a2 United States Patent
Pazhayakath et al.

US009270593B2

US 9,270,593 B2
Feb. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54) PREDICTION BASED METHODS FOR FAST
ROUTING OF IP FLOWS USING
COMMUNICATION/NETWORK
PROCESSORS

(71) Applicant: LSI Corporation, San Jose, CA (US)

(72) Inventors: Benzeer B. Pazhayakath, Bangalore
(IN); Vishal D. Ajmera, Bangalore (IN);
Santosh Narayanan, Bangalore (IN)

73) Assignee: Avago Technologies General IP
g g g
(Singapore) Pte. Ltd., Singapore (SG)
*) Notice: Subject to any disclaimer, the term of this
] Yy
patent is extended or adjusted under 35
U.S.C. 154(b) by 127 days.

(21) Appl. No.: 14/244,122

(22) Filed: Apr. 3,2014

(65) Prior Publication Data
US 2014/0334491 Al Nov. 13,2014

(30) Foreign Application Priority Data
May 9,2013 (IN) e 531/KOL/2013

(51) Int.CL
HO4L 12/743
HO4L 12/721

(52) US.CL
CPC ... HO4L 45/7453 (2013.01); HO4L 45/38

(2013.01)

(2013.01)
(2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

300-\

(56) References Cited
U.S. PATENT DOCUMENTS

6,651,099 B1* 11/2003 Dietz GO6F 17/30985
370/389

6,771,646 B1* 82004 Sarkissian GO6F 12/123
370/252

7,079,537 B1* 7/2006 Kanuri ... HO4L 49/602
370/392

2006/0050690 Al* 3/2006 Epps HO4L 12/5693
370/359

2007/0201458 Al* 82007 Thron HO4L 47/10
370/389

2008/0101354 Al* 5/2008 Amdtcccoeeeinnie HO4L 47/10
370/389

2012/0257631 Al* 10/2012 Nguyen HO4L 43/16
370/400

2013/0114599 Al* 5/2013 Aradccococo HO4L 49/358
370/392

2013/0136127 Al* 52013 Hill ..o, HO4L 63/0245
370/392

2014/0198793 Al* 7/2014 Allu ..o HO4L 45/245
370/392

OTHER PUBLICATIONS

Kang Li, Francis Chang, Damien Berger, Wu-Chang Feng; Architec-
tures for Packet Classification Caching; 2003; pp. 111-117.

* cited by examiner

Primary Examiner — Duc Duong

(57) ABSTRACT

Aspects of the disclosure pertain to a system and method for
providing prediction based, fast routing of IP flows. A hash
table-based mechanism is implemented by the system such
that classification information obtained and/or utilized for a
first packet of an IP flow is applied to subsequent packets of
the IP flow, thereby promoting packet processing efficiency
for the flow.

20 Claims, 2 Drawing Sheets

Receiving a first packet of the flow |/~ 302

Parsing the first packet, exirasting fields of the first paciet, | /394
and validating the extracted fields of the first packet

!}

Performing a series of table lookups for the vaiidaied fields | /~30¢
1o determine a destination for the first packet

!

[ing the the

I

Sioring data corresponding o the validated fieids and the determined | /370
desfination of the first packet In a hash table in a memory of the
processor, the data being a signature function for the packet flow

I

| Recaiving a second packet of the flow if372

destination I,/3’75

Parsing the second packet, extracting fields of the second packet, | ~374
and valicating the extracted fialds of the second packet

I

Determining that the validated fields of the second packet are associated 316
with the validated fields of the first packet defined by the signature function

I

| ‘Accessing the signature function data stored In the hash tabls I/

I

[Routing the secand packet based upon iha signature function data I/SZO

318

table afler a pre-determined time interval slapses

Rernoving the signature function data from the hash |,/372

U.S. Patent Feb. 23,2016 Sheet 1 of 2 US 9,270,593 B2
100\
202 102 102
v -
oy 104
IR
104 fmzz
102 102
e 0 . 0
104 104
Vi L/
102 102
(/’" 04‘1 [/’ &
104
Processor
202/» fr2()4
Hash Engine /,.205
Memory f,,ggg
FDB
//—210
Hash
FEGH E Table

U.S. Patent Feb. 23,2016 Sheet 2 of 2 US 9,270,593 B2

300 ™~

Receiving a first packet of the flow (/7 302

¥

Parsing the first packet, exiracting fields of the first packet, |/ 304
and validating the exiracted fields of the first packet

¥

Performing a series of table lookups for the validated fields fsgﬁ
to determine a destination for the first packet

