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OPTIMIZING ERROR FLOOR
PERFORMANCE OF FINITE-PRECISION
LAYERED DECODERS OF LOW-DENSITY
PARITY-CHECK (LDPC) CODES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of pending U.S. patent
application Ser. No. 13/610,438, filed Sep. 11, 2012, which is
a divisional of U.S. patent application Ser. No. 12/350,052
(now U.S. Pat. No. 8,291,292), filed Jan. 7, 2009, which
claims the benefit under 35 U.S.C. §119(e) of U.S. Provi-
sional Application No. 61/019,946, filed Jan. 9, 2008, each of
which is hereby incorporated by reference herein in its
entirety.

BACKGROUND OF THE DISCLOSURE

This disclosure relates generally to data decoding, and
more particularly to optimizing error floor performance of
finite-precision layered decoders of low-density parity check
(LDPC) codes.

With the continuing demand for high-reliability transmis-
sion of information in digital communication and storage
systems, and with the rapid increase in available computa-
tional power, various coding and decoding techniques have
been investigated and applied to increase the performance of
these systems. One such coding technique, low-density parity
check (LDPC) coding, was first proposed in the 1960s, but
was not generally used until the 1990s when researchers
began to investigate iterative coding and decoding tech-
niques.

LDPC codes are among the few known error control cod-
ing techniques capable of transmitting information at a rate
close to the Shannon limit or channel-capacity. LDPC codes
may be used in the transmission of information on media, or
channels, with or without memory. LDPC coding techniques
are generally iterative in nature, and may be represented by
many different types of parity check matrices. The structure
of'an LDPC code’s parity check matrix may be, for example,
random, cyclic, or quasi-cyclic. LDPC codes defined by
quasi-cyclic parity check matrices are particularly common
and computationally efficient. These codes are known as
quasi-cyclic low density parity check (QC-LDPC) codes.

As used herein, “finite precision” refers to a property of an
object that signifies that the object either may contain infor-
mation that may be represented by a finite set of symbols or
that the object may perform computations on information
represented by a finite set of symbols.

An iterative decoder for use with channels without memory
may include an error correcting code (ECC) decoder. In per-
forming decoding, the information from the channel may be
passed to the ECC decoder for use in the decoding operation.
An iterative decoder for use with channels with memory may
include a soft-input soft-output (SISO) channel detector in
addition to the ECC decoder. An iterative decoder may alter-
nate between use of a SISO channel detector and ECC
decoder to decode data. The information from an iteration of
the SISO channel detector may be passed to the ECC decoder
for use in the next ECC decoding iteration, and vice versa.
Through this iterative process, data reliability is improved.

An iterative decoder may decode LDPC codes using an
iterative message passing algorithm, such as a min-sum
decoding algorithm. Such algorithms may decode a received
codeword using an iterative process, in which each iteration
includes two update steps. In the first update step, messages
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may be passed from some (or all) check nodes to some (or all)
variable nodes, and in the second update step, messages may
be passed from some (or all) variable nodes to some (or all)
check nodes. The update steps may be scheduled in a serial
(layered) or flooding fashion. A layered update schedule may
provide similar performance with half the number of itera-
tions as compared to a flooding decoding schedule. Details
about a layered decoder can be found in the following refer-
ence “A 640-Mb/s 2048-Bit Programmable LDPC Decoder
Chip”, in IEEE Journal of Solid State Circuits, March 2006.
An iterative decoder which uses a layered update schedule for
the message passing algorithm may be referred to as a layered
iterative decoder.

The performance capability of a coding scheme, such as a
LDPC coding scheme, is often described by the code’s per-
formance curve. The performance curve is a plot of signal-
to-noise ratios (SNR) vs. Bit Error Rate (BER), or Sector
Error Rate (SER). The performance curve of LDPC codes
generally includes two regions: a waterfall region and an error
floor region (see FIG. 6). In the waterfall region, the code’s
BER or equivalently, SER, decreases rapidly with improve-
ments in SNR. However, in the high SNR operating region,
the BER/SER plateaus to an error floor, meaning that further
improvements in channel condition would not lead to signifi-
cantly lower BER/SER.

Messages that are passed in the message passing algorithm,
used by the iterative decoder, may be of a finite precision. If
the messages passed have insufficient precision or precision
that is not optimized, the iterative decoder may have the
drawback of producing two types of errors that results in
higher error floors, which is highly undesirable. These two
types of errors are: 1) near-codeword failures and 2) cata-
strophic errors also known as propagating errors of propagat-
ing failures. Near-codeword failures in iterative decoders that
do not use properly selected or optimized message precisions
may occur more frequently than they would in iterative
decoders that use properly selected or optimized message
precisions. Details about near-codeword failures can be found
in “Weaknesses of Margulis and Ramanujan-Margulis Low-
Density Parity-Check Codes” in Electronic Notes in Theo-
retical Computer Science 2003. Catastrophic errors may lead
to increased BER/SER at high SNR values. Moreover, an
increased BER/SER athigh SNR values may lead to degraded
application performance and/or a lowered data transmission
rate.

Many communication channels utilizing iterative encoders
and iterative decoders operate in the error floor region of the
performance curve of the LDPC code. Due to the fact that
error floors tend to be very low, e.g. in some instances the
error floor is observed at SER=le-9, at SER=le-12, or lower, it
might not be feasible to reliably simulate error floor perfor-
mance of a LDPC code. As a consequence, simulations in the
waterfall region are typically relied upon to carry out perfor-
mance/complexity studies for implementations of iterative
decoders using messages. It is important to note, however,
that neither the effects of near-codeword failures nor the
effects of catastrophic errors are likely to be observed in the
waterfall region of the performance curve of a LDPC code.
Therefore, iterative decoders that are configured based on the
performance curve of the LDPC code in the waterfall region
(i.e. BER/SER performance at lower SNRs) may use preci-
sions that may not be appropriate or sufficient for the error
floor region of the performance curve of the LDPC code. This
can lead to suboptimal implementations of an iterative
decoder for LDPC codes.

Tterative decoders which use a message passing algorithm
with optimized message precisions (or with a modified
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decoding update rule) may avoid a high probability for near-
codeword failures and may produce fewer catastrophic errors.
This may lead to decreased BER/SER at various SNR values.
Therefore, it would be desirable to provide layered iterative
decoders which use a message passing algorithm with opti-
mized message precisions based on the error floor region of
the performance curve of a LDPC code. The increased decod-
ing performance in the error floor region of these types of
decoders may lead to improved application performance and/
or larger data transmission rates.

SUMMARY OF THE DISCLOSURE

Accordingly, systems and methods are disclosed that pro-
vide optimizations in the precision of a-posteriori P type
messages computed by the variable nodes and the precision of
the Q type messages that are passed from the variable nodes
to the check nodes in the message passing algorithm used by
the iterative decoder for LDPC codes. Selecting precisions
according to this disclosure may provide optimized perfor-
mance of iterative decoders in the error floor region of the
performance curve of a LDPC code.

Embodiments are provided to avoid catastrophic (propa-
gating) errors in the layered iterative decoder. For example, P
and/or Q type messages in the layered iterative decoder may
be “freezed” as soon as those messages reach their saturation
values. As another example, finite precisions for messages in
the message passing algorithm used by the iterative decoder
may be selected to avoid the catastrophic errors altogether.

