US009166989B2

a2 United States Patent

Huang et al.

US 9,166,989 B2
*Qct. 20, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)
(65)

(63)

(60)

(1)

(52)

(58)

STORING LOG DATA EFFICIENTLY WHILE
SUPPORTING QUERYING

Inventors: Wei Huang, Fremont, CA (US);
Yizheng Zhou, Cupertino, CA (US); Bin
Yu, San Ramon, CA (US); Wenting
Tang, Sunnyvale, CA (US); Christian F.
Beedgen, Cupertino, CA (US)

Assignee: Hewlett-Packard Development
Company, L.P., Houston, TX (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 981 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 12/554,541

Filed: Sep. 4, 2009

Prior Publication Data
US 2010/0011031 A1 Jan. 14, 2010

Related U.S. Application Data

Continuation-in-part of application No. 11/966,078,
filed on Dec. 28, 2007, now Pat. No. 9,031,916.

Provisional application No. 61/094,762, filed on Sep.
5, 2008, provisional application No. 60/882,289, filed
on Dec. 28, 2006.

Int. Cl.
GO6F 7/00 (2006.01)
GO6F 17/00 (2006.01)
(Continued)
U.S. CL
CPC HO04L 63/1408 (2013.01); GO6F 21/552

(2013.01); GOGF 11/3476 (2013.01); GO6F
2201/86 (2013.01)
Field of Classification Search
CPC GOGF 17/30; GOGF 9/44; GOGF 21/552;
GOG6F 11/3476; GOGF 2201/86
See application file for complete search history.

Recaive log data
410

Separate log data nto
svents; detsrmine when
each event received 420

Generate chunks,

re-iniialize buffers and
metadeta structure 440

Send chunks to storage:

manager
450

Receive chunks
480

Parse events into field
values: store field values
and recelpt tmes In
appropriate buffers:
update metadata
structure 430

Store chunks in
datafile(s): update
chunks table

(56) References Cited
U.S. PATENT DOCUMENTS

5,537,541 A *
5,740,468 A *

7/1996 Wibecan
4/1998 Hirose

(Continued)

714/45
710/57

FOREIGN PATENT DOCUMENTS

CN 1959676 A 5/2007
JP 08-106408 A 4/1996

(Continued)
OTHER PUBLICATIONS

Frannfors, M., “Log Query Server—A Design Proposal,” Master’s
Thesis, Luled University of Technology, Apr. 11, 2006, [online]
[Retrieved on Jun. 6, 2008] Retrieved from the internet <URL: http://
epubl.luth.se/1402-1617/2006/173/LTU-EX-06173-SE pdf>.

(Continued)

Primary Examiner — Azam Cheema
(74) Attorney, Agent, or Firm — Hewlett-Packard Patent
Department

(57) ABSTRACT

A logging system includes an event receiver and a storage
manager. The receiver receives log data, processes it, and
outputs a column-based data “chunk” The manager receives
and stores chunks. The receiver includes buffers that store
events and a metadata structure that stores metadata about the
contents of the buffers. Each buffer is associated with a par-
ticular event field and includes values from that field from one
or more events. The metadata includes, for each “field of
interest,” a minimum value and a maximum value that reflect
the range of values of that field over all of the events in the
buffers. A chunk is generated for each buffer and includes the
metadata structure and a compressed version of the buffer
contents. The metadata structure acts as a search index when
querying event data. The logging system can be used in con-
junction with a security information/event management
(SIEM) system.

21 Claims, 6 Drawing Sheets

US 9,166,989 B2
Page 2

(51) Imt.ClL
HO4L 29/06 (2006.01)
GO6F 21/55 (2013.01)
GOGF 11/34 (2006.01)
(56) References Cited

.S. PATENT DOCUMENTS

u
5,787,249 A 7/1998 Badovinatz et al.
5,964,857 A 10/1999 Srinivasan et al.
5,999,929 A 12/1999 Goodman
6,038,564 A * 3/2000 Sameshimaetal. 707/702
6,067,565 A 5/2000 Horvitz
6,078,930 A 6/2000 Lee et al.
6,363,372 B1* 3/2002 Lichtermanc....... 707/3
6,516,350 Bl 2/2003 Lumelsky et al.
6,601,101 Bl 7/2003 Leeet al.
6,606,645 Bl 8/2003 Cohen et al.
6,807,572 B1 10/2004 Yu
6,826,613 Bl 11/2004 Wang et al.
6,959,327 B1* 10/2005 Vogletal. ...ccccovvvvencnn 709/219
6,996,615 Bl 2/2006 McGuire
7,039,773 B2 5/2006 Hu et al.
7,152,242 B2 12/2006 Douglas

7,219,239 Bl 5/2007 Njemanze et al.
7,376,969 Bl 5/2008 Njemanze et al.
7,653,836 B1* 1/2010 Chatterjee etal. 714/20
7,769,728 B2* 8/2010 Ivie 707/693
7,774,304 B2* 8/2010 Banzonetal. ... 707/609

2002/0073232 Al
2002/0172163 Al
2003/0043815 Al
2003/0084140 Al
2003/0135593 Al
2003/0236882 Al
2004/0162901 Al
2004/0221116 Al
2005/0114321 Al

6/2002 Hong et al.
11/2002 Chen et al.

3/2003 Tinsley et al.

5/2003 Takeuchi et al.

7/2003 Lee et al.
12/2003 Yan et al.

8/2004 Mangipudi et al.
11/2004 Hu et al.

5/2005 DeStefano et al.

2005/0138471 Al* 6/2005 Okbayetal. 714/25
2005/0268068 Al* 12/2005 Ignatius etal. . 711/202
2006/0036660 Al* 2/2006 Lynn ... 707/204

2008/0059412 Al
2008/0162592 Al

3/2008 Tarin
7/2008 Huang et al.

FOREIGN PATENT DOCUMENTS

JP 11-327966 A 11/1999

JP 2001-229051 A 8/2001

JP 2003-141075 A 5/2003

RU 2161329 12/2000
OTHER PUBLICATIONS

Kent, K., et al., “Guide to Computer Security Log Management,
Recommendations of the National Institute of Standards and Tech-

nology,” National Institute of Standards and Technology (NIST),
Special Publication 800-92, Sep. 2006, [online] [Retrieved on Jun. 6,
2008] Retrieved from the internet <URL: http://csrc.nist.gov/publi-
cations/nistpubs/800-92/SP800-92.pdf>.

PCT International Search Report and Written Opinion, PCT/US07/
89027, Jun. 26, 2008, 7 Pages.

U.S. Appl. No. 10/308,767, filed Dec. 2, 2002.

U.S. Appl. No. 10/308,548, filed Dec. 2, 2002.

U.S. Appl. No. 10/308,941, filed Dec. 2, 2002.

U.S. Appl. No. 10/308,417, filed Dec. 2, 2002.

U.S. Appl. No. 10/308,584, filed Dec. 2, 2002.

U.S. Appl. No. 10/713,471, filed Nov. 14, 2003.

U.S. Appl. No. 10/839,563, filed May 4, 2004.

PCT International Search Report and Written Opinion, PCT/
US2009/056090, Oct. 15, 2009, 10 Pages.

Gowda, A., “Centralized Syslog Server Using syslog-NG with web
Interface using php-syslog-ng,” Dec. 19, 2006, seven pages. [Online]
[Retrieved Jan. 18, 2011] Retrieved from the Internet <URL: http://
errorforum.comy/linux-unix-error/2302-centralized-syslog-server-
using-syslog-ng-web-interface-using-php-syslog-ng.html.>.
Intellectual Property Office of Singapore Written Opinion and Search
Report, Singapore Patent Application No. 2009-03202-0, Sep. 30,
2010, eighteen pages.

PCT International Preliminary Report on Patentability, PCT Appli-
cation No. PCT/US2009/056090, Sep. 30, 2010, seven pages.
Russian Office Action, Russian Patent Application No. 2009-128959,
Sep. 1, 2010, seven pages.

United States Office Action, U.S. Appl. No. 11/966,078, Oct. 18,
2010, sixteen pages.

Translation of Office Action received in related JP Application No.
P2009-544284, mailed Nov. 27, 2012, pp. 4.

Kyle Loudon: “Implementation and Analysis of Linked Lists”, In:
“Mastering Algorithms with C”, 5 5 Aug. 1999, O’Reilly Media Inc,
XP55025744.

Richard T Watson: “Data structures”, Data Management: Databases
and Organizations, Fifth Edition, Aug. 26, 2005, XP55025698.

S K Singh: “Indexing” In: “Database Systems: Concepts, Design and
Applications”, Jan. 1, 2006, Pearson Edication India, XP55025697.
SIPOPRC, Corresponding Appl. No. CN200980144159.8, filed Sep.
4, 2009, CN Search Report dated Jul. 11, 2013.

Aron, M. et al., “Scalable Content-Aware Request Distribution in
Cluster-Based Network Servers,” Proceedings of the 2000 Annual
USENIX technical Conference, No. LABOS-CONF-2005-025,
2000, 15 pages.

Pai, V.S. et al,, “Locality-Aware Request Distribution in Cluster-
Based Network Servers,” ACM Sigplan Notices, vol. 33, No. 11,
ACM Oct. 1998, pp. 205-216.

Spatscheck, O. et al., “Optimizing TCP Forwarder Performance,”
IEEE/ACM Transactions on Networking (TON) 8.2 (2000), pp. 146-
157.

* cited by examiner

U.S. Patent Oct. 20, 2015 Sheet 1 of 6 US 9,166,989 B2

Data source(s)
110

I Raw evenf(s)

Agent(s)
120

} Processed event(s)

Logging User
system(s) Man1aéqoe "(s) interface(s)
170 - 160

DB(s)
140

Online
archive(s)
150

FIG. 1

US 9,166,989 B2

Sheet 2 of 6

Oct. 20, 2015

U.S. Patent

J0IA3d ONILNIOd
\j QUYOgAIM 103G
Aﬂ‘ JOVd01S
\\
vie [7o [vown [ewwn] o]) 807
0Le
v0¢ /
d41dvayv d41dvav
91¢c / rAY \ / 907 / 202
AV1dSId
00¢C

124 \

US 9,166,989 B2

Sheet 3 of 6

Oct. 20, 2015

U.S. Patent

gs8t
N 9ljeieqg

gge
¢ 9lyeied

gs8t
| aleeqg

06€

Hunyo

08¢
8|qEe} sYUNyd

0/¢
waysAs jo5u0D

Glg
9|qE} so|eleq

0c¢c Jebeuew omm._ogm_

0¢¢

<1\ WSIUBYOOW

0G¢

Uy U wwon)

GO¢ aJ4nonas

0Ge
Junyo

09¢
slayng Jo 188

€ JOAIS08 JUBAT

BIEPRIDIN
GGe
walsAs [0juo) i obe
ejep 607

U.S. Patent Oct. 20, 2015 Sheet 4 of 6 US 9,166,989 B2

/_\ 400

Receive log data
410

l

Separate log data into
events; determine when
each event received 420

l

Parse events into field
values; store field values
and receipt times in
appropriate buffers;
update metadata
structure 430

Generate chunks,
re-initialize buffers and
metadata structure 440

l

Send chunks to storage
manager
450

'

Receive chunks
460

l

Store chunks in
datafile(s); update
chunks table FIG' 4
470

U.S. Patent Oct. 20, 2015 Sheet 5 of 6 US 9,166,989 B2

Identify oldest datafile
510

l

Remove information from
chunks table
520

l

Delete entry from
datafiles table
530

l

Create new entry in
datafiles table
540

l

Add new datafile to list of
available datafiles
550

FIG. 5

U.S. Patent Oct. 20, 2015 Sheet 6 of 6 US 9,166,989 B2

'/’\ 600

Identify metadata search
terms within search
query 610

l

Search chunks table
using metadata search
terms 620

l

Retrieve chunks that
satisfy metadata search
terms 630

l

Identify indexed search
terms within search
query 640

y

Identify chunks
associated with indexed
search terms 650

l

Search for field values
within chunks 660

l

Assemble events that
satisfy search query
670

FIG. 6

US 9,166,989 B2

1
STORING LOG DATA EFFICIENTLY WHILE
SUPPORTING QUERYING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/094,762, filed Sep. 5, 2008, which is
hereby incorporated by reference herein in its entirety. This
application is a continuation-in-part of U.S. application Ser.
No. 11/966,078, filed Dec. 28, 2007, which claims the benefit
of U.S. Provisional Application No. 60/882,289, filed Dec.
28, 2006, both of which are hereby incorporated by reference
herein in their entirety.