¥

Transmitting the first packet to the determined destination |/ 308

¥

Storing data corresponding to the validated fields and the determined /310
destination of the first packet in a hash table in @ memory of the
processor, the data being & signature function for the packet flow

L
Raceiving a second packet of the flow ,/”372

¥

Parsing the second packet, extracting fields of the second packet, _/’374
and validating the extracted fields of the second packet

%

Determining that the validated fields of the second packet are associaled f376
with the validated fieids of the first packet defined by the signature function

¥

Accessing the signature function data stored in the hash table /318

¥

Routing the second packet based upon the signature function data ,/'320

¥
Removing the signature function data from the hash f322
table after a pre-determined time interval elapses

FIG. 3

US 9,270,593 B2

1
PREDICTION BASED METHODS FOR FAST
ROUTING OF IP FLOWS USING
COMMUNICATION/NETWORK
PROCESSORS

FIELD OF THE INVENTION

The present disclosure relates to the field of electronic data
handling and particularly to prediction based methods for fast
routing of Internet Protocol (IP) flows using communication/
network processors.

BACKGROUND

In hardware-based implementations of networking solu-
tions using programmable network processors, there is a par-
titioning of data plane functions and control plane functions.
Data plane implements packet switching and forwarding
through multiple levels of lookups of combinations of differ-
ent packet fields (e.g., classification). The latency involved in
packet classification is often the gating factor for system
throughput (e.g., packets per second).

SUMMARY

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key and/or essential features of the claimed subject
matter. Also, this Summary is not intended to limit the scope
of the claimed subject matter in any manner

Aspects of the disclosure pertain to a system and method
for providing prediction based, fast routing of IP flows.

DESCRIPTION OF THE FIGURES

The detailed description is described with reference to the
accompanying figures:

FIG. 1 is an example conceptual block diagram schematic
of a network of networking systems (e.g., nodes);

FIG. 2 is an example conceptual block diagram schematic
of a processor (e.g., network processor) implemented within
one of the networking systems of the network shown in FIG.
1; and

FIG. 3 is a flow chart illustrating a method for processing a
packet flow (e.g., IP flow) via a processor (e.g., network
processor) in accordance with an exemplary embodiment of
the present disclosure.

WRITTEN DESCRIPTION

Aspects of the disclosure are described more fully herein-
after with reference to the accompanying drawings, which
form a part hereof, and which show, by way of illustration,
example features. The features can, however, be embodied in
many different forms and should not be construed as limited
to the combinations set forth herein; rather, these combina-
tions are provided so that this disclosure will be thorough and
complete, and will fully convey the scope. Among other
things, the features of the disclosure can be facilitated by
methods, devices, and/or embodied in articles of commerce.
The following detailed description is, therefore, not to be
taken in a limiting sense.

Referring to FIG. 1 (FIG. 1), a network 100 is shown. In
embodiments, the network 100 is a telecommunications net-
work, such as a computer network. In embodiments, the net-
work 100 includes a plurality of networking systems 102. In

10

15

20

25

30

35

40

45

50

55

60

65

2

embodiments, the networking systems 102 are terminals
(e.g., computer terminals), nodes, and/or devices which are
configured for being communicatively coupled via a plurality
of communication links (e.g., data links, transmission links,
communications channels) 104. In embodiments, the termi-
nals are points at which signals (e.g., data) enter or leave the
network 100, and/or are devices which end a telecommuni-
cations link. In embodiments, the networking systems 102 are
configured for connecting via the communication links 104 to
enable telecommunication between users of the terminals.

In embodiments, the network 100 is a packet switching
network (e.g., a packet network, a packet mode computer
network). In embodiments, the networking systems (e.g.,
nodes) 102 implement packet switching for passing signals
(e.g., data) through the correct links 104 and nodes to reach
the correct destination (e.g., terminal, destination terminal).
In embodiments, each terminal in the network 100 has a
unique address so that signals, data, messages, and/or con-
nections can be routed to a correct destination (e.g., recipi-
ent). In embodiments, the collection of addresses in the net-
work 100 constitutes the network address space. In
embodiments, packet switching is a digital networking com-
munications method which groups all transmitted data,
regardless of content, type, or structure, into suitably-sized
blocks or packets. In embodiments, information (e.g., voice,
video, or data) is transferred (e.g., transmitted) via the net-
work 100 as packet data, via packet switching. In embodi-
ments, the network 100 transmits (e.g., transfers, carries)
packets, each packet being a formatted unit of data carried
(e.g., transmitted) by the packet switching network.