Embodiments are also provided for selecting the precision
and the maximum magnitudes of the messages passed from a
soft-input, soft-output (SISO) channel detector (e.g. a SOVA
detector) to the LDPC decoder and from LDPC decoder to
SISO channel detector in the detector-decoder combination
for channels with memory.

An encoder, in accordance with some embodiments, may
encode user information (such as holographic page data or
magnetic recording data) using a LDPC code and send this to
amodulator to transmit on a channel. The channel may or may
not have memory. After transmission on the channel, a
demodulator may demodulate the information received from
the channel. The received signal (received vector) from the
demodulator may contain errors due to channel noise. The
signal may then be processed by an iterative decoder.

A finite precision for Q type messages (i.e. the messages
sent from variable nodes to check nodes) or P type messages
(i.e. the a-posteriori probabilities of variable nodes) may be
selected. The precisions may be selected based at least in part
on channel type (e.g. channels with memory or channels
without memory). The precisions may also be selected based
at least in part on the performance of the LDPC code. For
example, assuming that the precision of R type messages (i.e.
the messages from sent from check nodes to variable nodes)
may be given or already selected (e.g. based on the hardware
complexity limitations), selecting a different precision of the
Q type and/or P type messages may be done in order to
preferably optimize the performance of an LDPC code in the
error floor region of its performance curve. The layered itera-
tive decoder may then use the message passing algorithm
with the selected finite precisions for check nodes and vari-
able nodes messages to process the received vector.

In some embodiments, such as in channels without
memory, the precision of R type messages, P, may be first
selected or optimized, and then the precision of the computed
a-priori LLRs (P,;z) may be selected. In order to substan-
tially eliminate catastrophic (propagating) errors, the preci-
sion of P type messages may be set to: P,~ceil(log,(cw-2"%+
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271iryy where cw is the largest column weight in the LDPC
parity check matrix. Moreover, if the message passing algo-
rithm update steps are scheduled so that Q type messages are
stored in memory, the precision of Q type messages may be
set to: PQ:ceil(logz((cw—l)QP 2427118)) Selecting the preci-
sions of messages in this way may ideally avoid catastrophic
errors. It may also reduce the occurrence of near-codeword
failures, which may be a dominating factor in the perfor-
mance of a LDPC code in the error floor region.

In some embodiments, such as in channels with memory, a
precision for P type and Q type messages, P and P, respec-
tively, may be chosen together with the precision of the LL.Rs
received from a channel detector (i.e. S type messages with
precisions P), and/or together with the precision of output
messages from the ECC decoder back to the channel detector
(i.e. Le type messages). For iterative decoders used in chan-
nels with memory, the precision of S type messages (P) may
be reduced, if desired. There may be a gain or loss in the
performance of the LDPC code due to this reduction. Reduc-
ing P, may, however, mitigate the effects of improper LLRs
(such as defect LLRs, for example) that may be produced by
a channel detector (e.g. due to defects present in the received
vector).

For example, the precision of R type messages may first be
selected or optimized; the precision of Le type messages may
be set to P, =P +ceil(log,(cw)), and the precision of S type
messages, P, may be set. For example, this precision may be
set so that P <P, , Then, the precision of P type messages may
be set to: Py=ceil(log,(cw-2"%+27%)) and the precision of Q
type messages may be set to: P,=ceil(log,((cw-1)-27%+27%)).
Setting precisions in this way may ideally avoid catastrophic
errors are avoided altogether. This may also reduce the occur-
rence of some near-codeword failures, which may dominate
the LDPC code performance in the error floor region.

In another embodiment, the precisions of messages sent
between a SISO channel detector and a ECC decoder may be
selected and appropriately quantized. More specifically, the
range of Le type messages going from the output of the ECC
decoder and the input of the SISO channel detector may be
confined. Also, the range of LS, , messages going from the
SISO channel detector to the ECC decoder may be confined.
Depending on implementation, a message that is passed by
the ECC decoder to the SISO detector may be either a P type
ora LS, , message. However, a message sent from the SISO
channel detector to the ECC decoder may be labeled as a
extrinsic message, LS, , (a LS,,, message may contain new
information produced by the SISO channel detector).

Yet another embodiment relates to a layered iterative
decoder that “freezes” any P type (and/or Q type) message
(i.e. stops the message from changing value) as soon as that
message becomes saturated (i.e. there are insufficient bits to
hold the information in the message) in the layered iterative
decoder. This may result in reducing or entirely eliminating
catastrophic (propagating) errors in the layered decoder. P
type and/or Q type messages may be set to smaller precisions
(P and P, respectively). For example, P, may be set so that
P <ceil(log,(cw-27*+2"%)), and P, may be set so that P ,<ceil
(log,((cw-1) 27%+275). More specifically, the precisions for P
type messages may be set as Py=ceil(log,(cw-272+275))-1 or
P,=ceil(log,(cw-27*+27%))-2. Setting the precisions of the P
type messages in this manner may avoid catastrophic errors if
it is possible to freeze the P type messages. However, using
reduced precisions, and not freezing the P type messages,
may not avoid catastrophic errors.

BRIEF DESCRIPTION OF THE FIGURES

The above and other aspects and advantages of the inven-
tion will be apparent upon consideration of the following
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detailed description, taken in conjunction with the accompa-
nying drawings, in which like reference characters refer to
like parts throughout, and in which:

FIG. 1 shows an illustrative block diagram of an error-
correcting communication/storage system in accordance
with some embodiments;

FIG. 2A shows an illustrative example of the properties of
a codeword in accordance with some embodiments;

FIG. 2B shows an illustrative example of a quasi-cyclic
parity check matrix in accordance with some embodiments.

FIG. 3A shows a simplified block diagram of an iterative
decoder used for decoding a codeword in channels without
memory in accordance with some embodiments;

FIG. 3B shows a simplified block diagram of an iterative
decoder used for decoding a codeword in channels with
memory in accordance with some embodiments;

FIG. 4 shows a graphical illustration of a parity check
matrix and a message passing algorithm corresponding to the
parity check matrix in accordance with some embodiments;

FIG. 5A shows a graphical illustration of update rules for
variable nodes in the message passing algorithm in accor-
dance with some embodiments;

FIG. 5B shows a graphical illustration of update rules for
check nodes in the message passing algorithm in accordance
with some embodiments;

FIG. 6 shows an illustrative graph of regions of error at
various signal to noise ratios in accordance with some
embodiments;

FIG. 7 shows a graphical illustration of the scheduling of
update steps of the iterative layered message passing algo-
rithm in accordance with some embodiments;

FIG. 8 shows a simplified block diagram of a serial (lay-
ered) decoder processing unit used in an iterative in accor-
dance with some embodiments;

FIG. 9 shows a flowchart of an embodiment of a process for
choosing the optimal precision of P and/or Q type messages
within the iterative decoder used by the message passing
algorithm for decoding a codeword in channels without
memory in accordance with some embodiments;

FIG. 10 shows a simplified block diagram of an iterative
decoder used for decoding a codeword in channels with
memory and precisions of various messages passed within the
iterative decoder used by the message passing algorithm in
accordance with some embodiments;

FIG. 11 shows a flowchart of an embodiment of a process
for choosing the optimal precision of P or Q type messages
within the iterative decoder used by the message passing
algorithm for decoding a codeword in channels with memory
in accordance with some embodiments;

FIG. 12A shows a flowchart of a process for “freezing” a P
type message, if it becomes saturated in accordance with
some embodiments;

FIG. 12B shows a flowchart of a process for “freezing” a Q
type message, if it becomes saturated in accordance with
some embodiments; and

FIG. 12C shows a simplified block diagram of serial (lay-
ered) decoder processing unit 1220 used in an iterative
decoder with additional “message freezing” hardware in
accordance with some embodiments.

