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1
METHODS AND APPARATUS FOR TESTING
AND REPAIRING DIGITAL MEMORY
CIRCUITS

RELATED APPLICATIONS

The present U.S. patent application claims the benefit of
the previous U.S. Provisional Patent Application entitled
“Methods And Apparatus For Testing And Repairing Digital
Memory Circuits” filed on Jan. 21, 2013 having Ser. No.
61/754,958.

TECHNICAL FIELD

The present invention relates to the field of digital memory
circuits. In particular, but not by way of limitation, the present
invention discloses techniques for testing and repairing digi-
tal random access memory circuits.

BACKGROUND

Digital electronic devices use random access memory cir-
cuits to store digital information. Modern digital electronic
devices such as personal computer systems, tablet computers,
and cellular telephones are increasingly using larger and
larger amounts of random access memory circuits to store
digital data. With larger amounts of random access memory
circuits there is a greater probability of a manufacturing
defect occurring within the memory section of a complex
integrated circuit that may require the entire integrated circuit
to be discarded. Furthermore, a subtle manufacturing defect
within the memory section of an integrated circuit may not be
accurately detected immediately after the integrated circuit
has been manufactured thus causing significant reliability
problems for the integrated circuit at a later time.

To address manufacturing problems with digital random
access memory circuits, most memory manufacturers pro-
vide integrated Built-In Self-Test (BIST) and Built-In Self
Repair (BISR) systems for the memory system. Built-In Self-
Test (BIST) systems are used to test random access memory
circuits for memory defects. Built-In Self Repair (BISR) sys-
tems are used to reroute memory circuits away from defective
memory circuit cells and instead to a set of spare memory
circuit cells that are not defective.

Existing Built-In Self-Test (BIST) and Built-In Self Repair
(BISR) systems have significantly improved memory reli-
ability. However, there still are some situations wherein
subtle memory defects can still cause problems. For example,
some manufacturing defects may not be detectable at the time
of manufacture but only begin to appear at a later time. Other
defects may not occur during initial power-up test but may
beginto cause problems during operation. Therefore, it would
be desirable to improve memory testing systems such that
defects within random access memory circuits can be identi-
fied in a more reliable manner.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale,
like numerals describe substantially similar components
throughout the several views. Like numerals having different
letter suffixes represent different instances of substantially
similar components. The drawings illustrate generally, by
way of example, but not by way of limitation, various
embodiments discussed in the present document.
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FIG. 1 illustrates a computer system within which a set of
instructions, for causing the machine to perform any one or
more of the methodologies discussed herein, may be
executed.

FIG. 2A illustrates a graph that shows how it is hard to
create a safe operating margin for hard errors in large capacity
memory ASICs.

FIG. 2B illustrates a graph that shows how a safe operating
margin for hard errors may be created by using Error-Cor-
recting Code (ECC) protection in large capacity memory
ASICs.

FIG. 3 illustrates how additional soft errors may increase
the risk of system down time.

FIG. 4A illustrates a block diagram of how the proposed
ActiveTest system can be integrated into a memory system.

FIG. 4B illustrates a flowchart that describes how the
ActiveTest IP may behave when an error is detected.

FIG. 5 illustrates a memory system and lists several chal-
lenges for the ActiveTest system to handle.

FIG. 6 A illustrates a simple system that may be used which
uses X hunting (testing) time slots in every Y consecutive
timeslots.

FIG. 6B illustrates an improved interface for an Active test
system that uses a sliding window wherein the specific time
when a particular test occurs may vary as long as the required
testing occurs.

FIGS.7A,7B,7C, 7D, 7E, 7F, 7G, TH, 71, 7], 7K, 7L, TM,
7N, and 7P illustrate an ActiveTest system in operation.

FIG. 8 illustrates a block diagram of a memory system with
a concurrent testing system that uses advanced round robin
testing.

FIG. 9 illustrates a flow diagram describing the operation
of an advanced round robin testing system for a digital
memory system.

FIG. 10A lists the overhead required for a memory system
with B banks, R rows, and a hunt time of W.

FIG. 10B lists the sufficiency for an ActiveTest system
(with parameter X).

FIG. 11 illustrates the performance guarantees of an
ActiveTest system. Note that various different numbers of
reserved timeslots were tested. A near optimal error hunting
overhead for X=1 was noted.

FIG. 12A illustrates the probability of a catastrophic error
without the ActiveTest system.

FIG. 12B illustrates the probability of a catastrophic error
with the ActiveTest system.

DETAILED DESCRIPTION

The following detailed description includes references to
the accompanying drawings, which form a part of the detailed
description. The drawings show illustrations in accordance
with example embodiments. These embodiments, which are
also referred to herein as “examples,” are described in enough
detail to enable those skilled in the art to practice the inven-
tion. It will be apparent to one skilled in the art that specific
details in the example embodiments are not required in order
to practice the present invention. The example embodiments
may be combined, other embodiments may be utilized, or
structural, logical and electrical changes may be made with-
out departing from the scope of what is claimed. The follow-
ing detailed description is, therefore, not to be taken in a
limiting sense, and the scope is defined by the appended
claims and their equivalents.

In this document, the terms “a” or “an” are used, as is
common in patent documents, to include one or more than
one. In this document, the term “or” is used to refer to a
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nonexclusive or, such that “A or B” includes “A but not B,” “B
but not A,” and “A and B,” unless otherwise indicated. Fur-
thermore, all publications, patents, and patent documents
referred to in this document are incorporated by reference
herein in their entirety, as though individually incorporated
by reference. In the event of inconsistent usages between this
document and those documents so incorporated by reference,
the usage in the incorporated reference(s) should be consid-
ered supplementary to that of this document; for irreconcil-
able inconsistencies, the usage in this document controls.

