US009106487B2

a2 United States Patent

(10) Patent No.: US 9,106,487 B2

Pettey 45) Date of Patent: *Aug. 11, 2015
(54) METHOD AND APPARATUS FOR A SHARED USPC ..c.ocevven. 370/392, 359, 419, 463, 420, 398
I/O NETWORK INTERFACE CONTROLLER See application file for complete search history.
(75) Inventor: (Cl}lsr)istopher J. Pettey, Leander, TX (56) References Cited
(73) Assignee: MELLANOX TECHNOLOGIES U.S. PATENT DOCUMENTS
LTD., Yokneam (IL) 4,058,672 A 11/1977 Crager etal.
(*) Notice: Subject to any disclaimer, the term of this 5,280,614 A 1/1994 Munroe et al.
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 279 days.
This patent is subject to a terminal dis- FOREIGN PATENT DOCUMENTS
claimer. EP 0574691 A 12/1993
(21) Appl. No.: 13/467,161 EP 0935200 A1 11/1999
(Continued)
22) Filed: May 9, 2012
(22) File s OTHER PUBLICATIONS
. N Mellanox Technologies, Inc. “Understanding PCI Bus, PCI-Express
(65) Prior Publication Data and Infiniband Architecture (White Paper).” Document No. 2006 WP.
US 2012/0250689 Al OCt 4 2012 Apr 29, 2005. Mellanox Technologies, Inc. Santa Clara, CA, UsS.
’ (Continued)
Related U.S. Application Data Primary Examiner — Warner Wong
(60) Division of application No. 10/909,254, filed on Jul. (74) Attorney, Agent, or Firm — D. Kligler 1.P. Services Ltd.
30, 2004, now Pat. No. 8,346,884, and a
continuation-in-part of application No. 10/757,714, (57 ABSTRACT
filed on Jan. 14, 2004, now Pat. No. 7,046,668, said A shared network interface controller (NIC) interfaces a plu-
. rality of operating system domains as part of the load-store
(Continued) architecture of the operating system domains. A bus interface
couples the NIC to a load-store domain bus (such as PCI-
(51)  Int.Cl. Express), using header information to associate data on the
HO4L 29/12 (2006.01) bus with an originating operating system domain. Transmit/
HO4L 127741 (2013.01) receive logic connects the NIC to the network. Association
(Continued) logic allows the NIC to designate, and later lookup which
destination MAC address (on the Ethernet side) is associated
(52) US.Cl with which operating system domain. Descriptor register files
cre ... HO4L 29/12009 (2013.01); HO4L 29/0653 and Control Status Registers (CSR’s) specific to an operating
(2013.01); HO4L 29/12018 (2013.01); system domain are duplicated and made available for each
(Continued) domain. Several direct memory access (DMA) engines are
. . . provided to improve throughput. Packet replication logic,
(58) Field of Classification Search filters (perfect and hash) and VAN tables are used for loop-

CPC . HO4L 12/56; HOAL 2012/56; HO4L 29/0653;
HO4L 29/06095; HO4L 49/3009; HO4L

49/309; HOAL 45/74; HOAL 49/30; HO4L
2012/5614; HO4Q 11/0428; H04Q 11/0471

ing back packets originating from one operating system
domain to another and other operations.

4 Claims, 15 Drawing Sheets

200

202 204 208 /
PROGESSING PROCESSING PROCESSING
COMPLEX COMPLEX COMPLEX
i/ 208 i/ 210 1/ 212
214
SHARED 10 SWITCH

4216

220

SHARED
NETWORK
INTERFACE
CONTROLLER

ETHERNET




US 9,106,487 B2
Page 2

(60)

(1)

(52)

Related U.S. Application Data

application No. 10/909,254 is a continuation-in-part of
application No. 10/757,713, filed on Jan. 14, 2004,
now Pat. No. 7,457,906, which is a continuation-in-
part of application No. 10/757,711, filed on Jan. 14,
2004, now Pat. No. 7,103,064, whichis a continuation-
in-part of application No. 10/802,532, filed on Mar. 16,
2004, now Pat. No. 7,836,211, and a continuation-in-
part of application No. 10/757,714, said application
No. 10/802,532 is a continuation-in-part of application
No. 10/757,713, and a continuation-in-part of applica-
tion No. 10/757,711, said application No. 10/909,254
is a continuation-in-part of application No. 10/864,
766, filed on Jun. 9, 2004, now Pat. No. 7,664,909, and
a continuation-in-part of application No. 10/757,714,
which is a continuation-in-part of application No.
10/757,713, which is a continuation-in-part of appli-
cation No. 10/757,711, which is a continuation-in-part
of application No. 10/802,532, and a continuation-in-
part of application No. 10/757,714, said application
No. 10/802,532 is a continuation-in-part of application
No. 10/757,713, which is a continuation-in-part of
application No. 10/757,711, application No. 13/467,
161, which is a continuation-in-part of application No.
10/827,622, filed on Apr. 19, 2004, now Pat. No. 7,219,
183, and a continuation-in-part of application No.
10/802,532, and a continuation-in-part of application
No. 10/757,714, said application No. 10/802,532 is a
continuation-in-part of application No. 10/757,713,
which is a continuation-in-part of application No.
10/757,711, said application No. 10/909,254 is a con-
tinuation-in-part of application No. 10/827,620, filed
on Apr. 19, 2004, now Pat. No. 8,102,843, which is a
continuation-in-part of application No. 10/827,117,
filed on Apr. 19, 2004, now Pat. No. 7,188,209, which
is a continuation-in-part of application No. 10/802,
532, said application No. 10/827,117 is a continuation-
in-part of application No. 10/802,532.

Provisional application No. 60/440,788, filed on Jan.
21, 2003, provisional application No. 60/440,789,
filed on Jan. 21, 2003, provisional application No.
60/461,382, filed on Apr. 18, 2003, provisional appli-
cation No. 60/491,314, filed on Jul. 30, 2003, provi-
sional application No. 60/515,558, filed on Oct. 29,
2003, provisional application No. 60/523,522, filed on
Nov. 19, 2003, provisional application No. 60/541,
673, filed on Feb. 4, 2004, provisional application No.
60/555,127, filed on Mar. 22, 2004, provisional appli-
cation No. 60/575,005, filed on May 27, 2004, provi-
sional application No. 60/588,941, filed on Jul. 19,
2004, provisional application No. 60/589,174, filed on
Jul. 19, 2004.

Int. Cl1.

HO4L 29/06 (2006.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC ... H04L45/74 (2013.01); HO4L 61/10

(2013.01); HO4L 67/1002 (2013.01); HO4L
67/1017 (2013.01); HO4L 67/1097 (2013.01);
HO4L 67/327 (2013.01); HO4L 69/18
(2013.01); HO4L 69/329 (2013.01)

(56)

5,414,851
5,581,709
5,590,285
5,590,301
5,600,805
5,623,666
5,633,865
5,734,865
5,758,125
5,761,669
5,790,807
5,805,816
5,812,843
5,909,564
5,923,654
5,926,833
6,009,275
6,014,669
6,044,465
6,047,339
6,055,596
6,078,964
6,112,263
6,128,666
6,141,707
6,167,052
6,170,025
6,222,846
6,240,467
6,247,077
6,289,388
6,343,324
6,421,711
6,484,245
6,496,880
6,507,896
6,510,496
6,523,096
6,535,964
6,542,919
6,556,580
6,571,360
6,601,116
6,615,336
6,622,153
6,629,162
6,633,916
6,640,206
6,662,254
6,665,304
6,678,269
6,721,806
6,728,844
6,742,090
6,745,281
6,754,755
6,760,793
6,772,270
6,779,071
6,820,168
6,823,458
6,831,916
6,834,326
6,859,825
6,874,053
6,877,073
6,918,060
6,944,617
6,961,761
7,013,353
7,023,811
7,024,510
7,046,668
7,082,524
7,103,064

References Cited

U.S. PATENT DOCUMENTS

A *  5/1995
A 12/1996
A 12/1996
A 12/1996
A 2/1997
A 4/1997
A 5/1997
A 3/1998
A 5/1998
A 6/1998
A 8/1998
A 9/1998
A 9/1998
A 6/1999
A 7/1999
A 7/1999
A 12/1999
A 1/2000
A 3/2000
A 4/2000
A 4/2000
A 6/2000
A 8/2000
A 10/2000
A 10/2000
A 12/2000
Bl 1/2001
Bl 4/2001
Bl 5/2001
Bl 6/2001
B1* 9/2001
Bl 1/2002
Bl 7/2002
Bl 112002
Bl * 12/2002
B2 1/2003
Bl 1/2003
B2 2/2003
B2 3/2003
Bl 4/2003
Bl 4/2003
Bl 5/2003
Bl 7/2003
Bl 9/2003
Bl 9/2003
Bl 9/2003
B2  10/2003
Bl  10/2003
Bl  12/2003
B2 12/2003
Bl 1/2004
B2 4/2004
B2 4/2004
B2 5/2004
Bl 6/2004
Bl 6/2004
B2 7/2004
Bl 8/2004
Bl 8/2004
B2 112004
Bl 112004
Bl  12/2004
Bl  12/2004
Bl 2/2005
B2 3/2005
B2 4/2005
B2 7/2005
B2 9/2005
B2 112005
B2 3/2006
B2 4/2006
B2 4/2006
B2 5/2006
B2 7/2006
B2 9/2006

Briceetal. ......cccceennne 718/104
Ito et al.