DETAILED DESCRIPTION OF THE
DISCLOSURE

Systems and methods are provided for optimizing perfor-
mance of layered decoders of low-density parity check
(LDPC) codes. In applications or devices where information
may be altered by interference signals or other phenomena,
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error correction codes, such as LDPC codes, may provide a
measured way to protect information against such interfer-
ence. As used herein, “information” and “data” refer to any
unit or aggregate of energy or signals that contain some
meaning or usefulness. Encoding may generally refer to the
process of generating data in a manner that facilitates subse-
quent detection and/or correction of errors in the data, while
decoding may generally refer to the counterpart process of
detecting and/or correcting the errors. The elements of a
coding system that perform encoding and decoding are like-
wise referred to as encoders and decoders, respectively.

FIG. 1 shows an illustrative communication or data storage
system 100 that utilizes error correction codes for achieving
reliable communication or storage in accordance with some
embodiments. User information 102 is encoded through
encoder 104. User information 102, often referred to as the
message information or a message vector, may be grouped
into units of k symbols, where each symbol may be binary,
ternary, quaternary, or any other suitable type of data. How-
ever, for simplicity, embodiments of the present invention
will be described in terms of binary bits. In the process of
encoding user information 102, different codes may be used
by encoder 104 to achieve different results.

As shown in FIG. 1, encoder 104 may encode user infor-
mation 102 using a low density parity check (LDPC) code.
Theresult of encoding user information 102 is codeword 106,
also denoted as c. Codeword 106 may be of a predetermined
length, which may be referred to as n, where nzk.

In one implementation, codeword 106 is passed to a modu-
lator 108. Modulator 108 prepares codeword 106 for trans-
mission on channel 110. Modulator 108 may use phase-shift
keying, frequency-shift keying, quadrature amplitude modu-
lation, or any suitable modulation technique to modulate
codeword 106 into one or more information-carrying signals.
Channel 110 may represent media through which the infor-
mation-carrying signals travel. Channel 110 may be an asym-
metric or symmetric channel. Channel 110 may have memory
or may not have memory. For example, channel 110 may
represent a wired or wireless medium in a communication
system, or an electrical (e.g., RAM, ROM), magnetic (e.g., a
hard disk), or optical (e.g., CD, DVD or holographic) storage
medium in which the information-carrying signals may be
stored.

Due to interference signals and other types of noise and
phenomena, channel 110 may corrupt the waveform trans-
mitted by modulator 108. Thus, the waveform received by
demodulator 112, received waveform 111, may be different
from the originally transmitted signal waveform. Received
waveform 111 may be demodulated with demodulator 112.
Demodulator 112 may demodulate received waveform 111
with filters, multiplication by periodic functions, or any suit-
able demodulation technique corresponding to the type of
modulation used in modulator 108. The result of demodula-
tion is received vector 114, which may contain errors due to
channel corruption.

Received vector 114 may then be processed by iterative
decoder 116. Iterative decoder 116 may be used to correct or
detect errors in received vector 114. Iterative decoder 116
may use an iterative message passing algorithm to correct or
detect errors in received vector 114. The iterative message
passing algorithm may use, for example, a error correction
code (ECC) decoder. The iterative message passing decoding
algorithm may use, for example, a SISO channel detector and
an ECC decoder. When utilizing such an iterative algorithm,
iterative decoder 116 may perform several iterations of the
algorithm until the output of iterative decoder 116 converges
to a valid codeword. In some instances, the output of iterative
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decoder 116 may fail to converge to a valid codeword.
Decoder failure may be caused by a variety of reasons.
Because the output of iterative decoder 116 may never con-
verge to a valid codeword in certain situations, iterative
decoder 116 may be equipped with a maximum iteration
limit, which may be any suitable predetermined number.
When iterative decoder 116 reaches the maximum iteration
limit, iterative decoder 116 may automatically terminate
operation and move on to the next received vector 114. How-
ever, if the output of iterative decoder 116 successfully con-
verges to a valid codeword, iterative decoder 116 may then
output decoded information 118.

FIG. 2A shows an illustrative example of the properties of
codeword 106 of FIG. 1 in accordance with some embodi-
ments. The LDPC codes processed by encoder 104 of FIG. 1
and iterative decoder 116 of FIG. 1 are conventionally repre-
sented by mathematical vector models. In particular, an
LDPC code may be described by its parity check matrix H.
Equation 210 illustrates parity check matrix 212. Parity check
matrix 212 may be of size [rxn], corresponding to codewords
of length n and syndromes of length r. Codewords may be, for
example, n-length codeword 106 or n-length received vector
114 of FIG. 1. Syndrome length r may satisfy the inequality
rzn-k and where k is the length of the information being
encoded (e.g., length of user information 102 of FIG. 1).
When parity check matrix 212 is multiplied by codeword 214,
the result is zero-vector 216, which is a vector of size [rx1]
where all elements equal zero. Parity check matrix 212 has a
maximum column weight (cw) defined to be the maximum of
the set of the number of nonzero entries in each column of
parity check matrix 212. Parity check matrix 212 is not
unique, and may be chosen, for example, to be computation-
ally convenient and/or to decrease the number of errors of the
ECC decoder used by the message passing algorithm in itera-
tive decoder 116 of FIG. 1. As discussed in relation to FIG. 1,
codeword 214 may be decoded in iterative decoder 116 of
FIG. 1 to produce decoded information 118 of FIG. 1.

FIG. 2B shows an illustrative example of quasi-cyclic par-
ity check matrix 220 in accordance with some embodiments.
In hardware implementations of low-density parity check
codes, it may be desirable for storage and processing to have
quasi-cyclic code representations. A quasi-cyclic code repre-
sentation is defined by the characteristic that the parity check
matrix for that particular code is quasi-cyclic. A quasi-cyclic
matrix is made up of circular submatricies known as circu-
lants. Circulant 222 is one such matrix. Circulant 222 is a
square matrix—i.e. circulant 222 has the same number of
rows as columns. This number is commonly referred to as the
circulant size S,_. In addition, circulants have the property that
for any given positive integer M<S_, any row/column of the
circulant matrix may be cyclically shifted by M positions to
obtain another row or column. It may be computationally
beneficial to represent circulants so that they have the prop-
erty that the cyclic shift of any row or column by M=1 yields
the adjacent row or column. Circulant 222 may be one of
many circulants of the same size that comprise the quasi-
cyclic parity check matrix 220.

If a quasi-cyclic representation of parity check matrix is
used, then the implementation of LDPC encoder 104 of FIG.
1 and the ECC decoder, used by the message passing algo-
rithm in iterative decoder 116 of FIG. 1, may be significantly
simplified. One reason for this is that parity check matrix 212
of FIG. 2A may be much easier to store, since only the first
row of each circulant matrix needs to be stored in order to
generate the entire circulant. Another reason for this is that the
storage of the messages used in LDPC decoders may be made
compact and that the parallelization in encoder/decoder may
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be achievable with simple shifting operations since adjacent
rows (or adjacent columns) corresponding to the same circu-
lant are simple cyclic shifts of each other.