BACKGROUND

1. Field of the Invention

This invention pertains in general to security information/
event management (SIM or STEM) and in particular to storing
security information/events efficiently while supporting que-
rying.

2. Description of the Related Art

The field of security information/event management (SIM
or SIEM) is generally concerned with 1) collecting data from
networks and networked devices that reflects network activity
and/or operation of the devices and 2) analyzing the data to
enhance security. For example, the data can be analyzed to
identify an attack on the network or a networked device and
determine which user or machine is responsible. If the attack
is ongoing, a countermeasure can be performed to thwart the
attack or mitigate the damage caused by the attack. The data
that is collected usually originates in a message (such as an
event, alert, or alarm) or an entry in a log file, which is
generated by a networked device. Exemplary networked
devices include firewalls, intrusion detection systems, and
servers.

Each message or log file entry (“event™) is stored for future
use. Stored events can be organized in a variety of ways. Each
organizational method has its own advantages and disadvan-
tages when it comes to writing event data, searching event
data, and deleting event data.

Consider the following scenario: Each event includes an
attribute called event receipt time. Since the value of the event
receipt time attribute is frequently used for searching, store
events based on their event receipt times. For example, create
one file for each minute of the day. In order to store an event,
determine that event’s event receipt time. Append the event to
the file that corresponds to that minute of event receipt time.

When subsequent events arrive, their event receipt times
will always increase monotonically. This means that writing
the subsequent event data will require only append opera-
tions. No seeking of the storage medium is necessary. This
makes for good efficiency in writing the event data. In order to
search the event data based on event receipt times, once the
first event has been identified, the subsequent events are avail-
able by reading the storage medium in order. Again, no seek-
ing is necessary. This makes for good efficiency in searching
the event data based on event receipt time. In order to delete
the oldest event data, the oldest files are deleted. If the oldest
file is always deleted first, then the storage medium will not
become fragmented. This makes for good efficiency in delet-
ing the event data.

The problem with this approach is that searching the event
data based on any attribute other than the event receipt time is
very time consuming. For example, assume that each event
also includes an attribute that indicates the device or applica-

10

15

20

25

30

35

40

45

50

55

60

65

2

tion that generated the event (“event source™). In order to
search the event data for events that indicate a particular event
source (i.e., events that include a particular value for the event
source attribute), the entire storage medium will have to be
reviewed. This is very inefficient.

What is needed is a way to store security information/
events efficiently while supporting querying for different
event attributes.

BRIEF SUMMARY OF THE INVENTION

A logging system stores security information/events effi-
ciently while supporting querying for different event
attributes. The logging system can be used in conjunction
with a security information/event management (SIEM) sys-
tem. Log data, which can be generated by various sources
(including devices and applications), can be in any format.
Log data is comprised of one or more data instances called
“events.” An event can be, for example, an entry in a log file,
an entry in a syslog server, an alert, an alarm, a network
packet, an email, or a notification page. In general, an event is
generated once and does not change afterwards.

In one embodiment, the logging system includes an event
receiver, a storage manager, and a communication mecha-
nism. The event receiver receives log data, processes the log
data, and outputs a column-based data “chunk.” The event
receiver includes a control system, a set of buffers, and a
metadata structure. The control system controls operation of
the event receiver. The set of buffers stores one or more
events. If different events include the same types of fields,
then the events can be organized in a table. Each row of the
table would represent a different event, and each column of
the table would represent a different field. Each buffer is
associated with a particular field and includes values from
that field (“attributes”) from one or more events. The meta-
data structure stores metadata about the contents of the set of
buffers. In one embodiment, the metadata includes a unique
identifier associated with the event receiver, the number of
events in the set of buffers, and, for each of one or more “fields
of interest,” a minimum value and a maximum value that
reflect the range of values of' that field over all of the events in
the set of buffers. The metadata structure acts as a search
index when querying event data.

The storage manager receives column-based data chunks
and stores them so that they can be queried. The storage
manager includes a control system, a datafiles table, a chunks
table, and one or more datafiles. The control system controls
operation of the storage manager. The datafiles table stores
information about the one or more datafiles. In one embodi-
ment, this information includes, for each datafile, a unique
identifier associated with the datafile and the location of the
datafile. The chunks table stores information about the one or
more column-based chunks that are stored in the storage
manager (specifically, stored in the one or more datafiles). In
one embodiment, this information includes, for each column-
based chunk, the metadata stored in the chunk and the loca-
tion of the chunk. A datafile stores multiple chunks. The
communication mechanism communicatively couples the
event receiver and the storage manager.

The event receiver and the storage manager jointly perform
a method for storing log data. Before the method begins, the
set of buffers and the metadata structure are initialized. The
event receiver receives log data. The event receiver control
system separates the log data into one or more events and
determines when each event was received by the event
receiver. The control system stores in the set of buffers the
field values of the events and, for each event, a time/date

US 9,166,989 B2

3

stamp that reflects when the event was received. The control
system also updates the metadata structure. At some point in
time, the control system generates column-based data chunks
based on the metadata structure and the contents of the set of
buffers (one column-based chunk for each buffer). In one
embodiment, a column-based chunk includes the metadata
structure and a compressed version of the contents of the
buffer. The set of buffers and the metadata structure are re-
initialized, thereby flushing the set of buffers. The control
system sends the column-based chunks to the storage man-
ager. The storage manager receives the chunks, stores the
chunks in a datafile, and updates the chunks table.

The storage manager performs a method for reclaiming
storage. The oldest datafile associated with a particular reten-
tion policy is identified. Information regarding all of the col-
umn-based chunks contained in the identified datafile is
removed from the chunks table. The entry in the datafiles
tables that represents the identified datafile is deleted. A new
entry is created in the datafiles table. The newly reclaimed
datafile is added to the list of available pre-allocated datafiles
and is ready to receive new chunks.

After a column-based chunk has been stored in a datafile,
the field values within the chunk can be queried. A query is
represented as an expression that can be evaluated against an
event. The expression includes one or more search terms. A
search term concerns the contents of an event, specifically, a
particular field and the value of that field. In order to perform
a query, data chunks are first filtered based on “field of inter-
est” information (as stored in a chunk’s metadata). The
remaining chunks are then filtered based on field values (as
stored in a chunk’s “payload”). Finally, the events that satisty
the query are assembled.

Although the chunks just described were column-based,
there is no reason why chunks cannot be row-based. U.S.
application Ser. No. 11/966,078 (“the 078 application™)
describes storing event data using row-based chunks. A third
type of event storage uses both row-based chunks and col-
umn-based chunks. This type of event storage stores an event
twice—once using a row-based chunk and once using one or
more column-based chunks. For example, a set of events
would be stored as one row-based chunk. The field values of
those events would also be stored as column-based chunks
(one column-based chunk for each field).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is ablock diagram illustrating an environment hav-
ing a security information/event management system,
according to one embodiment.

FIG. 2 is block diagram illustrating a computer for acting
as a logging system of a security information/event manage-
ment system, according to one embodiment.

FIG. 3 is a block diagram illustrating a logging system of a
security information/event management system, according to
one embodiment.

FIG. 4 is a flowchart illustrating a method for storing log
data, according to one embodiment.

FIG. 5 is a flowchart illustrating a method for reclaiming
storage, according to one embodiment.

FIG. 6 is a flowchart illustrating a method for querying,
according to one embodiment.

The figures depict an embodiment for purposes of illustra-
tion only. One skilled in the art will readily recognize from the
following description that alternative embodiments of the

10

15

20

25

30

35

40

45

50

55

60

65

4

structures and methods illustrated herein may be employed
without departing from the principles described herein.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

Described herein is a computer-based system for collecting
data from disparate devices across a computer network, nor-
malizing the data to a common schema, and consolidating the
normalized data. The data (“events”) can then be monitored,
analyzed, and used for investigation and remediation in a
centralized view. Events can be cross-correlated with rules to
create meta-events. Correlation includes, for example, dis-
covering the relationships between events, inferring the sig-
nificance of those relationships (e.g., by generating meta-
events), prioritizing the events and meta-events, and
providing a framework for taking action. The system (one
embodiment of which is manifest as computer software)
enables aggregation, correlation, detection, and investigative
tracking of suspicious network activities. The system also
supports response management, ad-hoc query resolution,
reporting and replay for forensic analysis, and graphical visu-
alization of network threats and activity.

Although the present system will be discussed with refer-
ence to various illustrated examples, these examples should
not be read to limit the broader spirit and scope of the present
invention. For example, the examples presented herein
describe distributed agents, managers and consoles, which
are but one embodiment of the present invention. The general
concepts and reach of the present invention are much broader
and may extend to any computer-based or network-based
security system. Also, examples of the messages that may be
passed to and from the components of the system and the data
schemas that may be used by components of the system are
given in an attempt to further describe the present invention,
but are not meant to be all-inclusive examples and should not
be regarded as such.

Some portions of the detailed description that follows are
presented in terms of algorithms and symbolic representa-
tions of operations on data within a computer memory. These
algorithmic descriptions and representations are the means
used by those skilled in the computer science arts to most
effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers or the like. It should be borne in mind, however, that
all of these and similar terms are to be associated with the
appropriate physical quantities and are merely convenient
labels applied to these quantities. Unless specifically stated
otherwise, it will be appreciated that throughout the descrip-
tion of the present invention, use of terms such as “process-
ing”, “computing”, “calculating”, “determining”, “display-
ing” or the like, refer to the action and processes of a computer
system, or similar electronic computing device, that manipu-
lates and transforms data represented as physical (electronic)
quantities within the computer system’s registers and memo-
ries into other data similarly represented as physical quanti-
ties within the computer system memories or registers or
other such information storage, transmission or display
devices.