In embodiments, the network 100 is a computer network
that connects a collection of different or similar types of
computers and networks to allow communication and data
exchange between systems, software application, and users.
Endpoints (e.g., computers, nodes) of the computer network
each have a unique location identity. Interconnection of the
computers of the computer network is done via cable and/or
wireless media and/or networking hardware devices.

In embodiments, one or more of the networking systems
102 of the network 100 is a router, software router, switch,
firewall, session border controller, intrusion prevention/de-
tection device, network monitoring system, base station (e.g.,
Long Term Evolution (LTE) base station), and/or mobile
device (e.g., a mobile backhaul router). In embodiments, the
network 100 is a mobile backhaul based network. In embodi-
ments in which the network 100 is a mobile backhaul based
network, one or more of the networking systems 102 are
mobile devices. In embodiments in which the network 100 is
a mobile backhaul based network, one or more of the net-
working systems 102 is a mobile backhaul router which is
configured for routing data and connection signaling packets
to a mobile backbone via the network (e.g., packet network)
100.

In embodiments, one or more of the networking systems
102 of the network 100 includes a processor 202, such as a
network processor or a communications processor (as shown
in FIG. 2 (FIG. 2)). In embodiments, the processor (e.g.,
network processor) 202 is an integrated circuit having a fea-
ture set specifically targeted at the networking application
domain. In embodiments, the network processor 202 is a
software-programmable device configured for processing
packet data (e.g., packets). In embodiments, when network-
ing system 102 implementing the network processor 202
receives a packet, the processor 202 is configured for process-
ing the packet and routing the packet to its destination. In
embodiments, the processor (e.g., network processor) 202 is
configured with specific features and/or architectures that are

US 9,270,593 B2

3

provided to enhance and optimize processing of packet data
(e.g., packets) in packet switching networks. In embodi-
ments, the processor 202 (e.g., network processor) is config-
ured for performing one or more of the following optimized
features or functions: pattern matching; key lookup; compu-
tation; data bitfield manipulation; queue management; con-
trol processing; traffic management and quick allocation/re-
circulation of packet buffers. In embodiments, a software
program running on the network processor 202 may imple-
ment an application that the network processor 202 executes,
resulting in the networking system (e.g., device) 102 per-
forming a task or providing a service. For example, some of
the application types that are implemented as software run-
ning on the network processor 202 may include: packet or
frame discrimination and forwarding; Quality of Service
(QoS) enforcement; access control functions; encryption; and
Transmission Control Protocol (TCP) offload processing.

In embodiments, one or more of the networking systems
102 are configured for receiving and processing a packet flow
(e.g., an Internet Protocol (IP) flow) including a plurality
(e.g., a large number) of packets. In embodiments, the net-
work processor 202 of the networking system 102 is config-
ured for processing the packets of the packet flow (IP flow). In
embodiments, the network processor 202 is configured for
parsing each packet of the packet flow and extracting fields
(e.g., relevant fields) from that packet. In embodiments, the
network processor 202 is further configured for validating the
extracted fields of the packet. In embodiments, the network
processor 202 is configured for performing metering, access
control filtering and other control functions. In embodiments,
the network processor 202 is further configured for perform-
ing a series of (e.g., multiple) table lookups of various sets of
(e.g., a combination of different) fields for a first packet (e.g.,
a first processed packet, a first received packet) included in
the plurality of packets of the packet flow, to determine a
destination (e.g., destination node, destination terminal) for
the first packet. In embodiments, the network processor 202
(e.g., network processor hardware) internally realizes look-
ups through Longest Prefix Match (LPM) tries. In embodi-
ments, one lookup type of special interest is the ordered
lookup with range patterns. However, this lookup type is
expensive in terms of the processing cycles involved in the
lookup. In embodiments, the network processor 202 (e.g., the
network processor hardware) internally implements ordered
lookups such as Policy Based Routing (PBR) and/or Access
Control Lists (ACL) as Longest Prefix Match (LPM) tries.

