected according to an actual need to
achieve the objectives of the solutions of the embodiments.

In addition, functional units in the embodiments of the
present invention may be integrated into one processing
unit, or each of the units may exist alone physically, or two
or more units are integrated into one unit. The integrated unit
may be implemented by hardware in addition to a software
functional unit, or by hardware only.

A person of ordinary skill in the art may understand that
all or a part of the steps of the method embodiments may be
implemented by a program instructing relevant hardware.
The program may be stored in a computer readable storage

15

25

30

40

45

50

60

65

22

medium. When the program runs, the steps of the method
embodiments are performed. The foregoing storage medium
includes any medium that can store program code, such as
a read-only memory (ROM), a random-access memory
(RAM), a magnetic disk, or an optical disc.
The foregoing descriptions are merely specific implemen-
tations of the present invention, but are not intended to limit
the protection scope of the present invention. Any variation
or replacement readily figured out by a person skilled in the
art within the technical scope disclosed in the present
invention shall fall within the protection scope of the present
invention. Therefore, the protection scope of the present
invention shall be subject to the protection scope of the
claims.
What is claimed is:
1. A data processing method, comprising:
receiving, by a receiver, source code of an external
routine, wherein the source code of the external routine
is compiled using an advanced programming language;

compiling, by a processor coupled to the receiver, the
source code to obtain intermediate code, wherein the
intermediate code is a byte stream identifiable to a
plurality of virtual machines on a plurality of different
operating platforms;

converting, by the processor and according to an instruc-

tion set on one of the operating platforms, the inter-
mediate code into machine code capable of running on
the one of the operating platforms;

storing, in a memory coupled to the processor, the

machine code to a database;
receiving, by the receiver and from a second piece of user
equipment, a request for invoking the external routine;

determining, by the processor and according to the
request for invoking the external routine, whether the
second piece of user equipment has permission to
invoke the external routine;

invoking, according to a target name and a target address,

the intermediate code of the external routine when the
intermediate code of the external routine is invoked;
and

running, by the processor, the machine code so as to

invoke the external routine from the database when the
second piece of user equipment has the permission to
invoke the external routine.

2. The data processing method according to claim 1,
wherein before receiving the source code of the external
routine, the method further comprises:

receiving, by the receiver, a database access request from

a first piece of user equipment that sends the source
code of the external routine;

determining, by the processor and according to the data-

base access request, whether the first user equipment
has permission to access the database; and

receiving, by the receiver, the source code of the external

routine from the first piece of user equipment when the
first piece of user equipment has the permission to
access the database so as to convert the source code into
the machine code and store the machine code to the
database.

3. The data processing method according to claim 1,
wherein before compiling the source code to obtain the
intermediate code, the method further comprises:

checking, by the processor, whether a range of an object,

in the database, accessed by the source code is in a
preset range of the object accessed in the database; and
compiling, by the processor, the source code to obtain the
intermediate code when the range of the object, in the

US 9,430,198 B2

23

database, accessed by the source code is in the preset
range of the object accessed in the database.
4. The data processing method according to claim 1,
wherein before compiling the source code to obtain inter-
mediate code, the method further comprises:
checking, by the processor, whether an operation per-
formed by the source code on an object in the database
is a preset operation performed on the object in the
database, wherein the operation comprises modifying,
adding, or deleting the object; and
compiling, by the processor, the source code to obtain the
intermediate code when the operation performed by the
source code on the object in the database is the preset
operation performed on the object in the database.
5. The data processing method according to claim 1,
wherein after compiling the source code to obtain the
intermediate code, the method further comprises storing the
intermediate code to the database.
6. The data processing method according to claim 5,
wherein after storing the intermediate code to the database,
the method further comprises:
generating, by the processor, a target name of the inter-
mediate code, wherein the target name is used to
uniquely identify the intermediate code; and
generating, by the processor, a target address of the
intermediate code, wherein the target address is an
address of the intermediate code in the database.
7. A data processing apparatus, comprising:
a memory comprising a database;
a receiver coupled to the memory and configured to
receive source code of an external routine, wherein the
source code of the external routine is compiled using an
advanced programming language; and
a processor coupled to the memory and configured to:
compile the source code to obtain intermediate code,
wherein the intermediate code is a byte stream
identifiable to a plurality of virtual machines on a
plurality of different operating platforms;

convert, according to an instruction set on one of the
operating platforms, the intermediate code into
machine code capable of running on the one of the
operating platforms; and

store the machine code to the database;
wherein the receiver is further configured to receive, from
a second piece of user equipment, a request for invok-
ing the external routine, and
wherein the processor is further configured to:
determine, according to the request for invoking the
external routine, whether the second user equipment
has permission to invoke the external routine;

invoking, according to a target name and a target
address, the intermediate code of the external routine
when the intermediate code of the external routine is
invoked; and

execute the machine code when determining that the
second user equipment has the permission to invoke
the external routine so as to invoke the external
routine from the database.

