US009251291B2

United States Patent

(12) 10) Patent No.: US 9,251,291 B2
Duffy et al. 45) Date of Patent: Feb. 2, 2016
(54) DATA PARALLEL SEARCHING 2003/0187839 Al* 10/2003 Zhangetal.cco.... 707/4
2006/0059173 Al* 3/2006 Hirschetal. ... 707/100
(75) Inventors: John Duffy, Renton, WA (US); Edward 2007/0136365 Al 6/2007 Tarditi, Jr. et al.
G. Essey, Seattle, WA (US); Charles D. 2007/0143755 Al 6/2007 Sahu et al.
Callahan, II, Seattle, WA (US) OTHER PUBLICATIONS
(73) Assignee: Microsoft Technology Licensing, LLC, “Microsoft’s PLinq to Speed Program Execution”, http://www.
Redmond, WA (US) eweek.com/article2/0,1895,2009167,00.asp.
“Transactions for Memory”, http://msdn.microsoft.com/msdnmag/
(*) Notice: Subject to any disclaimer, the term of this issues/06/01/EndBracket/.
patent is extended or adjusted under 35 Blelloch, et al., “Multiscale Scheduling: Integrating Competitive and
U.S.C. 154(b) by 567 days. Cooperative Scheduling in Theory and in Practice”, pp. 1-15.
Don Syme, “Leveraging NET Meta-programming Components
(21) Appl. No.: 11/947,539 from F# Integrated Queries and Interoperable Heterogeneous Execu-
tion”, Proceedings of the 2006 workshop on ML, Date: 2006, pp.
(22) Filed: Nov. 29, 2007 43-54, ACM Press, New York, USA.
Isard, et al., “Dryad: Distributed Data-Parallel Programs from
(65) Prior Publication Data Sequential Building Blocks”, Date: Mar. 21-23, 2007, pp. 1-14.
Kuchen, et al., “The Integration of Task and Data Parallel Skeltons”,
US 2009/0144232 Al Jun. 4, 2009 p. 1-13.
“PLINQ—Parallel LINQ”, http://www.opcode.co.uk/blog/index.
(51) Int.ClL php/2007/04/20/pling-parallel-ling/.
GO6F 7/00 (2006.01)
GO6F 17/30 (2006.01) * cited by examiner
(52) US.CL .
CPC ... GO6F 17/30979 (2013.01); GO6F 17/30445 Primary Examiner — Ajith Jacob
(2013.01) (74) Attorney, Agent, or Firm —Kevin Sullivan; Doug
(58) Field of Classification Search Barker; Micky Minhas
CPC et GOO6F 17/30445
101 L SR 7073,655 (7 ABSTRACT
See application file for complete search history. A query that includes a search operator and that identifies an
input data source is received. The input data source is parti-
(56) References Cited tioned into a plurality of partitions. A parallel search through

U.S. PATENT DOCUMENTS

5,136,717 A 8/1992 Morley et al.

5710915 A * 1/1998 McElhineyccocoovverncenn 1/1
5,819,021 A 10/1998 Stanfill et al.

6,041,384 A 3/2000 Waddington et al.

6,167,393 A * 12/2000 Davisetal.ccccoovrvreirrennns 1/1
6,480,876 B2 11/2002 Rehg et al.

6,675,189 B2 1/2004 Rehg et al.

7,100,026 B2 8/2006 Dally et al.

the partitions is performed for an element that could halt the
search. The parallel search is performed using a plurality of
parallel workers. One of the parallel workers generates a
notification when the element is found by that worker. The
notification notifies the other parallel workers that the search
could be halted. Each of the parallel workers generates an
output set based on results of the search. The output sets are
merged into a merged output set.

7,953,723 B1* 52011 Duttonetal. ... 707/707 20 Claims, 11 Drawing Sheets
;06 100
REMOVABLE
TORAGE
COMPUTING DEVICE STORAG
NON-REMOVABLE
104 STORAGE o
L
SYSTEM MEMORY OUTPUT DEVICE(S) i
VOLATILE PROCESSING UNITS
INPUT DEVICE(S) 112 115
NON-VOLATILE 114
R — OTHER 4, |,| OTHER
COMMUNICATION COMPUTERS/
200 CONNECTION(S) APPLICATIONS
"\ SEARCHOPERATOR
EXECUTION
APPLICATION

US 9,251,291 B2

Sheet 1 of 11

Feb. 2, 2016

U.S. Patent

SNOILYOI1ddY
/S431NdNOD
43H1O

/

Gl

["S1q
NOILYOITddV
NOILND3X3
HOLYY3dO HOUV3S 4/
(S)NOILDANNOD 00z
—N NOILYOINNWINOD
/g ¥3HLO -~
Vbl JTILYTOA-NON
7,1 (S)301A30 LNdNI
SLINN ONISSIO0Hd JTLYTIOA
m
™M (8)301A30 LNALNO ol 7 AONIWWALSAS
AL
/!
0Ll
] 39vdoIs vol
J19YAOWIH-NON
80} 301A30 ONILNANOD
d JOVHOLS
I19YAONIY
00} oow

US 9,251,291 B2

Sheet 2 of 11

Feb. 2, 2016

U.S. Patent

T "Sig

(1744
NOILVOITddV H1 ONILVIHdO J04 OIO0T ¥HHIO

81T
LIS AIIHAI0 TVNIA V OINI VIVA ONIDYHN J04 D190

91
SNOILLVIAdO THTIVIVd V.LVA NI NOLLISOd INHWHTH ONIAYHISHAd 404 DID0T

¥1C
SHEOM THTIVEVd HHL A MIOM HALLVINDHdS DNIWIOJdHd 04 DIDOT

(414
AOLVIHdO
HOAVHS V 40 NOLLNDEXH DNIHENA SYTHIOM THTIVIVA NHIM LHE SNOLLVOINOWINOD
ONIANTONI STEEOM THTIVIVA NHHMIHE NOILVIEdO0D DNIATAOYd 404 DID0T

01¢
SUIHIOM THTIVEVd dHL 4O HNO LSVAT LV WOUA L3S
INdILNO0 NV DNIONAOAd SHATOANI LVHL HSVHd NOLLONAOEd V ONIWJOIIdd 04 DIDOT

80T
SYHIOM THTIVIVA 40 ALTI'TVANTd V HLIM SNOILLILYVd
HHI 40 HOAVHS THTIVIVd V SHANTONI LVHL ASVHd HOUVHS V ONTNIOJddd d04 DIDOT

90¢
SNOILLLIVd OLNI HOdN0S VIV LOINI NV ONINOLLLLIVd 804 DID0T

¥0t
DNIDIYHN ANV DONINOILLLEVd HAN'TONI LVHL SNOLLVYHdO THTIVIVd

VIVA NIVINOD Ol ¢ YOLVIAdO HOUVES V SHANTONI HOIHM ‘ AgdNO V ONILIIM- T 404 01901

70T
DIDOTINVEDOUEd

00T
NOLLYOI'TddV NOLLNDHAXH YOLVYHO HOHVHS

U.S. Patent Feb. 2, 2016 Sheet 3 of 11 US 9,251,291 B2

300 START
. 302

RE-WRITE A RECEIVED QUERY THAT INCLUDES A SEARCH OPERATOR TO CONTAIN DATA
PARALLEL OPERATIONS THAT INCLUDE PARTITIONING AND MERGING, WHEREIN THE
SEARCH OPERATOR IDENTIFIES AN INPUT DATA SOURCE
304

v
PARTITION METHOD SELECTION PROCESS SELECTS A PARTITIONING METHOD FROM A
PLURALITY OF PARTITIONING METHODS BASED ON A TYPE OF THE SEARCH OPERATOR
CONTAINED IN THE QUERY
306

v

PARTITION OPERATION PARTITIONS THE DATA SOURCE INTO A PARTITIONED DATA SOURCE
THAT INCLUDES A PLURALITY OF DISJOINT PARTITIONS USING THE SELECTED
PARTITIONING METHOD
308