FIG. 3A shows a simplified block diagram of an iterative
decoder that may be used for decoding a codeword in chan-
nels without memory in accordance with some embodiments.
An iterative decoder for use with channels without memory
may include ECC decoder 312. Received vector 114 from
channel 110 of FIG. 1 may be passed as channel input 314 to
ECC decoder 312 for use in the decoding operation. ECC
decoder 312 may calculate a log-likelihood-ratio (LLR) mes-
sage (also known as soft information). For example, ECC
decoder 312 may compute the LL.R message using the equa-
tion

P, = 0)]

LLR(b;):log(P(bizl)

for each i, where b, may represent the i bit in received vector
114 of FIG. 1. ECC decoder 312 may use the computed LLR
messages in the message passing algorithm, which will be
discussed further below. ECC decoder 312 may then output
LLRs 316 based on the output of the message passing algo-
rithm.

FIG. 3B shows a simplified block diagram of an iterative
decoder used for decoding a codeword in channels with
memory in accordance with some embodiments. An iterative
decoder for use with channels with memory may include
soft-input soft-output (SISO) channel detector 322, and ECC
decoder 326. In performing iterative decoding, an iterative
decoder may alternate between use of SISO channel detector
322 and ECC decoder 326. The information from an iteration
of SISO channel detector 322 may be passed to the ECC
decoder 326 for use in the next ECC decoding iteration, and
vice versa. Through this iterative process, data reliability may
be improved.

In each iteration of the process, received vector 114 from
channel 110 of FIG. 1 may be passed as channel input 321 to
SISO channel detector 322. SISO channel detector 322 may
then use a soft output Viterbi algorithm (SOVA) or a Bahle,
Cocke, Jelinek, and Reviv (BCIR) algorithm and channel
input 321 to produce detector output LL.Rs 324 (also referred
to as S type messages, or more generally, soft information).
Detector output LLRs 324 may then be passed as input to
ECC decoder 326 for use in the decoding operation. ECC
decoder 326 may use detector output LL.Rs 324 to compute
ECC decoder 326 output LL.Rs 328 (also referred to as Le
type messages). ECC decoder 326 output LLRs 328 may be
passed as input LLRs 329 to SISO channel detector 322.

FIG. 4 shows graphical illustration 400 of a parity check
matrix and a message passing algorithm corresponding to the
parity check matrix in accordance with some embodiments.
An LDPC code may be graphically represented by a Tanner
graph, a bipartite graph showing the relationship between a
LDPC code’s codeword bits and syndrome bits. The advan-
tages of using a Tanner graph of a LDPC code may include
access to efficient graph-based message passing algorithms
for decoding. There are two types of nodes shown in Tanner
graphs 403 and 404. Variable nodes 401 represent each posi-
tion in codeword 106 and are denoted by circles. Thus, there
may be n variable nodes. Variable nodes may also be referred
to as symbol or bit nodes. Check nodes 405 represent each
syndrome (parity check equation) of the LDPC code. For
example, there may be n-k check nodes. Check nodes are
denoted by squares.



US 9,256,487 B1

9

Tanner graphs 403 and 404 correspond to parity check
matrix 402. The check nodes and variable nodes of Tanner
graphs 403 and 404 may correspond to the rows and columns
of parity check matrix 402, respectively. The undirected
edges connecting check nodes with variable nodes may cor-
respond to the locations of the non-zero entries of parity
check matrix 402. In other words, parity check matrix 402
may be the adjacency matrix of Tanner graphs 403 and 404.
For example, the 1 at the (1,1) location and the O at the (1,2)
location of parity check matrix 402 may indicate that there is
anedge between check node S| and variable node V,, and that
there is no edge between check node S, and variable node V.,
respectively. Therefore, if there are d,, “1”’s in a given column
of parity check matrix 402, then there are d  edges emanating
from the variable node corresponding to that column. Equiva-
lently, the variable node corresponding to that column may
have a degree of d,.. Similarly, if there are d_ “1””’s in some
given row of parity check matrix 402, then there may be d.
edges emanating from the check node corresponding to that
row. Equivalently, the check node corresponding to that row
may have a degree of d...

The check nodes (e.g. check nodes 405) of a Tanner graph
may either be satisfied or unsatisfied, where a satisfied node
has a binary value of 0 and an unsatisfied node has a binary
value of 1. A check node may be satisfied (i.e., equal to 0), if
the values of the variable nodes connected to the check node
sum to an even number. In other words, the value of each
check node may be equal to the sum modulo two of the value
of the variable nodes to which it is connected. For example,
check node S, of Tanner graphs 403 and 404 may be satisfied
if the values of variable nodes V,, V5, and Vg SUM to an even
number. Furthermore, when a check node is unsatisfied, at
least one of the variable nodes connected to it may be in error.
Thus, the value of the check nodes (or equivalently, the value
of the syndrome produced by parity check matrix 402) may
provide a parity check on each codeword received by a LDPC
decoder (i.e., iterative decoder 116 of FIG. 1), thereby pro-
viding error correction capability to communication or data
storage system 100 of FIG. 1.

Tanner graphs 403 and 404 may be used to illustrate an
iterative two-step decoding algorithm known as message
passing algorithm 406 employed by, for example, iterative
decoder 116 of FIG. 1. The message passing algorithm may
perform several rounds (or iterations) of message updates in
accordance with the structure of the Tanner graph associated
with the parity check matrix of the LDPC codes to be
decoded.

In a layered decoder, one layer of message passing decod-
ing (i.e. each iteration 412 of message passing algorithm 406)
may include processing several check nodes. For example, in
processing the first layer, some of the check nodes 405 (for
example, check nodes S, and S,) may request that some of
variable nodes 401, to which they are connected, send their
current messages to these check nodes. Check nodes S, and
S, may then perform update 408 by carrying out computa-
tions based on the messages that they receive and a set of
update rules, which will be discussed further below. Then,
checknodes S1 and S2 may send their current messages to the
variable nodes to which they are connected. The variable
nodes connected to check nodes S, and S, (i.e. variable nodes
V,,V,,V,andnodes V,, V5 and V) may then perform update
410 by carrying out computations based on the messages that
they receive and a set of update rules, which will be discussed
further below.

Then, for example, in processing the second layer, some of
the check nodes 405 (for example, check nodes S; and S,)
may request that the variable nodes connected to these check
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nodes send their current messages to these check nodes.
Check nodes S, and S, may then perform update 408 by
carrying out computations based on the messages that they
receive and a set of update rules, which will be discussed
further below. Then, check nodes S; and S, may send their
current messages to the variable nodes to which they are
connected. Variable nodes connected to check nodes S; and
S, (i.e. nodes V3, Vi, V, and nodes V, V, and V) may then
perform update 410 by carrying out computations based on
the messages that they receive and a set of update rules, which
will be discussed further below. The same process may be
repeated for check nodes Ss and Sq.