US 9,166,989 B2

5

As indicated above, one embodiment of the present inven-
tion is instantiated in computer software, that is, machine
readable instructions, which, when executed by one or more
computer processors/systems, instruct the processors/sys-
tems to perform the designated actions. Such computer soft-
ware may be resident in one or more machine readable stor-
age media, such as hard drives, CD-ROMs, DVD-ROMs,
read-only memory, read-write memory and so on. Such soft-
ware may be distributed on one or more of these media, or
may be made available for download across one or more
computer networks (e.g., the Internet). Regardless of the for-
mat, the computer programming, rendering and processing
techniques discussed herein are simply examples of the types
of programming, rendering and processing techniques that
may be used to implement aspects of the present invention.
These examples should in no way limit the present invention,
which is best understood with reference to the claims that
follow this description.

1. Security Information/Event Management (SIEM) System
Architecture

FIG. 1 is ablock diagram illustrating an environment hav-
ing a security information/event management system,
according to one embodiment. FIG. 1 includes a security
information/event management (SIEM) system 100 and one
or more data sources 110. A data source 110 is a network
node, which can be a device or a software application. Exem-
plary data sources 110 include intrusion detection systems
(IDSs), intrusion prevention systems (IPSs), vulnerability
assessment tools, firewalls, anti-virus tools, anti-spam tools,
encryption tools, application audit logs, and physical security
logs.

Types of data sources 110 include security detection and
proxy systems, access and policy controls, core service logs
and log consolidators, network hardware, encryption devices,
and physical security. Exemplary security detection and
proxy systems include IDSs, IPSs, multipurpose security
appliances, vulnerability assessment and management, anti-
virus, honeypots, threat response technology, and network
monitoring. Exemplary access and policy control systems
include access and identity management, virtual private net-
works (VPNs), caching engines, firewalls, and security policy
management. Exemplary core service logs and log consoli-
dators include operating system logs, database audit logs,
application logs, log consolidators, web server logs, and man-
agement consoles. Exemplary network hardware includes
routers and switches. Exemplary encryption devices include
data security and integrity. Exemplary physical security sys-
tems include card-key readers, biometrics, burglar alarms,
and fire alarms.

In the illustrated embodiment, the SIEM system 100
includes one or more agents 120, one or more managers 130,
one or more databases 140, one or more online archives 150,
one or more user interfaces 160, and one or more logging
systems 170. In some embodiments, these modules are com-
bined in a single platform or distributed in two, three, or more
platforms (such as in FIG. 1). The use of this multi-tier archi-
tecture supports scalability as a computer network or system
grows. The SIEM system 100 is further described in U.S. Pat.
No. 7,376,969, issued May 20, 2008, which is hereby incor-
porated by reference herein in its entirety.

An agent 120 provides an interface to a data source 110.
Specifically, the agent 120 collects data (“raw events”) from
adata source 110, processes the data, and sends the processed
data (“events”) to a manager 130. The agent 120 can operate
anywhere, such as at a separate device communicating via a
protocol such as simple network management protocol
(SNMP) traps, at a consolidation point within the network, or

10

15

20

25

30

35

40

45

50

55

60

65

6

at the data source 110. For example, if the data source 110 is
a software application, the agent 120 can be co-hosted on the
device that hosts the data source. In one embodiment, the
agent 120 is the Connector product from ArcSight, Inc. of
Cupertino, Calif.

Processing can include normalization, aggregation, and
filtering. For example, individual raw events are parsed and
normalized for use by the manager 130. Normalization can
involve normalizing values (such as severity, priority, and
time zone) into a common format and/or normalizing a data
structure into a common schema. Events can be categorized
using a common, human-readable format. This format makes
it easier for users to understand the events and makes it easier
to analyze the events using filters, rules, reports, and data
monitors. In one embodiment, the common format is the
Common Event Format (CEF) log management standard
from ArcSight, Inc. Normalization is further described in
U.S. application Ser. No. 10/308,941, filed Dec. 2, 2002,
which is hereby incorporated by reference herein in its
entirety.

Aggregation and filtering reduce the volume of events sent
to the manager 130, which saves network bandwidth and
storage space, increases the manager’s efficiency and accu-
racy, and reduces event processing time. Aggregation is fur-
ther described in U.S. application Ser. No. 10/308,584, filed
Dec. 2, 2002, and U.S. application Ser. No. 10/975,962, filed
Oct. 27, 2004, which are hereby incorporated by reference
herein in their entirety. The agent 120 sends events to the
manager 130 in batches based on the expiration of a time
period or based on a threshold number of events being
reached. Batching events for transmission to the manager 130
is further described in U.S. Pat. No. 7,219,239, issued May
15,2007, which is hereby incorporated by reference herein in
its entirety.

The agent 120 can also send commands to the data source
110 and/or execute commands on the local host, such as
instructing a scanner to run a scan. These actions can be
executed manually or through automated actions from rules
and data monitors. Command support is further described in
U.S. application Ser. No. 10/308,417, filed Dec. 2, 2002,
which is hereby incorporated by reference herein in its
entirety. The agent 120 can also add information to the data
that it has collected, such as by looking up an Internet Proto-
col (IP) address and/or hostname in order to resolve IP/host-
name lookup at the manager 130.

The agent 120 is configured via an associated configuration
file (not shown). The agent 120 can include one or more
software modules including a normalizing component, a time
correction component, an aggregation component, a batching
component, a resolver component, a transport component,
and/or additional components. These components can be acti-
vated and/or deactivated through appropriate commands in
the configuration file. During configuration, the agent 120 is
registered to a manager 130 and configured with characteris-
tics based on its data source 110 and desired behavior. The
agent 120 is further configurable through both manual and
automated processes. For example, the manager 130 can send
to the agent 120 a command or configuration update. Agent
components are further described in U.S. application Ser. No.
10/308,548, filed Dec. 2, 2002, which is hereby incorporated
by reference herein in its entirety. Additional agent capabili-
ties are described in U.S. application Ser. No. 10/974,105,
filed Oct. 27, 2004; U.S. application Ser. No. 11/021,601,
filed Dec. 23, 2004; U.S. application Ser. No. 11/070,024,
filed Mar. 1, 2005; and U.S. Pat. No. 7,437,359, issued Oct.
14, 2008, which are hereby incorporated by reference herein
in their entirety.

US 9,166,989 B2

7

A manager 130 provides analysis capabilities, case man-
agement workflow capabilities, and services capabilities.
Communications between the manager 130 and an agent 120
can be bi-directional (e.g., to enable the manager 130 to
transmit a command to the platform hosting the agent 120)
and encrypted. In some installations, the manager 130 can act
as a concentrator for multiple agents 120 and can forward
information to other managers 130 (e.g., managers deployed
at a corporate headquarters). To perform its tasks, the man-
ager 130 uses a variety of filters, rules, reports, data monitors,
dashboards, and network models. In one embodiment, the
manager 130 is a Java-based server such as the Enterprise
Security Manager (ESM) product from ArcSight, Inc.

Analysis can include detection, correlation, and escalation.
For example, the manager 130 cross-correlates the events
received from the agents 120 using a rules engine (not
shown), which evaluates each event with network model and
vulnerability information to develop real-time threat summa-
ries. Correlation is further described in U.S. application Ser.
No. 10/308,767, filed Dec. 2, 2002, which is hereby incorpo-
rated by reference herein in its entirety. Regarding case man-
agement, the manager 130 can maintain reports regarding the
status of security incidents and their resolution. Incident
reports are further described in U.S. application Ser. No.
10/713,471, filed Nov. 14, 2003, which is hereby incorpo-
rated by reference herein in its entirety. Services can include
administration, notification, and reporting. The manager 130
can also provide access to a knowledge base. Additional
manager capabilities are described in U.S. application Ser.
No. 10/821,459, filed Apr. 9, 2004; U.S. Pat. No. 7,260,844,
issued Aug. 21, 2007; U.S. Pat. No. 7,565,696, issued Jul. 21,
2009; and U.S. Pat. No. 7,509,677, issued Mar. 24, 2009,
which are hereby incorporated by reference herein in their
entirety.

As events are received by the manager 130, they are stored
in a database 140. Storing the events enables them to be used
later for analysis and reference. In one embodiment, the data-
base 140 is a relational database management system such as
a database from Oracle Corporation of Redwood Shores,
Calif.

In one embodiment, the database 140 stores data in parti-
tions, which are chronological slices of the database. For
example, one new partition is created each day to store that
day’s events. A partition can be compressed and stored in an
online archive 150 for later retrieval. Partition management is
further described in U.S. application Ser. No. 10/839,563,
filed May 4, 2004, which is hereby incorporated by reference
herein in its entirety. In one embodiment, partition manage-
ment is provided by the SmartStorage archiving and retrieval
component of the Security Lifecycle Information Manage-
ment (SLIM) product from ArcSight, Inc.

A user interacts with the manager 130 via a user interface
160. The user interface 160 enables the user to navigate the
features and functions of the manager 130. A single manager
130 can support multiple user interface instances. The fea-
tures and functions that are available to the user can depend on
the user’s role and permissions and/or the manager’s configu-
ration. In one embodiment, access control lists enable mul-
tiple security professionals to use the same manager 130 and
database 140 but each professional has his own views, corre-
lation rules, alerts, reports, and knowledge bases appropriate
to his responsibilities. Communication between the manager
130 and the user interface 160 is bi-directional and can be
encrypted.

In one embodiment, there are two types of user interfaces
160: a workstation-based interface and a web browser-based
interface. The workstation interface is a standalone software

10

15

20

25

30

40

45

50

55

60

65

8

application that is intended for use by full-time security staff
in a Security Operations Center (SOC) or similar security
monitoring environment. The workstation interface includes
an authoring tool for creating and modifying filters, rules,
reports, pattern discovery, dashboards, and data monitors.
The workstation interface also enables a user to administer
users, database partitions, and workflow (e.g., incident inves-
tigation and reporting). For example, the workstation inter-
face enables a user to perform routine monitoring, build com-
plex correlation and long sequence rules, and perform routine
administrative functions. In one embodiment, the worksta-
tion interface is the ESM Console product from ArcSight, Inc.
The user interface is further described in U.S. application Ser.
No. 10/308,418, filed Dec. 2, 2002, and U.S. Pat. No. 7,333,
999, issued Feb. 19, 2008, which are hereby incorporated by
reference herein in their entirety.

The web interface is an independent and remotely install-
able web server that provides a secure interface with the
manager 130 for web browser clients. The web interface is
intended for use as a streamlined interface for customers of
Managed Service Security Providers (MSSPs), SOC opera-
tors, and users who need to access the manager 130 from
outside the protected network. Because the web server can be
installed at a location remote from the manager 130, the web
server can operate outside the firewall that protects the man-
ager 130. The web interface provides event monitoring and
drill-down capabilities. In one embodiment, as a security
feature, the web interface does not enable authoring or admin-
istrative functions. In one embodiment, the web interface is
the ArcSight Web product from ArcSight, Inc.