In embodiments, the network processor 202 performs an
optional ingress ACL lookup, followed by a PBR table
lookup. Inembodiments, the network processor 202 performs
ACL lookup when the traffic (e.g., the first packet) is from an
untrusted or core network side. In embodiments, in the net-
work processor 202, ACL and PBR tables have multi-field
matching capability and are thus implemented using
OVTREESET based trees. In embodiments, the
OVTREESET based trees include a set of sub-trees, each
sub-tree of the set of sub-trees having a separate lookup for
each of the fields. In embodiments, each sub-tree returns a
virtual handle. In embodiments, the final tree lookup includes
asetof'virtual handles (e.g., as the inputs) and returns the next
hop identification (ID) or address. Thus, if there are N input
fields in the tree, there are N+1 table lookups. In embodi-
ments, the cycles involved depend upon the placement of the
tree in memory of the networking system 102. In embodi-
ments, the ACL or PBR lookup from a rule table with N fields
involves: N lookups for each of the fields to convert them to a
virtual pattern; and one LPM lookup of the virtual pattern. In
embodiments in which both ACL and PBR are enabled for the

10

15

20

25

30

35

40

45

50

55

60

65

4

IP flow, the cost of lookup doubles. In embodiments, the
network processor 202 is further configured for performing
post-classification table lookups and egress processing (e.g.,
for the first packet). In embodiments, the network processor
202 is further configured for transmitting packets (e.g., the
first packet) to a destination (e.g., egress) interface.

As mentioned above, the network processor 202 is config-
ured for receiving and processing a packet flow (e.g., an
Internet Protocol (IP) flow) including a plurality (e.g., a large
number) of packets. In embodiments, in the networking sys-
tem 102 (e.g., router, LTE base station), the probability of
packets with a same destination (e.g., destiny) appearing as
clusters is quite high. For example, such a scenario would be
when a file transfer occurs where a train of datagrams from a
same socket are sent out with a same IP and User Datagram
Protocol (UDP)/Transmission Control Protocol (TCP) head-
ers which arrives in a short time span. In some embodiments,
the networking system 102 receives multiple groups of such
flows (e.g., IP flows) in a given time interval. In a number of
applications, such as when the network 100 is a mobile back-
haul-based network wherein a lot of mobile devices are down-
loading rich content, the probability of the reappearance of
packets having the same destination within a micro-interval is
quite high.

Described above are exemplary processing steps imple-
mented by the network processor 202 when processing a first
packet in an IP flow. However, as mentioned above, one of the
exemplary processing steps when processing the first packet
of the flow includes implementing ordered lookups (e.g.,
ACL lookups, PBR lookups), which are expensive in terms of
the processing cycles involved. In embodiments, subsequent
packets of the IP flow have relevant fields which are the same
as the first packet (e.g., the relevant fields are repeated across
a large number of packets received within an interval; one or
more of the subsequent packets of the IP flow have a same
destination as the first packet). In embodiments, the network
processor 202 of the present disclosure is configured for
applying historic data to (e.g., implementing principles of
history-based predictive routing for) the subsequent packets
of the flow (e.g., IP flow) instead of performing the ordered
lookups for the subsequent packets of the flow. By applying
historic data to the subsequent (e.g., later received, later pro-
cessed) packets of the flow rather than repeating the resource-
expensive ordered lookups which were performed when pro-
cessing the first packet of the flow, the network processor 202
promotes increased throughput and improved Quality of Ser-
vice (QoS) (e.g., end-to-end latency improvement) for the
processor 202, the networking system 102 and the network
100. In embodiments, a number of IP flows existing in (e.g.,
received by) the networking system 102 are of a reasonably
long duration. In embodiments, the network processor 202 of
the system 102 is configured for utilizing the classification
(e.g., decision) used for the first packet of the flow for all of
the subsequent packets of the flow, thereby promoting savings
in packet processing, which translates into throughput
improvement, which is beneficial, even if by a small factor.

In embodiments, the processor (e.g., network processor)
202 includes a hash engine (e.g., a hardware-based hash
engine) 204. In embodiments, the network processor 202
further includes a memory (e.g., hash engine memory, inter-
nal memory) 206. In embodiments, the hash engine 204 is
utilized by network processor 202 for implementing the his-
tory-based (e.g., predictive) routing features described
herein.

In embodiments, the networking system 102 is an Ether-
net-based device. In embodiments, the processor 202 (e.g.,
network processor) is configured for providing wire-speed

US 9,270,593 B2

5

processing (e.g., learning) and forwarding of packets in a data
plane of the processor. In embodiments, a forwarding data-
base (FDB) 208 (e.g., FDB table) is maintained in the
memory (e.g., hash engine memory) 206 of the processor
202. In embodiments, the processor 202 is configured for
supporting wire-speed processing (e.g., learning) of Media
Access Control (MAC) addresses in the data plane without
any intervention of the control plane. The processor 202
achieves this by utilizing the hardware-based hash engine
204. In embodiments, the FDB 208 (e.g., learning tables)
maintained in the hash engine 204 (e.g., hash engine memory
206) are updated using data plane packet processing software.