Iteration 412 may be repeated until either the codeword has
been decoded or until a threshold number of iterations has
been reached. The messages that are sent during each step of
each iteration of message passing algorithm 406 may depend
on the update rules and the scheduling of the update steps,
which will be discussed further below. The messages may
correspond to log-likelihood-ratio values.

FIG. 5A shows graphical illustration 510 of update rules
for variable nodes in message passing algorithm 406 of FIG.
4 in accordance with some embodiments. For decoders oper-
ating in channels without memory, prior to the first iteration
of' message passing algorithm 406, each of the variable nodes
401 of FIG. 4 may compute LLR message 512 based on
information from received vector 114 in FIG. 1. For decoders
operating in channels with memory, prior to the first iteration
of' message passing algorithm 406, each of the variable nodes
401 of FIG. 4 may compute LLR message 512 based on
information received from SISO channel detector 322 of FIG.
3B.

Each of variable nodes 401 of FIG. 4 may have d, edges
emanating from it in Tanner graphs 403 and 404 of FIG. 4.
Each of these edges may connect a variable node to a check
node in Tanner graphs 403 and 404 of FIG. 4. For each
iteration of the message passing algorithm 406 of F1G. 4, each
variable node may receive d, messages 514 each from a dif-
ferent check node to which it is connected. Each of messages
514 sent from the check nodes to the variable nodes may be
labeled as a R type message. For example, these messages are
labeled R, through R, in graphical illustration 510.

In the layered iterative decoder, in the first layer, some
number of check nodes may be processed and the correspond-
ing neighboring variable nodes are updated. Then in the next
layer, the next set of check nodes may be processed and the
corresponding variable nodes may be updated. Each layer
may be processed in this manner.

There may be several ways to perform (schedule) message
update steps in the layered decoder. For example, using initial
LLR messages 512, and each of the R type messages 514,
each of the variable nodes 401 of FIG. 4 may compute Q type
message 513 (also known as a bit-to-check message) based on
the equation:

dy-1

Q=LLR+ZRJ-.

J=1

This Q type message may be sent to the check nodes to
which the variable node is connected. Similarly, message
update steps may be performed to compute P type message
515 (also known as an a-posteriori probability (APP) mes-
sage). Using initial LRR message 512 and each of the R type
messages 514, each of the variable nodes 401 of FIG. 4 may
compute a P type message 515 based on the equation:
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d\/
P=LLR+ )" R;.
=

In addition, each of the variable nodes 401 of FIG. 4 may also
compute an extrinsic (LLR;,,) message based on the equa-
tions:

d\/
LLRapp(v) = LLR + Z R;
1

and LLR zAV)=LLR ,-(v)-LLR. The scheduling of update
steps will be discussed further below.

FIG. 5B shows graphical illustrations 520 of update rules
for check nodes in message passing algorithm 406 of FI1G. 4
in accordance with some embodiments. Each of the check
nodes 405 of FIG. 4 may have d, edges emanating from it in
Tanner graphs 403 and 404 of FIG. 4. Each of these edges may
connect a check node to a variable node in Tanner graphs 403
and 404 of FIG. 4. For each iteration of the message passing
algorithm 406 of FIG. 4, each check node may receive d.
messages 524 each from a different variable node to which it
is connected. Messages sent from the variable nodes to the
check nodes may be labeled as Q type messages. Depending
on the scheduling of the update steps, either Q type messages
may be stored in the iterative decoder’s memory or P type
messages may be stored in the iterative decoder’s memory.

Each of the check nodes 405 of F1G. 4 may compute R type
message 522, using a min approximation. Using each of the Q
type messages 524, each of the check nodes 405 of FIG. 4
may compute R type messages 522 based on the equations

Ry _ET (O
tanh(z) = B tanh(T]
which may be approximated using min approximation

de-1

R~min(Qp, ... . Qa1 | sign(Qo.
k=1

The Q, messages (i.e. anumber k of Q type messages) may be
read directly from the memory of'the iterative decoder or may
be reconstructed. The Q, messages may be reconstructed
from the P, messages (i.e. a number k of P type messages) and
the previous R type messages that may be read from the
memory of the iterative decoder. These newly computed R
messages may be sent to each of the variable nodes to which
the check node is connected.

FIG. 6 shows an illustrative graph of regions of error at
various signal-to-noise-ratios (SNRs) in accordance with
some embodiments. As mentioned previously, the perfor-
mance capability of LDPC codes, as described by a mapping
of BER/SER to SNR, generally comprises two regions of
operation: the waterfall region and the error floor region. FIG.
6 shows an exemplary LDPC performance curve 600 with
waterfall region 602 and error floor region 604. In error floor
region 604, the BER/SER of the LDPC code disadvanta-
geously asymptotes to a lower limit. Because the normal
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operating conditions for a communication/storage channel
may be in error floor region 604, lowering the error floor may
improve the performance of the LDPC code in terms of BER/
SER. Appropriately selecting the precision of messages sent
during the use of message passing algorithm 406 of FIG. 4
may lower the error floor. Therefore, appropriately selecting
the precision of messages sent during the use of message
passing algorithm 406 of FIG. 4 may improve the perfor-
mance of the LDPC code in terms of BER/SER.

FIG. 7 shows graphical illustration 710 of the scheduling of
update steps of message passing algorithm 406 of FIG. 4 in
accordance with some embodiments. In illustration 710, vari-
able node 716 is denoted by a circle. In illustration 710 check
node 712 and check node 714 are denoted by squares.

For example, during one part of one iteration of message
passing algorithm 406 of FIG. 4, check node 712 may update
and send R type message R,,.,, (of precision Py) to variable
node 716. Check node 712 may use the min approximation, as
discussed above, to compute R, . Variable node 716 has
access to the previous Q type message (of precision P,) that
it had sent to check node 712, in the current iteration, prior to
check node 712 updating. Variable node 716 also has access
to the previous R type message, R, (of precision P;), sent to
it by check node 714 in the previous iteration. After check
node 712 has updated, in the current iteration, variable node
716 may compute Q:=Q+R, ., -R_,; and send this Q type
message to check node 714. In one of the subsequent itera-
tions of message passing algorithm 406 of FI1G. 4, check node
714 may use this Q type message, the Q type messages
received from other variable nodes to which it is connected,
and the min approximation, discussed above, to compute a R
type message R,,.,, (of precision Py) to be sent to variable
node 716. Check node 714 may compute R type messages for
all other variable nodes to which it is connected, in a similar
way.

Each variable node may also update its P type message. For
example, after check node 712 has updated, in the current
iteration, variable node 716 may compute the a-posteriori
probability message P:=P-R_, +R,,.., (also discussed in FI1G.
8). This update may be performed as follows: Variable node
716 may have access to the previous R type message, R, (of
precision Py), computed and sent to it by check node 714 in
the previous update. Check node 712 may update and send R
type message R,,.,, (of precision Py) to variable node 716.
Check node 712 may use the min approximation, as discussed
above, to compute R,,,,, from the Q type message recon-
structed using P-R_,; (where R ,; is the previous R type
message received from variable node 716). After check node
712 has updated, variable node 716 may compute P:=Q+R, .,
and store this P type message (see FIG. 8). In one of the
subsequent layers of iterative decoding, check node 714 then
may use this P type message, the P type messages received
from other variable nodes (to which it is connected), and the
corresponding R ,, messages, to reconstruct the Q type mes-
sages using P-R_,,. Check node 714 may then use the min
approximation, discussed above, to compute a R type mes-
sage R, ., (of precision P) to be sent to variable node 716.
Similarly, check node 714 may compute R type messages for
all other variable nodes to which it is connected.