Krause et al.
Guenthner et al.
Fredericks et al.
Pike et al.

Short

Yu

Misinai et al.
Montague et al.
Fishler et al.
Picazo, Ir. et al.
Yamazaki et al.
Alexander et al.
Schnell
Rasoulian et al.
DeKoning et al.
Slaughter et al.
Dutcher et al.
Su et al.
Cepulis
Ratcliff et al.
Futral

Muller et al.
Halligan et al.
McNeill et al.
Drottar et al.
Bonola et al.
Beardsley et al.
Muller et al.
Disney etal. ............... 709/238
Hubis et al.
Blumenau et al.
Sanada et al.
Maetal ...coooevinrnnnnnn 710/38
Sanada et al.
Tarui et al.
Sanada et al.
Sanada et al.
Wendorf et al.
Wang et al.
Drogichen et al.
Shemla et al.
Chen et al.
Leeetal.

Arndt et al.
Kauffman
Callender et al.
Tal et al.

Beck et al.
Michels et al.
Boyd et al.
Sanada et al.
Sanada et al.
Saegusa
Johnson et al.
Kelley et al.
Kurpanek
Kallat et al.
Tanaka et al.
Leeetal.
Parthasarathy et al.
Wang et al.
Williams
Yasuda et al.
Sanada et al.
Fanning
Harriman
Masuyama et al.
Parthasarathy et al.
Pinto

Olarig

Pettey et al.
Shah

Pettey et al.



US 9,106,487 B2
Page 3

(56)

7,136,953

7,143,196

7,152,128

7,180,887

7,188,209

7,194,517

7,213,065

7,219,183

7,231,486

7,281,030

7,310,319

7,418,522

7,421,578

7,457,906

7,461,245

7,478,139

7,493,416

7,620,066

7,688,838

7,930,437
2001/0032280
2002/0016845
2002/0026558
2002/0027906
2002/0029319
2002/0052914
2002/0071450
2002/0072892
2002/0073257
2002/0078271
2002/0099901
2002/0107903
2002/0124114
2002/0126693
2002/0172195
2002/0186694
2002/0191599
2003/0069975
2003/0069993
2003/0079055
2003/0091037
2003/0112805
2003/0123484
2003/0126202
2003/0131105
2003/0158992
2003/0163341
2003/0188060
2003/0200315
2003/0200330
2003/0204593
2003/0208531
2003/0208551
2003/0208631
2003/0208632
2003/0208633
2003/0212830
2003/0217183
2003/0235204
2004/0003140
2004/0013092
2004/0013124
2004/0019714
2004/0019726
2004/0019729
2004/0024894
2004/0024944
2004/0025166
2004/0039892
2004/0054838
2004/0068591
2004/0073712
2004/0073716
2004/0081104
2004/0088414

References Cited

U.S. PATENT DOCUMENTS

Bl
B2
B2
Bl
B2
B2
B2
B2
B2
Bl
B2
B2
Bl
B2
B2
B2
B2
B2
Bl
B2
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

11/2006
11/2006
12/2006
2/2007
3/2007
3/2007
5/2007
5/2007
6/2007
10/2007
12/2007
8/2008
9/2008
11/2008
12/2008
1/2009
2/2009
11/2009
3/2010
4/2011
10/2001
2/2002
2/2002
3/2002
3/2002
5/2002
6/2002
6/2002
6/2002
6/2002
7/2002
8/2002
9/2002
9/2002
11/2002
12/2002
12/2002
4/2003
4/2003
4/2003
5/2003
6/2003
7/2003
7/2003
7/2003
8/2003
8/2003
10/2003
10/2003
10/2003
10/2003
11/2003
11/2003
11/2003
11/2003
11/2003
11/2003
11/2003
12/2003
1/2004
1/2004
1/2004
1/2004
1/2004
1/2004
2/2004
2/2004
2/2004
2/2004
3/2004
4/2004
4/2004
4/2004
4/2004
5/2004

Bisson et al.
Rimmer et al.
Wehage et al.
Schwaderer et al.
Pettey et al.
Conway et al.
Watt

Pettey et al.
Ajanovic et al.
Davis
Awsienko et al.
Berg

Huang et al.
Pettey et al.
Nakayama et al.
Garofalo et al.
Pettey

Pettey et al.
Aloni et al.
Kaganetal. ................ 709/250
Osakada et al.
Palmer et al.
Reuter et al.
Athreya et al.
Robbins et al.
Zalewski et al.
Gasbarro et al.
Shirley
Beukema et al.
Berry

Tanaka et al.
Richter et al.
Bottom et al.
Stark et al.
Pekkala et al.
Mabhajan et al.
Parthasarathy et al.
Abjanic et al.
Na et al.

Chen

Latif et al.
Stanton
Harriman

Watt

Czeiger et al.
Ajanovic et al.
Banerjee et al.
Van Hensbergen
Goldenberg etal. ......... 709/225
Oelke et al.
Brown et al.
Matters et al.
Matters et al.
Matters et al.
Rimmer
Rimmer
Greenblat et al.
Rimmer et al.
Azevedo et al.
Rimmer
Betker et al.
Peebles et al.
Kelley et al.
Kelley et al.
Kelley et al.
Osman et al.
Riley

Adlung et al.
Goldschmidt
Hoese et al.
Workman et al.
Larson et al.
Boom et al.
Pan et al.
Flynn et al.

2004/0098532 Al 5/2004 Huang et al.
2004/0109460 Al 6/2004 Banks et al.
2004/0109473 Al 6/2004 Lebizay et al.
2004/0111559 Al 6/2004 Heil
2004/0116141 Al 6/2004 Loven et al.
2004/0117516 Al 6/2004 Date
2004/0117536 Al 6/2004 Franke et al.
2004/0117598 Al 6/2004  Arimilli et al.
2004/0123014 Al 6/2004 Schaefer et al.
2004/0128410 Al 7/2004 Mayhew et al.
2004/0165588 Al 8/2004 Pandya
2004/0172494 Al 9/2004 Pettey et al.
2004/0179529 Al 9/2004 Pettey et al.
2004/0179534 Al 9/2004 Pettey et al.
2004/0186942 Al 9/2004 Olarig
2004/0193737 Al 9/2004 Huffman et al.
2004/0210678 Al  10/2004 Pettey et al.
2004/0213211 Al 10/2004 Green
2004/0221047 Al 11/2004 Grover et al.
2004/0228280 Al* 11/2004 Moore etal. .................. 370/252
2004/0233921 Al  11/2004 Krieg et al.
2004/0249975 Al  12/2004 Tuck et al.
2005/0025119 Al 2/2005 Pettey et al.
2005/0027900 Al 2/2005 Pettey
2005/0050240 Al 3/2005 Wilkins et al.
2005/0053060 Al 3/2005 Pettey
2005/0080982 Al 4/2005 Vasilevsky et al.
2005/0097271 Al 5/2005 Davies et al.
2005/0114623 Al 5/2005 Craddock et al.
2005/0157725 Al 7/2005 Pettey
2005/0157754 Al 7/2005 Pettey
2005/0169258 Al 8/2005 Millet et al.
2005/0172041 Al 8/2005 Pettey
2005/0172047 Al 8/2005 Pettey
2005/0238035 Al  10/2005 Riley
2005/0268137 Al 12/2005 Pettey
2006/0018341 Al 1/2006 Pettey et al.
2006/0018342 Al 1/2006 Pettey et al.
2006/0092928 Al 5/2006 Pike et al.
2006/0184711 Al 8/2006 Pettey et al.
2006/0206655 Al 9/2006 Chappell et al.
2007/0050520 Al 3/2007 Riley
2007/0098012 Al 5/2007 Pettey et al.
2008/0117909 Al 5/2008 Johnson
2010/0312941 Al  12/2010 Aloni et al.
2012/0218905 Al 8/2012 Pettey
2012/0221705 Al 8/2012 Pettey
2013/0145072 Al* 6/2013 Venkataraghavan etal. . 710/316

FOREIGN PATENT DOCUMENTS

EP 1115064 A2 7/2001
EP 1376932 A2 1/2004
JP 2002084311 A 3/2002
JP 2002183102 A 6/2002
™ 538354 6/2003
™ 545015 8/2003
WO WO09419749 Al 9/1994
WO W09929071 Al 6/1999
WO WO03085535 A2 10/2003
OTHER PUBLICATIONS

Dugan et al. “N Port ID Virtualization.” Nov. 29, 2001. Document No.
01-627v0. IBM Corporation. http://www.t11.org.

Dugan et al. “N_Port Virtualization: Proposed FC-FS
Modifications.”” Jan. 19, 2002. Document No. 02-008v0. IBM Cor-
poration. http://www.t11.org.

American National Standards Institute. “Fibre Channel—Framing
and Signaling (FC-FS).” ANSI/INCITS Standard 373-2003. Oct. 22,
2003. pp. 307 and 311. American National Standards Institute, Inc.
New York, NY, USA.

Solomon et al.: “Advanced Switching Architecture”, XP002328190.
Intel Developer Forum. Sep. 17, 2003. pp. 32-54. Retrieved from the
Internet: URL:http://www.asi-sig.org/education/AS__ Architecture
and_ PI-8_ Overview__-_ Spring IDF_ 2004_ FINAL.pdf.



US 9,106,487 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

“Xilinx, Designing Network Attached Storage Platform With
Advanced Switching” (XP002328191). Sep. 16, 2003. Retrieved
from the Internet: URL:http://www.asi-sig.org/education/usage/
xilinx__storage usage.pdf.