Computer Systems

The present disclosure concerns digital computer systems.
FIG. 1 illustrates a diagrammatic representation of a machine
in the example form of a computer system 100 that may be
used to implement portions of the present disclosure. Within
computer system 100 of FIG. 1, there are a set of instructions
124 that may be executed for causing the machine to perform
any one or more of the methodologies discussed within this
document. Furthermore, while only a single computer is illus-
trated, the term “computer” shall also be taken to include any
collection of machines that individually or jointly execute a
set (or multiple sets) of instructions to perform any one or
more of the methodologies discussed herein.

The example computer system 100 of FIG. 1 includes a
processor 102 (e.g., a central processing unit (CPU), a graph-
ics processing unit (GPU) or both) and a main memory 104
and a static memory 106, which communicate with each other
via a bus 108. The computer system 100 may further include
avideo display adapter 110 that drives a video display system
115 such as a Liquid Crystal Display (LCD). The computer
system 100 also includes an alphanumeric input device 112
(e.g., akeyboard), a cursor control device 114 (e.g., a mouse
or trackball), a disk drive unit 116, a signal generation device
118 (e.g., a speaker) and a network interface device 120. Note
that not all of these parts illustrated in FIG. 1 will be present
in all embodiments. For example, a computer server system
may not have a video display adapter 110 or video display
system 115 if that server is controlled through the network
interface device 120.

The disk drive unit 116 includes a machine-readable
medium 122 on which is stored one or more sets of computer
instructions and data structures (e.g., instructions 124 also
known as ‘software’) embodying or utilized by any one or
more of the methodologies or functions described herein. The
instructions 124 may also reside, completely or at least par-
tially, within the main memory 104 and/or within a cache
memory 103 associated with the processor 102. The main
memory 104 and the cache memory 103 associated with the
processor 102 also constitute machine-readable media.

The instructions 124 may further be transmitted or received
over acomputer network 126 via the network interface device
120. Such transmissions may occur utilizing any one of a
number of well-known transfer protocols such as the well
known File Transport Protocol (FTP). While the machine-
readable medium 122 is shown in an example embodiment to
be a single medium, the term “machine-readable medium”
should be taken to include a single medium or multiple media
(e.g., a centralized or distributed database, and/or associated
caches and servers) that store the one or more sets of instruc-
tions. The term “machine-readable medium” shall also be
taken to include any medium that is capable of storing, encod-
ing or carrying a set of instructions for execution by the
machine and that cause the machine to perform any one or
more of the methodologies described herein, or thatis capable
of' storing, encoding or carrying data structures utilized by or
associated with such a set of instructions. The term “machine-
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4

readable medium” shall accordingly be taken to include, but
not be limited to, solid-state memories, optical media, and
magnetic media.

For the purposes of this specification, the term “module”
includes an identifiable portion of code, computational or
executable instructions, data, or computational object to
achieve a particular function, operation, processing, or pro-
cedure. A module need not be implemented in software; a
module may be implemented in software, hardware/circuitry,
or a combination of software and hardware.

Memory Issues in Large Capacity ASICs

Application Specific Integrated Circuits (ASICs) with
large memory systems often have at least two common manu-
facturing problems: integrated circuit yield and integrated
circuit reliability. The larger an integrated circuit is, the more
likely that it will have a manufacturing defect within it due to
a contaminant or other manufacturing problem. Thus, the
manufacturing yield will drop. All manufacturers use inte-
grated circuit testing to identify and then discard integrated
circuits found to be defective.

However, even when an integrated circuit passes all of the
post-manufacturing tests, that integrated circuit may still
have problems. For example, the integrated circuit may have
a manufacturing defect that only becomes apparent after a
certain amount of usage. With such integrated circuits that
pass the initial tests but later exhibit problems, there may be
reliability problem. Reliability problems can be one of the
most difficult and costly manufacturing defect problems since
reliability problems can lead to high numbers of product
returns, costly repairs, and product recalls.

Since the memory circuitry within an Application Specific
Integrated Circuit (ASIC) often uses a large amount of the die
area of the ASIC, the memory circuitry needs to be very
thoroughly tested before the integrated circuit is offered for
sale to customers. Furthermore, the memory circuitry of
shipped integrated circuits should be tested regularly during
operation to ensure that the memory circuitry in the integrated
circuit continues to work properly. Certain defects that occur
in the memory circuit that are consistently detected may be
referred to as ‘hard errors’.

To handle the continued memory testing of integrated cir-
cuits that have passed initial tests and have been placed into
electronic products many ASIC vendors typically employ
Built-In Self-Test (BIST), Built-In Self-Repair (BISR), runt-
ime solutions and additional row/column, address redun-
dancy, and other solutions. Although these continued testing
solutions help with reliability issues, there are still many
situations wherein an ASIC that contains a large memory
system will fail due to a defect within the memory system.

A significant problem often encountered within integrated
circuit memory systems are double-bit errors (two erroneous
bits within a single data word). Single-bit errors can generally
be handled with Error Correcting Codes (ECC) but double-bit
errors can system failures. The probability of double bit errors
increases in ASICs with large memory capacity. Such double
bit errors can cause catastrophic failure when the double-bit
error is not properly detected and handled. The present docu-
ment presents a solution this this problem: an active test
system that performs aware pro-active memory error hunting
and memory repair during run-time. The test system operates
with no or minimal software intervention. This document
may refer to the disclosed test system an ActiveTest system
since it may test the memory of a system while the digital
system is actively being used.