FIG. 8 shows a simplified block diagram of serial (layered)
decoder processing unit 800 used in iterative decoder 116 of
FIG. 1 in accordance with some embodiments. Processing
unit 800 may be used to implement each layer of each itera-
tion of the layered update steps in message passing algorithm
406 of FIG. 4. Processing unit 800 may include memory 804
to store P type messages, cyclic shifter 810 which may be
used to cyclically shift the bits of the P type messages, adder
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812 and subtractor 806, cyclic shifter 822 which may be used
to cyclically shift the bits output from adder 812, check node
processing unit 818 (also known as check node unit (CNU)
818), and memory 820 to store R type messages. The ECC
decoder used by message passing algorithm 406 of FIG. 4
may include a plurality of check node units (CNUs), for
example, one check node unit (CNU) per check node in the
Tanner graph associated with the LDPC code being used. For
example, if one layer of the ECC decoder includes S, check
nodes, then S_ such CNUs are needed. In some embodiments,
processing unit 800 may be used to implement the process
described in FIG. 7. For example, processing unit 800 may be
used to implement the operation given by the equation P:=P+
R,...—R,;s A similar processing unit may be used to imple-
ment the operation Q:=Q+R,,.,,—R_

The a-priori message in FIG. 8 refers to (LLR) messages
produced from the output of the channel or the output of a
SISO channel detector (e.g. SISO channel detector 322 of
FIG. 3B). In some embodiments, memory 804 may initially
store the LLR messages derived from, for example, the output
of'channel 110 of FIG. 1. In other embodiments, memory 804
may initially store the LLR messages derived from SISO
channel detector, for example, the SISO extrinsic messages
(LS,,, message in FIG. 10). Each P type and/or Q type mes-
sage corresponds to a particular variable node in the Tanner
graph associated with the LDPC code being used. The LLR
messages are read initially from memory 804. The output of
memory 804 may be input to cyclic shifter 810, which may
shift the bits contained in the output of memory 804 appro-
priately according to a quasi-cyclic LDPC parity check
matrix (e.g. matrix 220 of FIG. 2B) associated with the LDPC
code being used in message passing algorithm 406 of FIG. 4.
Cyclic shifter 810 may then output the shifted bits to subtrac-
tor 806.

Subtractor 806 may also have input R, ;, which, which, as
described in F1G. 7, represents the R type message previously
computed by the check node in the previous update. For each
variable node connected to this the check node represented by
CNU 818, subtractor 806 may initially calculate and output
Q:=LLR upon the first iteration of message passing algorithm
406 of FI1G. 4 and Q:=P-R ,, upon each subsequent iteration.
The output of subtractor 806 may be input to check node
processing unit 818 (CNU 818). CNU 818 may then compute
and output R type message R,,.,, using as input the Q type
messages from subtractor 816 and the min approximation, as
discussed above and in FIG. 7. CNU 818 may then output the
computed R, , message as input to adder 812. Adder 812
may also have as input the Q type messages from subtractor
816. Adder 812 may then calculate and output the value of
R,,.,, added to the output of subtractor 806 into the input
cyclic shifter 822. Cyclic shifter 822 may shift the bits of its
input appropriately according to the quasi-cyclic parity check
matrix (e.g. matrix 220 of FIG. 2B) being used in message
passing algorithm 406 of FIG. 4 and output the result to the
input of memory 804.

One cause of catastrophic errors in layered iterative decod-
ers with insufficient precision of P type and/or Q type mes-
sages may relate to a “swing” in R type messages. During an
update of an R type message in layered iterative decoder (e.g.
within processing unit 800), the computed difference of R
type messages, (R,,.,,—R,;,), also referredto as a “swing” inR
type messages, may represent a significant portion of (or even
exceed) the magnitude of a P type message (which may have
already been truncated). Furthermore, the P type message and
(R,,.,,—R,;;) may have opposite signs. For decoders with suf-
ficient precision, however, the difference of R type messages,
(R,,er—R,2), may actually be a small portion of the magnitude
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of'the P type message. This may mean that in layered iterative
decoders with insufficient precision for the P type message,
the result of computing P-R_, +R,,.,, may be significantly
different than the result of computing P-R_, +R,,.,, in layered
iterative decoders that do not impose any limitation on the
precision of intermediate messages. Similarly, in layered
iterative decoders with insufficient precision for a Q type
message, the result of Q-R_,+R, _,, may be significantly dif-
ferent than the results of computing Q-R,+R,,.,, in layered
iterative decoders with larger or sufficient precisions for the Q
type message.

Inother words, a problem in layered iterative decoders with
insufficient precision of P type and/or Q type messages is that
some P type or Q type messages may become saturated.
Furthermore this problem may be complicated by the event of
having a large “swing” in the difference of R type messages,
R,,...,—R,;»), while having opposite signs between the
“swing” in the difference of R type messages and the P type
(or Qtype) message. Catastrophic errors may occur when this
problem occurs on several nodes at substantially the same.
Catastrophic errors may propagate through the iterative
decoder. These errors may be eliminated via proper selection
of'the finite precisions of the P type or Q type messages, P, or
P, or by a message “freezing” method, described below.

FIG. 9 shows a flowchart of a process for choosing the
optimal precision of P type and/or Q type messages within
iterative decoder 116 of FIG. 1 used by message passing
algorithm 406 of F1G. 4 for decoding a codeword in channels
without memory in accordance with some embodiments. Pro-
cess 900 includes steps 902 and 910. In certain embodiments,
process 900 is designed to select or optimize the precision of
the messages by iterative decoder 116. For example, process
900 may select or optimize the precision of P type and/or Q
type messages given that the precision of R type or LLR
messages are already selected (or already optimized).

At step 902, the precision of R type messages (Pz) may be
selected or optimized. Furthermore, at step 902, the precision
of LLR messages (P;; z) may be selected.

At step 910, the precision of P type messages (Pz) may be
set to a bit value. Specifically, the values of Py, P; ; », and the
maximum column weight, cw, of the parity check matrix
associated with the LDPC code may be used to determine the
value of P,. This may be done using equation P =ceil(log,
(cw-27242710)) which may be simplified to P,=P z+ceil(log,
(cw+1))if P4 is equal to P, . The selected precisions may be
used in every iteration of iterative decoder 116 of FIG. 1. With
this selection, the catastrophic errors may be substantially
eliminated.

At step 910, the precision of Q type messages (P,) may
also be set. Specifically, the values of Py, P; ; z, and the maxi-
mum column weight, cw, of the parity check matrix associ-
ated with the LDPC code may be used to determine the value
of PIQ. Tlllis may b.e done using equ?ltion PQ:ceil(logz.((cw—
1)-27%2°45)), which may be simplified to P,=P+ceil(log,
(cw)) if Py is equal to P, .. With this selection, the cata-
strophic  (propagation) errors may be substantially
eliminated.