Karin S. Puranik: “Advanced Switching Extends PCI Express”
XCELL Journal, (XP002328192). Apr. 26, 2006, believed to be pub-
lished in 2003. Retrieved from the Internet: URL:www.xilinx.com/
publications/xcellonline/xcell__47/xc_pdfixc_pcix47.pdf.
Anonymous: “Fabrics and Application Characteristics for
AdvancedTCA Architectures” Intel Technology Journal, vol. 07, No.
04, Nov. 14, 2003 (XP002328193), ISSN: 1535-864X. Retrieved
from the Internet: URL:www.intel.com/technology/itj/2003/
volume07issue04/art02_ fabrics/vol7iss4art02 pdf.

David Mayhew et al. “PCI Express and Advanced Switching: Evo-
lutionary Path to Building Next Generation Interconnects” High
Performance Interconnects, 2003. Proceedings. 11th Symposium on
August 20-22, 2003, Piscataway, NJ, USA. IEEE, Aug. 20, 2003, pp.
21-29, (XP010657970). ISBN: 0-7695-2012-X.

Marek Piekarski. “Advanced Switching Interconnect and Blade
Server Re-Purposing in the Data Center” Aug. 21, 2004.
XP002341367.  URL:  http://www.asi-sig.org/education/white
papers/ASWhitePaper_ Final_Copy.pdf.

AjayV Bhatt. “Creating a Third Generation I/O Interconnect” Jun. 4,
2003 Intel, XP002354597 http://www.intel.com/technology/
peiexpress/downloads/3rdGenWhitePaper.pdf retrieved on Nov. 15,
2005.

“PCI Express Base Specification.” Revision 1.0. PCI-SIG. Apr. 29,
2002. pp. 17-18.

Mehta, Pranav. “Advanced Switching boosts PCI Express.” EE
Times. CommsDesign. Online Oct. 28, 2002. Retrieved from Internet
Nov. 30, 200S. <http://www.commsdesign.com/design_corner/
showAurticle jhtml?articlelD=16505864>.

Forouzan, Behrouz A. “Data Communications and Networking,
Third Edition.” pp. 528-536. McGraw-Hill, 2004, 2001, 1998.

Seifert, Rich. “The Switch Book, The Complete Guide to LAN
Switching Technology.” pp. 431-473. John Wiley & Sons. 2000.
“Catalyst 3550 Multilayer Switch Software Configuration Guide.”
Chapter 13, pp. 1-14. Cisco Systems. Apr. 2002.

“802.1Q, IEEE Standards for Local and Metropolitan Area Net-
works, Virtual Bridged Local Area Networks.” IEEE. May 7, 2003.
Holland et al. “Dynamic Switching between One-to-Many Down-
load Methods I “ALL-IP” Cellular Networks” (abstract only) Publi-
cation date: May-Jun. 2006.

Kleiman et al. “SunOS on SPARC.” (abstract only) Publication Date:
Feb. 29-Mar. 3, 1988.

PCI Express Base Specificattion. Rev. 1.0. Apr. 29, 2002.

Cohen et al. “PCI Express Architecture Power Management.” Rev
1.1. Nov. 8, 2002.

“Network Interface Controller”” FOLDOC—Free On-Line Dictio-
nary of Computing. Hittp://foldoc.org/index.
cgi?query=network+interface+controller. Apr. 11, 2008.

Koellner, Gregory. “NPIV Functionality Profile.” Presentation, Jun.
5, 2002. Presentation # T11/02-340v0. Text # T11/02-338v0. www.
tll.org.

INCITS working draft proporsed American National Standard for
Information Technology, Fibre Channel Framing and Signaling-2
(FC-FS-2).Jan. 16,2004. Rev. 0.05. pp. i, 65,67, 76, 80. http://www.
t11.org/index html.

PCI-SIG, PCI Local Bus Specification. Dec. 18, 1998. Revision 2.2,
pp. 214-220. hitp://www.pcisig.com/home.

PCI-SIG, PCI Express Base Specification. Apr. 15, 2003. Revision
1.0a. pp. 27, 259-260. http://www.pcisig.com/home.

PCI-SIG, PCI Local Bus Specification. Dec. 18, 1998. Revision 2.2,
pp. 189-220. http://www.pcisig.com/home.

Wong, William. Advance Switching for PCI Express: The Future
Looks “Fabric” Fast. Electronic Design Magazine. Jun. 23, 2003. pp.
36, 38.

U.S. Appl. No. 13/467,174 Office Action dated May 21, 2014.

U.S. Appl. No. 13/467,143 Office Action dated Jun. 13, 2014.

* cited by examiner



U.S. Patent

Fig. 1 (Prior art)

102

Aug. 11, 2015

104

PROCESSING
COMPLEX

PROCESSING
COMPLEX

Sheet 1 of 15

US 9,106,487 B2

100

106

PROCESSING
COMPLEX

110 - 112
114 118 }/ 10
NETWORK NETWORK NETWORK NETWORK
INTERFACE INTERFACE INTERFACE INTERFACE
CONTROLLER CONTROLLER CONTROLLER CONTROLLER

124

SWITCH

ETHERNET

SWITCH




U.S. Patent

Aug. 11, 2015 Sheet 2 of 15

Fig. 2

202 204

PROCESSING
COMPLEX

PROCESSING

COMPLEX

i/ 210

US 9,106,487 B2

200

206 ‘/

PROCESSING
COMPLEX

SHARED /0 SWITCH

4216 220

SHARED
NETWORK

INTERFACE
CONTROLLER

4218

ETHERNET

Fig. 3

302 304

PROCESSING
COMPLEX

PROCESSING

COMPLEX

4 308 4 310

214

226

300

306

PROCESSING

COMPLEX

4312

SHARED /O SWITCH

4316 320

SHARED
NETWORK
INTERFACE
CONTROLLER

¢/ 322

& 318

ETHERNET

314

326



U.S. Patent Aug. 11, 2015 Sheet 3 of 15 US 9,106,487 B2

Fig. 4 /
402 404 406
PROCESSING PROCESSING PROCESSING
COMPLEX COMPLEX COMPLEX
408 410 412
414
420
SHARED
SHARED 1fO SWITCH NETWORK
INTERFACE
CONTROLLER

ETHERNET

Fig. 8
EMBODIMENTS OF DESCRIPTOR LOGIC
/800
(a) (b) (c)
DESCRIPTOR 804 DESCRIPTOR 808 DESCRIPTOR
ARBITRATION ARBITRATION ARBITRATION
802
DESCRIPTOR CACHE-0 o810 812 814
DESCRIPTOR CACHE-1 | 806 DE\QS;LLP%LOR A x RX
: CACHE g CACHE CACHE

DESCRIPTOR CACHE-N




U.S. Patent

Fig. 5 (Prior art)

Aug. 11, 2015

Sheet 4 of 15

US 9,106,487 B2

BLOCK DIAGRAM OF PRIOR ART NETWORK INTERFACE CONTROLLER

500

/

506

CSR

A

510

DMA
ENGINE

TRANSMIT
BUFFER

TRANSMIT
LOGIC

A
- 502
BUS INTERFACE 501
A
v 504 508
»  DATAPATHMUX  l«—»| EEPROM
512
PROCESSOR
514 518 RECEIVE
BUFFER
516 522 520
FILTERS
524
RECEIVE
STATS o610




U.S. Patent Aug. 11, 2015 Sheet 5 of 15 US 9,106,487 B2

Fig. 6
BLOCK DIAGRAM OF SHARED NETWORK INTERFACE CONTROLLER

600
A /
y
602
BUS INTERFACE / 0S ID
A
606 i 604 608 609
CSR0 o[ z
«—>|  DATAPAT —> : -
HMUX EEPROM |2 |2 |~ |2
CSR-1 S =
, PACKET REPLICATION |~ 60
| I 7y PROCESSOR
610 613
DMA DESCRIPTOR 617
ARB. ARBITRATION
611 615
DMA-0 DESCRIPTOR CACHE-0
DMA-1 DESCRIPTOR CACHE-1
DMAN DESCRIPTOR CACHE-N
A 4 621
VIRTUAL FIFO MANAGER / BUFFER LOGIC
VIRTUAL FIFO / BUFFER 623 65 | o
624
STATS
616 620
623 | 625
™~ 0sD-0 | MACO ], 622
TRANSMIT RECEIVE
LOGIC OSD-1 | MAC-1 LOGIC
0SD-N [ MACN
ASSOCIATION
LOGIC




U.S. Patent Aug. 11, 2015

Fig. 7

Sheet 6 of 15

US 9,106,487 B2

EMBODIMENTS OF TRANSMIT / RECEIVE FIFO’S

/700
VIRTUAL FIFO MANAGER
VIRTUAL FIFO 702 _
704 708
X0 | TX-1 TXN RX-0 | RX-1 RX-N
FIFO | FIFO FIFO FIFO | FIFO FIFO d
l 706 T 710
714 718
0SD MANAGEMENT 0SD MANAGEMENT
T T |,715 (b)
A A
VIRTUAL TRANSMITFIFO | G VIRTUALRECEIVEFIFO | G
l 712 \713 T 716
722
0SD MANAGMENT

VIRTUAL TRANSMIT/RECEIVE FIFO

T (c)