In one embodiment, a logging system 170 is an event data
storage appliance that is optimized for extremely high event
throughput. The logging system 170 stores security events
(sometimes referred to as “log data™). In one embodiment, the
security events are stored in compressed form. However, the
logging system 170 can retrieve these events on demand and
restore them to their original, unmodified form for forensics-
quality data. Multiple logging systems 170 can work together
to scale up to support high sustained input rates when storing
events. Event queries can be distributed across a peer network
of logging systems 170. A user can configure the logging
system 170 via a user interface (not shown). In one embodi-
ment, the logging system 170 is the Logger product from
ArcSight, Inc.

The logging system 170 can receive both processed events
(e.g., events adhering to the Common Event Format) and raw
events. In one embodiment, raw events are received directly
from data sources 110 (such as syslog messages and log files),
and processed events are received from agents 120 or man-
agers 130. The logging system 170 can also send both raw
events and processed events. In one embodiment, raw events
are sent as syslog messages (to any device; not shown), and
processed events are sent to the manager 130. The logging
system 170 will be further described below.

Through the above-described architecture, the SIEM sys-
tem 100 can support a centralized or decentralized environ-
ment. This is useful because an organization may want to
implement a single instance of the SIEM system 100 and use
an access control list to partition users. Alternatively, the
organization may choose to deploy separate SIEM systems
100 for each of a number of groups and consolidate the results
at a “master” level. Such a deployment can also achieve a
“follow-the-sun” arrangement where geographically dis-
persed peer groups collaborate with each other by passing
primary oversight responsibility to the group currently work-
ing standard business hours. SIEM systems 100 can also be

US 9,166,989 B2

9

deployed in a corporate hierarchy where business divisions
work separately and support a rollup to a centralized manage-
ment function.

2. Log Data

Described herein are systems and methods for storing log
data efficiently while supporting querying. “Log data,” as
used herein, can be generated by various sources, including
both devices and applications. These sources include, for
example, the data sources 110 described above as well as
network systems, computers, operating systems, anti-virus
systems, databases, physical infrastructure, identity manage-
ment systems, directory services, system health information
systems, web traffic, legacy systems, proprietary systems,
mainframes, mainframe applications, security systems,
physical devices, and SIEM sources (such as agents 120 and
managers 130).

A system can obtain log data in many ways. For example,
log data can be received (e.g., according to the syslog proto-
col). Alternatively, log data can be accessed (e.g., by reading
a file that is stored locally or remotely). Other methods
include, for example, Open Database Connectivity (ODBC),
Simple Network Management Protocol (SNMP) traps, Net-
Flow, and proprietary Application Programming Interfaces
(APIs). Log data can also be input by a user (e.g., using a
command line interface (CLI)).

Log data can be in any format. One such format is, for
example, Common Event Format (described above). Other
formats are, for example, specific to the data sources 110 that
generated the log data.

Log data is comprised of one or more data instances called
“events.” An event can be, for example, an entry in a log file,
an entry in a syslog server, an alert, an alarm, a network
packet, an email, or a notification page. In general, an event is
generated once and does not change afterwards.

In one embodiment, an event includes implicit meta-data
and a message. Implicit meta-data can include information
about, for example, the device or application that generated
the event (“event source”) and when the event was received
from the event source (“receipt time”). In one embodiment,
the receipt time is a date/time stamp, and the event source is
a network endpoint identifier (e.g., an IP address or Media
Access Control (MAC) address) and/or a description of the
source, possibly including information about the product’s
vendor and version.

The message represents what was received from the event
source and can be in any form (binary data, alphanumeric
data, etc.). In one embodiment, the message is free-form text
that describes a noteworthy scenario or change. In another
embodiment, the message also includes explicit meta-data.
Explicit meta-data is obtained, for example, by parsing the
message. When an event source generates an event, the event
usually includes information that indicates when the event
occurred (“event occurrence time”). The event occurrence
time, which is usually a date/time stamp, is an example of
explicit meta-data and is frequently used for analysis. Differ-
ent event sources often produce non-uniform explicit meta-
data (e.g., priority or criticality of event, devices/applications/
users affected by event, and which user triggered event).

In one embodiment, if an event does not include an occur-
rence time, an implicit timestamp generated by an event
receiver when it received the event (described below) is
treated as the original occurrence timestamp. As an event is
processed and potentially forwarded through various sys-
tems, each system usually has an implicit notation of event
receipt time.

In one embodiment, an event represents a data structure
that includes one or more fields, where each field can contain

25

40

45

65

10

a value (sometimes referred to as an “attribute”). The size of
this data structure usually falls within the range of 100 bytes
to 10 kilobytes.

3. Row Stores and Column Stores

If different events include the same types of fields, then the
events can be organized in atable. Each row of the table would
represent a different event, and each column of the table
would represent a different field.

The event data can be stored in a database using two archi-
tectures: row store and column store. In the row store archi-
tecture, storage is record- (row-) oriented. The attributes
(field values) of a record (or tuple) are placed contiguously in
storage. In this architecture, a single disk write suffices to
push all of the fields of a single record out to disk. Hence, high
performance writes are achieved, and a database management
system (DBMS) with a row store architecture is called a
write-optimized system (WOS).

In the column store architecture, storage is field- (column-)
oriented. The values stored in one column, across multiple
records, are placed contiguously in storage. In this architec-
ture, a DBMS needs to read the values of only those columns
that are required for processing a given query and can avoid
loading into memory irrelevant field values (attributes).
Hence, high performance ad-hoc querying is achieved, and a
DBMS with a column store architecture is called a read-
optimized system (ROS).

U.S. application Ser. No. 11/966,078 (“the *078 applica-
tion”) describes storing event data using row-based “chunks.”
Specifically, the 078 application describes a logging system
that includes an event receiver and a storage manager. The
receiver receives log data, processes it, and outputs a row-
based data “chunk”” The manager receives the row-based data
chunk and stores it so that it can be queried. The receiver
includes buffers that store events and a metadata structure that
stores information about the contents of the buffers. The
metadata includes a unique identifier associated with the
receiver, the number of events in the buffers, and, for each
“field of interest,” a minimum value and a maximum value
that reflect the range of values of that field over all of the
events in the buffers. A chunk includes the metadata structure
and a compressed version of the contents of the buffers. The
metadata structure acts as a search index when querying event
data. The logging system can be used in conjunction with a
security information/event management (SIEM) system.

Inthe 078 application, a chunk includes the contents of the
event receiver buffers (in compressed form), and the buffers
contain one or more events. Thus, a chunk contains one or
more events. Since an event can be thought of as a row of a
table, a chunk can be thought of as containing one or more
rows of a table. In other words, the chunks described in the
’078 application follow a row store architecture.

Although the chunks described in the 078 application
were row-based, there is no reason why chunks cannot follow
acolumn store architecture. For example, consider the buffers
in the event receiver that store events. In the *078 application,
these events were concatenated together, one event after the
other, to be put into a (row-based) chunk. A different way to
build a chunk would be to store each column of the event
“table” as a different (column-based) chunk. Each column-
based chunk would represent a column in the table (i.e., a set
of values for the same field in multiple events). Rather than
representing the table as one big row-based chunk that con-
tained all of the rows (events), the table would be represented
as multiple column-based chunks (one for each column of the
table).

The present application describes storing event data using
column-based chunks such that the chunks follow a column

US 9,166,989 B2

11

store architecture. The present application also describes stor-
ing event data using a combination of row-based chunks and
column-based chunks. Pure column-based storage will be
described first, followed by the combination row-based and
column-based storage.

4. Logging System Architecture

FIG. 2 is a high-level block diagram of a computer 200 for
acting as a logging system 170 of a security information/event
management (SIEM) system 100 according to one embodi-
ment. [llustrated are at least one processor 202 coupled to a
bus 204. Also coupled to the bus 204 are a memory 206, a
storage device 208, a keyboard 210, a graphics adapter 212, a
pointing device 214, and a network adapter 216. In one
embodiment, the functionality of the bus 204 is provided by
an interconnecting chipset. A display 218 is coupled to the
graphics adapter 212.

The storage device 208 is any device capable of holding
data, like a hard drive, compact disk read-only memory (CD-
ROM), DVD, or a solid-state memory device. The memory
206 holds instructions and data used by the processor 202.
The pointing device 214 may be a mouse, track ball, or other
type of pointing device, and is used in combination with the
keyboard 210 to input data into the computer 200. The graph-
ics adapter 212 displays images and other information on the
display 218. The network adapter 216 couples the computer
200 to a local or wide area network.

As is known in the art, a computer 200 can have different
and/or other components than those shown in FIG. 2. In
addition, the computer 200 can lack certain illustrated com-
ponents. For example, a computer 200 acting as a logging
system 170 can lack a keyboard 210, pointing device 214,
graphics adapter 212, and/or display 218. Moreover, the stor-
age device 208 can be local and/or remote from the computer
200 (such as embodied within a storage area network (SAN)).

FIG. 3 is a block diagram illustrating a logging system 170
of a security information/event management (SIEM) system
100, according to one embodiment. In the illustrated embodi-
ment, the logging system 170 includes an event receiver 310,
a storage manager 320, and a communication mechanism
330. Although only one event receiver 310 is shown for clar-
ity, the system 170 can support a large number of concurrent
sessions with many event receivers 310. In one embodiment,
each event receiver 310 is associated with a unique identifier.

The event receiver 310 receives log data 340, processes the
log data 340, and outputs a data “chunk™ 350. The event
receiver 310 includes a control system 355, a set of one or
more buffers 360, and a metadata structure 365. The control
system 355 is communicatively coupled to the set of one or
more buffers 360 and the metadata structure 365.

The control system 355 controls operation of the event
receiver 310 and is further described below with reference to
FIG. 4.

Each buffer 360 stores information regarding one or more
events. In one embodiment, a buffer’s size is fixed but the size
itself is configurable. Recall that if different events include
the same types of fields, then the events can be organized in a
table. Each row of the table would represent a different event,
and each column of the table would represent a different field.
In one embodiment, each buffer 360 is associated with a
particular field and includes values from that field (“at-
tributes™) from one or more events. In another embodiment,
each buffer 360 also includes an identifier (“IndexID”) that
indicates which field is associated with the buffer.

For example, assume that an event includes a field called
SourcelPAddress whose value reflects the IP address of the
device that initiated the action represented by the event. A
buffer 360 associated with the SourceIPAddress field would

10

15

20

25

30

35

40

45

50

55

60

65

12

contain one or more IP addresses (one IP address for each
event that was received and processed by the event receiver
310 as part of the log data 340). The buffer 360 might also
contain an IndexID value of “100,” which indicates the Sour-
celPAddress field.

In one embodiment, the set of buffers 360 includes one
buffer for each event field. When an event is received, each
field value is parsed out and stored in the appropriate buffer
(described below). Eventually, each buffer is stored as a sepa-
rate column-based chunk (discussed below). In this way, each
column of the event “table” is stored as a different (column-
based) chunk. Each column-based chunk would represent a
column in the table (i.e., a set of values for the same field in
multiple events). Rather than representing the table as one big
row-based chunk that contained all of the rows (events), the
table would be represented as multiple column-based chunks
(one for each column of the table).