FIG. 10 shows a simplified block diagram of iterative
decoder 1000 used for decoding a codeword in channels with
memory and precisions of various messages passed within
iterative decoder 1000 used by message passing algorithm
406 of FIG. 4 in accordance with some embodiments. Itera-
tive decoder 1000 includes SISO channel detector 1004, cir-
cuitry 1050, and ECC decoder 1005. In performing iterative
decoding, iterative decoder 1000 may alternate between the
use of SISO channel detector 1004, and ECC decoder 1005.
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Similar to iterative decoder 320, messages from an itera-
tion of SISO channel detector 1004 may be passed to the ECC
decoder 1005 for use in the next ECC decoding iteration, and
vice versa. However, the precision of the messages sent from
SISO channel detector 1004 may be quantized by circuitry
1050 prior to them being input to ECC decoder 1005. Simi-
larly, the precision of the messages sent from ECC decoder
1005 may be quantized prior to them being input to SISO
channel detector 1004.

The quantization of SISO a-priori information may be
related to the implementation of SISO channel detector 1004.
The a-priori message may have a precision P bits. For
example, this a-priori message may have the same precision
as the R type messages in the iterative decoder for LDPC
codes, i.e., Pc=P. SISO channel detector 1004 may produce
the a-posteriori SISO message LS, which may be the sum
of a-priori information received from ECC decoder 1005 and
new extrinsic information LS, derived by SISO channel
detector 1004. Although the information passed from SISO
channel detector 1004 to ECC decoder 1005 may be a LS_,
message, in some embodiments it may be advantageous to
pass a LS, message instead. The LS, message may be
computed based on the equation

d\/
LSap = LSexs + »_ R;.
=

Due to the way in which the LS, , message is computed, it
may become important to confine the range of the LS_,
message to be withintherange of the LS, , message and to set
the range to a predetermined value. If this is not done, then as
iterations of message passing algorithm 406 of FIG. 4
progress, the range of the LS, message may occupy increas-
ingly large portion of the LS, , message range. Initially, the P
type message in ECC decoder 1005 may take a quantized
version of the value of LS, . If, however, there is no quan-
tization, the initial P type message in the ECC decoder may be
setas P=LS,,).

The range of the LS, message may be allowed to occupy
a very large portion of the range of the LS ,,, message. Then,
given that there may be a saturation of P type messages that
may take place during the update of P type messages within
ECC decoder 1005 (i.e. P=(P-R,,)+R,,...), new information
from ECC decoder may not be captured by the P type mes-
sage. This, however, may result in the sub-optimal perfor-
mance of SISO channel detector 1004. To remedy the situa-
tion, SISO channel detector 1004 may confine the range of the
LS,,, messageto be within the range ofthe LS, message and
to a predetermined level using circuitry 1050. This may be
accomplished by reconstructing the LS, , message from the
LS,,, message using the equation LS ~LS, -Le, quantiz-
ing (clipping) the LS, message to the desired range, and then
obtaining a new, quantized, value forthe LS, message using
the equation P=quantized(LS,_ ,)+Le. These operations may
be implemented using the adder, subtractor, clippers, and
delay unit in circuitry 1050. This operation assures that infor-
mation derived by SISO channel detector 1004, as well as
information derived by ECC decoder 1005 are properly rep-
resented by the P type messages.

FIG. 11 shows a flowchart of a process for choosing the
optimal precision of P or Q type messages within the iterative
decoder 116 of FIG. 1 used by message passing algorithm 406
for decoding a codeword in channels with memory in accor-
dance with some embodiments. Process 1100 includes steps
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1101, 1102, and 1110. In certain embodiments, process 1100
may be designed to select or optimize the precision of the
messages computed or passed by iterative decoder 116 of
FIG. 1. For example, process 1100 may select or optimize the
precision of P type messages and/or Q type messages by
setting, selecting or optimizing the precision of R type mes-
sages, S type messages, and/or Le type messages.

At step 1101, the precision of R type messages (Px) may be
selected or optimized. In this step, the precision of Le type
messages (P, ) may be computed using the equation P, =P+
ceil(log,(cw)). In step 1102, the precision of S type messages
(P5) may be selected or optimized such that Ps<P; .

At step 1110, the precision of P type messages (P,) may be
set. Specifically, the values of P, P, and the maximum
column weight, cw, of the parity check matrix associated with
the LDPC code may be used to determine the value of P,. This
may be done using equation P,=ceil(log,(cw-272+275)),
which may be simplified to P.=P, ceil(log,(cw+1)) if Py is
equal to Pg.

At step 1110, the precision of Q type messages (P,) may
also be set. Specifically, the values of P, Pg, and the maxi-
mum column weight, cw, of the parity check matrix associ-
ated with the LDPC code may be used to determine the value
of PIQ. This may .be done using quation PQ:ceil(logz.((cw—
1)-2724.259)), which may be simplified to P ,=Pg+ceil(log,
(cw)) if P is equal to P. The selected precisions may be used
in every iteration of iterative decoder 116 of FIG. 1.

Setting the precision of messages in iterative decoder 116
of FIG. 1 to an appropriate value helps to avoid catastrophic
errors in the decoding operation and may reduce the occur-
rence of near-codeword failures, thus reducing the error floor
of'the LDPC code’s performance curve.

FIG. 12 A shows a flowchart of a process for “freezing” a P
type message if itbecomes saturated in accordance with some
embodiments. Process 1200 involves steps 1201, 1202, 1203,
and 1204. At the beginning of decoding, for each variable
node, step 1201 may be executed. At step 1201, freeze_flag
(v) may be set to zero. Next, step 1202 may be executed. At
step 1202, process 1200 may wait for the value for the P type
message to be updated (e.g. by the update steps in message
passing algorithm 406 of F1G. 4 within processing unit 800 of
FIG. 8). Next, at step 1203, it is determined if the value of the
P type message is greater than 2”7 or if the value of the P type
message is less than 277, This step determines if the magni-
tude (absolute value) of the P type message is greater than the
277 bit precision allotted to the P type messages (i.e. the P type
message has been saturated/clipped). Next, at step 1204, if the
value of the P type message is greater than 277 or if the value
ofthe P type message is less than 277, the freeze_flag(v) may
be set to one. Otherwise, step 1202 may be executed.

FIG. 12B shows a flowchart of a process for “freezing” a Q
type message, if it becomes saturated in accordance with
some embodiments. Process 1210 involves steps 1211, 1212,
1213, and 1214. At the beginning of decoding, for each vari-
able node, step 1211 may be executed. At step 1211, freez-
e_flag(v) may be set to zero. Next, step 1212 may be
executed. At step 1212, process 1210 may wait for the value
for the Q type message to be updated (e.g. by the update steps
in message passing algorithm 406 of F1G. 4 within processing
unit 800 of FIG. 8). Next, at step 1213, it is determined if the
value of the Q type message is greater than 272 or if the value
of the Q type message is less than —272. This step determines
if the magnitude (absolute value) of the Q type message is
greater than the 272 bit precision allotted to the Q type mes-
sages (i.e. the Q type message has been saturated/clipped)
Next, at step 1214, if the value of the Q type message is
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greater than 272 or if the value of the Q type message is less
than -27¢, the freeze_flag(v) may be set to one. Otherwise,
step 1212 may be executed.