FIG. 2A contains a graph that illustrates how it is very
difficult to create a safe operating margin for hard errors in
large capacity memory ASICs. These errors can result in
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system downtime. A current solution often employed is to use
SECDED Error-Correcting Code (ECC) protection. FIG. 2B
illustrates a graph that shows how a reasonable safe operating
margin for hard errors may be created by using Error-Cor-
recting Code (ECC) protection in large capacity memory
ASICs.

FIG. 3 illustrates how additional soft errors may increase
the risk of system downtime. Furthermore, large memory
capacity ASIC designs are more prone to catastrophic double-
bit failures that can often crash a digital system. To deal with
the potential presence of soft errors, it is very important to
proactively and deterministically locate and repair any
memory system errors to prevent system down time.

ActiveTest System Overview

FIG. 4A illustrates a block diagram of how the proposed
ActiveTest system can be integrated into a typical memory
system. As illustrated in FIG. 4A, the ActiveTest code (Ac-
tiveTest IP) may be integrated into a memory controller that
works with vendor provided physical memory. The vendor
provided physical memory may have its own Built-In Self-
Test (BIST) and Built-In Self-Repair (BISR) systems. The
ActiveTest system provides additional testing capabilities
beyond that provided by the BIST and BISR of the vendor
provided physical memory circuits.

The ActiveTest IP implements a background testing system
for the memory system. The ActiveTest memory testing is
proactive in that the ActiveTest system looks for possible
errors during normal operation. When errors are detected by
the ActiveTest, those errors may be corrected during run-
time. In some systems, an error may be corrected by using
hardware enabled remapping of faulty memory locations dur-
ing run-time. The ActiveTest IP provides the ability to
actively correct errors detected on a functional path.

FIG. 4B illustrates a flowchart that describes how the
ActiveTest IP may behave when an error is detected. Errors
may be handled with or without software intervention.

ActiveTest System Overview

The ActiveTest system deterministically tests memory sys-
tems in order to minimize system down time. The ActiveTest
IP may be created in a Hardware Design Language (HDL)
form that is parameterized such that it may be used with any
Functional Memory Configuration tool. The parameters that
may be adjusted may include but are not limited to #Ports,
#Memory Accesses, memory width, memory depth, #Mac-
ros, Frequency, etc. Once provided with the proper parameter
information, a synthesis tool may be used to synthesize the
ActiveTest circuitry for use within a memory controller.

The ActiveTest system has been designed to be mathemati-
cally optimal such that the ActiveTest system very efficiently
tests every memory location in the memory system. The
optimal testing system minimizes ActiveTest I[P memory
bandwidth usage, power usage, and other factors such that the
normal usage of the memory system is not impeded.

The ActiveTest system may be configurable In-field in
order to manage different system error profiles. The ActiveT-
est system has been exhaustively formally verified. The
ActiveTest system has a reporting capability that can be used
to provide detailed logs. In operation, the ActiveTest IP may
improve system memory downtime by multiple orders of
magnitude (~10%).

Challenges For ActiveTest System

FIG. 5 illustrates a memory system and lists several chal-
lenges that the ActiveTest system should be able to handle.
With a memory system, (1) more rows may be addressed
together and may have run-time failures. (2) More memory
macros may be addressed together and may have run-time
failures. (3) Smaller memory geometry may lead to a smaller
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6
memory hunting time (W). (4) The memory hunting time W
decreases with higher temperature. (5) A low clock speed
mode for the memory system decreases the Hunt cycle time
for the ActiveTest system.

ActiveTest System For Memory Testing

The ActiveTest system operates by reserving a few
memory cycles (referred to as ‘idle’ cycles because the
memory cannot be used for normal operation during these
reserved memory cycles) and using those reserved memory
cycles for testing memory locations in the memory system.
FIG. 6A illustrates a simple system that may be used which
uses X hunting (testing) time slots in every Y consecutive
timeslots. The Y timeslots form a fixed testing window in
which X timeslots are taken up for testing. Thus, the system
disclosed in FIG. 6A is a fixed time division multiplexing
(TDM) system.

The fixed time division multiplexing (TDM) system of
FIG. 6 A provides one method of looking for memory issues
in the memory system but the fixed TDM system always
accesses the memory at a fixed time. The fixed TDM system
of FIG. 6A accesses the memory for testing whether or not
other entities may need to access memory system. Thus, it
would be desirable to improve the system by considering the
needs of other entities that access the memory system being
tested by the ActiveTest system.

To improve upon the testing system, the ActiveTest system
may instead be more flexible. FIG. 6B illustrates an improved
interface for an Active test system that uses a sliding window
wherein the specific time when a particular test occurs may
vary as long as all of the required testing occurs eventually.
This sliding window based system allows other memory users
to have uninterrupted bust accesses to the memory system. In
this manner applications that require high-speed burst
accesses to the memory system will not be regularly inter-
rupted just to perform routine testing of the memory system.

The ActiveTest system has various performance metrics.
The ActiveTest overhead is defined as X/Y where the X
number of time slots required for testing in every Y timeslots.
This is the ‘background’ memory bandwidth used by the
ActiveTest IP in order to perform testing on the memory
system. The Burst Tolerance is defined as Y-X; this is the
maximum number of consecutive memory timeslot accesses
that may be performed by other entities without allowing for
a memory testing timeslot access.