In another embodiment, the set of buffers also includes a
ReceiptTime buffer that stores, for each event, a time/date
stamp that reflects when the event was received by the event
receiver 310. In yet another embodiment, the set of buffers
also includes a buffer that stores, for each event, a “derived”
value that is determined based on the values stored in one or
more fields of an event.

The metadata structure 365 stores metadata about the con-
tents of the set of buffers 360. In one embodiment, this meta-
data includes the unique identifier associated with the event
receiver 310 that received the events, the number of events in
the set of buffers, and, for each of one or more “fields of
interest,” a minimum value and a maximum value that reflect
the range of values of that field over all of the events in the set
of buffers. The metadata structure 365 acts as a search index
when querying event data (described below).

For example, assume that an event includes a field called
OccurrenceTime whose value reflects the time that the event
occurred. If OccurrenceTime were a field of interest, the
metadata structure 365 would include a minimum value for
OccurrenceTime and a maximum value for OccurrenceTime.
The minimum value of OccurrenceTime would be the Occur-
renceTime for the event in the set of buffers 360 that occurred
first. The maximum value of OccurrenceTime would be the
OccurrenceTime for the event in the set of buffers 360 that
occurred last.

In one embodiment, ReceiptTime is also a field of interest.
In this embodiment, therefore, the metadata structure 365
also stores a minimum value and a maximum value that reflect
the range of values of receipt times over all of the events in the
set of buffers. The minimum value of ReceiptTime would be
the Receipt Time for the event in the set of bufters 360 that was
received first. The maximum value of ReceiptTime would be
the Receipt Time for the event in the set of bufters 360 that was
received last. In one embodiment, only the minimum value of
ReceiptTime is stored. In this embodiment, the maximum
value of ReceiptTime is not stored; this decreases storage
requirements. If a buffer 360 is flushed often (which happens
when a chunk is generated, described below), the maximum
value of ReceiptTime will be close to the minimum value of
ReceiptTime (e.g., one second later).

In one embodiment, a field of interest is not an event field
per se. Instead, itis a “derived” value that is determined based
on the values stored in one or more fields of an event.

The storage manager 320 receives data chunks 350 and
stores them so that they can be queried. The storage manager
320 includes a control system 370, a datafiles table 375, a
chunks table 380, and one or more datafiles 385. The control
system 370 is communicatively coupled to the datafiles table
375, the chunks table 380, and the one or more datafiles 385.

US 9,166,989 B2

13

The control system 370 controls operation of the storage
manager 320 and is further described below with reference to
FIG. 4.

The datafiles table 375 stores information about the one or
more datafiles 385. In one embodiment, each entry in the
datafiles table 375 represents one datafile 385 for which space
has been allocated, and the entry includes a unique identifier
associated with the datafile and the location of the datafile
(e.g., afile system, a path therein, and a file name). A datafile
385 listed in the datafiles table 375 may or may not contain
data (e.g., chunks 350). The datafiles table 375 is stored, for
example, in a database (not shown). In one embodiment,
datafiles 385 are allocated before they are needed. In this
embodiment, a list of these pre-allocated datafiles 385 (called
a “free list”) is maintained.

The chunks table 380 stores information about the one or
more chunks 350 that are stored in the storage manager 320
(specifically, stored in the one or more datafiles 385). In one
embodiment, this information includes, for each chunk 350,
the metadata stored in the chunk (described below) and the
location of the chunk (e.g., the unique identifier associated
with the datafile that stores the chunk and the location within
the datafile where the chunk is stored (e.g., as an offset)). The
chunks table 380 is stored, for example, in a database (not
shown).

A datafile 385 stores multiple chunks 350. In one embodi-
ment, all datafiles are the same size (e.g., 1 gigabyte) and are
organized in time order. The datafile 385 is stored, for
example, on a raw disk or in a data storage system such as a
file system (not shown). If the datafile 385 is stored on a raw
disk, data can be accessed faster, since additional layers of
indirection are not required. Also, security can be increased.

The communication mechanism 330 communicatively
couples the event receiver 310 and the storage manager 320.
In one embodiment, the communication mechanism 330
includes a partially-public or wholly-public network such as
the Internet. In other embodiments, the communication
mechanism 330 includes a private network or one or more
distinct or logical private networks (e.g., virtual private net-
works or local area networks). Communication links to and
from the communication mechanism 330 can be wired or
wireless (e.g., terrestrial- or satellite-based transceivers). In
one embodiment, the communication mechanism 330 is a
packet-switched network such as an IP-based wide or metro-
politan area network that uses the Ethernet protocol.

In another embodiment, the communication mechanism
330 is local to a single computer system (e.g., if a portion of
the event receiver 310 and a portion of the storage manager
320 are executing on the same device). In this embodiment,
the communication mechanism 330 is implemented, for
example, through a local, software-only loopback device. For
example, the data is copied to various locations in memory,
and communication occurs via an API.

In yet another embodiment, the communication mecha-
nism 330 is local to a single process (e.g., if a portion of the
event receiver 310 and a portion of the storage manager 320
are executing on the same device and in the same process). In
this embodiment, the communication mechanism 330 is
implemented, for example, through shared memory and/or
pointers thereto.

5. Initial Storage

FIG. 4 is a flowchart illustrating a method for storing log
data, according to one embodiment of the invention. In one
embodiment, the method 400 of FIG. 4 is performed jointly
by the event receiver 310 (e.g., its control system 355) and the
storage manager 320 (e.g., its control system 370).

10

15

20

25

30

35

40

45

50

55

60

65

14

In one embodiment, before the method 400 begins, the set
of buffers 360 and the metadata structure 365 are initialized.
For example, the control system 355 stores, in each buffer, the
appropriate IndexID. The control system 355 also stores in
the metadata structure 365 the unique identifier associated
with the event receiver 310.

The method 400 begins when the event receiver 310
receives 410 log data 340. In one embodiment, the log data
340 is received in the form of a stream. The control system
355 separates 420 the log data into one or more events and
determines 420 when each event was received by the event
receiver 310.

The control system 355 parses 430 the events into their
field values and stores the field values and receipt times in the
appropriate buffers. The control system 355 also updates 430
the metadata structure 365. For example, the number of
events in the buffer will have increased. The minimum and
maximum values for the field(s) of interest may also need to
be updated. In one embodiment, data write operations and
metadata write operations are synchronized in order to avoid
possible inconsistency if a system crash occurs. For example,
a transactional database system is used so that if field values
are stored in the buffer 360, the metadata structure 365 is
guaranteed to be updated accordingly, even if the underlying
system crashes in between the two steps.

At some point in time (see below), the control system 355
generates 440 data chunks 350 based on the metadata struc-
ture 365 and the contents of the buffers 360. Specifically, one
chunk is generated for each buffer. Different chunks can have
different sizes. Chunk sizes can differ due to, for example, the
type of field values stored in a chunk (and the compression
algorithm applied to them, discussed below), and the type of
trigger that caused the chunk to be generated (also discussed
below). In one embodiment, a maximum chunk size can be
specified.

In one embodiment, each chunk includes the metadata
structure 365, the contents of the associated buffer, a chunk
identifier (ChunkID), a stripe identifier (StripelD), and a set
of index location identifiers (Index.ocationIDs). Note that
the field of interest, which concerns the meta-data portion of
a chunk, and the field associated with the buffer, which con-
cerns the “payload” portion of a chunk, need not be the same
field. The ChunkIDuniquely identifies the chunk with respect
to other chunks. The StripelD, which is shared among the set
of chunks, is used to associate the chunks with each other
(since all of the chunks concern the same set of events). The
next time the control system 355 generates 440 data chunks
350, the chunks will concern a different set of events, so a
different StripeID will be used. The set of IndexLocationIDs
includes one IndexLocationID for each field value in the
buffer/chunk. The IndexLocationID is used to access a field
value in a different chunk that corresponds to the same event.
In one embodiment, the IndexLocationID includes the Strip-
elD and an offset identifier (OffsetID). The OffsetID indi-
cates which field value (within a buffer/chunk) corresponds to
the desired event.

In one embodiment, the contents of the associated buffer
360 are compressed before they are stored in the chunk 350.
Compressing the buffer contents makes this approach a cost-
effective choice for long-term storage of data. The com-
pressed version of the contents can be generated using any
data compression algorithm.

In one embodiment, a column-type-specific compression
algorithm is used. For example, a column-based chunk that
contains timestamps (such as the chunk associated with the
ReceiptTime field) can use delta encoding. Delta encoding
stores the difference relative to a previous value, rather than

US 9,166,989 B2

15

storing the value itself. For example, if the original value is a
sequence of <88888123, 88888125, 88888126, 88888127,
88888128>, then delta encoding would yield a sequence of
<88888123, 2, 1, 1, 1>. As another example, a low cardinality
column can use common string compression. A unique string
symbol table is generated. The index of the entry in the
symbol table is stored, rather than the string itself. For
example, if the original value is a sequence of <Success,
Failure, Success, Failure, Success, Success, Failure> and the
symbol table is <Success, Failure>, then common string com-
pression would yield a sequence of <0, 1, 0, 1, 0, 0, 1>. In
another embodiment, a different lossless compression algo-
rithm is used, such as GNU zip (gzip).

In one embodiment, the chunk 350 also includes a “magic
number” and a version identifier. The magic number, some-
times called a file signature, is a short sequence of bytes that
identifies the data type of the chunk. For example, the magic
number is reasonably unique (i.e., unique with a high prob-
ability) across other data and file formats, including other
chunks. Thus, when a chunk is read, it is easy to determine
whether the chunk is in the expected format. If the chunk’s
actual magic number differs from the expected magic num-
ber, then the chunk is “wrong” (e.g., corrupted). The magic
number thereby helps detect data corruption and resynchro-
nize data chunk boundaries in order to recover corrupt data.
(If the actual magic number matches the expected magic
number, then data that occurs later in the chunk might still be
wrong. However, the matching magic number excludes this
possibility for the majority of common situations.) The ver-
sion identifier enables the accommodation of data and file
formats that have changed. For example, when a chunk is
read, the version identifier can be used in conjunction with the
magic number to indicate additional information about the
data or file format.

In another embodiment (also not shown), the control sys-
tem 355 also generates a message digest of the contents of a
buffer 360. For example, the control system 355 applies a
cryptographic hash function to the bytes stored in the buffer
360. Any cryptographic hash function can be used, such as
Message-Digest algorithm 5 (MDS5) or an algorithm in the
Secure Hash Algorithm family (e.g., SHA-256). In one
embodiment, the digest value is stored in the chunk 350. This
value can later be used to determine whether the buffer data
that is stored in the chunk (in compressed form) has been
changed or tampered with. This helps guarantee the integrity
of stored events by making it noticeable when events have
been changed. Also, when the chunk 350 arrives at the storage
manager 320, the digest value can be stored in the chunks
table 380 along with the chunk’s metadata. That way, if the
chunk is later tampered with (or corrupted) while it is stored
in a datafile 385, the message digest of the tampered chunk
will not match the message digest that was previously stored
in the chunks table 380.