In embodiments, when a new MAC address is received
(e.g., detected) by the processor 202, a new entry is created in
the FDB 208 (e.g., learning table(s)) and an associated aging
timer is started, the new entry automatically aging out when
the timer expires. In embodiments, ifa packet having aknown
MAC address was received by the processor 202, this would
cause the aging timer to be reset. In embodiments, when the
aging timer expires, the entry (e.g., MAC address) is removed
from the learning table. In embodiments, all of these opera-
tions are supported in the data plane of the network processor
202 at wire-speed. In embodiments, MAC learning (e.g.,
processing) and forwarding (e.g., MAC address learning and
forwarding) are performed by the processor 202 in the context
of Virtual Local Area Networks (VL ANs). In embodiments,
for every entry addition in the FDB 208, the processor 202 is
configured for sending a notification to the control plane to
ensure that the FDB 208 seen by the operator is in sync with
what is available in the data plane.

In embodiments, the FDB 208 of the processor 202
includes learning and forwarding tables (e.g., MAC learning
and forwarding tables, a hash table) which are maintained in
the data plane. In embodiments, in order to facilitate wire
speed switching, operations of the forwarding database
(FDB) 208 of the processor 202, such as processing (e.g.,
learning), aging and flushing are managed in the data plane. In
embodiments, the control plane is only notified by the pro-
cessor 202 of any changes in the FDB 208, so as to keep the
operator’s view of the FDB 208 in sync with the data plane. In
embodiments, the processor 202 implements a hash table-
based design for the FDB 208 (e.g., the FDB 208 includes a
hash table 210).

In embodiments, for subsequent packets (e.g., packets
other than the first received/first processed packet) of the flow
(e.g., IP flow), rather than using the ordered lookups (e.g., tree
lookups) described above, the network processor 202 is con-
figured for utilizing a hash-based lookup. In embodiments,
the hash engine 204 of the network processor 202 is config-
ured for determining (e.g., learning) a particular pattern asso-
ciated with the packets of the IP flow and further hash lookups
return the output associated with that particular pattern (e.g.,
hash pattern). In embodiments, the hash engine 204 is con-
figured for determining (e.g., learning) a pre-determined
(e.g., desired) ACL or PBR input pattern, returning an action
and, if applicable, returning the next hop ID or address. In
embodiments, the hash pattern(s) are configurable (e.g., pro-
grammed) to have a fixed lifetime by configuring a hash timer.
In embodiments, the hash table 210 includes an input signa-
ture function, which is used before using ACL and PBR
lookups. In embodiments, the signature function (e.g., input
signature function) includes an entire set of input patterns
which were used in ACL or PBR lookups (e.g., performed for
the first packet of the flow), or a subset thereof. In embodi-
ments, the network processor 202 is configurable such that

5

10

15

20

25

30

35

40

45

50

55

60

6

the choice of signature function is configurable on a per IP
interface basis by an application being executed by the pro-
cessor 202.

In embodiments, as mentioned above, the network proces-
sor 202 is configured for processing packets of a flow (e.g., an
IP flow). For example, the IP flow is received via a certain IP
interface “A”, the IP flow having the following characteris-
tics: IP Source Address 10.10.10.11; IP Destination Address
11.11.11.10; Protocol=TCP; TCP Destination Port=200;
TCP Service Port=500; DCSP=20. In embodiments, the net-
work processor 202 is configured for receiving a first packet
of'the IP flow. In embodiments, the network processor 202 is
configured for extracting fields of the first packet (e.g., as per
the signature function). For example, the extracted fields
include the following six fields: IP Source Address
10.10.10.11; IP Destination Address 11.11.11.10;
Protocol=TCP; TCP Destination Port=200; TCP Service
Port=500; DCSP=20. In embodiments, the processor 202 is
configured for performing a hash lookup for the first packet.
For example, selectors used for hashing include all six fields
mentioned above. In embodiments, the hash lookup for the
first packet of the IP flow will not result in a match (e.g.,
matching entry) being located in the hash table 210. As a
result, the processor 202 is configured for causing ordered
lookup(s) (e.g., PBR and/or ACL table lookups) to be per-
formed for the first packet for determining a destination of the
first packet. For example, a PBR table is consulted, resulting
in the following routing (e.g., destination) information being
obtained: Next Hop ID: 250; Action=Forward. Concurrently,
a hash learning mechanism is initiated by the hash engine
204, so that the particular IP flow being processed is deter-
mined (e.g., learned) by the hash table 210. For example, the
hash table 210 associates the destination information
obtained from the PBR table for the first packet with the
extracted fields of the first packet. In embodiments, for sub-
sequent (e.g., all subsequent) packets of the IP flow, the pro-
cessor 202 is configured for retrieving the destination/routing
information (e.g., Next Hop ID and Action) obtained for the
first packet of the flow from the hash table 210, rather than
performing the expensive ordered lookups (e.g., rather than
consulting the PBR table). This eliminates the need for imple-
menting costly PBR and/or ACL table lookups for subsequent
packets of the flow.