FIG. 12C shows a simplified block diagram of serial (lay-
ered) decoder processing unit 1220 used in iterative decoder
116 of FIG. 1 with additional “message freezing” hardware in
accordance with some embodiments. Processing unit 1220
may be used to implement each layer of each iteration of a
check node unit (CNU) update steps in the layered message
passing algorithm 406 of FIG. 4. As with processing unit 800
of FIG. 8, processing unit 1220 may include memory 1254 to
store P type messages, cyclic shifter 1260 which may be used
to cyclically shift the bits of the P type messages, adder 1262
and subtractor 1256, cyclic shifter 1272 which may beused to
cyclically shift the bits output from adder 1262, check node
processing unit 1268 (CNU 1268), and memory 1270 to store
R type messages. These elements may be substantially simi-
lar to memory 804 of FIG. 8, cyclic shifter 810 of FIG. 8,
adder 812 of FIG. 8 and subtractor 806 of FIG. 8, cyclic
shifter 822 of FIG. 8, check node processing unit 818 of FIG.
8 (CNU 818 of FIG. 8), and memory 820 of FIG. 8. However,
processing unit 1220 may also include circuit block 1221,
selector 1222, circuit block 1223, and selector 1224. This
additional hardware may allow for the “freezing” ofa P type
or Q type message, if either becomes saturated. This “mes-
sage freezing approach” may be used for channels with or
without memory.

Circuit block 1221 may include hardware to implement
process 1200 of FIG. 12A. Selector 1222 may have as input,
the output of free_flag(v) from circuit block 1221 for each
variable node. Selector 1222 may also have as input the
output of cyclic shifter 1272 and the valuex2"?. If, free_flag
(v)=1 in circuit block 1221, then selector 1222 may select the
valuex2?” to output to memory 1254 for the current variable
node and for the current iteration of message passing algo-
rithm 406 of FIG. 4 as well as for each subsequent iteration.
Therefore, if free_flag(v)=1 for a particular variable node, the
decoded value (i.e. the hard decision) on this node may be
frozen and no updates may be performed on the P type mes-
sages for this variable node. If; free_flag(v)=0 in circuit block
1221, then selector 1222 may output the output of cyclic
shifter 1272 to memory 1222 for the current iteration. The
sign of +277 output to memory 1254 by selector 1222 may be
the same as the sign of the current value of the P type message.

Circuit block 1223 may include hardware to implement
process 1210 of FIG. 12B. Selector 1224 may have as input,
the output of free_flag(v) from circuit block 1223 for each
variable node. Selector 1222 may also have as input the
output of subtractor 1256 and the valuex272. If, free_flag(v)
=1 in circuit block 1223, then selector 1224 may select the
valuex27? to output to CNU array 1268 for the current vari-
able node and for the current iteration of message passing
algorithm 406 of FIG. 4 as well as for each subsequent itera-
tion. Therefore, if free_flag(v)=1 for a particular variable
node, the decoded value (i.e. the hard decision) on this node
may be “frozen” and no updates may be performed on the Q
type messages for this variable node. If, free_flag(v)=0 in
circuit block 1223, then selector 1224 may output the output
of subtractor 1256 to CNU array 1268 for the current itera-
tion. The sign of 272 output to CNU array 1268 by selector
1224 may be the same as the sign of the current value of the P
type message.

The ability to “freeze” P type or Q type messages may be
useful in situations when the precisions of these messages are
not set sufficiently high. For example, the ability to “freeze”
the value of a P type message may be useful if the precision of
the P type message is chosen to be P <ceil(log,(cw-27*+
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271ryy Otherwise, if Pp=(log,(cw-27%+2718)) then the P type
messages may have sufficient precision and the clipping
(saturation) of the P type messages may not occur. Similarly,
the ability to “freeze” the value of a Q type message may be
useful if the precision of the Q type message is chosen to be
P ,<ceil(log, (cw-2Pre271RY)  Otherwise, if P,2(log,
(cw-2P24271RY) then the Q type messages may have sufficient
precision and the clipping (saturation) of Q type messages
may not occur.

What is claimed is:

1. A system comprising:

memory circuitry configured to store check node messages

and variable node messages; and

processing circuitry configured to:

update a variable node message of stored variable node
messages; and

determine if the variable node message is saturated
based on a precision of the variable node message.

2. The system of claim 1, wherein the processing circuitry
is further configured to update the variable node message by
processing the variable node message based on the check
node messages.

3. The system of claim 1, wherein the processing circuitry
is further configured to determine if the variable node mes-
sage is saturated based on determining if the variable node
message is greater than 2 raised to a precision of the variable
node message or if the variable node message is less than the
negative of 2 raised to a precision of the variable node mes-
sage.

4. The system of claim 1, wherein the processing circuitry
is further configured to at least determine if the variable node
message is saturated based on determining if P>27 or if
P<-27% wherein P denotes a magnitude of a P type message
and 27 denotes bit precision allotted to the P type message.

5. The system of claim 1, wherein the processing circuitry
is further configured to at least determine if the variable node
message is saturated based on determining if Q>272 or if
Q<-27¢, wherein Q denotes a magnitude of a Q type message
and 272 denotes bit precision allotted to the Q type message.

6. The system of claim 1, further comprising a plurality of
selectors wherein if the variable node message is saturated:

the processing circuitry is configured to generate an indi-

cation that the variable node message is saturated, and
the selectors are configured to stop future updating of the
variable node message.

7. The system of claim 6, wherein each selector of the
plurality of selectors is further configured to set the variable
node message to a maximum possible value for the variable
node message.

8. The system of claim 6, wherein each selector of the
plurality of selectors is further configured to set the variable
node message to a minimum possible value for the variable
node message.

9. The system of claim 1, wherein the variable node mes-
sage of the stored variable node messages is used to decode
information within one of a wireless communication
medium, an electrical storage medium, and a magnetic stor-
age medium.

10. A method comprising:

storing check node messages and variable node messages

using memory circuitry;

updating a variable node message of stored variable node

messages based on stored check node messages; and
determining if the variable node message is saturated based
on a precision of the variable node message.



US 9,256,487 B1

19

11. The method of claim 10, further comprising updating
the variable node message by processing the variable node
message based on the check node messages.

12. The method of claim 10, further comprising determin-
ing if the variable node message is saturated based on deter-
mining if the variable node message is greater than 2 raised to
a precision of the variable node message or if the variable
node message is less than the negative of 2 raised to a preci-
sion of the variable node message.

13. The method of claim 10, further comprising determin-
ing if the variable node message is saturated based on deter-
mining if P>27% or if P<-277-277, wherein P denotes a mag-
nitude of a P type message and 27 denotes bit precision
allotted to the P type message.

14. The method of claim 10, further comprising determin-
ing if the variable node message is saturated based on deter-
mining if Q>27¢ or if Q<-27¢, wherein Q denotes a magni-
tude of a Q type message and 272 denotes bit precision allotted
to the Q type message.
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15. The method of claim 10, further comprising
if the variable node message is saturated:
generating an indication that the variable node message
is saturated; and
stopping future updating of the variable node message.

16. The method of claim 15, further comprising setting the
variable node message to a maximum possible value for the
variable node message.

17. The method of claim 15, further comprising setting the
variable node message to a minimum possible value for the
variable node message.

18. The method of claim 15, wherein the variable node
message of the stored variable node messages is used to
decode information within one of a wireless communication
medium, an electrical storage medium, and a magnetic stor-
age medium.