In one analysis, one may consider the simple case when the
system is required to provide X=1 idle time slots for memory
testing in every Y timeslots. However, in practice, Y is much
larger than X for most implementations. For example, Y may
be approximately 10°. The ActiveTest IP may support many
different values of M wherein M is the number of simulta-
neous memory access to the memory system.

Example of the ActiveTest System In Operation

To describe how the ActiveTest system operates, a detailed
example is presented with reference to FIGS. 7A to 7P. FIG.
7A illustrates a block diagram of a memory system con-
structed with B different memory banks Each memory bank
in the memory system may be independently accessed. As
long as the ActiveTest system and a normal memory user
attempt to access different memory banks in the memory
system of FIG. 7A, the two different memory accesses may
occur simultaneously. Conversely, if a normal memory user
and the ActiveTest system attempt to access the same memory
bank of the memory system simultaneous then only one of the
two can access that memory bank.

FIG. 7B illustrates the memory system of FIG. 7A wherein
each of the B memory banks has been assigned a row pointer
(RP) in the ActiveTest system that designates the next row to
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test with the ActiveTest system. During each timeslot
assigned to the ActiveTest system, the ActiveTest system tests
one row from one of the B memory banks and then advances
the row pointer (RP) for that memory bank to the next row of
the memory bank.

FIG. 7C illustrates the memory system of FIG. 7B wherein
a hunt pointer has been added to point to one of the B memory
banks that will be tested with the ActiveTest system. In nor-
mal operation, the hunt pointer will be advanced for each
timeslot assigned to the Active Test system. In this manner, the
ActiveTest system advances through the B banks consecu-
tively and tests one row from the currently selected memory
banks and then advances the row pointer (RP) for that
memory bank to the next row. Thus, for example, in FIG. 7C
the ActiveTest system will test memory bank 1 (since that is
where the hunt pointer points to) and will test the row pointed
to with row pointer RP,.

FIG. 7D illustrates the memory system of FIG. 7C after the
ActiveTest system has tested the row pointed to with row
pointer RP, in memory bank 1. Note that the hunt pointer has
been advanced to point to the next memory bank (memory
bank 2) and that the row pointer RP, for memory bank 1 has
been advanced to the next row that needs to be tested in
memory bank 1. Similarly, in FIG. 7D the ActiveTest system
will test memory bank 2 (since that is where the hunt pointer
points to) and will test the row pointed to with row pointer
RP,.

FIG. 7E illustrates the memory system of FIG. 7D after the
ActiveTest system has tested the row pointed to with row
pointer RP, in memory bank 2. Note that the hunt pointer has
been advanced to point to the next memory bank (bank 3) and
that the row pointer RP, for memory bank 2 has been
advanced to the next row (wrapping back to the first row in
this example). In FIG. 7E the ActiveTest system attempts to
test memory bank 3 (since that is where the hunt pointer now
points to). However, as illustrated in FIG. 7F, if there is
another normal memory user attempting to access the same
memory bank (memory bank 3) then that other memory
access will be allowed to proceed in order to maximize the
memory system performance.

Since memory bank 3 is skipped in FIG. 7F, the ActiveTest
system notes that memory bank 3 is skipped so the ActiveTest
system can come back later and test that skipped memory
bank. FIG. 7G illustrates a deficit register consisting of a
deficit pointer that is used to point to the memory bank that
has been skipped and deficit counter that counts how many
times it has been skipped. FIG. 7H illustrates that the deficit
point is set to point to bank 3 and the deficit counter is set to
1 to indicate that memory bank 3 has been skipped once. The
ActiveTest system then advances to the next memory bank as
illustrated in FIG. 71.

Instead of testing a row in bank 3 that is blocked by the
normal memory user, the ActiveTest system instead tests a
row in bank 4 as illustrated in FIG. 71. The ActiveTest system
then advances the hunt pointer and the row pointer RP, for
memory bank 4 as illustrated in FIG. 7]J.

The ActiveTest system will proceed in the manner
described in FIGS. 7A to 7J. The ActiveTest system may
continually check to see if memory bank 3 can be tested but if
it cannot be tested then it will continue testing other memory
banks. FIG. 7K illustrates bank B being tested if memory
bank 3 is blocked. FIG. 7L illustrates bank 1 being tested
again if bank 3 remains blocked. FIG. 7M illustrates the
ActiveTest system having wrapped back around to bank 3 but
it is still unable to test bank 3. In such a case, the deficit count
is increased to 2 since bank 3 has been skipped twice.
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On the other hand, if bank 3 is no longer blocked then a row
in bank 3 may be tested and the hunt pointer advances as
illustrated in FIG. 7N. Note however that the deficit count
remains at 1 since bank 3 is still “behind’ in the testing sched-
ule.

All of the memory locations need to be tested on regular
basis and should not be allowed to go untested for too long.
Thus a maximum count register may be implemented as
illustrated in FIG. 7P. The maximum count register specifies
the maximum number of times that a bank may be skipped
(maximum deficit) before the ActiveTest system will take
priority and test a bank even if another memory user wishes to
access the same memory bank. Thus, the maximum count
register defines the burst tolerance (Y).