v

PLURALITY OF PARALLEL WORKERS (e.g., PROCESSORS) EACH RECEIVES A DIFFERENT ONE
OF THE PARTITIONS, AND SEARCHES FOR AN ELEMENT THAT COULD, BASED ON CRITERIA
(e.g., A PREDICATE FUNCTION) SPECIFIED BY THE SEARCH OPERATOR, ALLOW THE SEARCH
TO BE HALTED
310

v
WHEN AN ELEMENT THAT ALLOWS THE SEARCH TO BE HALTED IS FOUND, THE WORKER
THAT FOUND THE ELEMENT PROVIDES A NOTIFICATION TO THE OTHER PARALLEL
WORKERS
312

v
PARALLEL WORKERS CONTINUE TO SEARCH THROUGH THEIR PARTITIONS UNTIL A
NOTIFICATION IS GENERATED THAT INDICATES THAT THE SEARCH CAN BE HALTED, OR UNTIL
THE WORKERS REACH THE END OF THEIR PARTITIONS, AT WHICH POINT THE PARALLEL
WORKERS STOP SEARCHING
314

v
ONE OR MORE OF THE PARALLEL WORKERS PERFORMS A SPECULATIVE EXECUTION OF
ONE OR MORE ADDITIONAL OPERATORS CONTAINED IN THE QUERY USING TRANSACTIONAL
MEMORY
316

v

ONE OR MORE OF THE PARALLEL WORKERS PRODUCES AN OUTPUT SET
318

v

MERGE OPERATION MERGES PRODUCED OUTPUT SETS INTO A MERGED AND ORDERED
OUTPUT SET
320

END
322

Fig. 3

U.S. Patent Feb. 2, 2016 Sheet 4 of 11 US 9,251,291 B2

400 \ START
402

RECEIVE AN “ALL” OPERATOR SPECIFYING A PREDICATE FUNCTION
404

PARTITION OPERATION PARTITIONS A DATA SOURCE IDENTIFIED BY THE “ALL” OPERATOR
INTO A PARTITIONED DATA SOURCE THAT INCLUDES A PLURALITY OF DISJOINT PARTITIONS
406

PLURALITY OF PARALLEL WORKERS EACH RECEIVES A DIFFERENT ONE OF THE PARTITIONS,
AND SEARCHES FOR AN ELEMENT THAT DOES NOT SATISFY THE PREDICATE FUNCTION
AND THAT WOULD, THEREFORE, ALLOW THE SEARCH TO BE HALTED
408

WHEN AN ELEMENT THAT ALLOWS THE SEARCH TO BE HALTED IS FOUND, THE WORKER
THAT FOUND THE ELEMENT NOTIFIES THE OTHER PARALLEL WORKERS THAT THE SEARCH
CAN BE HALTED, AND PRODUCES AN OUTPUT SET (e.g., AN OUTPUT SET COMPRISING A
LOGICAL FALSE VALUE)

410

PARALLEL WORKERS CONTINUE TO SEARCH THROUGH THEIR PARTITIONS UNTIL A
NOTIFICATION IS GENERATED THAT INDICATES THAT THE SEARCH CAN BE HALTED, OR UNTIL
THE WORKERS REACH THE END OF THEIR PARTITIONS, AT WHICH POINT THE PARALLEL
WORKERS STOP SEARCHING
412

WHEN ALL OF THE PARALLEL WORKERS HAVE COMPLETED SEARCHING THEIR PARTITIONS
AND NONE OF THE WORKERS FINDS AN ELEMENT THAT WOULD ALLOW THE SEARCH TO BE
HALTED, ONE OF THE PARALLEL WORKERS PRODUCES AN OUTPUT SET (e.g., AN OUTPUT
SET COMPRISING A LOGICAL TRUE VALUE)

414

END
416

Fig. 4

U.S. Patent Feb. 2, 2016 Sheet 5 of 11 US 9,251,291 B2

500

< START)
R 502

RECEIVE AN “ANY” OPERATOR SPECIFYING A PREDICATE FUNCTION
504

PARTITION OPERATION PARTITIONS A DATA SOURCE IDENTIFIED BY THE "ANY” OPERATOR
INTO A PARTITIONED DATA SOURCE THAT INCLUDES APLURALITY OF DISJOINT PARTITIONS
506

PLURALITY OF PARALLEL WORKERS EACH RECEIVES A DIFFERENT ONE OF THE PARTITIONS
AND SEARCHES FOR AN ELEMENT THAT SATISFIES THE PREDICATE FUNCTION AND THAT
WOULD, THEREFORE, ALLOW THE SEARCH TO BE HALTED
508

WHEN AN ELEMENT THAT ALLOWS THE SEARCH TO BE HALTED 1S FOUNDTHE WORKER
THAT FOUND THE ELEMENT NOTIFIES THE OTHER PARALLEL WORKERS THAT THE SEARCH
CAN BE HALTED, AND PRODUCES AN OUTPUT SET(e.g., AN OUTPUT SET COMPRISING A
LOGICAL TRUE VALUE)

510

PARALLEL WORKERS CONTINUE TO SEARCH THROUGH THEIR PARTITIONS UNTIL A
NOTIFICATION IS GENERATED THAT INDICATES THAT THE SEARCH CAN BE HALTEPOR UNTIL
THE WORKERS REACH THE END OF THEIR PARTITIONSAT WHICH POINT THE PARALLEL
WORKERS STOP SEARCHING
512

WHEN ALL OF THE PARALLEL WORKERS HAVE COMPLETED SEARCHING THEIR PARTITIONS
AND NONE OF THE WORKERS FINDS AN ELEMENT THAT WOULD ALLOW THE SEARCH TO BE
HALTED, ONE OF THE PARALLEL WORKERS PRODUCES AN OUTPUT SET(e.g., AN OUTPUT
SET COMPRISING A LOGICAL FALSE VALUE)

514

END
516

Fig. 5

U.S. Patent Feb. 2, 2016 Sheet 6 of 11 US 9,251,291 B2

600

(START)
R 802

RECEIVE A “CONTAINS" OPERATOR SPECIFYING A PREDICATE FUNCTION
604

PARTITION OPERATION PARTITIONS A DATA SOURCE IDENTIFIED BY THE “CONTAINS”
OPERATOR INTO A PARTITIONED DATA SOURCE THAT INCLUDES A PLURALITY OF DISJOINT
PARTITIONS

806

PLURALITY OF PARALLEL WORKERS EACH RECEIVES A DIFFERENT ONE OF THE PARTITIONS
AND SEARCHES FOR AN ELEMENT THAT SATISFIES THE PREDICATE FUNCTION AND THAT
WOULD, THEREFORE, ALLOW THE SEARCH TO BE HALTED
608

WHEN AN ELEMENT THAT ALLOWS THE SEARCH TO BE HALTED IS FOUNDTHE WORKER
THAT FOUND THE ELEMENT NOTIFIES THE OTHER PARALLEL WORKERS THAT THE SEARCH
CAN BE HALTED, AND PRODUCES AN OUTPUT SET(e.g., AN OUTPUT SET COMPRISING A
LOGICAL TRUE VALUE)

810

PARALLEL WORKERS CONTINUE TO SEARCH THROUGH THEIR PARTITIONS UNTIL A
NOTIFICATION IS GENERATED THAT INDICATES THAT THE SEARCH CAN BE HALTEPOR UNTIL
THE WORKERS REACH THE END OF THEIR PARTITIONSAT WHICH POINT THE PARALLEL
WORKERS STOP SEARCHING
612

WHEN ALL OF THE PARALLEL WORKERS HAVE COMPLETED SEARCHING THEIR PARTITIONS
AND NONE OF THE WORKERS FINDS AN ELEMENT THAT WOULD ALLOW THE SEARCH TO BE
HALTED, ONE OF THE PARALLEL WORKERS PRODUCES AN OUTPUT SET(eg., AN OUTPUT
SET COMPRISING A LOGICAL FALSE VALUE)

614

END
816

Fig. 6

U.S. Patent Feb. 2, 2016 Sheet 7 of 11 US 9,251,291 B2

700 START
. 702

RECEIVE A “FIRST” OPERATOR SPECIFYING A PREDICATE FUNCTION
04

v

PARTITION OPERATION PARTITIONS A DATA SOURCE IDENTIFIED BY THE “FIRST”
OPERATOR INTO A PARTITIONED DATA SOURCE THAT INCLUDES A PLURALITY OF
DISJOINT PARTITIONS
706