G

l

T N N\



U.S. Patent

Fig. 9

Fig. 10

Aug. 11, 2015

PROCESSING
COMPLEX

Sheet 7 of 15

US 9,106,487 B2

800

904 906

PROCESSING
COMPLEX

PROCESSING
COMPLEX

908

920

SHARED
NETWORK
INTERFACE

CONTROLLER

1000
e
1004 1004 1004
1002
SHARED 1005
NETWORK INTERFACE SHARED SWITCH
CONTROLLER 0SD D | 1006
| 1008
CORE LOGIC
(SEE FIGURE 6)

1012



U.S. Patent Aug. 11, 2015 Sheet 8 of 15 US 9,106,487 B2

Fig. 11
1100
BLOCK DIAGRAM OF PACKET FLOW THROUGH SHARED NIC
1102 1104 1106
PROCESSING PROCESSING PROCESSING
COMPLEX-0 COMPLEX-1 COMPLEX-N
SHARED 1/0 SWITCH I
A
1112
Inlaeor
1120 & i) 1114 122 1124
CSR-0 BUS INTERFACE / 0S ID DESCRIPTOR DMA
CSRA N ARBITRATION ARB.
; v M6 | DESCRIPTOR CACHE DMA-0
| CSR-N |+» DATA PATH MUX DESCRIPTOR CACHE-1 DMA-1
118 \| PACKET REPLICATION : :
E | DESCRIPTOR CACHE-N | ] DMA-N |
1126
& / 1130 \@ 1132 STATS
VIRTUAL VIRTUAL
TRANSMIT RECEIVE
] ] 1128
FIFO /LOGIC FIFO/LOGIC 0SD0 | MACO
0SD-1 | MAC1
@ | — — — -] osoN]macN
AN )y ASSOCIATION
LOGIC

ETHERNET



U.S. Patent Aug. 11, 2015 Sheet 9 of 15 US 9,106,487 B2

Fig. 12

BROADCAST OR MULTICAST PACKET FLOW
1200

1202 1204 1206

PROCESSING
COMPLEX-N

PROCESSING PROCESSING

COMPLEX-0

COMPLEX1

T@ 1208 T@

l'zl %T 1210

SHARED /O SWITCH

l [o] p " [o] t 1201

1220 ! 1214 1222 1224
CSR-0 BUS INTERFACE / OS ID DESCRIPTOR DMA
SR _ ARBITRATION ARB.
: 1216 | DESCRIPTOR CACHE-0 DMA-0
CSRN | parapathmux DESCRIPTOR GACHE-1 DMA-1

1218 — PACKET REPLICATION i
1919 | FILTERS/VIAN | DESCRIPTORCACHEN | | DMAN |

N\
N\
[0] N 1226
1230 X 1232 STATS
VIRTUAL VIRTUAL
TRANSMIT RECEIVE
FIFO/LOGIC FIFO/LOGIC OSD0 | MAC-0 1228
0SD-1 | MAC-1
III Izl OSD-N | MAC-N
ASSOCIATION
LOGIC

1240

ETHERNET



U.S. Patent Aug. 11, 2015 Sheet 10 of 15 US 9,106,487 B2

Fig. 13

BROADCAST OR MULTICAST PACKET FLOW
1300

1302

PROCESSING
COMPLEX-0

/ 1304

1306

PROCESSING

COMPLEX-1

1308

o

PROCESSING
COMPLEX-N

o

o]
o]

|

1310

SHARED I/0 SWITCH

1301

1320

1322 s 1324

CSR-0

CSR-1

BUS INTERFACE / OS ID

A
1316

A 4

DESCRIPTOR
ARBITRATION

DMA
ARB.

DESCRIPTOR CACHE-0

DMA-0

I CSR-N ’(—}

DATA PATH MUX

1318 —

PACKET REPLICATION

1318 —

FILTERS/VLAN

DESCRIPTOR CACHE-1

DMA-1

IDESCRIPTO'RCACHE-N| | DM.A-N |

/.

LS
\
\
1330

1332

VIRTUAL
TRANSMIT
FIFO/LOGIC

VIRTUAL
RECEIVE
FIFO/LOGIC

0SD-0

MAC-0

0SD-1

MAC-1

1326
STATS

1328

2]

ASSOCIATION
LOGIC

1340

ETHERNET



U.S. Patent Aug. 11, 2015 Sheet 11 of 15 US 9,106,487 B2

Fig. 14

FLOW OF PACKET RECEIVE

BEGIN r 1402 140

PACKET RECEIVED?

MAC ADDRESS MATCH?

N
DROP PACKET I/ 1408

DETERMINE OSD / VLAN MATCH 1410
(INCLUDE MULTIPLE OSD'S)

1412

STORE IN FIFO (DESIGNATE OSD)

&
>

1414

N DMA 1416
DESCRIPTOR

DESCRIPTOR VALID FOR 0SD?

rE

DMA PACKET TO 0SD 1418

COMPLETE PACKET RECEIVE 1420

ANOTHER OSD?

DONE I/ 1424




U.S. Patent Aug. 11, 2015 Sheet 12 of 15 US 9,106,487 B2

Fig. 15
FLOW OF PACKET TRANSMIT
BEGIN 1502 e
DETERMINE 0SD 1504
DMA 1506
DESCRIPTOR
DMA PACKET INTO TRANSMIT FIFO 1507
(OR RECEIVE IF LOOPBACK — SEE 1514)

1510

ALERT PACKET
REPLICATION

BROADCAST/MULTICAST?

1514

DMA PACKET INTO
RECEIVE FIFO

LOOPBACK?

1516

NOTIFY OSD
OF RECEIVE PACKET

SEE RECEIVE FLOW
OF FIG. 14

TRANSMIT PACKET OUT

COMPLETE PACKET TRANSMIT




US 9,106,487 B2

Sheet 13 of 15

Aug. 11, 2015

U.S. Patent

H3HIO

Q3dvHS
OIN9ID 0L
d34vHS

JINDID |
Q034vHS
04
Q34vHS

NN

43HL0
Q3AVHS

OINOID 0L
Q3dvHS

JINOID |
a3dvHS
Od
G3dVHS

U [10YINOD ONILNOY 500 .,\x/\ 1L [TOUINOD ONILNOY
\ —
029} 5091
HEERERER L
9091
‘.
-
e
BXIANOD | ZXTWNOD | OXTINOO | SXTWWOD | PXIHWOD | EXIWNOD | ZXINOD | L XTIAWOD
200, | ONISS0ONd | ONISSIOOY | ONISSIOOYd | ONISSIOONd | ONISSIOONd | ONISSIOOMJ | ONISSIOONd | ONISSI0OHd
SLINIOdANT ANV SFHOLIMS O/ A3VHS HLIM SHNLOALIHONY LINVANNQIY 3av19 8
009L




U.S. Patent Aug. 11, 2015 Sheet 14 of 15 US 9,106,487 B2

Fig. 17

CSR'’S FOR SHARED /O 1700

1706 / 1710

CSR-0 CSR REGISTERS-0

CSR-1 ::> (a ) CSR REGISTERS-1

| CSR REGISTERS-N

1720

1722 1726

GLOBAL REPLICATED
TIMER & REGISTERS-0

(b) SYSTEM
FUNCTIONS REPLICATED
1724 REGISTERS-1

GLOBAL
ADDRESS
REGISTERS

REPLICATED
REGISTERS-N

MIRRORED
REGISTERS




U.S. Patent Aug. 11, 2015 Sheet 15 of 15 US 9,106,487 B2
Fig. 18 1800
1814 1814
BUS INTERFACE / OS ID BUS INTERFACE / 08 ID
A A
! 1816 ! 1816
DATA PATH MUX DATA PATH MUX
1818 \|' PACKET REPLICATION
" 1830 1832
/ \\ VIRTUAL VIRTUAL
(a) 1830~ 1832 (b) TRANSMIT RECEIVE
VIRTUAL VIRTUAL FIFO /LOGIC FIFO /LOGIC
TRANSMIT RECEIVE
FIFO/LOGIC FIFO /LOGIC
PACKET REPLICATION

1818 /

BUS INTERFACE / OS ID

1814

A

A 4

1816

DATA PATH MUX

AN

|
PACKET REPLICATION

(c) |

1830

VIRTUAL
TRANSMIT
FIFO/
LOGIC

1833

VIRTUAL
LOOPBACK
FIFO/
LOGIC

1832

VIRTUAL
RECEIVE
FIFO/
LOGIC

PACKET REPLICATION




US 9,106,487 B2

1

METHOD AND APPARATUS FOR A SHARED
I/O NETWORK INTERFACE CONTROLLER

CROSS REFERENCE TO RELATED
APPLICATION(S)

This application is a divisional of Ser. No. 10/909,254, filed
Jul. 30, 2004, entitled “Method and Apparatus for a Shared
1/0 Network Interface Controller.”

This application also claims the benefit of provisional
patent applications 60/491,314 filed Jul. 30, 2003, 60/515,
558 filed Oct. 29, 2003, 60/523,522 filed Nov. 19, 2003,
60/541,673 filed Feb. 4, 2004, 60/555,127 filed Mar. 22,
2004, 60/575,005 filed May 27, 2004, 60/588,941 filed Jul.
19, 2004, and 60/589,174 filed Jul. 19, 2004.