Advanced Round Robin Testing

A multi-bank memory system with concurrent testing
capability should test every memory row in the memory sys-
tem within a specified time period. The memory test circuitry
can access any memory bank that is not currently involved in
a memory read or memory write operation. Given these
requirements, the designer of memory test circuitry needs to
implement a test strategy that will ensure that no data is lost
and minimizes the number of reserved test clock cycles. The
present document proposes an advanced round robin memory
test system that generally rotates through all the memory
banks in a round robin fashion but prioritizes any memory
banks that had to be temporarily skipped during a round due
to a conflict with a memory read or write operation. The
operation of an implementation of an advanced round robin
testing system is disclosed with reference to FIGS. 8 and 9.

Referring to FIG. 8, the advanced round robin test system
831 operates using a hunt pointer 851, a deficit bank pointer
852, and a deficit counter 853. The hunt pointer 851 points to
the next memory bank that the advanced round robin test
system 831 plans on testing in a round-robin rotation manner.
The deficit bank pointer 852 points to memory bank has been
skipped during a round oftesting due to conflict with aread or
write operation. And the deficit counter 853 stores how many
times the bank identified in the deficit bank pointer 852 has
been skipped (minus any subsequent test operations). Note
that if the deficit counter 852 is zero then no memory bank is
‘behind’ on the testing schedule (and thus the current value in
the deficit bank pointer is invalid).

For each individual memory bank, the advanced round
robin test system 831 also maintains a row counter (not
shown) that specifies which memory row of that memory
bank will be tested next. The row counter for each memory
bank operates in a normal round robin manner to have the
memory test system circularly test through all the memory
rows of the memory bank. Thus, there are nested round-robin
loops: a main round-robin through the memory banks and
round-robins within each memory bank.

FIG. 9 illustrates a flow diagram that describes how one
embodiment the advanced round robin test system 831 oper-
ates. Note that not all implementations will include these
steps and some steps may be done in different orders in
different implementations. FIG. 9 illustrates just one possible
implementation of the general system.

When the memory system first receives power, the
advanced round robin test system 831 initializes itself at stage
901. The advanced round robin test system 831 clears the
deficit bank pointer 852 and a deficit counter 853 since no
banks are blocked initially. The advanced round robin test
system 831 sets the hunt pointer 851 to a first memory bank
(such as bank 1) to be tested. The advanced round robin test
system 831 then advances through stage 910 to the next
memory cycle.
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At the start of each memory cycle, the advanced round
robin testing system 831 first determines if there is a memory
bank that had been skipped during an earlier round of the test
cycle by testing if the deficit counter 853 is zero at stage 911.
If the deficit counter 853 is zero (meaning no skipped bank)
then the advanced round robin test system 831 can proceed to
stage 913 to attempt a normal test of the memory bank pointed
to by the hunt pointer 851.

The first step when attempting a normal round robin test is
to see if there is a memory bank conflict with a memory read
or write operation. Specifically, at stage 913, the advanced
round robin test system 831 determines if there is a current
memory access (read or write) to the memory bank pointed to
by the hunt pointer 851. The disclosed system gives priority to
memory access operations. If there is no conflict, then the
memory test system can test the memory bank pointed to by
the hunt pointer 851 at stage 921, increment the hunt pointer
851 at stage 923, and proceed to the next memory cycle as
stated in stage 910. The loop through stages 910, 911, 913,
921, and 923 is the normal round robin cycle that will occur as
long as there are not memory bank conflicts.

Eventually, a user of the memory system and the advanced
round robin test system 831 will attempt to access the same
memory bank that the advanced round robin test system 831
is attempting to test such that a memory bank conflict occurs.
Referring back to stage 913, when the advanced round robin
test system 831 encounters the first memory bank conflict
with a memory access (or any subsequent bank conflict when
there is no memory bank behind on its test schedule), the
advanced round robin test system 831 proceeds from stage
913 to stage 931. At stage 931, the advanced round robin test
system 831 sets the deficit bank pointer 852 to the current
value of the hunt pointer to indicate which memory bank has
been blocked from a test. The advanced round robin test
system 831 also sets the deficit counter 853 to 1 since this is
the first time the blocked memory bank is being skipped. The
advanced round robin test system 831 can then increment the
hunt pointer 851 at stage 933 and proceed to test the next
memory bank instead of the blocked memory bank. Specifi-
cally, the memory test system tests the memory bank pointed
to by the hunt pointer 851 at stage 921, increments the hunt
pointer 851 again at stage 923, and proceeds to the next
memory cycle as stated in stage 910.

Referring back to stage 911, the first step of each test cycle
is to determine if there is a memory bank that has been
blocked from a test cycle such that it is ‘behind’ in its normal
testing schedule. This may be done by testing the deficit
counter 853 at stage 911. If there is deficit memory bank that
had a test skipped then the advanced round robin test system
831 advances to stage 915 to determine if that memory bank
that was skipped earlier is still blocked by a memory access.
If that memory bank is no longer blocked then the advanced
round robin test system 831 proceeds to stage 941 to test that
memory bank that had been skipped in an earlier round using
the deficit bank pointer 852. The advanced round robin test
system 831 then decrements the deficit counter 853 at stage
942 and proceeds to stage 910 to handle the next test cycle.

Referring back to stage 915, if the deficit memory bank is
still blocked then the advanced round robin test system 831
proceeds to stage 951 to test the next memory bank in the
round-robin schedule as indicated by the hunt pointer 851.
However, at stage 951, the advanced round robin test system
831 first tests to see if the hunt pointer 851 equals the deficit
bank pointer 852. If the two values are not equal then the
advanced round robin test system 831 can proceed with a
normal test cycle. Specifically, the advanced round robin test
system 831 proceeds to test the memory bank pointed to by
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the hunt pointer 851 at stage 921, increment the hunt pointer
851 at stage 923, and proceeds to the next test cycle at stage
910.