SHARED VARIABLE IS ESTABLISHED FOR STORING A CURRENT LOWEST INDEX
08

PLURALITY OF PARALLEL WORKERS EACH RECEIVES A DIFFERENT ONE OF THE PARTITIONS,
AND BEGIN SEARCHING (FROM LOW TO HIGH INDICES) FOR AN ELEMENT THAT SATISFIES
THE PREDICATE FUNCTION
710

WHEN AN ELEMENT THAT SATISFIES THE PREDICATE FUNCTION IS FOUND BY ANY
WORKER, THE WORKER NOTIFIES THE OTHER PARALLEL WORKERS, COMPARES THE INDEX
OF THE ELEMENT TO THE CURRENT LOWEST INDEX IN THE SHARED VARIABLE, AND
REPLACES THE CURRENT LOWEST INDEX WITH THE INDEX OF THE FOUND ELEMENT IF THE
INDEX OF THE FOUND ELEMENT IS LOWER THAN THE CURRENT LOWEST INDEX
712

WHEN AN ELEMENT BEING EXAMINED BY ANY WORKER HAS AN INDEX THAT EXCEEDS THE
CURRENT LOWEST INDEX IN THE SHARED VARIABLE, OR IF THE WORKER HAS REACHED THE
END OF ITS PARTITION, THE WORKER STOPS SEARCHING
714

AFTER ALL OF THE WORKERS HAVE STOPPED SEARCHING, THE WORKER THAT FOUND THE
ELEMENT WITH THE LOWEST INDEX STORED IN THE SHARED VARIABLE PRODUCES AN
OUTPUT SET (e.g., AN OUTPUT SET COMPRISING THE ELEMENT THAT HAD THE LOWEST

INDEX IN THE SHARED VARIABLE)
716

END
718

Fig. 7

U.S. Patent Feb. 2, 2016 Sheet 8 of 11 US 9,251,291 B2

800 START
“a 802

RECEIVE A “LAST" OPERATOR SPECIFYING A PREDICATE FUNCTION
804

.

PARTITION OPERATION PARTITIONS A DATA SOURCE IDENTIFIED BY THE “LAST” OPERATOR
INTO A PARTITIONED DATA SOURCE THAT INCLUDES A PLURALITY OF DISJOINT PARTITIONS
806

SHARED VARIABLE IS ESTABLISHED FOR STORING A CURRENT HIGHEST INDEX
808

PLURALITY OF PARALLEL WORKERS EACH RECEIVES A DIFFERENT ONE OF THE PARTITIONS,
AND BEGIN SEARCHING (FROM HIGH TO LOW INDICES) FOR AN ELEMENT THAT SATISFIES
THE PREDICATE FUNCTION
810

WHEN AN ELEMENT THAT SATISFIES THE PREDICATE FUNCTION IS FOUND BY ANY
WORKER, THE WORKER NOTIFIES THE OTHER PARALLEL WORKERS, COMPARES THE INDEX
OF THE ELEMENT TO THE CURRENT HIGHEST INDEX IN THE SHARED VARIABLE, AND
REPLACES THE CURRENT HIGHEST INDEX WITH THE INDEX OF THE FOUND ELEMENT IF
THE INDEX OF THE FOUND ELEMENT IS HIGHER THAN THE CURRENT HIGHEST INDEX
812

WHEN AN ELEMENT BEING EXAMINED BY ANY WORKER HAS AN INDEX THAT IS LOWER
THAN THE CURRENT HIGHEST INDEX IN THE SHARED VARIABLE, OR IF THE WORKER HAS
REACHED THE END OF ITS PARTITION, THE WORKER STOPS SEARCHING
814

AFTER ALL OF THE WORKERS HAVE STOPPED SEARCHING, THE WORKER THAT FOUND
THE ELEMENT WITH THE HIGHEST INDEX STORED IN THE SHARED VARIABLE PRODUCES AN
OUTPUT SET (e.g., AN OUTPUT SET COMPRISING THE ELEMENT THAT HAD THE HIGHEST
INDEX IN THE SHARED VARIABLE)

816

END
818

Fig. 8

U.S. Patent Feb. 2, 2016 Sheet 9 of 11 US 9,251,291 B2

900 START
“a 902

RECEIVE A “TAKEWHILE” OPERATOR SPECIFYING A PREDICATE FUNCTION
204

v

PARTITION OPERATION PARTITIONS A DATA SOURCE IDENTIFIED BY THE “TAKEWHILE”
OPERATOR INTO A PARTITIONED DATA SOURCE THAT INCLUDES A PLURALITY OF DISJOINT
PARTITIONS

906

v

SHARED VARIABLE IS ESTABLISHED FOR STORING A CURRENT LOWEST INDEX
908

v

PLURALITY OF PARALLEL WORKERS EACH RECEIVES A DIFFERENT ONE OF THE PARTITIONS,
AND BEGINS SEARCHING (FROM LOW TO HIGH INDICES) FOR AN ELEMENT THAT DOES NOT
SATISFY THE PREDICATE FUNCTION

910

v

FOR EACH EXAMINED ELEMENT THAT SATISFIES THE PREDICATE FUNCTION, THE ELEMENT
IS STORED IN A BUFFER OF THE WORKER THAT EXAMINED THE ELEMENT
912

v

WHEN AN ELEMENT THAT DOES NOT SATISFY THE PREDICATE FUNCTION IS FOUND BY ANY
WORKER, THE WORKER NOTIFIES THE OTHER PARALLEL WORKERS, COMPARES THE INDEX
OF THE ELEMENT TO THE CURRENT LOWEST INDEX IN THE SHARED VARIABLE, AND
REPLACES THE CURRENT LOWEST INDEX WITH THE INDEX OF THE FOUND ELEMENT IF THE
INDEX OF THE FOUND ELEMENT IS LOWER THAN THE CURRENT LOWEST INDEX

914

WHEN AN ELEMENT BEING EXAMINED BY ANY WORKER HAS AN INDEX THAT EXCEEDS THE
CURRENT LOWEST INDEX IN THE SHARED VARIABLE, OR IF THE WORKER HAS REACHED THE
END OF ITS PARTITION, THE WORKER STOPS SEARCHING

916

AFTER ALL OF THE WORKERS HAVE STOPPED SEARCHING, THE PARALLEL WORKERS EACH
PRODUCES AN OUTPUT SET THAT INCLUDES ALL ELEMENTS IN THEIR LOCAL BUFFERS
THAT HAVE AN INDEX THAT IS LOWER THAN THE LOWEST INDEX STORED IN THE SHARED
VARIABLE
918

END
920

Fig. 9

U.S. Patent Feb. 2, 2016 Sheet 10 of 11 US 9,251,291 B2

1000 START
W 1002

RECEIVE A “TAKEWHILE” OPERATOR SPECIFYING A PREDICATE FUNCTION
1004

v
PARTITION OPERATION PARTITIONS A DATA SOURCE IDENTIFIED BY THE “TAKEWHILE”
OPERATOR INTO A PARTITIONED DATA SOURCE THAT INCLUDES A PLURALITY OF DISJOINT
PARTITIONS
1006

v

A FIRST SHARED VARIABLE IS ESTABLISHED FOR STORING A CURRENT LOWEST INDEX FOR
SEARCHED ELEMENTS
1008

v
PLURALITY OF PARALLEL WORKERS EACH RECEIVES A DIFFERENT ONE OF THE PARTITIONS,
AND BEGINS SEARCHING (FROM LOW TO HIGH INDICES) FOR AN ELEMENT THAT DOES NOT
SATISFY THE PREDICATE FUNCTION
1010

v

FOR EACH EXAMINED ELEMENT THAT SATISFIES THE PREDICATE FUNCTION, THE ELEMENT
IS STORED IN A BUFFER OF THE WORKER THAT EXAMINED THE ELEMENT
1012

v

WHEN AN ELEMENT THAT DOES NOT SATISFY THE PREDICATE FUNCTION IS FOUND BY ANY
WORKER, THE WORKER NOTIFIES THE OTHER PARALLEL WORKERS, COMPARES THE INDEX
OF THE ELEMENT TO THE CURRENT LOWEST INDEX IN THE FIRST SHARED VARIABLE, AND
REPLACES THE CURRENT LOWEST INDEX WITH THE INDEX OF THE FOUND ELEMENT IF THE
INDEX OF THE FOUND ELEMENT IS LOWER THAN THE CURRENT LOWEST INDEX
1014

v
PARALLEL WORKERS PERIODICALLY COMMUNICATE WITH EACH OTHER (e.g., VIA A SECOND

SHARED VARIABLE) TO IDENTIFY A HIGHEST PRODUCIBLE ELEMENT INDEX (e.g., ALL

ELEMENTS WITH THAT INDEX AND BELOW HAVE BEEN SEARCHED BY THE PARALLEL
WORKERS), AND EACH WORKER PERIODICALLY PRODUCES AN OUTPUT SET THAT INCLUDES
ALL NON-PRODUCED ELEMENTS IN THEIR LOCAL BUFFERS THAT HAVE AN INDEX THAT IS THE