In embodiments, the hash table 210 is configured to have a
fixed size so that it fits inside the internal memory 204 of the
processor 202. In embodiments, the processor 202 is config-
ured for implementing a hash timer for ensuring that stale
entries corresponding to expired (e.g., timed out, old) IP flows
are removed from the hash table 210. In embodiments, when
the amount of active flows exceeds the size (e.g., storage
capacity) of the hash table 210, entries that are not present in
the hash table will proceed to the ordered lookup (e.g., PBR)
table. The choice of hash timer is crucial for the effectiveness
of'the small-sized hash table. In embodiments, the hash timer
entry is selected per hash table entry. For example, if the
chosen hash timer value is too small, then the hash entry will
be removed from the hash table 210 if there’s a brief lull in
traffic from that flow. Further, if the chosen hash timer value
is too large, the hash entry will remain in the hash table longer
than necessary. In embodiments, the selected hash timer value
is matched to the dwell time of the flow. In embodiments,
aside from deletion of hash table entries when the hash timer
expires, there are other situations when hash table entries are
removed, such as via an Application Programming Interface
(API) by the control plane when there is an ordered lookup
(e.g., PBR or ACL) table update.

US 9,270,593 B2

7

As described above, the processor 202 implements a hash
table-based mechanism for identifying (e.g., determining,
learning about) a packet flow during processing of a first
packet of the flow and applying routing/destination data (e.g.,
action, decision) obtained for the first packet to all subsequent
packets of the flow, thereby promoting faster routing of the
packets by the processor 202. The hash table-based mecha-
nism (e.g., application) is configured for choosing the signa-
ture function that will be used in the hash-based match. Fur-
ther, the hash table-based mechanism allows for application-
level configurability of the hash timer based on statistical
analysis of the lifetimes of IP flows. Still further, the hash
table 210 implemented by the hash table-based mechanism is
sized for promoting faster lookups compared to tables used
for ordered lookups, and without the cost and thrashing issues
associated with the ordered lookups. Further, the network
processor 202 is configured for implementing the hash engine
204, as described herein, to provide a route caching mecha-
nism which speeds up IP packet processing. In embodiments,
the hash engine 204 serves the purpose of a cache without
incurring the cost of a hardware cache. In embodiments, the
network processor 202 is configured for defining (e.g., per-
forming) a set of predictive routing methods based upon
dynamic correlation of received packets and is further con-
figured for applying lookup results for a previous packet of a
corresponding flow to subsequent packets of the correspond-
ing flow.

In embodiments, the network processor 202 is configured
for receiving a cluster of segments of a huge file or a media
streaming application from a same layer 4 socket. In such
embodiments, relevant packet fields remain the same for
packets of a flow, and hence, the destination of those packets
remains the same. In such embodiments, the network proces-
sor 202 is configured for re-using cached historic data corre-
sponding to a destination of a first packet of the flow, so that
the amount of lookup cost can be minimized for subsequent
packets of the flow (e.g., of the same type). This promotes
reduced average classification latency. For example, the net-
working system 102 (e.g., the network processor 202 of the
networking system) may receive N packets in time interval t.
Further, the N packets include: nl packets of type 1, n2
packets of type 2, and n3 packets of type 3. In embodiments,
the network processor 202 is configured for re-using a con-
clusion corresponding to a first packet of the nl packets of
type 1 for the remaining nl-1 packets which arrive within
time interval t. In embodiments, the network processor 202 is
further configured for re-using a conclusion corresponding to
afirst packet of the n2 packets of type 2 for the remaining n2-1
packets which arrive within time interval t. In embodiments,
the network processor 202 is further configured for re-using a
conclusion corresponding to a first packet of the n3 packets of
type 3 for the remaining n3-1 packets which arrive within
time interval t. In embodiments, since the fields which deter-
mine a specific destination (e.g., destiny) of a packet may be
a specific subset of a combination of fields, there can be more
than one packet type that has the same destination (e.g.,
destiny, fate). In embodiments, the network processor 202 is
configured for dynamically deriving a unique signature at low
computing cost to serve as a cache key for providing history-
based routing.