Referring back to stage 851, if the hunt pointer 851 equals
the deficit bank pointer 852 then the advanced round robin
test system 831 has proceeded through an entire test round of
all the memory banks and the deficit memory bank continues
to be blocked. In such a case, the advanced round robin test
system 831 proceeds to stage 961 where it will increment the
deficit counter 853 to indicate that the deficit memory bank
has been skipped again for another test round and thus is
further behind schedule. The advanced round robin test sys-
tem 831 then increments the hunt pointer so that it can then
test the next memory bank at stage 921, increment the hunt
pointer 851 at stage 923, and proceed to the next test cycle at
stage 910.

In some implementations, the advanced round robin test
system 831 may include a test at stage 961 that tests to see if
the deficit bank counter 853 has exceeded a threshold number
of skipped test opportunities. If the test system has been
blocked beyond the threshold number then test may take
priority. However, in some embodiments such a test circuitry
is not necessary since this situation will only occur if the
memory user is not providing the specified minimum number
of'test cycles that allow the advanced round robin test system
831 to handle the worst case traffic pattern scenarios. Such
circuitry would merely use up valuable layout area and only
be activated when the memory user circuitry was imple-
mented improperly.

Required Test Cycles

In a memory system with the advanced round robin test
system as disclosed in

FIGS. 8 and 9, a memory user accesses a memory bank in
the memory system while the advanced round robin test sys-
tem 831 efficiently tests another memory bank of the memory
system simultaneously. The memory user has priority over
the test circuitry such that the memory request from a memory
user is not stalled. Thus, the memory test system works
around the memory users by testing memory rows in other
memory banks

However, certain memory access patterns by a memory
user could potentially block the advanced round robin test
system 831 from easily completing the duty of testing every
memory cell in the memory system within a desired time
period. For example, if a memory user continuously accesses
the same memory bank then the test system would not be able
to access that continuously accessed memory bank. Thus, the
memory system will still require a specified number of
reserved test cycles during a specified time period in order to
test the rows of that continually accessed memory bank.

The minimum number of reserved test cycles that will be
required is dependent upon several parameters of the memory
system. Specifically, the number of reserved test cycles will
be a function of a number of memory banks B in the memory
system, a number of rows R in each memory bank, and the
total number of memory cycles W that occur during each
desired testing time period. The required minimum number of
reserved test cycles can be expressed as X reserved testcycles
in every Y continuous memory cycles. The valueY represents
a sliding window of Y contiguous memory cycle. X is the
minimum number of reserved test cycles that the memory
user make available in every Y memory cycle window. Using
mathematical proofs, a minimum ratio of total memory cycles
(Y) in a window to require test cycles (X) has been deter-
mined. Specifically, in a system with the following assump-
tions:



US 9,165,687 B2

11

1) A pattern of having X reserved test cycles in every Y
memory cycles.

2) 1=X<R and R=aX+b, where O0<b=X-1

3) W=2BR

Then a memory access pattern that has the following total- 3
cycles to reserved-test cycles ratio (Y/X) will ensure that
every row in every memory bank will be tested within the
designated testing time period:
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As long as the memory user includes reserved test cycles
that comply with the above ratio, the advanced round robin
test system will always test all of the rows in the memory
system such that every memory cell is tested regularly. Note
that there are no stalls caused by conflicts with the test system
such that the memory system will always guarantee an imme-
diate response to a memory request.

Assuming that the number of memory cycles W during
each designated testing time period is large enough to allow )
all of the rows of a particular memory system to be tested, a
designer may calculate the needed sliding window sizeY that

is needed for a given reserved test cycle value X using the
following formula:

30
w .
W—(B—I)R—[E]+X if RB= W = (R+X)B

W-bB-1 )
{7J if W>(R+X)B

a+1
35

Note that in this document | x| and [x] denote the floor and
ceiling functions respectively.

Reducing Test Cycles

In the advanced round robin testing system as disclosed in
FIGS. 8 and 9, the advanced round robin test system 831 may
test a memory row during every memory cycle. However,
depending on the designated testing time period, the clock
rate, the number of memory banks, and the number of rows in
each memory bank; testing a row every memory cycle may
end up testing the rows of the memory system far more
frequently than the rows actually need to be tested. Testing the
memory rows more frequently than necessary will only
slightly improve the system and may have undesirable side
effects. Specifically, testing the memory rows more than nec-
essary causes the memory system to consume more power
than necessary and generates more heat that must be dissi-
pated by the integrated circuit device. Thus, various methods
of controlling the test system may be introduced to improve
energy efficiency of the memory system.

One method of adjusting the test system is to invoke the
memory test system less frequently than every cycle. For
example, the test system may be invoked every 2 memory
cycles, every 3 memory cycles, or some other schedule that
ensures adequate testing of memory rows but without unnec- 60
essary energy usage.

In another implementation, the memory test system may be
adaptive. The test system may operate in one mode during
normal operations but in another mode when the electronic
device that the integrated circuit is used within is in a ‘sleep” 65
mode. For example, a portable consumer electronics device
that is not currently being used may need to keep data stored

40

50

55

12

but use a minimal amount of energy when the user is not using
the device. In such situation, there may be no memory users
making memory requests such that test system may enter a
low-power state wherein memory test operations are issued at
aminimal rate. In such a state, the test system may not have to
handle both testing and memory access operations simulta-
neously.