SAME AS OR LOWER THAN THE HIGHEST PRODUCIBLE ELEMENT INDEX
1016

v
WHEN AN ELEMENT BEING EXAMINED BY ANY WORKER HAS AN INDEX THAT EXCEEDS THE
CURRENT LOWEST INDEX IN THE FIRST SHARED VARIABLE, OR IF THE WORKER HAS
REACHED THE END OF ITS PARTITION, THE WORKER STOPS SEARCHING
1018

v

AFTER ALL OF THE WORKERS HAVE STOPPED SEARCHING, THE PARALLEL WORKERS EACH
PRODUCES AN OUTPUT SET THAT INCLUDES ALL ELEMENTS IN THEIR LOCAL BUFFERS
THAT HAVE NOT YET BEEN PRODUCED AND THAT HAVE AN INDEX THAT IS LOWER THAN THE
LOWEST INDEX STORED IN THE FIRST SHARED VARIABLE
1020

END
1022

Fig. 10

U.S. Patent Feb. 2, 2016 Sheet 11 of 11 US 9,251,291 B2

1100 START
e 1102

RECEIVE A "SKIPWHILE” OPERATOR SPECIFYING A PREDICATE FUNCTION
1104

v

PARTITION OPERATION PARTITIONS A DATA SOURCE IDENTIFIED BY THE “SKIPWHILE"
OPERATOR INTO A PARTITIONED DATA SOURCE THAT INCLUDES A PLURALITY OF DISJOINT
PARTITIONS
1106

v

SHARED VARIABLE IS ESTABLISHED FOR STORING A CURRENT LOWEST INDEX
1108

v

PLURALITY OF PARALLEL WORKERS EACH RECEIVES A DIFFERENT ONE OF THE PARTITIONS
AND BEGINS SEARCHING(FROM LOW TO HIGH INDICES) FOR AN ELEMENT THAT DOES NOT
SATISFY THE PREDICATE FUNCTION
1110

v

FOR EACH EXAMINED ELEMENT THAT SATISFIES THE PREDICATE FUNCTIONTHE ELEMENT
IS STORED IN A BUFFER OF THE WORKER THAT EXAMINED THE ELEMENT
112

v

WHEN AN ELEMENT THAT DOES NOT SATISFY THE PREDICATE FUNCTION IS FOUND BY ANY|
WORKER, THE WORKER NOTIFIES THE OTHER PARALLEL WORKERS COMPARES THE INDEX
OF THE ELEMENT TO THE CURRENT LOWEST INDEX IN THE SHARED VARIABLEAND
REPLACES THE CURRENT LOWEST INDEX WITH THE INDEX OF THE FOUND ELEMENT IF THE
INDEX OF THE FOUND ELEMENT IS LOWER THAN THE CURRENT LOWEST INDEX

1114

WHEN AN ELEMENT BEING EXAMINED BY ANY WORKER HAS AN INDEX THAT EXCEEDS THE
CURRENT LOWEST INDEX IN THE SHARED VARIABLEOR IF THE WORKER HAS REACHED THE
END OF ITS PARTITION, THE WORKER STOPS SEARCHING

1116

AFTER ALL OF THE WORKERS HAVE STOFPPED SEARCHING THE PARALLEL WORKERS EACH
PRODUCES AN OUTPUT SET THAT INCLUDES ALL ELEMENTS IN THEIR PARTITIONS THAT
HAVE AN INDEX THAT IS HIGHER THAN THE INDEX STORED IN THE SHARED VARIABLE
1118

END
1120

Fig. 11

US 9,251,291 B2

1
DATA PARALLEL SEARCHING

BACKGROUND

Software programs have been written to run sequentially
since the beginning days of software development. Steadily
over time, computers have become much more powerful, with
more processing power and memory to handle advanced
operations. This trend has recently shifted away from ever-
increasing single-processor clock rates towards an increase in
the number of processors available in a single computer
resulting in a corresponding shift away from sequential
execution toward parallel execution. Software developers
want to take advantage of improvements in computer pro-
cessing power to enable their software programs to run faster
as new hardware is adopted. With parallel hardware, software
developers arrange for one or more tasks of a particular soft-
ware program to be executed in parallel (also referred to as
concurrently), so that the same logical operation can utilize
many processors at one time to thereby deliver better perfor-
mance as more processors are added to the computers on
which such software runs.

When parallelizing previously-written sequential algo-
rithms, it is often desirable to keep as much of the previous
sequential program behavior as possible. However, typical
parallel execution of existing sequential logic introduces new
behavioral characteristics and presents problems that can
introduce challenges into the migration from sequential to
parallel algorithms.

For example, for many operators, a parallel worker can
typically operate on its own subset of input data indepen-
dently, as though other parallel workers do not exist. How-
ever, for some operators, such as search operators, the output
produced by some of the parallel workers may be dependent
on the output of some of the other parallel workers, or useful
in concluding the search sooner. Using conventional tech-
niques for such operators can result in inefficient perfor-
mance, as well as incorrect results.

SUMMARY

This summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

In one embodiment, a query that includes a search operator
and that identifies an input data source is received. The input
data source is partitioned into a plurality of partitions. A
parallel search through the partitions is performed for an
element that could halt the search. The parallel search is
performed using a plurality of parallel workers. One of the
parallel workers generates a notification when the element is
found by that worker. The notification notifies the other par-
allel workers that the search could be halted, which may or
may not be heeded immediately depending on the kind of
search. Each of the parallel workers generates an output set
based on results of the search. The output sets are merged into
a merged output set.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide a
further understanding of embodiments and are incorporated
in and constitute a part of this specification. The drawings
illustrate embodiments and together with the description

10

15

20

25

30

35

40

45

50

55

60

65

2

serve to explain principles of embodiments. Other embodi-
ments and many of the intended advantages of embodiments
will be readily appreciated, as they become better understood
by reference to the following detailed description. The ele-
ments of the drawings are not necessarily to scale relative to
each other. Like reference numerals designate corresponding
similar parts.

FIG. 1 is a block diagram illustrating a computer system
according to one embodiment.

FIG. 2 is a diagrammatic view of a search operator execu-
tion application for operation on the computer system illus-
trated in FIG. 1 according to one embodiment.

FIG. 3 is ahigh level flow diagram illustrating a method for
executing a search operator according to one embodiment.

FIG. 4 is a flow diagram illustrating a method for perform-
ing a parallel execution of an ALL operator according to one
embodiment.

FIG. 5 is a flow diagram illustrating a method for perform-
ing a parallel execution of an ANY operator according to one
embodiment.

FIG. 6 is a flow diagram illustrating a method for perform-
ing a parallel execution of a CONTAINS operator according
to one embodiment.

FIG. 7 is a flow diagram illustrating a method for perform-
ing a parallel execution of a FIRST operator according to one
embodiment.

FIG. 8 is a flow diagram illustrating a method for perform-
ing a parallel execution of a LAST operator according to one
embodiment.

FIG. 9 is a flow diagram illustrating a method for perform-
ing a parallel execution of a TAKEWHILE operator accord-
ing to one embodiment.