The set of buffers 360 and the metadata structure 365 are
then re-initialized 440, thereby flushing the buffers 360. In
one embodiment, the set of buffers 360 includes additional
buffers that can be used to store incoming events while other
buffers are full or are being flushed.

In one embodiment, step 440 is performed (“triggered”)
when any one of the buffers 360 is full. In another embodi-
ment, step 440 is performed (triggered) when a particular
period of time (a “timeout window”) has elapsed, during
which no events were received by the event receiver 310.

The control system 355 sends 450 the data chunks 350 to
the storage manager 320.

The storage manager 320 receives 460 the chunks 350. The
control system 370 stores 470 the chunks in one or more

10

15

20

25

30

35

40

45

50

55

60

65

16
datafiles 385 (see below). In one embodiment, a chunk is
encrypted before it is stored for security purposes. The con-
trol system 370 also updates 470 the chunks table 380. For
example, the control system 370 adds to the table information
regarding the chunks 350 that it just stored in the datafile(s)
385.

The control system 370 writes chunks 350 in “appending”
order inside each datafile 385. This is sometimes referred to as
“write-once journaled.” In one embodiment, the control sys-
tem maintains a “write pointer” that indicates a location
within a datafile where a chunk can be written. After a chunk
has been written to a datafile, the write pointer is modified to
indicate a location within the same datafile (specifically, at the
end of the chunk that was just written). If writing a chunk fills
a datafile, the write pointer is modified to indicate a location
within a different datafile (specifically, at the beginning) that
can be used to store chunks. In one embodiment (not shown),
chunk writes are deferred by first caching chunks in memory.
Multiple continuous chunks are then combined into one write
operation in order to optimize full-stripe writes on RAID 5
disk storage systems. By using large sequential input opera-
tions such as writes, the hardware is driven at a high speed,
throughput, and concurrency.

Ifa pre-allocated datafile exists (e.g., as listed in the free list
described above), the control system 370 uses the datafile and
removes that datafile’s unique identifier from the free list
(since that datafile is no longer available). If no pre-allocated
datafile exists, the control system 370 creates a new one by
locating available space and updating the datafiles table 375.
For example, the control system 370 adds to the table infor-
mation regarding the new datafile 385 that it just created. In
one embodiment, the unique identifier assigned to the new
datafile 385 is equal to the sum of 1 and the unique identifier
associated with the datafile 385 that was most recently allo-
cated.

The method 400 has many desirable characteristics. For
example, it is highly scalable, since it can support receiving a
very high number of events-per-second (EPS). Multiple event
receivers 310 can be used, and the writing of event data is fast
because it involves only append operations, not seck opera-
tions. The method 400 also features high availability, since it
provides continuous access to data. Deleting old events does
not fragment the storage medium, which means that no
defragmentation process is required and therefore no main-
tenance window is required, either. Implicit downtime for
cleanup tasks is not required. Also, since disk write opera-
tions are efficient, they avoid overhead in order to leave room
for handling queries.

6. Storage Reclamation

At some point in time (discussed below), storage being
used by one or more datafiles 385 is reclaimed for future use.
FIG. 5 is a flowchart illustrating a method for reclaiming
storage, according to one embodiment. In one embodiment,
the method 500 of FIG. 5 is performed by the storage manager
320 (e.g., its control system 370).

The oldest datafile 385 associated with a particular reten-
tion policy (described below) is identified 510. Since datafiles
have unique identifiers based on monotonically increasing
numbers, it is easy to query the datafiles table 375 to find the
oldest datafile (i.e., the datafile that has the lowest unique
identifier) associated with the retention policy.

Information regarding all of the chunks 350 contained in
the identified datafile 385 is removed 520 from the chunks
table 380.

The entry in the datafiles table 375 that represents the
identified datafile 385 is deleted 530.

US 9,166,989 B2

17

A new entry is created 540 in the datafiles table 375, with
a) a new unique identifier that is one higher than the highest
used datafile identifier and b) a path attribute referring to the
physical location of the previously oldest datafile (i.e., the
datafile that was identified in step 510).

The newly reclaimed datafile 385 is added 550 to the list of
available pre-allocated datafiles and is ready to receive new
chunks.

In the illustrated embodiment, when a datafile’s storage is
reclaimed, that datafile is recycled (e.g., reused or written
over) instead of deleted.

The details of the storage reclamation algorithm (includ-
ing, for example, when to execute it and how much storage to
reclaim) depend on a retention policy associated with a data-
file 385. A retention policy limits the retention of a chunk 350
based on, for example, a disk-space usage threshold or a
maximum time to retain the chunk. Examples of when to
execute the storage reclamation algorithm are: when all of the
datafiles associated with that policy are full and no more
datafiles can be allocated (e.g., because there is no storage
space left); when a particular threshold has been reached
(e.g., in terms of the amount of free storage space left for
datafiles associated with that retention policy); when a par-
ticular period of time has elapsed; when a particular number
of datafiles exist that are associated with that policy; and
when the oldest chunk in a datafile associated with that policy
has reached a threshold age. In one embodiment, a datafile is
backed up onto another system before its space is reclaimed.
In this way, more storage can be made available while still
maintaining existing data.

In one embodiment, all datafiles 385 are associated with
the same retention policy. In another embodiment, multiple
retention policies exist, and each datafile is associated with
any one of the multiple retention policies. Multiple datafiles
can be associated with the same retention policy. A retention
policy can be created and modified by a user. In one embodi-
ment, the storage manager 320 logically maintains one
instance of the storage reclamation algorithm described
above for each retention policy. For example, each datafile
385 includes metadata that indicates the retention policy that
applies to that datafile, and a chunk is stored in the datafile that
corresponds to that chunk’s retention policy.

Ifmultiple retention policies exist, the system 170 shown in
FIG. 3 is modified slightly (not shown). Specifically, the event
receiver 310 includes one set of buffers 360 and one metadata
structure 365 for each retention policy. Before field values are
extracted from an event and stored in the set of buffers and the
metadata structure is updated (step 430), the control system
355 determines which retention policy should be applied to
the event. This determination is based on, for example, a static
mapping or an attribute of the particular event. Any attribute
can be used, such as priority or event source. Based on this
determination, the control system 355 stores the event field
values in the appropriate set of buffers and updates the appro-
priate metadata structure. Thus, all event field values in a
particular set of buffers will be associated with the same
retention policy.

It follows that the column-based chunks 350 generated
based on that set of buffers will be associated with the same
retention policy. Before the chunks are stored in a datafile 385
(step 470), the control system 370 determines the chunks’
retention policy and stores the chunks in a datafile associated
with that policy. Thus, all chunks in a particular datafile will
be associated with the same retention policy.

Alternatively, column-based chunks associated different
buffers 360 can be associated with different retention poli-
cies, even if the buffers are storing field values from the same

5

10

15

20

25

30

35

40

45

50

55

60

65

18

set of events. For example, chunks that store fields that are
searched more often can have a different retention policy than
chunks that store fields that are searched less often. In this
embodiment, a first field value from a first event could be
associated with a first retention policy, and a second field
value from the same event could be associated with a second
(different) retention policy.

In one embodiment, each retention policy has its own
group of datafiles 385. Each datafile is marked with a unique
number. The number decides the order of the files within one
group. The data files are written in appending order. Files are
not updated, and files are written once and operated in
append-only mode, which prevents log data tampering. As all
files within one retention group are filled up, storage is
reclaimed from the first (i.e., oldest) file in the group. In one
embodiment, a separate datafiles table 375 is maintained for
each retention policy, which contains entries for datafiles 385
that have been allocated to that retention policy. If a free list is
maintained, only one free list is used for the entire storage
manager 320, regardless of how many retention policies exist.
7. Querying/Data Retrieval

Recall that a row-based chunk contains complete informa-
tion for a set of events. A column-based chunk of field values
from that same set of events is a subset of the information
contained in the row-based chunk. Since the column-based
chunk contains less information than the row-based chunk, it
is also faster to load into memory (e.g., from a datafile) and to
search. Thus, if a search query term concerns the field of the
column-based chunk, then it is faster to search the column-
based chunk than to search the row-based chunk. Since the
column-based chunk assists in searching, it is sometimes
referred to as a “search index” or simply an “index.”

After a chunk 350 has been stored in a datafile 385, the field
values within the chunk can be queried. A query can be
executed by itself or as part of handling an interactive search
or generating a report. A query is represented as an expression
that can be evaluated against an event. The expression
includes one or more search terms. A search term concerns
the contents of an event, specifically, a particular field and the
value of that field. For example, the search term
“TransportProtocol=TCP” concerns the TransportProtocol
field and the value of that field being equal to “TCP>” As
another example, the search term “Priority contains ‘High’”
concerns the Priority field and the value of that field being
equal to ““High.””. One common type of search term includes
a timestamp field (e.g., EventReceipt) and a period of time
(e.g., a start time and an end time). The result of executing a
search query is often a set of one or more events. For example,
the search query “select * from events where
TransportProtocol=TCP” would return a set of events, each of
which has a value of “TCP” in its TransportProtocol field.

In one embodiment, the query process occurs in multiple
phases. The first phase filters data chunks 350 based on “field
of interest” information (as stored in a chunk’s meta-data).
The second phase filters data chunks 350 based on field values
(as stored in a chunk’s “payload”). The third phase assembles
the events that satisfy the query. The first phase thereby acts as
a “rough cut” for identifying which data chunks (and their
corresponding events) should be investigated further and
which data chunks (and their corresponding events) should be
ignored. In most cases, the retention policy assigned to a
chunk is not considered when events are queried or retrieved
because it is not interesting which retention policy applies to
a chunk that contains an event.

In the first phase, search terms within the query are iden-
tified that concern information that was contained in the meta-
data structure 365 (back when the event field values were

US 9,166,989 B2

19

stored in the buffers 360 rather than as part of a data chunk
350 in a datafile 385). This metadata information includes the
unique identifier of the associated event receiver and, for each
field of interest, a minimum value and a maximum value that
together reflect the range of values of that field over multiple
events (initially, events whose field values are stored in the
same buffer; later, events whose field values are stored in the
same data chunk). Recall that the metadata information was
transmitted to the storage manager 320 as part of a chunk 150.
Then, the metadata information was stored in the chunks table
380. Thus, in order to search the events based on this meta-
data, the “metadata search terms” are used to search the
chunks table 380. This will yield which chunks (if any) could
contain an event that satisfies the metadata search terms. In
this way, a search can be constrained based on particular
values (or ranges of values) for event receiver and/or fields of
interest (since these values are stored in the metadata in the
chunks table 380).

Because “field of interest” metadata is expressed as a range
ofvalues, the fact that a chunk satisfies a metadata search term
does not necessarily mean that the chunk contains an event
that satisfies the metadata search term. For example, if the
metadata search term is a field value of 10 and the chunk
contains events whose field values are 5 and 15, respectively,
then 10 will fall within the range, and the chunk will be
identified as satisfying the metadata search term. However,
the chunk may not contain an event with a field value of 10.
(That is why the query occurs in multiple phases.) What is
always true, however, is that if a chunk could contain an event
that satisfied the search term, then that chunk will be identi-
fied as satistying the search term.