As mentioned above, the networking system 102 is config-
ured for receiving multiple groups of flows within a given
time interval. The dwell time or lifetime of such flows is
significant enough to benefit from any savings in successive
lookups. In embodiments, the multiple groups of flows are
interleaved in time. In embodiments, the processor 202 is
configured for processing the interleaved flows without issue.

40

45

55

60

8

For example, the hash table 210 matches all entries present in
the table. In embodiments, the mechanisms which remove
entries from the hash table 210 include hash table ageing and
explicit deletion initiated by the control plane.

In embodiments, the hash table-based mechanism imple-
mented by the network processor 202 promotes processing
savings by avoiding ACL and PBR lookups for subsequent
packets of a flow. For example, the savings is a total of 2N+2
lookups (minus the cycles needed for hash lookup) and is
appreciable when the IP flows have long lifetimes. Along with
promoting improved packet processing savings, the hash
table-based mechanism implemented by the network proces-
sor 202 promotes increased throughput performance and pro-
motes reduction in end-to-end packet delay.

In embodiments, the network processor 202, via the hash
table-based mechanism, is configured for allowing a user to
create user-defined signature functions for defining IP flows.
In embodiments, the network processor 202 is further con-
figured for performing a timed hash of a flow signature that
contains historic conclusions, and, if a historic conclusion
exists, allows for bypass of expensive lookups. In embodi-
ments, the networking system 102 is configured for invalidat-
ing flows on forwarding plane changes. In embodiments, the
network processor 202, via the hash table-based mechanism,
is configured for implementing multiple signature functions
with smaller or larger numbers of fields based on application
preference

FIG. 3 is a flowchart illustrating a method for processing a
packet flow (e.g., IP flow) via a processor (e.g., network
processor) 202 in accordance with an embodiment of the
present disclosure. In embodiments, the method 300 includes
a step of receiving a first packet of the flow (Step 302). In
embodiments, the method 300 further includes a step of pars-
ing the first packet, extracting fields of the first packet, and
validating the extracted fields of the first packet. (Step 304). In
embodiments, the processor 202 is configured for discarding
the packet if the fields are invalid. In embodiments, the
method 300 further includes a step of performing a series of
table lookups for the validated fields to determine a destina-
tion for the first packet. (Step 306). For example, the proces-
sor 202 performs a series of ordered lookups (e.g., ACL
and/or PBR lookups, classification) for the validated fields to
determine a destination for the first packet. In embodiments,
the method 300 further includes a step of transmitting the first
packet to the determined destination (Step 308). In embodi-
ments, the method 300 further includes a step of storing data
corresponding to the validated fields and the determined des-
tination of the first packet in a hash table in a memory of the
processor, the data being a signature function for the packet
flow (Step 310). For example, the signature function defines a
set of packet fields fed as an input to the hash table 210 to form
a unique signature for packets with the same relevant fields.

In embodiments, the method 300 further includes a step of
receiving a second packet of the flow. (Step 312). In embodi-
ments, the method 300 further includes a step of parsing the
second packet, extracting fields of the second packet, and
validating the extracted fields of the second packet (Step 314).
In embodiments, the method 300 further includes a step of
determining that the validated fields of the second packet are
associated with (e.g., match, are compatible with) the vali-
dated fields of the first packet defined by the signature func-
tion (Step 316). In embodiments, the method 300 further
includes a step of accessing the signature function data stored
in the hash table (Step 318). For example, rather than per-
forming the series of ordered lookups for the second packet,
the signature function data is accessed from the hash table and
applied to the second packet. In embodiments, the method

US 9,270,593 B2

9

300 further includes a step of routing the second packet based
upon the signature function data (Step 320). For example, the
second packet is routed to the same destination as the first
packet, based upon the signature function data, which
includes an action and a next hop ID.

In embodiments, the method 300 further includes a step of
removing the signature function data from the hash table after
a pre-determined time interval elapses (Step 322). For
example, a hash timer is set for a pre-determined time inter-
val, and once that time interval elapses (e.g., the signature
function data corresponding to the flow becomes associated
with an expired flow), the processor 202 removes the signa-
ture function data from the hash table 210.

It is to be noted that the foregoing described embodiments
may be conveniently implemented using conventional gen-
eral purpose digital computers programmed according to the
teachings of the present specification, as will be apparent to
those skilled in the computer art. Appropriate software coding
may readily be prepared by skilled programmers based on the
teachings of the present disclosure, as will be apparent to
those skilled in the software art.