FIG. 10 is a flow diagram illustrating a method for per-
forming a parallel execution of a TAKEWHILE operator
according to one embodiment.

FIG. 11 is a flow diagram illustrating a method for per-
forming a parallel execution of a SKIPWHILE operator
according to one embodiment.

DETAILED DESCRIPTION

Inthe following Detailed Description, reference is made to
the accompanying drawings, which form a part hereof, and in
which is shown by way of illustration specific embodiments
in which the invention may be practiced. It is to be understood
that other embodiments may be utilized and structural or
logical changes may be made without departing from the
scope of the present invention. The following detailed
description, therefore, is not to be taken in a limiting sense,
and the scope of the present invention is defined by the
appended claims.

One embodiment provides an application that performs
speculative and cooperative execution of search operators for
data parallel operations, but the technologies and techniques
described herein also serve other purposes in addition to
these. In one implementation, one or more of the techniques
described herein can be implemented as features within a
framework program such as MICROSOFT® NET Frame-
work, or within any other type of program or service that
handles data parallel operations in programs.

Data parallel systems typically operate by partitioning
input data into disjoint subsets (partitions) so that indepen-
dent tasks of execution may process the separate subsets in
isolation. The partitions are processed in parallel to generate
aplurality of output sets (e.g., the query is executed in parallel
using the plurality of secondary partitions). The output sets
are merged back into a merged output set. However, as men-

US 9,251,291 B2

3

tioned above in the Background section, there is a certain
class of operators that can be characterized as “search” opera-
tors. In such operators, the output produced by some of the
parallel workers may be dependent on the output of some of
the other parallel workers. In one embodiment, this type of
operator is handled differently than other types of operators
and the parallel workers communicate at several points dur-
ing execution. In contrast, with most other types of operators,
a parallel worker typically operates as though the other work-
ers do not exist.

The following are some examples of search operators
according to one embodiment. (1) ALL—evaluates a predi-
cate function on each element in the input and returns true
only if the predicate returned true for every single element. If
any element yields false, a false is returned, which can happen
at the first occurrence of a false predicate return value. (2)
ANY—evaluates a predicate function on the input and returns
true if the predicate returns true on any one element, and
returns false if the predicate yields false for every element in
the input. (3) CONTAINS—searches the input for a particular
value, returning true if the value was found at least once and
false otherwise. (4) FIRST—returns the first element from the
input for which a predicate returns true. Note that if the
predicate matches multiple elements, only the first one is
returned. (5) LAST—returns the last element from the input
for which a predicate returns true. Note that if the predicate
matches multiple elements, only the last one is returned. (6)
TAKEWHILE—outputs all elements in the input leading up
to the first element for which a specified predicate returns
false. (7) SKIPWHILE—outputs all elements in the input that
occur after the first occurrence of an element for which a
specified predicate returns false.

In one embodiment, all of these search operators share one
common characteristic: there is a search phase, in which a
particular element is sought in the input, followed by a pro-
duction phase, in which one or more of the parallel workers
produce output based on information found in the search
phase. One approach is to perform the search sequentially and
then the production. This approach does not provide parallel
speedup. Another approach is to have each worker perform a
local search and then integrate the results after all workers
have finished. This approach may lead to more or less paral-
lelism than an optimal solution, but may also lead to more
wasted work.

One embodiment of an example system performs a parallel
execution of a search operator by speculatively and coopera-
tively allowing workers to work ahead. The speculative
aspect frees up more parallelism, while the cooperative aspect
involves communication between the workers to help mini-
mize the amount of wasted work that can result from specu-
lation.

As illustrated in FIG. 1, an exemplary computer system
that can be employed to implement one or more parts of an
example system includes a computing device, such as com-
puting device 100. In a basic configuration, computing device
100 typically includes processing units (i.e., processors) 102
and memory 104. Depending on the exact configuration and
type of computing device, memory 104 may be volatile (such
as RAM), non-volatile (such as ROM, flash memory, etc.), or
some combination of the two. This basic configuration is
illustrated in FIG. 1 by dashed line 106.

Computing device 100 may also have additional features/
functionality. For example, computing device 100 may also
include additional storage (removable and/or non-removable)
including, but not limited to, magnetic or optical disks or tape.
Such additional storage is illustrated in FIG. 1 by removable
storage 108 and non-removable storage 110. Computer stor-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

age media includes volatile and nonvolatile, removable and
non-removable media implemented in any suitable method or
technology for storage of information such as computer read-
able instructions, data structures, program modules or other
data. Memory 104, removable storage 108 and non-remov-
able storage 110 are all examples of computer storage media.
Computer storage media includes, butis not limited to, RAM,
ROM, EEPROM, flash memory or other memory technology,
CD-ROM, digital versatile disks (DVD) or other optical stor-
age, magnetic cassettes, magnetic tape, magnetic disk storage
or other magnetic storage devices, or any other medium that
can be used to store the desired information and that can be
accessed by computing device 100. Any such computer stor-
age media may be part of computing device 100.

Computing device 100 includes one or more communica-
tion connections 114 that allow computing device 100 to
communicate with other computers/applications 115. Com-
puting device 100 may also include input device(s) 112, such
as keyboard, pointing device (e.g., mouse), pen, voice input
device, touch input device, etc. Computing device 100 may
also include output device(s) 111, such as a display, speakers,
printer, etc.

In one implementation, computing device 100 includes
search operator execution application 200. Search operator
execution application 200 is described in further detail below
with reference to FIG. 2.

FIG. 2 is a diagrammatic view of one embodiment of a
search operator execution application 200 for operation on
the computer device 100 illustrated in FIG. 1. Search operator
execution application 200 is one of the application programs
that reside on computing device 100. However, search opera-
tor execution application 200 can alternatively or additionally
be embodied as computer-executable instructions on one or
more computers and/or in different variations than illustrated
in FIG. 1. Alternatively or additionally, one or more parts of
search operator execution application 200 can be part of
system memory 104, on other computers and/or applications
115, or other such suitable variations as would occur to one in
the computer software art.

Search operator execution application 200 includes pro-
gram logic 202, which is responsible for carrying out some or
all of the techniques described herein. Program logic 202
includes logic for re-writing a query, which includes a search
operator, to contain data parallel operations that include par-
titioning and merging 204; logic for partitioning an input data
source into partitions 206; logic for performing a search
phase that includes a parallel search of the partitions with a
plurality of parallel workers 208; logic for performing a pro-
duction phase that involves producing an output set from at
least one of the parallel workers 210; logic for providing
cooperation between parallel workers including communica-
tions between parallel workers during execution of a search
operator 212; logic for performing speculative work by the
parallel workers 214; logic for preserving element position in
data parallel operations 216; logic for merging data into a
final ordered set 218; and other logic for operating the appli-
cation 220.

The term “query” as used herein is not limited to any one
specific type of data parallel search operation, but rather is
applicable to all types of data parallel searches. A “query”
according to one embodiment includes, for example, any type
of expression, program, statement, or computation, used in
data parallel search operations.

Turning now to FIGS. 3-11 with continued reference to
FIGS. 1-2, methods for implementing one or more implemen-
tations of search operator execution application 200 are
described in further detail. In some implementations, the

US 9,251,291 B2

5

methods illustrated in FIGS. 3-11 are at least partially imple-
mented in the operating logic of computing device 100.

FIG. 3 is a high level flow diagram illustrating a method
300 for executing a search operator according to one embodi-
ment. Method 300 begins at start point 302. At 304, a query
including a search operator is received and is re-written to
contain data parallel operations that include partitioning and
merging, wherein the search operator identifies an input data
source. At 306, a partition method selection process selects a
partitioning method from a plurality of partitioning methods
based on a type of the search operator contained in the query.
At 308, a partition operation partitions the data source into a
partitioned data source that includes a plurality of disjoint
partitions using the partitioning method selected at 306. At
310, a plurality of parallel workers (e.g., processors) each
receives a different one of the partitions, and searches for an
element that could, based on criteria (e.g., a predicate func-
tion) specified by the search operator, allow the search to be
halted (e.g., a potentially search-halting element).