In the second phase, the data chunks 350 identified by the
first phase are further filtered based on field values (as stored
in a chunk’s “payload”). Specifically, search terms within the
query are identified that concern fields whose values are
stored in a column-based chunk 350 (i.e., “indexed” fields).
For example, if a search term concerns the SourcelPAddress
field, then a column-based chunk that is associated with the
SourcelPAddress field is identified. (This can be done by
examining the chunk’s IndexID.) The requested value of the
search term (e.g., a particular IP address) is then searched for
within the identified chunk. If the payload portion of the
chunk (i.e., the set of field values) is in a compressed format,
then it is uncompressed before it is searched for the requested
value of the search term.

In the third phase, the events that satisfy the query are
assembled. Continuing the previous example, assume that a
particular column-based chunk has been identified that is
associated with the Source]PAddress field. Further assume
that a particular field value entry has been identified within
the chunk as matching the requested value of the search term.
That particular field value entry is associated with an Index-
LocationID. The IndexLocationID is now used to obtain the
remaining field values of the event.

Recall that the IndexLocationID includes a StripelD and an
OffsetID. The StripelD is used to identify other column-
based chunks that concern the same set of events. (In one
embodiment, the storage manager 320 maintains a mapping
of StripelD to list of ChunkIDs associated with that StripelD.)
Once those other column-based chunks are identified, the
appropriate field values (i.e., those field values that belong to
the same event as the event identified based on the Sourcel-
PAddress field) are obtained using the OffsetID.

As an example, consider a set of events, each of which
includes a DeviceVendor field, a TransportProtocol field, and
a Priority field. The search query “select * from events where
TransportProtocol=TCP and Priority="Very High’” would

10

15

20

25

30

35

40

45

50

55

60

65

20

return a set of events, each of which has a value of “TCP” in
its TransportProtocol field and a value of ““Very High’” in its
Priority field. The search query “select DeviceVendor from
events where TransportProtocol=TCP and Priority="Very
High’” would return only the DeviceVendor field values from
the set of events (each of which has a value of “TCP” in its
TransportProtocol field and a value of ““Very High’” in its
Priority field).

Assume that DeviceVendor, TransportProtocol, and Prior-
ity are not “fields of interest” (and thus do not have value
ranges stored in the metadata portions of any chunks). One
way to execute this query is as follows: 1) Identify column-
based chunks associated with the TransportProtocol field.
Search those chunks for field values equal to “TCP.” For each
matching field value, store the associated IndexLocationID.
2) Identify column-based chunks associated with the Priority
field. Search those chunks for field values equal to “‘Very
High.”” For each matching field value, store the associated
IndexLocationID. 3) Determine the intersection of the Index-
LocationIDs stored in (1) and the IndexLocationIDs stored in
(2) (i.e., determine which Indexl.ocationIDs were stored in
both (1) and (2)). 4) Identify column-based chunks associated
with the DeviceVendor field. For each IndexLocationID in
(3), determine the corresponding field value and return the
value as part of the search results.

In one embodiment (not shown), the events are analyzed in
aparticular order. For example, the events are analyzed based
on their event receipt time, in either ascending order (i.e.,
oldest events first) or descending order (newest events first).
Analyzing the events in a particular order and appending
matching events to the search results means that the events in
the search results will already be in that particular order. No
sorting of the events is required.

Inthe first phase, it is possible that none of the search terms
concerns information that was contained in the metadata
structure 365. If this happens, all chunks 350 will be identified
as possibly containing an event field value that satisfies the
metadata search terms (since no metadata search terms exist).

The above algorithm searches for event field values that are
stored in chunks 350. However, the logging system 170 may
contain additional event field values in the event receiver 310
(e.g., within the set of buffers 360) that have not yet been
stored in a chunk. The algorithm above will not search these
event field values. In one embodiment, before the algorithm is
executed, the set of buffers 360 is flushed so that the event
field values will be sent to the storage manager 320 and stored
in a chunk. This way, when the algorithm is executed, the
event field values that were formerly in the set of buffers will
be searched also. In another embodiment, a separate search is
executed on the event receiver 310 using the contents of the
metadata structure 365 and the set of buffers 360, similar to
the algorithm described above. This way, all event field values
will be searched, whether they are stored in the storage man-
ager 320 or in the event receiver 310.

FIG. 6 is a flowchart illustrating a method for querying,
according to one embodiment. In one embodiment, the
method 600 of FIG. 6 is performed by the storage manager
320 (e.g., its control system 370). Before the method 600
begins, a search query is received. The search query includes
one or more search terms.

Any metadata search terms (within the received search
query) are identified 610.

The identified metadata search terms are used to search 620
the chunks table 380. Recall that each entry in the chunks
table 380 corresponds to a chunk 350, and an entry includes
the metadata stored in the chunk and the location of the

US 9,166,989 B2

21

chunk. The identified metadata search terms are used to
search the metadata portion of the chunks table 380.

Each chunk 350 whose metadata satisfies the metadata
search terms is retrieved 630 using the location of the chunk,
which was stored in the chunks table 380.

Any indexed search terms (within the received search
query) are identified 640.

Any chunks (from among those retrieved in step 630) asso-
ciated with the indexed search terms are identified 650.

The identified indexed search terms are used to search 660
the payload portions of the chunks that were identified in step
640.

Events that satisfy the search query are assembled 670.
When a field value entry within the payload portion of a
chunk matches the search term, the entry’s IndexLocationID
is determined and used to access the field value entries of the
remaining fields of the matching event.

8. Additional Embodiments—Archiving

In one embodiment, the logging system 170 supports
archiving functionality for datafiles 385. For example, a data-
file 385 can be imported into and exported out of the logging
system 170. As another example, a datafile 385 can be backed
up onto another system and later restored into the logging
system 170. Since events are stored in chunks and chunks are
stored in datafiles, events are easily transferable to nearline or
offline storage. In one embodiment, a datafile is archived
automatically based on archival criteria, which can be similar
to the criteria that are used for querying (e.g., values of infor-
mation stored in metadata structures of chunks within the
datafile). In another embodiment, a datafile is archived manu-
ally (e.g., in response to a user command).

9. Row-based Chunks in Combination with Column-based
Chunks

A. Storage

The *078 application describes storing event data using
only row-based chunks. Above, the present application
describes storing event data using only column-based chunks.
A third type of event storage uses both row-based chunks and
column-based chunks. This type of event storage stores an
event twice—once using a row-based chunk and once using
one or more column-based chunks. For example, a set of
events would be stored as one row-based chunk. The field
values of those events would also be stored as column-based
chunks (one column-based chunk for each field).

Recall that row-based storage is write-optimized, while
column-based storage is read-optimized. The advantage to
storing an event using both row-based and column-based
chunks is that both of these optimizations are available. The
row-based chunk is faster to write, so using that architecture
enables an event to be stored more quickly. The column-based
chunk is faster to read, so using that architecture enables an
event to be read (e.g., queried) more quickly.

In one embodiment, where both row-based chunks and
column-based chunks are being used, the generation and stor-
age of the row-based chunk and the generation and storage of
the column-based chunks are not performed as part of the
same transaction. If events are being received at a very high
rate, then the generation and storage of column-based chunks
(“indexing”) can lag behind the generation and storage of
row-based chunks. No data is dropped or delayed to the cost
(e.g., time cost) of indexing. Note that even if the indexing is
lagging behind the generation and storage of row-based
chunks, the user can still query all of the event data using the
row-based chunks.

Also, the row-based chunks and the column-based chunks
can be associated with different retention policies. For
example, a row-based chunk that stores a set of events can be

10

15

20

25

30

35

40

45

50

55

60

65

22

associated with a first retention policy, and the column-based
chunks that store the same set of events can be associated with
a second retention policy (or multiple retention policies, as
described above). As long as the row-based chunk exists, then
the column-based chunks can be recreated if necessary. Like-
wise, as long as the column-based chunks exist, then the
row-based chunk can be recreated if necessary. In general,
less space is required to store a set of events in multiple
column-based chunks than in one row-based chunk. So, in
one embodiment, column-based chunks are stored longer
than row-based chunks (e.g., for the same set of events).

If both row-based and column-based chunks are being
used, that does not necessarily mean that all columns (fields)
ofthe event must be stored in column-based chunks. Consider
a set of events that is stored using a row-based chunk. Instead
of storing all of the columns of the events as column-based
chunks, only selected columns are stored in this way. Since
column-based chunks are faster to query, perhaps only the
most frequently queried columns are stored as column-based
chunks. Note that even though the remaining columns are not
stored as column-based chunks, their field values can still be
queried by using the row-based chunk, since the row-based
chunk includes all of the event data.

It follows that one way to optimize queries on events stored
as row-based chunks is to create column-based chunks for the
event fields that are queried most frequently. Creation of these
column-based chunks can occur at any point in the event
storage process. For example, the 078 application describes
datafiles that store row-based chunks. The events can be
extracted from the stored row-based chunks and then used to
create one or more column-based chunks. (Note that a column
of field values from multiple row-based chunks can be stored
in one column-based chunk if desired.) Alternatively, when
the storage manager first receives a chunk and loads the chunk
into memory, the manager can create one or more column-
based chunks. This way, the events don’t have to be extracted
from a stored row-based chunk and loaded into memory later.
Another possibility is for the event receiver to create the
column-based chunks, as described above. Or, the log data
that is sent to the event receiver could already be in column-
based format.

The four storage types described above (row-only, column-
only, row-and-all-columns, and row-and-selected-columns)
are not mutually exclusive. One logging system can use all
four storage types. For example, a first set of events can be
stored using a row-based chunk, a second set of events can be
stored using column-based chunks, a third set of events can be
stored using both row-based and column-based chunks (for
all columns), and a fourth set of events can be stored using
both row-based and column-based chunks (for selected col-
umns). Which storage strategy is best depends on the circum-
stances. While row-based chunks are faster to create, column-
based chunks are faster to query.

In one embodiment, the storage architecture is chosen
based on when an event was received. For example, events
that were received recently (such as within the past 30 days)
are stored using both row-based and column-based chunks
(for all columns). Older events are stored using only row-
based chunks (or only column-based chunks). If the older
events were previously stored using both row-based and col-
umn-based chunks (for all columns), then the row-based
chunks and the column-based chunks contain the same infor-
mation, so either can be deleted. If the older events were
previously stored using both row-based and column-based
chunks (for selected columns), then the row-based chunks
and the column-based chunks do not contain the same infor-
mation, and deleting the row-based chunks will cause infor-

US 9,166,989 B2

23

mation to be lost. In this situation, it might be better to delete
the column-based chunks (since the information that they
contain is redundant).

In another embodiment, the storage architecture is chosen
based on the event receiver that received the event. For
example, events that were received by a first receiver are
stored using both row-based and column-based chunks.
Events that were received by a second receiver are stored
using only row-based chunks (or only column-based chunks).