It is to be understood that the embodiments described
herein may be conveniently implemented in forms of a soft-
ware package. Such a software package may be a computer
program product which employs a non-transitory computer-
readable storage medium including stored computer code
which is used to program a computer to perform the disclosed
functions and processes disclosed herein. The computer-
readable medium may include, but is not limited to, any type
of'conventional floppy disk, optical disk, CD-ROM, magnetic
disk, hard disk drive, magneto-optical disk, ROM, RAM,
EPROM, EEPROM, magnetic or optical card, or any other
suitable media for storing electronic instructions.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

What is claimed is:

1. A method for processing a packet flow via a processor,
the method comprising:

receiving a first packet of the flow;

parsing the first packet, extracting fields of the first packet,

and validating the extracted fields of the first packet;
performing a series of table lookups for the validated fields
to determine a destination for the first packet;
transmitting the first packet to the determined destination;
and
storing data corresponding to the validated fields and the
determined destination of the first packet in a hash table
in a memory of the processor, the data being a signature
function for the packet flow.

2. The method as claimed in claim 1, further comprising:

receiving a second packet of the flow.

3. The method as claimed in claim 2, further comprising:

parsing the second packet, extracting fields of the second

packet, and validating the extracted fields of the second
packet.

4. The method as claimed in claim 3, further comprising:

determining that the validated fields of the second packet

are associated with the validated fields of the first packet
defined by the signature function.

5. The method as claimed in claim 4, further comprising:

accessing the signature function data stored in the hash

table.

35

40

45

50

55

60

10

6. The method as claimed in claim 5, further comprising:

routing the second packet based upon the signature func-

tion data.

7. The method as claimed in claim 6, further comprising:

removing the signature function data from the hash table

after a pre-determined time interval elapses.

8. The method as claimed in claim 6, wherein the second
packet is routed to the destination of the first packet.

9. The method as claimed in claim 6, wherein the signature
function data includes at least one of: an action and a next hop
identification.

10. The method as claimed in claim 1, wherein the proces-
sor is one of: a network processor and a communications
processor.

11. The method as claimed in claim 1, wherein the packet
flow is an Internet Protocol packet flow.

12. The method as claimed in claim 1, wherein the table
lookups are one of: Policy Based Routing lookups and Access
Control Lists lookups.

13. A non-transitory computer-readable medium having
computer-executable instructions for performing a method
for processing a packet flow via a processor, the method
comprising:

receiving a first packet of the packet flow;

parsing the first packet, extracting fields of the first packet,

and validating the extracted fields of the first packet;
performing a series of table lookups for the validated fields
to determine a destination for the first packet, the table
lookups including Policy Based Routing lookups;
transmitting the first packet to the determined destination;
and
storing data corresponding to the validated fields and the
determined destination of the first packet in a hash table
in a memory of the processor, the data being a signature
function for the packet flow.

14. The non-transitory computer-readable medium as
claimed in claim 13, the method further comprising:

receiving a second packet of the flow.

15. The non-transitory computer-readable medium as
claimed in claim 14, the method further comprising:

parsing the second packet, extracting fields of the second

packet, and validating the extracted fields of the second
packet.

16. The non-transitory computer-readable medium as
claimed in claim 15, the method further comprising:

determining that the validated fields of the second packet

are associated with the validated fields of the first packet
defined by the signature function.

17. The non-transitory computer-readable medium as
claimed in claim 16, the method further comprising:

accessing the signature function data stored in the hash

table, the signature data including at least one of: an
action and a next hop identification.

18. The non-transitory computer-readable medium as
claimed in claim 17, the method further comprising:

routing the second packet based upon the signature func-

tion data, including: routing the second packet to the
destination of the first packet.

19. The non-transitory computer-readable medium as
claimed in claim 18, the method further comprising:

removing the signature function data from the hash table

after a pre-determined time interval elapses.

20. A networking system, comprising:

a network processor, the network processor including a

memory; and

control programming configured for causing the processor

to execute a hash engine-based method for processing a

US 9,270,593 B2
11

packet flow, the method including the steps of: receiving
apacket of the flow; parsing the packet, extracting fields
of the packet, and validating the extracted fields of the
packet; determining that the validated fields of the
packet are associated with validated fields associated 5
with an earlier received packet of the flow; accessing
signature function data stored in a hash table in the
memory of the processor, the signature function data
corresponding to the validated fields and a determined
destination of the earlier received packet of the flow; and 10
routing the packet to the destination based upon the
stored signature function data,

wherein the signature function data includes at least one of:
an action and a next hop identification.

#* #* #* #* #* 15