At 312 in method 300, when an element that allows the
search to be halted is found, the worker that found the element
provides a notification to the other parallel workers. At 314,
the parallel workers continue to search through their parti-
tions until a notification is generated that indicates that the
search can be halted, or until the workers reach the end of their
partitions, at which point the parallel workers stop searching.
At 316, one or more of the parallel workers performs a specu-
lative execution of one or more additional operators con-
tained in the query. In one embodiment, the speculative
execution is performed using transactional memory. At 318,
one or more of the parallel workers produces an output set. At
320, a merge operation merges produced output sets into a
merged and ordered output set. Method 300 ends at end point
322.

As illustrated in FIG. 3, at 306 in method 300, a partition
method selection process selects a partitioning method based
on a type of the search operator contained in the query. As an
example of'this selection process, the SKIPWHILE operators
according to one embodiment do not begin producing output
data until the “first” occurrence of a false element has been
discovered. Therefore, there is an incentive for the parallel
workers to begin scanning input as close to the beginning as
possible, and to advance through the input at roughly equal
speeds. To implement this, a contiguous “striping” partition-
ing method may be selected at 306 for these types of search
operators in one embodiment.

With striping partitioning according to one embodiment,
each partition is formed out of contiguous chunks (e.g., sized
to be a multiple of a cache-line), skipping over all other
partitions’ chunks to advance to its next chunk. For example,
for an eight element input array and two partitions, and a
chunk size of two, partitions would be assigned to elements in
one embodiment as [0,0,1,1,0,0,1,1], where “0” means that
the element is assigned to partition 0 (and is scanned by
worker 0), and “1” means that the element is assigned to
partition 1 (and is scanned by worker 1).

The striping pattern can be repeated for larger inputs, more
partitions, etc. For example, for a twelve element input array
and three partitions, and a chunk size of two, partitions would
be assigned to elements in one embodiment as [0,0,1,1,2, 2,
0,0,1,1,2,2]. Inone embodiment, the number of contiguous
elements each partition scans (i.e., chunk size) is selected
based on cache line size, and partition segments are aligned
on cache line boundaries. A rationale for using striping par-
titioning is that some search operators have the potential to be
either very “front” or “back™ heavy, and partitioning the input
with ordinary contiguous partitions (e.g., [0,0,0,0,1, 1, 1,1,

10

15

20

25

30

35

40

45

50

55

60

65

6

2,2,2,2]) could lead to severe load imbalance among tasks.
The striping partitioning method helps to ensure that all par-
titions make progress through the array at roughly equal
speeds.

The following are examples of elements that would be
searched for at 310 according to one embodiment: foran ALL
operator, the workers search for an element that returns a
false; foran ANY operator, the workers search for an element
that returns a true; and for a TAKEWHILE operator, the
workers search for an element that returns a false. For some
operators, the first (or last) occurrence of an element that
satisfies the criteria is located. For example, ANY and ALL
are agnostic to position, but for TAKEWHILE and FIRST
operators, the earliest element satisfying the criteria is
located.

Ifthe first occurrence of an element is desired, each worker
that finds such an element provides a notification or
announcement at 312 to the rest of the workers. The other
workers make a determination whether to continue perform-
ing the search based on the notification. In one embodiment,
all workers watch for notifications, but do not always termi-
nate when they notice another worker has found an element.
For example, a worker that has advanced past the element can
terminate, but if a worker is still scanning before the
announced element, the worker will continue the search to see
if an element that matches the criteria exists before the
already-discovered element. If the first occurrence of an ele-
ment is not desired, any worker that finds an element match-
ing the criteria announces it to all others and all of the workers
can immediately stop the search phase.

After the search phase is complete, method 300 moves on
to a production phase at 318. In one embodiment, these two
phases are separated by a parallelism barrier. In the produc-
tion phase at 318 according to one embodiment, workers
yield or produce some set of elements from the input data. The
production is specific to the type of search operator being
executed. Some operators are “reductions” that return a single
value, so that when the search is complete, a single answer is
provided. For example, the ANY, ALL, and CONTAINS
operators each produce a boolean true or false value. For these
types of operators, in one embodiment, none of the searched
elements are “remembered” (e.g., stored in a buffer of one of
the workers).

For other types of search operators, in one implementation,
a local buffer is provided for each worker to store scanned
elements, and in the production phase, each worker yields
some portion of the buffered input and, in some cases, some
portion of the input that was not scanned (and not buffered)
during the search phase. For example, after the search phase
for a TAKEWHILE operator, the position of the first element
for which the predicate yielded false will be known, and in the
production phase, the workers can proceed to produce as
output only those elements that occurred before the first such
element (e.g., only elements stored in the local buffers). For a
SKIPWHILE operator, on the other hand, according to one
embodiment, the parallel workers may throw out much ofthe
buffered data, produce output from the buffers only for work-
ers that speculatively raced ahead of the found false element,
and produce output based on the remaining unscanned input.
In one embodiment, the buffer for each parallel worker is a
circular queue that contains (element value, index) pairs. In
one implementation, the buffers are bounded to help ensure
that partitions do not get “too far ahead”. Methods for per-
forming a parallel execution of specific types of search opera-
tors according to specific embodiments are described in fur-
ther detail below with reference to FIGS. 4-11.

US 9,251,291 B2

7

As illustrated in FIG. 3, at 316 in method 300, one or more
of the parallel workers performs a speculative execution of
additional operators contained in the query using transac-
tional memory. As mentioned above, in one embodiment of
method 300, there is a barrier between the search and produc-
tion phases. Such a barrier implies waiting. However, in one
implementation, for operators that do not produce a single
value, method 300 can move on to speculatively executing
subsequent operators in the query tree. Method 300 deter-
mines what values would have been produced if the resolution
after all workers searched was to yield all of the buffered
output. This allows parallel workers to precompute answers
in the search phase that would otherwise be computed only
after all of the workers completed their search. For example,
for the query “var q=a.TakeWhile((x)=>p(x)).Select((x)=>f
(x))”, if some set of the workers scan their entire input and
then must wait, then the computation of f(x) for each such
element must wait. In one embodiment, instead of waiting, a
worker proceeds to computing f(x) for each element in its
buffer prior to completion of the search by the other parallel
workers.

In one embodiment, if any worker speculatively computes
answers at 316 that should not have been computed, method
300 backs out the execution of that code (e.g., those transac-
tions are aborted). In one embodiment, method 300 creates a
set of transactions in transactional memory to contain some
number of elements apiece, and tuned based on the overhead
of having too many transactions versus the granularity of
abort that is desired. The speculative computations are then
run inside of the set of transactions in transactional memory.

As illustrated in FIG. 3, at 320 in method 300, a merge
operation merges produced output sets into a merged and
ordered output set. In one embodiment, method 300 uses
ordinal order preservation. With ordinal order preservation
according to one embodiment, the final query output is com-
prised of elements in strictly increasing ordinal position from
the sources. This is implemented in one embodiment by
tracking element indices during the various operations, using
the element indices as sort keys, and sorting the data in
ascending order using a heap-sort algorithm.

FIG. 4 is a flow diagram illustrating a method 400 for
performing a parallel execution of an ALL operator according
to one embodiment. Method 400 begins at start point 402. At
404, an ALL operator specifying a predicate function is
received. At 406, a partition operation partitions a data source
identified by the ALL operator into a partitioned data source
that includes a plurality of disjoint partitions. At 408, a plu-
rality of parallel workers each receives a different one of the
partitions, and searches for an element that does not satisfy
the predicate function and that would, therefore, allow the
search to be halted. At 410, when an element that allows the
search to be halted is found, the worker that found the element
notifies the other parallel workers that the search can be
halted, and produces an output set (e.g., an output set com-
prising a logical False value). At 412, the parallel workers
continue to search through their partitions until a notification
is generated that indicates that the search can be halted, or
until the workers reach the end of their partitions, at which
point the parallel workers stop searching. At 414, when all of
the parallel workers have completed searching their partitions
and none of the workers finds an element that would allow the
search to be halted, one of the parallel workers produces an
output set (e.g., an output set comprising a logical True
value). Method 400 ends at end point 416.

FIG. 5 is a flow diagram illustrating a method 500 for
performing a parallel execution of an ANY operator accord-
ing to one embodiment. Method 500 begins at start point 502.