The application Ser. No. 10/909,254 of which this is a
divisional is a CIP of each of Ser. No. 10/757,714 Jan. 14,
2004 U.S. Pat. No. 7,046,668, Ser. No. 10/757,713 Jan. 14,
2004 U.S. Pat. No. 7,457,906, and Ser. No. 10/757,711 Jan.
14, 2004 U.S. Pat. No. 7,103,064, each of which claims
benefit of 60/440,788 Jan. 21, 2003, 60/440,789 Jan. 21,
2003, 60/464,382 Apr. 18, 2003, 60/491,314 Jul. 30, 2003,
60/515,558 Oct. 29, 2003, 60/523,522 Nov. 19, 2003.

The application Ser. No. 10/909,254 is also a CIP of Ser.
No. 10/802,532 Mar. 16, 2004 U.S. Pat. No. 7,836,211 which
claims benefit of 60/464,382 Apr. 18, 2003, 60/491,314 Jul.
30, 2003, 60/515,558 Oct. 29, 2003, 60/523,522 Nov. 19,
2003, 60/541,673 Feb. 4, 2004.

Further up the chain, application Ser. No. 10/802,532 is a
CIP ofeachofSer. No. 10/757,714 Jan. 14,2004 U.S. Pat. No.
7,046,668, Ser. No. 10/757,713 Jan. 14, 2004 U.S. Pat. No.
7,457,906, and Ser. No. 10/757,711 Jan. 14, 2004 U.S. Pat.
No. 7,103,064, each of which claims benefit of 60/440,788
Jan. 21, 2003, 60/440,789 Jan. 21, 2003, 60/464,382 Apr. 18,
2003, 60/491,314 Tul. 30, 2003, 60/515,558 Oct. 29, 2003,
60/523,522 Nov. 19, 2003.

The application Ser. No. 10/909,254 is also a CIP of Ser.
No. 10/864,766 Jun. 9, 2004 U.S. Pat. No. 7,664,909 which
claims benefit of 60/464,382 Apr. 18, 2003, 60/491,314 Jul.
30, 2003, 60/515,558 Oct. 29, 2003, 60/523,522 Nov. 19,
2003, 60/541,673 Feb. 4, 2004, 60/555,127 Mar. 22, 2004.

The application Ser. No. 10/864,766 is a CIP of each of Ser.
No. 10/757,714 Jan. 14, 2004 U.S. Pat. No. 7,046,668, Ser.
No. 10/757,713 Jan. 14, 2004 U.S. Pat. No. 7,457,906, and
Ser. No. 10/757,711 Jan. 14, 2004 U.S. Pat. No. 7,103,064,
each of which claims benefit of 60/440,788 Jan. 21, 2003,
60/440,789 Jan. 21, 2003, 60/464,382 Apr. 18, 2003, 60/491,
314 Jul. 30,2003, 60/515,558 Oct. 29, 2003, 60/523,522 Nov.
19, 2003.

The application Ser. No. 10/864,766 is also a CIP of Ser.
No. 10/802,532 Mar. 16, 2004 U.S. Pat. No. 7,836,211 which
claims benefit of 60/464,382 Apr. 18, 2003, 60/491,314 Jul.
30, 2003, 60/515,558 Oct. 29, 2003, 60/523,522 Nov. 19,
2003, 60/541,673 Feb. 4, 2004.

The application Ser. No. 10/802,532 is a CIP of Ser. No.
10/757,714 Jan. 14, 2004 U.S. Pat. No. 7,046,668, Ser. No.
10/757,713 Jan. 14, 2004 U.S. Pat. No. 7,457,906, and Ser.
No. 10/757,711 Jan. 14, 2004 U.S. Pat. No. 7,103,064, each
of which claims benefit of 60/440,788 Jan. 21, 2003, 60/440,
789 Jan. 21, 2003, 60/464,382 Apr. 18,2003, 60/491,314 Jul.
30, 2003, 60/515,558 Oct. 29, 2003, 60/523,522 Nov. 19,
2003.

Application Ser. No. 10/909,254 is also a CIP of Ser. No.
10/827,622 Apr. 19, 2004 U.S. Pat. No. 7,219,183 which
claims benefit of 60/464,382 Apr. 18, 2003, 60/491,314 Jul.
30, 2003, 60/515,558 Oct. 29, 2003, 60/523,522 Nov. 19,
2003, 60/541,673 Dec. 4, 2004.

10

15

20

25

30

35

40

45

50

55

60

65

2

The application Ser. No. 10/827,622 is a CIP of Ser. No.
10/802,532 Mar. 16, 2004 U.S. Pat. No. 7,836,211 which
claims benefit of 60/464,382 Mar. 18, 2003, 60/491,314 Jul.
30, 2003, 60/515,558 Oct. 29, 2003, 60/523,522 Nov. 19,
2003, 60/541,673 Feb. 4, 2004.

Application Ser. No. 10/802,532 is a CIP of each of Ser.
No. 10/757,714 Jan. 14, 2004 U.S. Pat. No. 7,046,668, Ser.
No. 10/757,713 Jan. 14, 2004 U.S. Pat. No. 7,457,906, and
Ser. No. 10/757,711 Jan. 14, 2004 U.S. Pat. No. 7,103,064,
each of which claims benefit of 60/440,788 Jan. 21, 2003,
60/440,789 Jan. 21, 2003, 60/464,382 Apr. 18, 2003, 60/491,
314 Jul. 30,2003, 60/515,558 Oct. 29, 2003, 60/523,522 Nov.
19, 2003.

Application Ser. No. 10/909,254 is a CIP of each of Ser.
No. 10/827,620 Apr. 19, 2004 U.S. Pat. No. 8,102,843, and
Ser. No. 10/827,117 Apr. 19, 2004 U.S. Pat. No. 7,188,209,
each of which claims benefit of 60/464,382 Apr. 18, 2003,
60/491,314 Jul. 30, 2003, 60/515,558 Oct. 29, 2003, 60/523,
522 Nov. 19, 2003, 60/541,673 Feb. 4, 2004.

Application Ser. Nos. 10/827,620 and 10/827,117 are each
a CIP of Ser. No. 10/802,532 Mar. 16, 2004 U.S. Pat. No.
7,836,211 which claims benefit of 60/464,382 Apr. 18, 2003,
60/491,314 Jul. 30, 2003, 60/515,558 Oct. 29, 2003, 60/523,
522 Nov. 19, 2003, 60/541,673 Feb. 4, 2004.

Each of the foregoing applications are hereby incorporated
by reference herein for all purposes.

FIELD OF THE INVENTION

This invention relates in general to the field of computer
network architecture, and more specifically to an architecture
to allow sharing and/or partitioning of network input/output
(I/0) endpoint devices in a load/store fabric, particularly a
shared network interface controller.

BACKGROUND OF THE INVENTION

Although the eight above referenced pending patent appli-
cations have been incorporated by reference, to assist the
reader in appreciating the problem to which the present inven-
tion is directed, the Background of those applications is sub-
stantially repeated below.

Modern computer architecture may be viewed as having
three distinct subsystems which when combined, form what
most think of when they hear the term computer. These sub-
systems are: 1) a processing complex; 2) an interface between
the processing complex and I/O controllers or devices; and 3)
the 1/O (i.e., input/output) controllers or devices themselves.

A processing complex may be as simple as a single micro-
processor, such as a Pentium microprocessor, coupled to
memory. Or, it might be as complex as two or more processors
which share memory.

The interface between the processing complex and I/O is
commonly known as the chipset. On the north side of the
chipset (i.e., between the processing complex and the chipset)
is a bus referred to as the HOST bus. The HOST bus is usually
a proprietary bus designed to interface to memory, to one or
more microprocessors within the processing complex, and to
the chipset. On the south side of the chipset are a number of
buses which connect the chipset to /O devices. Examples of
such buses include: ISA, EISA, PCI, PCI-X, and AGP.

1/O devices are devices that allow data to be transferred to
or from the processing complex through the chipset, on one or
more of the buses supported by the chipset. Examples of I/O
devices include: graphics cards coupled to a computer dis-
play; disk controllers, such as Serial ATA (SATA) or Fiber
Channel controllers (which are coupled to hard disk drives or



US 9,106,487 B2

3

other data storage systems); network controllers (to interface
to networks such as Ethernet); USB and Firewire controllers
which interface to a variety of devices from digital cameras to
external data storage to digital music systems, etc.; and PS/2
controllers for interfacing to keyboards/mice. The /O devices
are designed to connect to the chipset via one of its supported
interface buses. For example, modern computers typically
couple graphic cards to the chipset via an AGP bus. Ethernet
cards, SATA, Fiber Channel, and SCSI (data storage) cards,
USB and Firewire controllers all connect to a PCI bus, and
PS/2 devices connect to an ISA bus.

One skilled in the art will appreciate that the above descrip-
tion is general. However, what should be appreciated is that
regardless of the type of computer, it will include a processing
complex for executing instructions, an interface to /O, and
1/0 devices to allow the processing complex to communicate
with the world outside of itself. This is true whether the
computer is an inexpensive desktop in a home, a high-end
workstation used for graphics and video editing, or a clus-
tered server which provides database support to hundreds
within a large organization.