8. The data processing apparatus according to claim 7,
wherein the receiver is further configured to:

receive a database access request from a first piece of user
equipment that sends the source code of the external
routine;

determine, according to the database access request,
whether the first piece of user equipment has permis-
sion to access the database; and

20

30

35

40

45

50

55

60

24

receive the source code of the external routine from the
first piece of user equipment so as to convert the source
code into the machine code and store the machine code
to the database when determining that the first user
equipment has the permission to access the database.

9. The data processing apparatus according to claim 7,
wherein the processor is further configured to:

check whether a range of an object, in the database,

accessed by the source code is in a preset range of the
object accessed in the database; and

compile the source code to obtain the intermediate code

when determining that the range of the object, in the
database, accessed by the source code is in the preset
range of the object accessed in the database.

10. The data processing apparatus according to claim 7,
wherein the processor is further configured to:

check whether an operation performed by the source code

on an object in the database is a preset operation
performed on the object in the database, wherein the
operation comprises modifying, adding, or deleting the
object; and

compile the source code to obtain the intermediate code

when determining that the operation performed by the
source code on the object in the database is the preset
operation performed on the object in the database.

11. The data processing apparatus according to claim 7,
wherein the processor is further configured to store the
intermediate code to the database.

12. The data processing apparatus according to claim 11,
wherein the processor is further configured to:

generate a target name of the intermediate code, wherein

the target name is used to uniquely identify the inter-
mediate code; and

generate a target address of the intermediate code,

wherein the target address is used to identify an address
of the intermediate code in the database.

13. A non-transitory computer readable medium having
computer-executable instructions stored thereon, the com-
puter executable instructions comprising instructions for:

receiving source code of an external routine, wherein the

source code of the external routine is compiled using an
advanced programming language;

compiling the source code to obtain intermediate code,

wherein the intermediate code is a byte stream identi-
fiable to a plurality of virtual machines on a plurality of
different operating platforms;

converting, according to an instruction set on one of the

operating platforms, the intermediate code into
machine code capable of running on the one of the
operating platforms;
storing the machine code to a database;
receiving, by the receiver and from a second piece of user
equipment, a request for invoking the external routine;

determining, by the processor and according to the
request for invoking the external routine, whether the
second piece of user equipment has permission to
invoke the external routine;

invoking, according to a target name and a target address,

the intermediate code of the external routine when the
intermediate code of the external routine is invoked;
and

executing the machine code so as to invoke the external

routine from the database when the second piece of
user equipment has the permission to invoke the exter-
nal routine.

14. The non-transitory computer readable medium of
claim 13, wherein the computer executable instructions

US 9,430,198 B2

25

further comprise instructions for receiving a database access
request from a user equipment that sends the source code of
the external routine.

15. The non-transitory computer readable medium of
claim 13, wherein the computer executable instructions
further comprise instructions for determining, according to
a database access request received from a user equipment,
whether the user equipment has permission to access the
database, wherein the database access request comprises the
source code of the external routine.

16. The non-transitory computer readable medium of
claim 13, wherein the computer executable instructions
further comprise instructions for receiving the source code
of the external routine from a user equipment in response to
determining that the user equipment has permission to
access the database.

17. The non-transitory computer readable medium of
claim 13, wherein the computer executable instructions
further comprise instructions for checking whether a range
of'an object, in the database, accessed by the source code is
in a preset range of the object accessed in the database.

18. The non-transitory computer readable medium of
claim 13, wherein the computer executable instructions
further comprise instructions for compiling the source code
to obtain the intermediate code when a range of a requested
object, in the database, accessed by the source code is in a
preset range of the requested object accessed in the database.

#* #* #* #* #*

10

15

20

25

26