30

40

45

55

8

At 504, an ANY operator specifying a predicate function is
received. At 506, a partition operation partitions a data source
identified by the ANY operator into a partitioned data source
that includes a plurality of disjoint partitions. At 508, a plu-
rality of parallel workers each receives a different one of the
partitions, and searches for an element that satisfies the predi-
cate function and that would, therefore, allow the search to be
halted. At 510, when an element that allows the search to be
halted is found, the worker that found the element notifies the
other parallel workers that the search can be halted, and
produces an output set (e.g., an output set comprising a logi-
cal True value). At 512, the parallel workers continue to
search through their partitions until a notification is generated
that indicates that the search can be halted, or until the work-
ers reach the end of their partitions, at which point the parallel
workers stop searching. At 514, when all of the parallel work-
ers have completed searching their partitions and none of the
workers finds an element that would allow the search to be
halted, one of the parallel workers produces an output set
(e.g., an output set comprising a logical False value). Method
500 ends at end point 516.

FIG. 6 is a flow diagram illustrating a method 600 for
performing a parallel execution of a CONTAINS operator
according to one embodiment. Method 600 begins at start
point 602. At 604, a CONTAINS operator specifying a predi-
cate function is received. At 606, a partition operation parti-
tions a data source identified by the CONTAINS operator into
a partitioned data source that includes a plurality of disjoint
partitions. At 608, a plurality of parallel workers each receives
a different one of the partitions, and searches for an element
that satisfies the predicate function and that would, therefore,
allow the search to be halted. At 610, when an element that
allows the search to be halted is found, the worker that found
the element notifies the other parallel workers that the search
can be halted, and produces an output set (e.g., an output set
comprising a logical True value). At 612, the parallel workers
continue to search through their partitions until a notification
is generated that indicates that the search can be halted, or
until the workers reach the end of their partitions, at which
point the parallel workers stop searching. At 614, when all of
the parallel workers have completed searching their partitions
and none of the workers finds an element that would allow the
search to be halted, one of the parallel workers produces an
output set (e.g., an output set comprising a logical False
value). Method 600 ends at end point 616.

FIG. 7 is a flow diagram illustrating a method 700 for
performing a parallel execution of a FIRST operator accord-
ing to one embodiment. Method 700 begins at start point 702.
At 704, a FIRST operator specifying a predicate function is
received. At 706, a partition operation partitions a data source
identified by the FIRST operator into a partitioned data
source that includes a plurality of disjoint partitions. At 708,
a shared variable is established for storing a current lowest
index. At 710, a plurality of parallel workers each receives a
different one of the partitions, and begins searching (from low
to high indices) for an element that satisfies the predicate
function. At 712, when an element that satisfies the predicate
function is found by any worker, the worker notifies the other
parallel workers, compares the index of the element to the
current lowest index in the shared variable, and replaces the
current lowest index with the index of the found element ifthe
index of the found element is lower than the current lowest
index. Thus, the worker selectively updates the index value of
the shared variable based on the comparison. At 714, when an
element being examined by any worker has an index that
exceeds the current lowest index in the shared variable, or if
the worker has reached the end of its partition, the worker

US 9,251,291 B2

9

stops searching. In one embodiment, each of the parallel
workers makes a determination at 714 whether to continue
performing the search based on the index of the element
currently being examined by the worker and the current low-
estindex. At 716, after all of the workers have stopped search-
ing, the worker that found the element with the lowest index
stored in the shared variable produces an output set (e.g., an
output set comprising the element that had the lowest index in
the shared variable). Method 700 ends at end point 718.

FIG. 8 is a flow diagram illustrating a method 800 for
performing a parallel execution of a LAST operator accord-
ing to one embodiment. Method 800 begins at start point 802.
At 804, a LAST operator specifying a predicate function is
received. At 806, a partition operation partitions a data source
identified by the LAST operator into a partitioned data source
that includes a plurality of disjoint partitions. At 808, a shared
variable is established for storing a current highest index. At
810, a plurality of parallel workers each receives a different
one of the partitions, and begins searching (from high to low
indices) for an element that satisfies the predicate function. At
812, when an element that satisfies the predicate function is
found by any worker, the worker notifies the other parallel
workers, compares the index of the element to the current
highest index in the shared variable, and replaces the current
highest index with the index of the found element if the index
of'the found element is higher than the current highest index.
At 814, when an element being examined by any worker has
an index that is lower than the current highest index in the
shared variable, or if the worker has reached the end of its
partition, the worker stops searching. In one embodiment,
each of the parallel workers makes a determination at 814
whether to continue performing the search based on the index
of the element currently being examined by the worker and
the current highest index. At 816, after all of the workers have
stopped searching, the worker that found the element with the
highest index stored in the shared variable produces an output
set (e.g., an output set comprising the element that had the
highest index in the shared variable). Method 800 ends at end
point 818.

FIG. 9 is a flow diagram illustrating a method 900 for
performing a parallel execution of a TAKEWHILE operator
according to one embodiment. Method 900 begins at start
point 902. At 904, a TAKEWHILE operator specifying a
predicate function is received. At 906, a partition operation
partitions a data source identified by the TAKEWHILE
operator into a partitioned data source that includes a plurality
of disjoint partitions. At 908, a shared variable is established
for storing a current lowest index. At 910, a plurality of
parallel workers each receives a different one of the parti-
tions, and begins searching (from low to high indices) for an
element that does not satisfy the predicate function. At 912,
for each examined element that satisfies the predicate func-
tion, the element is stored in a buffer of the worker that
examined the element. At 914, when an element that does not
satisfy the predicate function is found by any worker, the
worker notifies the other parallel workers, compares the index
of the element to the current lowest index in the shared vari-
able, and replaces the current lowest index with the index of
the found element if the index of the found element is lower
than the current lowest index. At 916, when an element being
examined by any worker has an index that exceeds the current
lowest index in the shared variable, or if the worker has
reached the end of its partition, the worker stops searching. At
918, after all of the workers have stopped searching, the
parallel workers each produce an output set that includes all

10

15

20

25

30

35

40

45

50

55

60

65

10

elements in their local buffers that have an index that is lower
than the lowest index stored in the shared variable. Method
900 ends at end point 920.

The TAKEWHILE operator yields all elements from the
input a up to (and not including) the first element for which
the user-specified predicate p evaluates to false (i.e.,
p(a,)==false). Elements having an index value past the small-
est such value for i are not yielded. Any work that “looks
ahead” in the input past the smallest index under consider-
ation is purely speculative, but does provide for parallelism.

FIG. 10 is a flow diagram illustrating a method 1000 for
performing a parallel execution of a TAKEWHILE operator
according to one embodiment. Method 1000 begins at start
point 1002. At 1004, a TAKEWHILE operator specifying a
predicate function is received. At 1006, a partition operation
partitions a data source identified by the TAKEWHILE
operator into a partitioned data source that includes a plurality
of disjoint partitions. At 1008, a first shared variable is estab-
lished for storing a current lowest index for searched ele-
ments. At 1010, a plurality of parallel workers each receives
a different one of the partitions, and begins searching (from
low to high indices) for an element that does not satisfy the
predicate function. At 1012, for each examined element that
satisfies the predicate function, the element is stored in a
buffer of the worker that examined the element.

At 1014 in method 1000, when an element that does not
satisfy the predicate function is found by any worker, the
worker notifies the other parallel workers, compares the index
of the element to the current lowest index in the first shared
variable, and replaces the current lowest index with the index
of'the found element if the index of the found element is lower
than the current lowest index. At 1016, the parallel workers
periodically communicate with each other (e.g., via a second
shared variable) to identify a highest producible element
index (e.g., all elements with that index and below have been
searched by the parallel workers), and each worker periodi-
cally produces an output set that includes all non-produced
elements in their local buffers that have an index that is the
same as or lower than the highest producible element index.
At 1018, when an element being examined by any worker has
an index that exceeds the current lowest index in the first
shared variable, or if the worker has reached the end of its
partition, the worker stops searching. At 1020, after all of the
workers have stopped searching, the parallel workers each
produces an output set that includes all elements in their local
buffers that have not yet been produced and that have an index
that is lower than the lowest index stored in the first shared
variable. Method 1000 ends at end point 1022.