Also, although not yet referenced, a processing complex
typically executes one or more operating systems (e.g.,
Microsoft Windows, Windows Server, Unix, Linux, Macin-
tosh, etc.). This application therefore refers to the combina-
tion of a processing complex with one or more operating
systems as an operating system domain (OSD). An OS
domain, within the present context, is a system load-store
memory map that is associated with one or more processing
complexes. Typically, present day operating systems such as
Windows, Unix, Linux, VxWorks, Macintosh, etc., must
comport with a specific load-store memory map that corre-
sponds to the processing complex upon which they execute.
For example, a typical x86 load-store memory map provides
for both memory space and 1/O space. Conventional memory
is mapped to the lower 640 kilobytes (KB) of memory. The
nexthigher 128 KB of memory are employed by legacy video
devices. Above that is another 128 KB block of addresses
mapped to expansion ROM. And the 128 KB block of
addresses below the 1 megabyte (MB) boundary is mapped to
boot ROM (i.e., BIOS). Both DRAM space and PCI memory
are mapped above the 1 MB boundary. Accordingly, two
separate processing complexes may be executing within two
distinct OS domains, which typically means that the two
processing complexes are executing either two instances of
the same operating system or that they are executing two
distinct operating systems. However, in a symmetrical multi-
processing environment, a plurality of processing complexes
may together be executing a single instance of an SMP oper-
ating system, in which case the plurality of processing com-
plexes would be associated with a single OS domain.

A problem that has been recognized by the present inventor
is that the requirement to place a processing complex, inter-
face and I/O within every computer is costly, and lacks modu-
larity. That is, once a computer is purchased, all of the sub-
systems are static from the standpoint of the user. The ability
to change a processing complex while still utilizing the inter-
face and I/O is extremely difficult. The interface or chipset is
typically so tied to the processing complex that swapping one
without the other doesn’t make sense. And, the [/O is typically
integrated within the computer, at least for servers and busi-
ness desktops, such that upgrade or modification of the /O is
either impossible or cost prohibitive.

An example of the above limitations is considered helpful.
A popular network server designed by Dell Computer Cor-
poration is the Dell PowerEdge 1750. This server includes
one or more microprocessors designed by Intel (Xeon pro-

10

15

20

25

30

35

40

45

50

55

60

65

4

cessors), along with memory (e.g., the processing complex).
It has a server class chipset for interfacing the processing
complex to I/O (e.g., the interface). And, it has onboard
graphics for connecting to a display, onboard PS/2 for con-
necting a mouse/keyboard, onboard RAID control for con-
necting to data storage, onboard network interface controllers
for connecting to 10/100 and 1 gig Ethernet; and a PCI bus for
adding other I/O such as SCSI or Fiber Channel controllers. It
is believed that none of the onboard features are upgradeable.

So, as mentioned above, one of the problems with this
architecture is that if another /O demand emerges, it is dif-
ficult, or cost prohibitive to implement the upgrade. For
example, 10 gigabit Ethernet is on the horizon. How can this
be easily added to this server? Well, perhaps a 10 gig Ethernet
controller could be purchased and inserted onto the PCI bus.
Consider a technology infrastructure that included tens or
hundreds of these servers. To move to a faster network archi-
tecture requires an upgrade to each of the existing servers.
This is an extremely cost prohibitive scenario, which is why it
is very difficult to upgrade existing network infrastructures.

This one-to-one correspondence between the processing
complex, the interface, and the I/O is also costly to the manu-
facturer. That is, in the example above, much of the /O is
manufactured on the motherboard of the server. To include
the I/O on the motherboard is costly to the manufacturer, and
ultimately to the end user. Ifthe end user utilizes all of the I/O
provided, then s/he is happy. But, ifthe end user does not wish
to utilize the onboard RAID, or the 10/100 Ethernet, then s/he
is still required to pay for its inclusion. This is not optimal.

Consider another emerging platform, the blade server. A
blade server is essentially a processing complex, an interface,
and 1/O together on a relatively small printed circuit board
that has a backplane connector. The blade is made to be
inserted with other blades into a chassis that has a form factor
similar to a rack server today. The benefit is that many blades
can be located in the same rack space previously required by
just one or two rack servers. While blades have seen market
growth in some areas, where processing density is areal issue,
they have yet to gain significant market share, for many rea-
sons. One of the reasons is cost. That is, blade servers still
must provide all of the features of a pedestal or rack server,
including a processing complex, an interface to I/O, and I/O.
Further, the blade servers must integrate all necessary /O
because they do not have an external bus which would allow
them to add other I/O on to them. So, each blade must include
such I/O as Ethernet (10/100, and/or 1 gig), and data storage
control (SCSI, Fiber Channel, etc.).

One recent development to try and allow multiple process-
ing complexes to separate themselves from I/O devices was
introduced by Intel and other vendors. It is called Infiniband.
Infiniband is a high-speed serial interconnect designed to
provide for multiple, out of the box interconnects. However,
it is a switched, channel-based architecture that is not part of
the load-store architecture of the processing complex. That is,
it uses message passing where the processing complex com-
municates with a Host-Channel-Adapter (HCA) which then
communicates with all downstream devices, such as 1/O
devices. It is the HCA that handles all the transport to the
Infiniband fabric rather than the processing complex. That is,
the only device that is within the load/store domain of the
processing complex is the HCA. What this means is that you
have to leave the processing complex domain to get to your
1/O devices. This jump out of processing complex domain
(the load/store domain) is one of the things that contributed to
Infinibands failure as a solution to shared 1/O. According to
one industry analyst referring to Infiniband, “[i]t was over-
billed, overhyped to be the nirvana for everything server,



US 9,106,487 B2

5

everything 1/0, the solution to every problem you can imag-
ine in the data center . . . but turned out to be more complex
and expensive to deploy . . . because it required installing a
new cabling system and significant investments in yet another
switched high speed serial interconnect”.

Thus, the inventor has recognized that separation between
the processing complex and its interface, and 1/O, should
occur, but the separation must not impact either existing oper-
ating systems, software, or existing hardware or hardware
infrastructures. By breaking apart the processing complex
from the IO, more cost effective and flexible solutions can be
introduced.

Further, the inventor has recognized that the solution must
not be a channel-based architecture, performed outside of the
box. Rather, the solution should use a load-store architecture,
where the processing complex sends data directly to (or at
least architecturally directly) or receives data directly from an
1/0 device (such as a network controller, or data storage
controller). This allows the separation to be accomplished
without affecting a network infrastructure or disrupting the
operating system.

Therefore, what is needed is an apparatus and method
which separates the processing complex and its interface to
1/O from the I/O devices.

Further, what is needed is an apparatus and method which
allows processing complexes and their interfaces to be
designed, manufactured, and sold, without requiring I/O to be
included within them.

Additionally, what is needed is an apparatus and method
which allows a single /O device to be shared by multiple
processing complexes.

Further, what is needed is an apparatus and method that
allows multiple processing complexes to share one or more
1/0 devices through a common load-store fabric.

Additionally, what is needed is an apparatus and method
that provides switching between multiple processing com-
plexes and shared I/O.

Further, what is needed is an apparatus and method that
allows multiple processing complexes, each operating inde-
pendently, and having their own operating system domain, to
view shared I/O devices as if the I/O devices were dedicated
to them.

And, what is needed is an apparatus and method which
allows shared I/O devices to be utilized by different process-
ing complexes without requiring modification to the process-
ing complexes existing operating systems or other software.
Of course, one skilled in the art will appreciate that modifi-
cation of driver software may allow for increased functional-
ity within the shared environment.

The previously filed applications from which this applica-
tion depends address each of these needs. However, in addi-
tion to the above, what is further needed is an I/O device that
can be shared by two or more processing complexes using a
common load-store fabric.

Further, what is needed is a network interface controller
which can be shared, or mapped, to one or more processing
complexes (or OSD’s) using a common load-store fabric.
Network interface controllers, Ethernet controllers (10/100, 1
gig, and 10 gig) are all implementations of'a network interface
controller (NIC).

SUMMARY

The present invention provides a method and apparatus for
allowing a network interface controller to be shared by one or
more operating system domains within the load-store
domains of processing complexes.

10

15

20

25

30

35

40

45

50

55

60

65

6

In one aspect, the present invention provides a shareable
network interface controller to be shared within the load-store
architecture of a number of operating system domains. The
controller includes transmit/receive logic, a bus interface, and
association logic. The transmit/receive logic couples the con-
troller to a network to transmit/receive network communica-
tion. The bus interface includes operating system domain
identification logic, and interfaces the controller to the oper-
ating system domains (OSD’s), and for associates OSD com-
munication to and from the bus interface with ones of the
OSD’s. The association logic is coupled to the transmit/re-
ceive logic, and associates the network communication with
ones of the OSD’s. By associating the network communica-
tion with the OSD’s, and associating the OSD communica-
tion with the OSD’s, the shared controller provides commu-
nication between the OSD’s and the network.

An additional feature of this invention includes a number
of control status register sets (CSR’s), coupled to the bus
interface, and available to be associated with a unique one of
the operating system domains. That is, for each OSD to be
connected to the controller, a CSR set is made available to
allow the controller to be mapped within the load-store
domain of each OSD.

Another feature of this invention includes a descriptor
cache coupled to the bus interface to store descriptors
retrieved from the plurality of operating system domains.

An additional feature of this invention includes a number
of direct memory access (DMA) engines, the engines used by
the controller to DMA OSD communication from the OSD’s,
and to DMA the network communication to the OSD’s.

In another aspect, the present invention provides a network
interface controller (NIC) which provides an interface
between a network and a number of operating system
domains, where the controller exists within the load-store
domain of each of the operating system domains (OSD’s).
The controller includes a bus interface, a network interface
and association logic. The bus interface is located between the
operating system domains and the controller. The network
interface is located between the network and the controller.
The association logic is coupled to both the bus interface and
the network interface and associates data coming from the
network with at least one of the plurality of operating system
domains.