In one embodiment, initialization of the logging system
170 includes specifying a storage strategy (e.g., row-only,
column-only, row-and-all-columns, or row-and-selected-col-
umns) and when that strategy should be used (e.g., based on
event receipt time falling within a time period or based on
event being received by a particular event receiver). In
another embodiment, the storage strategy (and/or when the
strategy should be used) can be changed at any time.

B. Querying/Data Retrieval

The *078 application describes querying and data retrieval
for event data stored using only row-based chunks. In order to
perform a query, data chunks are identified that could contain
an event that satisfies the query. Specifically, search terms
within the query are identified that contain information that
was contained in the metadata structure. The “metadata
search terms” are used to search the chunks table. In this way,
a search can be constrained based on particular values for
information that was stored in the metadata. The identified
chunks are disassembled into their constituent events. Events
that satisfy the query are identified.

Above, the present application describes querying and data
retrieval for event data stored using only column-based
chunks. In order to perform a query, data chunks are first
filtered based on “field of interest” information (as stored in a
chunk’s metadata). The remaining chunks are then filtered
based on field values (as stored in a chunk’s “payload”).
Finally, the events that satisty the query are assembled field-
by-field.

Recall that a column-based chunk includes a set of index
location identifiers (IndexLocationIDs). The set of IndexLo-
cationIDs includes one IndexLocationID for each field value
in the chunk. The IndexLocationID is used to access a field
value in a different chunk that corresponds to the same event.
When only column-based chunks exist, the IndexLocationID
is used to assemble events (field-by-field) that satisfy a search
query.

When both row-based and column-based chunks exist,
events that satisfy a search query do not need to be assembled
field-by-field. Instead, the events can be obtained in their
entirety from the corresponding row-based chunks. Specifi-
cally, a column-based chunk indirectly references its associ-
ated row-based chunk using a “table location identifier”
(TableLocationID). In one embodiment, a set of table location
identifiers (TableLocationIDs) is stored as its own column-
based chunk. Each TableLocationID in the chunk corre-
sponds to a particular event. The TableLocationID includes a
row-based chunk identifier (RBChunkID) and a row-based
chunk offset identifier (RBChunkOffsetID). The
RBChunkID indicates which row-based chunk contains the
event associated with the TableLocationlD. The
RBChunkOffsetID indicates where (within the row-based
chunk) that event begins. Whenever a set of column-based
chunks is generated (e.g., based on an existing row-based
chunk or by an event receiver as described above with respect
to step 440), a TableLocationID column-based chunk is also
generated. Later, when a query is performed and a matching
field value is found in one of these column-based chunks, the
associated IndexLocationID (specifically, the OffsetID) is

10

15

20

25

30

35

40

45

50

55

60

65

24

used to access the appropriate TableLocationID from the
TableLocationID column-based chunk. In this way, a single
query can use both row-based storage and column-based
storage.

Three different query execution strategies have just been
described—row-only, column-only, and row-and-column. A
query optimizer determines which execution strategy should
be used for a particular query. Specifically, the query opti-
mizer calculates a “total cost” for each execution strategy and
then selects the strategy with the lowest cost. (In one embodi-
ment, the query optimizer considers only the column-only
strategy and the row-and-column strategy, since the row-only
strategy is likely to be the highest in cost.) The total cost of an
execution strategy is a function of different sub-costs, such as
the CPU cost and the input/output (I/O) cost. The sub-costs, in
turn, are functions of the selectivity of the query’s predicates
and the number of columns (fields) involved in the query
(both the predicates and the desired search results). The selec-
tivity is estimated based on statistical information on fields of
past events. For example, information on the data distribution
onafield is provided by a histogram, which divides the values
on a field into k buckets.

In general, the lower the selectivity, the more likely the
query optimizer is to select the column-only strategy. The
higher the selectivity, the more likely the query optimizer is to
select the row-and-column strategy. Also, the lower the num-
ber of columns, the more likely the query optimizer is to select
the column-only strategy. The higher the number of columns,
the more likely the query optimizer is to select the row-and-
column strategy.

A search query might not request all of the fields of events
that satisfy the query. In this situation, the event can be
obtained in its entirety as described above (using the Table-
LocationID and row-based chunk) and then unnecessary
fields can be removed before generating the search results. If
the search query requests many fields, then this approach
might be faster than obtaining each field separately from a
different column-based chunk.

Recall that searching a column-based chunk is faster than
searching a row-based chunk. Consider a search query term
that concerns a particular event field. If that field that is
associated with an existing column-based chunk, then that
column-based chunk is searched for the desired field value. If
no such column-based chunk exists, then the appropriate
row-based chunk is searched instead. Alternatively, the col-
umn-based chunk can be created (based on the row-based
chunk) and then searched. Creating the column-based chunk
might be preferable when the same field will need to be
searched for several events.

C. Additional Embodiments

In one embodiment, where both row-based chunks and
column-based chunks are being used, the column-based
chunk generator (“indexer”) supports checkpoint recovery.
Specifically, in case of system crash, the indexer can recover
and resume from the last checkpoint. The checkpoint interval
is configurable. The longer the interval, the higher the perfor-
mance of the indexer (e.g., the higher the speed with which
column-based chunks are generated), but the longer the crash
recovery time. During the checkpoint phase, the indexer per-
sists the last-scanned TableLocationID and the last-created
IndexLocationID. During the recovery phase, the indexer
starts at the persisted TableLocationlD and IndexLocationID
and continues to index any remaining data in the table.

Archiving can be performed on row-based storage and/or
on column-based storage. Archival criteria for automatic
archiving can differ between the row-based storage and the
column-based storage.

US 9,166,989 B2

25

The above description is included to illustrate the operation
of the preferred embodiments and is not meant to limit the
scope of the invention. The scope of the invention is to be
limited only by the following claims. From the above discus-
sion, many variations will be apparent to one skilled in the
relevant art that would yet be encompassed by the spirit and
scope of the invention.

The invention claimed is:

1. A method for processing log data, comprising:

receiving log data that comprises a plurality of events,

wherein an event includes a set of fields, and wherein a
field stores a value; and

for each event in the plurality of events:

storing the event in a set of buffers, wherein each field
value of the event is stored in a different buffer;

identifying a first value stored in a first field of the event;

identifying a first minimum value that indicates a mini-
mum value of the first field of all of the events stored
in the buffers, wherein the first minimum value is
stored in a metadata structure that comprises informa-
tion about contents of the buffers;

determining whether the first minimum value exceeds
the first value; and

responsive to determining that the first minimum value
exceeds the first value, updating the metadata struc-
ture by replacing the first minimum value with the first
value.

2. The method of claim 1, wherein information about con-
tents of the buffers further includes a first maximum value that
indicates a maximum value of the first field of all of the events
stored in the buffers.

3. The method of claim 1, wherein information about con-
tents of the bufters further includes a second minimum value
that indicates a minimum value of a second field of all of the
events stored in the buffers.

4. The method of claim 1, wherein information about con-
tents of the buffers further includes a number of events stored
in the buffers.

5. The method of claim 1, further comprising:

in response to a first trigger condition, generating one data

chunk for each buffer in the set of buffers, wherein the
data chunk is based on contents of the metadata structure
and further based on contents of the buffer.

6. The method of claim 5, wherein the first trigger condi-
tion is based on a buffer usage threshold or based on a timeout
window.

7. The method of claim 5, further comprising:

in response to a second trigger condition, reclaiming stor-

age space used by one of the data chunks.

8. The method of claim 7, wherein the second trigger
condition is based on a retention policy associated with the
data chunk.

9. The method of claim 7, wherein the second trigger
condition is based on a disk-space usage threshold or based on
a maximum time to retain the data chunk.

10. The method of claim 5, further comprising:

in response to a second trigger condition, archiving one of

the data chunks.

11. The method of claim 10, wherein the second trigger
condition is based on archival criteria associated with the data
chunk.

12. The method of claim 10, wherein the second trigger
condition comprises a user command.

13. The method of claim 1, further comprising:

for each event in the plurality of events:

determining when the event was received; and
storing, in an additional buffer, a timestamp that indi-
cates when the event was received.

14. The method of claim 1, further comprising generating
one data chunk for each buffer in the set of buffers, wherein

20

35

40

45

50

55

60

65

26

the data chunk includes contents of the metadata structure and
a compressed version of contents of the buffer.
15. The method of claim 14, wherein the data chunk further
includes a file signature or a version identifier.
16. The method of claim 14, wherein the data chunk further
includes a message digest of contents of the buffer.
17. The method of claim 14, further comprising:
receiving a search query that includes a set of one or more
search terms;
identifying one or more first search terms, from the set of
search terms, that concern information that is contained
in the metadata structure; and
searching one or more data chunks by comparing, for each
data chunk, the identified first search terms to contents of
the metadata structure included within the data chunk.
18. The method of claim 17, further comprising:
for each data chunk that satisfies the identified first search
terms:
identifying one or more second search terms, from the
set of search terms, that concern the field associated
with the buffer that is associated with the data chunk;

comparing the identified second search terms to an
uncompressed version of contents of the buffer
included within the data chunk.

19. The method of claim 18, further comprising:

for each field value that satisfies the identified second
search terms:
identifying an index location identifier that is associated

with the field value;
for each buffer in the set of buffers:
accessing the data chunk associated with the buffer;
and
identifying a field value in the data chunk that matches
the index location identifier; and
assembling the identified field values into an event.
20. A computer program product for processing log data,
the computer program product comprising a machine-read-
able storage medium containing computer program code for
performing a method, the method comprising:
receiving log data that comprises a plurality of events,
wherein an event includes a set of fields, and wherein a
field stores a value; and
for each event in the plurality of events:
storing the event in a set of buffers, wherein each field
value of the event is stored in a different buffer;

identifying a first value stored in a first field of the event;

identifying a first minimum value that indicates a mini-
mum value of the first field of all of the events stored
in the buffers, wherein the first minimum value is
stored in a metadata structure that comprises informa-
tion about contents of the buffers;

determining whether the first minimum value exceeds
the first value; and

responsive to determining that the first minimum value
exceeds the first value, updating the metadata struc-
ture by replacing the first minimum value with the first
value.

21. A system for processing log data, comprising:

a machine-readable storage medium containing computer
program code for performing a method, the method
comprising:
receiving log data that comprises a plurality of events,

wherein an event includes a set of fields, and wherein
a field stores a value; and
for each event in the plurality of events:
storing the event in a set of buffers, wherein each field
value of the event is stored in a different buffer;

US 9,166,989 B2
27

identifying a first value stored in a first field of the
event;
identifying a first minimum value that indicates a
minimum value of the first field of all of the events
stored in the buffers, wherein the first minimum 5
value is stored in a metadata structure that com-
prises information about contents of the buffers;
determining whether the first minimum value exceeds
the first value; and
responsive to determining that the first minimum 10
value exceeds the first value, updating the metadata
structure by replacing the first minimum value with
the first value; and
a processor configured to execute the computer program
code stored by the machine-readable medium. 15

#* #* #* #* #*

28