For a TAKEWHILE operator, there is an additional opti-
mization that is used in one embodiment, in which parallel
workers switch back and forth between search and production
phases to cut down on the overheads associated with buffer-
ing data. For example, if the query “var
g=infiniteStream.TakeWhile((x)=>true).Take(1000)” is
being evaluated, it is desirable to prevent the TAKEWHILE
operator from triggering an out-of-memory problem or error,
particularly because only 1,000 elements will be output by
this query. To avoid this problem, according to one embodi-
ment, a parallel worker in the search phase for a TAKE-
WHILE operator switches (e.g., temporarily) to the produc-
tion phase if the worker knows that some of its buffered
elements are located before the current element being looked
at by all other workers (i.e., the worker determines that all
elements leading up to an element in question yielded a predi-
cate value of true).

FIG. 11 is a flow diagram illustrating a method 1100 for
performing a parallel execution of a SKIPWHILE operator

US 9,251,291 B2

11

according to one embodiment. Method 1100 begins at start
point 1102. At 1104, a SKIPWHILE operator specifying a
predicate function is received. At 1106, a partition operation
partitions a data source identified by the SKIPWHILE opera-
tor into a partitioned data source that includes a plurality of
disjoint partitions. At 1108, a shared variable is established
for storing a current lowest index. At 1110, a plurality of
parallel workers each receives a different one of the parti-
tions, and begins searching (from low to high indices) for an
element that does not satisty the predicate function. At 1112,
for each examined element that satisfies the predicate func-
tion, the element is stored in a buffer of the worker that
examined the element. At 1114, when an element that does
not satisty the predicate function is found by any worker, the
worker notifies the other parallel workers, compares the index
of the element to the current lowest index in the shared vari-
able, and replaces the current lowest index with the index of
the found element if the index of the found element is lower
than the current lowest index. At 1116, when an element
being examined by any worker has an index that exceeds the
current lowest index in the shared variable, or if the worker
has reached the end of its partition, the worker stops search-
ing. At 1118, after all of the workers have stopped searching,
the parallel workers each produces an output set that includes
all elements in their partitions that have an index that is higher
than the index stored in the shared variable. Method 1100
ends at end point 1120.

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that a variety of alternate and/or equivalent
implementations may be substituted for the specific embodi-
ments shown and described without departing from the scope
of'the present invention. This application is intended to cover
any adaptations or variations of the specific embodiments
discussed herein. Therefore, it is intended that this invention
be limited only by the claims and the equivalents thereof.

What is claimed is:
1. A computer-readable storage medium storing computer-
executable instructions for performing a method comprising:
receiving a query that includes a search operator and that
identifies an input data source;
partitioning the input data source into a plurality of parti-
tions;
performing a parallel search through the partitions for an
element that could halt the search using a plurality of
parallel workers that concurrently search the partitions;
generating a notification with one of the parallel workers
when the element is found by that worker, thereby noti-
fying other parallel workers that the search could be
halted; and
making a determination with each of the other parallel
workers whether to continue performing the search
based on the generated notification.
2. The computer-readable medium of claim 1, wherein the
method further comprises:
generating an output set with each of the parallel workers
based on results of the search, thereby generating a
plurality of output sets; and
merging the plurality of output sets into a merged output
set.
3. The computer-readable medium of claim 1, wherein the
method further comprises:
stopping performance of the search by all of the parallel
workers when the notification is generated.
4. The computer-readable medium of claim 1, wherein the
method further comprises:

20

40

45

65

12

making a determination with each of the other parallel
workers whether to continue performing the search
based on an index for the found element.

5. The computer-readable medium of claim 1, wherein the
method further comprises:

providing a plurality of partitioning methods;

selecting one of the partitioning methods based on a type of

the search operator; and

partitioning the input data source into the plurality of par-

titions using the selected partitioning method.

6. The computer-readable medium of claim 5, wherein one
of the plurality of partitioning methods comprises a striping
partitioning method in which each partition is divided into a
plurality of chunks that are searched in parallel by the plural-
ity of workers.

7. The computer-readable medium of claim 6, wherein the
striping partitioning method includes selecting a size of each
of'the plurality of chunks to be a multiple of a cache line size.

8. The computer-readable medium of claim 1, wherein the
method further comprises:

performing with at least one of the parallel workers a

speculative execution of at least one additional operator
contained in the query prior to completion of the search
by all of the parallel workers.
9. The computer-readable medium of claim 8, wherein the
speculative execution is performed using transactional
memory.
10. The computer-readable medium of claim 1, wherein the
search operator comprises an ALL search operator, wherein
the notification is generated when one of the parallel workers
finds an element that does not satisfy criteria specified by the
ALL search operator, and wherein the notification causes the
other parallel workers to stop searching.
11. The computer-readable medium of claim 1, wherein the
search operator comprises one of an ANY search operator or
a CONTAINS search operator, wherein the notification is
generated when one of the parallel workers finds an element
that satisfies criteria specified by the search operator, and
wherein the notification causes the other parallel workers to
stop searching.
12. The computer-readable medium of claim 1, wherein the
search operator comprises one of a FIRST search operator or
a LAST search operator, and wherein the method further
comprises:
providing a shared variable that is shared by the plurality of
workers and that stores an index value for an element
that satisfies criteria specified by the search operator;

comparing an index for each element that satisfies criteria
specified by the search operator to the index value of the
shared variable; and

selectively updating the index value of the shared variable

based on the comparison.

13. The computer-readable medium of claim 12, wherein
the method further comprises:

comparing an index for an element currently being exam-

ined by one of the parallel workers to the index value of
the shared variable; and

determining whether the parallel worker will stop search-

ing based on a result of the comparison for the element
currently being examined.

14. The computer-readable medium of claim 1, wherein the
search operator comprises one of a TAKEWHILE search
operator or a SKIPWHILE search operator, and wherein the
method further comprises:

US 9,251,291 B2

13

providing a shared variable that is shared by the plurality of
workers and that stores an index value for an element
that does not satisfy criteria specified by the search
operator;
comparing an index for each element that does not satisfy
criteria specified by the search operator to the index
value of the shared variable; and
selectively updating the index value of the shared variable
based on the comparison.
15. The computer-readable medium of claim 14, wherein
the method further comprises:
storing each element that satisfies criteria specified by the
search operator in a buffer of the worker that examined
the element.
16. The computer-readable medium of claim 15, wherein
the method further comprises:
comparing an index for an element currently being exam-
ined by one of the parallel workers to the index value of
the shared variable; and
determining whether the parallel worker will stop search-
ing based on a result of the comparison for the element
currently being examined.
17. A method for performing a parallel execution of a
query, the method comprising:
receiving a search operator and that identifies an input data
source;
partitioning the input data source into a partitioned data
source comprising a plurality of partitions;
performing a parallel search through the partitions using a
plurality of parallel workers that concurrently search the
partitions;
providing a notification from a first one of the parallel
workers to other parallel workers when the first parallel
worker finds an element that could result in the search
being halted; and

20

25

30

14

making a determination with each of the other parallel
workers whether to continue performing the search
based on the notification.

18. The method of claim 17, and further comprising:

stopping performance of the search by all of the parallel

workers when the notification is provided.

19. The method of claim 17, and further comprising:

making a determination with each of the other parallel

workers whether to continue performing the search
based on an index for the found element.

20. A computer-readable storage medium storing com-
puter-executable instructions for performing a method com-
prising:

receiving a query that includes a search operator and that

identifies an input data source;

partitioning the input data source into a plurality of parti-

tions;

providing the plurality of partitions to a plurality of parallel

workers, wherein each of the parallel workers is pro-
vided a different one of the partitions;

searching elements within the partitions concurrently with

the plurality of parallel workers to identify an element
that could result in the search being halted;

generating a notification with one of the parallel workers

when a potentially search halting element is found by
that parallel worker to notify other parallel workers of
the found element; and

making an independent determination with each of the

other parallel workers whether to continue performing
the search based on an index for the found element,
wherein the independent determination made by each of
the other parallel workers is made in response to receiv-
ing the notification.

#* #* #* #* #*