In a further aspect, the present invention provides a shared
network interface controller (NIC) which allows a number of
computer servers to interface to an Ethernet network. The
controller includes: a bus interface to couple the controller to
apacket based load-store serial link, the load-store serial link
coupling each ofthe computer servers to the controller; server
identification logic, coupled to the bus interface, to identify
packets received by the bus interface with ones of the com-
puter servers; buffering logic, coupled to the server identifi-
cation logic, to store the packets received by the bus interface,
along with tags to associate the packets with ones of the
computer servers; association logic, coupled to the buffering
logic, to determine MAC addresses for the packets utilizing
the tags; and transmit/receive logic, coupled to the Ethernet
network, and to the association logic, to transmit the packets
to the Ethernet network, and to receive packets from the
Ethernet network. By associating packets with ones of the
computer servers, and buffering the packets between the com-
puter servers and the Ethernet network, the shared network
interface controller provides an Ethernet interface for all of
the computer servers via the packet based load-store serial
link.

In yet another aspect, the present invention provides a
blade server environment including: a number of blade serv-



US 9,106,487 B2

7

ers; a shared switch to couple to the blade servers, and to
provide communication between the blade servers and a
downstream endpoint, the downstream endpoint being a
shared network interface controller. The controller includes: a
bus interface to couple the controller to the shared switch;
identification logic, to determine which of the blade servers is
associated with data packets received by the controller; trans-
mit/receive logic, to couple the controller to an Ethernet net-
work; buffer logic, coupled to the bus interface and to the
transmit/receive logic, to buffer the data packets received by
the controller, either from the shared switch, or from the
Ethernet network; and association logic, coupled to the buffer
logic, to determine from a MAC address, which of the blade
servers should be associated with the data packets.

In a further aspect, the present invention provides a method
for sharing a network interface controller by a number of
operating system domains. The method includes: providing a
load-store domain link between the controller and the oper-
ating system domains; providing OSD identification for data
transmitted over the load-store domain link; providing an
interface between the controller and a network; buffering data
between the load-store domain link and the network; and
associating the buffered data with the operating system
domains, the associating utilizing association logic to asso-
ciate MAC addresses within the buffered data with ones of the
operating system domains.

In yet another aspect, the present invention provides a
method for correlating Ethernet packets within a shared net-
work interface controller with a number of upstream operat-
ing system domains. The method includes: receiving the
packets into the shared network interface controller; associ-
ating the packets with the upstream operating system
domains by correlating destination MAC addresses within
the packets with ones of the upstream operating system
domains; caching descriptors for each of the upstream oper-
ating system domains which define where in their memories
the packets are to be transferred; and transferring the packets,
per the descriptors, to the upstream operating system domains
via a load-store link which allows the packets to be tagged
with information which associates the packets with their
upstream operating system domain.

In a further aspect, the present invention provides a method
for transmitting packets from a number of operating system
domains to an Ethernet network thru a shared network inter-
face controller. The method includes: requesting a packet
transmit from one of the operating system domains to the
controller; tagging the request with an OSD header to asso-
ciate the request with its operating system domain; transmit-
ting the request to the shared network interface controller;
within the shared network interface controller, correlating the
request with its operating system domain; utilizing the OSD
header for the request to determine associated descriptors for
the request; transferring data from the operating system
domain, corresponding to the request utilizing the associated
descriptors; buffering the transferred data; and transmitting
the buffered data to the Ethernet network.

In another aspect, the present invention provides a shared
network interface controller to interface a number of operat-
ing system domains to a network. The controller includes: a
bus interface, to interface the controller to a number of oper-
ating system domains; transmit/receive logic, to interface the
controller to a network; and packet replication logic, coupled
to the bus interface, to detect whether packets received from
a first operating system domain is destined for a second oper-
ating system domain, and if the packets are destined for the
second operating system domain, the logic causing the pack-
ets to be transferred to the second operating system domain.

10

15

20

25

30

35

40

45

50

55

60

65

8

In a further aspect, the present invention provides a method
for determining a loopback condition within a shared network
interface controller. The method includes: determining
whether a packet transmitted by a first operating system
domain is destined for a second operating system domain, the
first and second operating system domains interfaced to each
other, and to a network, through the shared network interface
controller; if the packet is destined for the second operating
system domain, forwarding the packet to the second operat-
ing system domain, and not forwarding the packet to the
network; and if the packet is not destined for the second
operating system domain, forwarding the packet to the net-
work.

Other features and advantages of the present invention will
become apparent upon study of the remaining portions of the
specification and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is prior art block diagram of three processing com-
plexes each with their own network interface controller (NIC)
attached to an Ethernet network.

FIG. 2 is a block diagram of three processing complexes
sharing a shared network interface controller via a shared /0O
switch according to the present invention.

FIG. 3 is a block diagram of three processing complexes
sharing a network interface controller having two Ethernet
ports for coupling to an Ethernet according to the present
invention.

FIG. 4 is block diagram of three processing complexes
communicating to a network using a shared switch having an
embedded shared network interface controller according to
the present invention.

FIG. 5 is a block diagram of a prior art network interface
controller.

FIG. 6 is a block diagram of a network interface controller
according to one embodiment of the present invention.

FIG. 7 is a block diagram of alternative embodiments of a
transmit/receive fifo according to the present invention.

FIG. 8 is a block diagram of alternative embodiments of
descriptor logic according to the present invention.

FIG. 9 is a block diagram illustrating three processing
complexes coupled to a network interface controller which
incorporates a shared I/O switch, according to the present
invention.

FIG. 10 is a block diagram illustrating the shared network
interface controller of FIG. 9.

FIG. 11 is a block diagram illustrating packet flow through
the shared network interface controller according to the
present invention.

FIG. 12 is a block diagram illustrating packet flow for a
multicast transmit operation through the shared network
interface controller according to the present invention.

FIG. 13 is a block diagram of illustrating packet flow for a
multicast receive operation through the shared network inter-
face controller according to the present invention.

FIG. 14 is a flow chart illustrating a packet receive through
the shared network interface controller of the present inven-
tion.

FIG. 15 is a flow chart illustrating a packet transmit through
the shared network interface controller of the present inven-
tion.

FIG. 16 is a block diagram of a redundant 8 blade server
architecture utilizing shared /O switches and endpoints
according to the present invention.



US 9,106,487 B2

9

FIG. 17 is a block diagram illustrating alternative embodi-
ments of control status registers within the shared network
interface controller of the present invention.

FIG. 18 is a block diagram illustrating alternative embodi-
ments of packet replication logic and loopback detection
according to the present invention.

DETAILED DESCRIPTION

Although the present invention may be implemented in any
of a number of load-store fabrics, the below discussion is
provided with particular reference to PCI-Express. One
skilled in the art will appreciate that although embodiments of
the present invention will be described within the context of
PCI Express, a number of alternative, or yet to be developed
load/store protocols might be used without departing from the
spirit and scope of the present invention.

By way of background, Peripheral Component Intercon-
nect (PCI) was developed in the early 1990’s by Intel Corpo-
ration as a general I/O architecture to transfer data and
instructions faster than the ISA architecture of the time. PCI
has gone thru several improvements since that time, with the
latest proposal being PCI Express. In a nutshell, PCI Express
is a replacement of the PCI and PCI-X bus specification to
provide platforms with much greater performance, while
using a much lower pin count (Note: PCI and PCI-X are
parallel bus architectures, PCI Express is a serial architec-
ture). A complete discussion of PCI Express is beyond the
scope of this specification, but a thorough background and
description can be found in the following books which are
incorporated herein by reference for all purposes: Introduc-
tion to PCI Express, A Hardware and Software Developer’s
Guide, by Adam Wilen, Justin Schade, Ron Thornburg; 7%e
Complete PCI Express Reference, Design Insights for Hard-
ware and Software Developers, by Edward Solari and Brad
Congdon; and PCI Express System Architecture, by Ravi
Budruk, Don Anderson, Tom Shanley; all of which are avail-
able at www.amazon.com. In addition, the PCI Express speci-
fication is managed and disseminated through the Special
Interest Group (SIG) for PCI found at www.pcisig.com.

This invention is also directed at describing a shared net-
work interface controller. Interface controllers have existed to
connect computers to a variety of networks, such as Ethernet,
Token Ring, etc. However, Applicant’s are unaware of any
network interface controller that may be shared by multiple
processing complexes as part of their load-store domain.
While the present invention will be described with reference
to interfacing to an Ethernet network, one skilled in the art
will appreciate that the teachings of the present invention are
applicable to any type of computer network.

Referring now to FIG. 1, a block diagram 100 is provided
illustrating three processing complexes 102, 104, 106, each
having one or more network interface controllers 114, 116,
118, 120 for coupling the processing complexes 102, 104,
106 to the network 126 (via switches 122, 124). More spe-
cifically, processing complex 102 is coupled to network inter-
face controller 114 via a load-store bus 108. The bus 108 may
be any common bus such as PCI, PCI-X, or PCI-Express.
Processing complex 104 is coupled to network interface con-
troller 116 via load-store bus 110. Processing complex 106 is
coupled to two network interface controllers 118, 120 via
load-store bus 112. What should be appreciated by the Prior
art illustration and discussion with respect to FIG. 1, is that
each processing complex 102, 104, 106 requires its own net-
work interface controller 114, 116, 118-120, respectively, to
access the network 126.