In some embodiments, the test schedule may be deter-
mined using a function of the number of banks B in the
memory system, the number of rows R in each memory bank,
and the number of operating cycles W during the designated
testing time period. In this manner, the optimal test schedule
may be determined based upon the specific size and speed
parameters of the specific memory system.

In some embodiments, the test system may adjust its opera-
tion depending on the number of conflicts between the
memory user and the testing system. When there is no con-
flicts between the memory user and the testing system then
the testing system will not ‘fall behind’ on its test schedule
such that a slower test rate is possible. However, when a large
number of conflicts between the memory user and the testing
system occur, the test system may fall behind on its test
schedule such that the test system will need to ‘catch up’ on
test operations for memory banks that were skipped due to a
memory conflict. One possible implementation of a self-
adjusting system is illustrated in the flow diagram of FIG. 9.

Referring to stage 911, at the beginning of each potential
test cycle the test system tests the deficit counter to see if there
are any memory banks that are behind on their testing sched-
ule. If the deficit counter is not zero (thus indicating that a
memory banks is behind on its testing schedule) then the
testing system proceeds to stage 915 where the testing system
attempts to test the deficit memory bank. But when the deficit
counter is zero (indicating that the test system is on its normal
test schedule) then the testing system may enter a delay stage
912 where the test system may delay the next test operation.
During the delay stage, the testing system may allow one or
more operating cycles to pass such that extra energy-wasting
testing operations are not performed. Thus, with the delay
stage 912, the testing system only introduces time delays
when the test system is on schedule. If the memory testing
system falls behind, it will always attempt to test the skipped
memory bank.

Note that the size of the Y cycle wide sliding window of Y
contiguous memory cycles and the minimum number of
reserved test cycles X that the memory user make available in
every Y memory cycle window may vary for each different
memory system depending on the testing rates, the memory
technology used, and other factors.

ActiveTest System Performance

The ActiveTest system is an optimized system for continu-
ally testing memory without getting in the way of memory
users that access the memory system. FIG. 10A lists the
overhead required for a memory system with B banks, R
rows, and a hunt time of W. FIG. 10B lists the sufficiency for
an ActiveTest system (with parameter X).

FIG. 11 illustrates the performance guarantees of an
ActiveTest system. Note that various different numbers of
reserved timeslots were tested. A near optimal error hunting
overhead for X=1 was noted. FIG. 12 illustrates the improve-
ment of reducing catastrophic errors with the ActiveTest sys-
tem.

The disclosed ActiveTest system provides many benefits.
In particular, the ActiveTest system can alleviate system
memory downtime by over 10®. ASIC manufacturing and
chip vendors will realize several benefits. The testing system
can be inserted in a drop-in mode such that there are no
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changes to the functional memory interface. The testing sys-
tem may be tightly coupled such that there is only minimal
software intervention. The system is stateless such that no
ROM storage is required. The system complements existing
BIST and BISR systems. The system is also configurable
such that it allows configurations of repair tolerances in the
field.

Applicability For Memory Virus Testing

A memory testing system has been disclosed for testing
memory circuitry in the background while a memory system
is being used. However, the same techniques can be used for
other applications. For example, the same system can be used
to search a memory system for viruses that may have been
introduced into a computer system.

In one embodiment, the memory control is provided with
the hash of several potential virus threats. The disclosed sys-
tem can proceed through the memory system and test for a
hash of a known virus threat. If a potential threat is located
then secondary testing system may be alerted wherein the
secondary system. Further tests the potential threats since the
initial testing may identify false positives.

The preceding technical disclosure is intended to be illus-
trative, and not restrictive. For example, the above-described
embodiments (or one or more aspects thereof) may be used in
combination with each other. Other embodiments will be
apparent to those of skill in the art upon reviewing the above
description. The scope of the claims should, therefore, be
determined with reference to the appended claims, along with
the full scope of equivalents to which such claims are entitled.
Inthe appended claims, the terms “including” and “in which”
are used as the plain-English equivalents of the respective
terms “comprising” and “wherein.” Also, in the following
claims, the terms “including” and “comprising” are open-
ended, that is, a system, device, article, or process that
includes elements in addition to those listed after such a term
in a claim is still deemed to fall within the scope of that claim.
Moreover, in the following claims, the terms “first,” “second,”
and “third,” etc. are used merely as labels, and are not
intended to impose numerical requirements on their objects.

The Abstract is provided to comply with 37 C.F.R. §1.72
(b), which requires that it allow the reader to quickly ascertain
the nature of the technical disclosure. The abstract is submit-
ted with the understanding that it will not be used to interpret
or limit the scope or meaning of the claims. Also, in the above
Detailed Description, various features may be grouped
together to streamline the disclosure. This should not be inter-
preted as intending that an unclaimed disclosed feature is
essential to any claim. Rather, inventive subject matter may
lie in less than all features of a particular disclosed embodi-
ment. Thus, the following claims are hereby incorporated into
the Detailed Description, with each claim standing on its own
as a separate embodiment.

We claim:

1. A digital memory system, said digital memory system

comprising:

a set of memory banks, each of said memory banks able to
be accessed independent of the other memory banks in
said set of memory banks, each of said memory banks
comprising a plurality of memory rows; and

a memory testing system for testing said set of memory
banks, said memory testing system comprising
a hunt pointer for pointing to a next memory bank to be

tested, said memory testing system skipping said next
memory bank when a memory access is currently
blocking access said next memory bank;
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a first deficit bank pointer for identifying a first deficit
memory bank that has been skipped from a recent
testing attempt due to a blocking memory access, and

a first deficit counter associated with said first deficit
bank pointer, said first deficit counter for storing a
count of times said first deficit memory bank has been
skipped for testing;

wherein said first deficit memory bank identified in said first
deficit bank pointer is given priority for testing over said next
memory bank pointed to by said hunt pointer when said first
deficit counter is not zero.

2. The digital memory system as set forth in claim 1
wherein said memory testing system further comprises a
memory row pointer for each memory bank in said set of
memory banks.

3. The digital memory system as set forth in claim 1
wherein said memory test system decrements said first deficit
bank counter upon testing said first deficit memory bank
identified by said first deficit bank pointer.

4. The digital memory system as set forth in claim 1
wherein said memory testing system increments said hunt
pointer upon testing said next memory bank identified by said
hunt pointer.

5. The digital memory system as set forth in claim 1
wherein said memory testing system further comprises

a second deficit bank pointer for identifying a second defi-

cit memory bank that has been blocked from a recent

testing attempt, and

a second deficit counter associated with said second deficit

bank pointer, said second deficit counter for storing a

count of times said second deficit memory bank has been

skipped for testing;

wherein said first deficit memory bank identified in said first
deficit bank pointer is given priority over said next memory
bank pointed to by said hunt pointer when said first deficit
counter is not zero and said second deficit memory bank
identified in said second deficit bank pointer is given priority
over said next memory bank pointed to by said hunt pointer
when said second deficit counter is not zero.

6. The digital memory system as set forth in claim 5
wherein when both said first deficit counter and said second
deficit counter are non zero, said memory testing system
determines the greater value of said first deficit counter and
said second deficit counter and then attempts to test a memory
bank associated with the greater value.

7. The digital memory system as set forth in claim 5
wherein when both said first deficit counter and said second
deficit counter are non zero, said memory testing system
attempts to test either said first deficit memory bank identified
by said first deficit bank pointer or said second deficit memory
bank identified by said second deficit bank pointer on a round
robin basis.

8. The digital memory system as set forth in claim 5
wherein when both said first deficit counter and said second
deficit counter are non zero, said memory testing system
randomly selects either said first deficit memory bank iden-
tified by said first deficit bank pointer or said second deficit
memory bank identified by said second deficit bank pointer
for testing.

9. The digital memory system as set forth in claim 5
wherein when both said first deficit counter and said second
deficit counter are non zero, said memory testing system
randomly selects either said first deficit memory bank iden-
tified by said first deficit bank pointer or said second deficit
memory bank identified by said second deficit bank pointer
depending on which was blocked earlier.
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10. The digital memory system as set forth in claim 1
wherein said digital memory system comprises an embedded
dynamic memory system.

11. A method of testing memory cells in a multi-bank
dynamic memory system, said method of testing memory
cells comprising:

testing memory banks in said multi-bank dynamic memory

system in a nominal round-robin manner;

skipping a test of a first deficit memory bank when there is

a conflict with a first memory access accessing said first
deficit memory bank; and

immediately testing said first deficit memory bank when

there is no longer a conflict with a memory access
accessing said first deficit memory bank.

12. The method of testing memory cells in a multi-bank
dynamic memory system as set forth in claim 11 wherein a
first deficit bank pointer is used to identify said first deficit
memory bank skipped during a testing round.

13. The method of testing memory cells in a multi-bank
dynamic memory system as set forth in claim 12 wherein a
first deficit counter is used to identify a number of number of
testing cycles that have consecutively skipped said first deficit
memory bank.

14. The method of testing memory cells in a multi-bank
dynamic memory system as set forth in claim 13 further
comprising:

decrementing said first deficit counter upon testing said

first deficit memory bank.

15. The method of testing memory cells in a multi-bank
dynamic memory system as set forth in claim 11 wherein a
hunt pointer is used to identify a next memory bank to test.
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16. The method of testing memory cells in a multi-bank
dynamic memory system as set forth in claim 15 further
comprising

incrementing said hunt pointer after testing a next memory

bank identified by said hunt pointer.

17. The method of testing memory cells in a multi-bank
dynamic memory system as set forth in claim 15 further
comprising

skipping a test of a second deficit memory bank when there

is a conflict with a second memory access accessing said
second deficit memory bank; and

immediately testing said first deficit memory bank or sec-

ond deficit memory bank when there is no longer a
conflict with accessing said first deficit memory bank or
said second deficit memory bank.

18. The method of testing memory cells in a multi-bank
dynamic memory system as set forth in claim 17 wherein said
method tests said first deficit memory bank or second deficit
memory bank depending on which has been skipped the
greater number of times.

19. The method of testing memory cells in a multi-bank
dynamic memory system as set forth in claim 17 wherein said
method tests said first deficit memory bank or second deficit
memory bank on a random basis.

20. The method of testing memory cells in a multi-bank
dynamic memory system as set forth in claim 17 wherein said
method tests said first deficit memory bank or second deficit
memory bank on a round robin basis.

21. The method of testing memory cells in a multi-bank
dynamic memory system as set forth in claim 17 wherein said
method tests said first deficit memory bank or second deficit
memory bank depending on which was skipped earlier.
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