10

15

20

25

30

35

40

45

50

55

60

65

10

Referring now to FIG. 2, a block diagram 200 is shown
which implements an embodiment of the present invention.
More specifically, three processing complexes 202, 204, 206
are shown, each with their own load-store bus 208, 210, 212,
coupledto a shared I/O switch 214. The shared /O switch 214
is coupled to a shared network interface controller 220 via an
operating system domain (OSD) aware load-store bus 216.
Note: Details of one embodiment of an OSD aware load-store
bus 216 are found in the parent applications referenced above.
For purposes of the below discussion, this OSD aware load-
store bus will be referred to as PCI-Express+. The shared
network interface controller 220 is coupled to a network (such
as Ethernet) 226.

As mentioned above, a processing complex may be as
simple as a single microprocessor, such as a Pentium micro-
processor, coupled to memory, or it might be as complex as
two or more processors which share memory. The processing
complex may execute a single operating system, or may
execute multiple operating systems which share memory. In
either case, applicant intends that from the viewpoint of the
shared 1/O switch 214, that whatever configuration of the
processing complex, each load-store bus 208, 210, 212 be
considered a separate operating system domain (OSD). At
this point, it is sufficient that the reader understand that in the
environment described with reference to FIG. 2, the load-
store links 208, 210, 212 do not carry information to the
shared I/O switch 214 that particularly associates the infor-
mation with themselves. Rather, they utilize load-store links
208, 210, 212 as if they were attached directly to a dedicated
network interface controller. The shared I/O switch 214
receives requests, and or data, (typically in the form of pack-
ets), over each of the load-store links 208, 210, 212. In the
example of FIG. 2, the shared I/O switch 214 illustrates three
upstream ports 208, 210, 212 coupled to the load-store links
208, 210, 212 which are non OSD aware, and one down-
stream port 216 coupled to an OSD aware load-store link 216.
Although not shown, within the shared /O switch 214 is a
core, and mapping logic which tags, or associates packets
received on the non OSD aware links 208, 210, 212 with their
respective OSD. The shared /O switch 214 then provides
those packets to the downstream OSD aware link 216 with
embedded information to associate those packets with their
upstream link 208, 210, 212. Alternatively, the information to
associate those packets with their upstream link 208, 210,212
can be provided out of band via an alternate link (not shown).
In either embodiment, the shared network interface controller
220 receives the OSD aware information via link 216 so that
it can process the requests/data, per OSD.

In the reverse, when information flows from the network
interface controller 220 to the shared 1/O switch 214, the
information is associated with the appropriate upstream link
208,210, 212 by embedding (or providing out of band), OSD
association for each piece of information (e.g., packet) trans-
mitted over the link 216. The shared I/O switch 214 receives
the OSD aware information via the link 216, determines
which upstream port the information should be transmitted
on, and then transmits the information on the associated link
208, 210, 212.

What should be appreciated by reference to FIG. 2 is that
three processing complexes 202, 204, 206 all share the same
shared network interface controller 220, which then provides
them with access to the network 226. Complete details of the
links 208, 210, 212 between the processing complexes 202,
204, 206 and the shared /O switch 214 are provided in the
parent applications which are referenced above and incorpo-
rated by reference. Attention will now be focused on the



US 9,106,487 B2

11

downstream OSD aware shared endpoint, particularly,
embodiments of the shared network interface controller 220.

Referring now to FIG. 3, a block diagram 300 is shown,
substantially similar in architecture to the environment
described above with respect to FIG. 2, elements referenced
similarly, the hundred’s digit being replaced with a 3. What is
particularly called out, however, is a shared network interface
controller 320 which has two connection ports 318, 322 cou-
pling it to the network 326. The purpose of this is to illustrate
that the network interface controller 320 should not be viewed
as being a single downstream port device. Rather, the con-
troller 320 may have 1-N downstream ports for coupling it to
the network 326. In one embodiment, for example, the con-
troller might have a 10/100 megabit port 318, and a 1 gigabit
port 320. One skilled in the art will appreciate that other port
speeds, or number of ports may also be utilized within the
context of the present invention.

A detailed description of one embodiment of the shared
network interface controller of the present invention will be
described below with respect to FIG. 6. Operation of the
shared network interface controller will later be described
with reference to FIGS. 11-13. However, it is considered
appropriate, before proceeding, to provide a high level over-
view of the operation of the system shown in FIG. 3.

Each of the processing complexes 302, 304, 306 are
coupled to the shared 1/O switch 314 via links 308, 310, 312.
The links, in one embodiment, utilize PCI-Express. The
shared I/O switch 314 couples each of the links 308, 310,312
to downstream devices such as the shared network interface
controller 320. In addition, the shared 1/O switch 314 tags
communication from each of the processing complexes 302,
304, 306 with an operating system domain header (OSD
header) to indicate to the downstream devices, which of the
processing complexes 302, 304, 306 is associated with the
communication. Thus, when the shared network interface
controller 320 receives a communication from the shared I/O
switch 314, included in the communication is an OSD header.
The controller 320 can utilize this header to determine which
of the processing complexes 302, 304, 306 sent the commu-
nication, so that the controller 320 can deal with communi-
cation from each of the complexes 302, 304, 306 distinctly. In
reverse, communication from the controller 320 to the pro-
cessing complexes 302,304, 306 gets tagged by the controller
320 with an OSD header, so that the shared I/O switch 314 can
determine which of the processing complexes 302, 304, 306
the communication should be passed to. Thus, by tagging
communication between the processing complexes 302, 304,
306 and the shared network interface controller 320 with an
OSD header (or any other type of identifier), the controller
320 can distinguish communication between the different
complexes it supports.

Referring now to FIG. 4, a block diagram of an alternative
embodiment of the present invention is shown, similar to that
described above with respect to FIG. 3. Like references have
like numbers, the hundreds digit replaced with a 4. In this
embodiment, however, the shared 1/0 switch 414 has incor-
porated a shared network interface controller 420 within the
switch. One skilled in the art will appreciate that such an
embodiment is simply a packaging alternative to providing
the shared network interface controller 420 as a separate
device.

Referring now to FIG. 5, a block diagram of a prior art
non-shared network interface controller 500 is shown. The
purpose of illustrating the prior art controller is not to detail an
embodiment of an existing controller, but rather to provide a
foundation so that differences between existing controllers
and the shared controller of the present invention can be better

10

15

20

25

30

35

40

45

50

55

60

65

12

appreciated. The controller 500 includes a bus interface 502
to interface the controller 502 to its computer (not shown).
Modern controllers typically utilize some form of PCI
(whether PCI, PCI-X, or PCI-Express is used) as their inter-
face to their computer. The bus interface 502 is coupled to a
data path mux 504 which provides an interface to the transmit
and receive buffers 514, 518, respectively. The transmit and
receive buffers 514, 518 are coupled to transmit and receive
logic 516, 520, respectively which interface the controller to
an Ethernet network (not shown). The controller further
includes a CSR block 506 which provides the control status
registers necessary for supporting communication to a single
computer. And, the controller 500 includes a DMA engine
510 to allow data transfer from and to the computer coupled
to the controller 500. In addition, the controller 500 includes
an EEPROM 508 which typically includes programming for
the controller 500, and the MAC address (or addresses)
assigned to that controller for use with the computer to which
it is coupled. Finally, the controller 500 includes a processor
512. One skilled in the art will appreciate that other details of
an interface controller are not shown, but are not considered
necessary to understand the distinctions between the prior art
controller 500 and the shared network interface controller of
the present invention.

Referring now to FIG. 6, a block diagram is shown illus-
trating a shared network interface controller 600 according to
the present invention. The controller 600 is illustrated with
logic capable of supporting 1 to N number of distinct operat-
ing system domains. Thus, based on the desires of the manu-
facturer, the number of distinct operating system domains
supported by the controller 600 of the present invention may
be 2, 4, 8, 16, or any number desired by the manufacturer.
Thus, rather than describing a controller 600 to support 2 or 3
operating system domains, applicant will describe the logic
necessary to support 1 to N domains.

The controller 600 includes bus interface/OS ID logic 602
for interfacing the controller 600 to an upstream load/store
shared 1/O link such as described above with reference to
FIGS. 2-3. As mentioned, one embodiment utilizes PCI-Ex-
press, but incorporates OSD header information to particu-
larly call out which of the processing complexes the commu-
nication is from/to. Applicant’s refer to this enhanced bus as
PCI-Express+. Thus, the bus interface portion of the logic 602
provides the necessary electrical and logical operations to
interface to PCI-Express, while the OSD ID portion of the
logic 602 provides the necessary operations to determine for
incoming communication, which of the upstream operating
system domains are associated with the communication, and
for outgoing communication, to tag the communication with
the appropriate OSD for its upstream operating system
domain.

The bus interface/OS 1D logic 602 is coupled to a data path
mux 604. The mux 604 is coupled to packet replication logic
605. In one embodiment, the packet replication logic 605 is
used for loopback, multi-cast and broadcast operations. More
specifically, since packets originating from one of the pro-
cessing complexes may be destined for one or more of the
other processing complexes for which the shared network
interface controller 600 is coupled, the packet replication
logic 605 performs the function of determining whether such
packets should be transmitted to the Ethernet network, or
alternatively, should be replicated and presented to one or
more of the other processing complexes to which the control-
ler 600 is coupled. Details of a multicast operation will be
described below with reference to FIG. 13. And, details of the
packet replication logic will be provided below with refer-
ence to FI1G. 18.



US 9,106,487 B2

13

The mux 604 is also coupled to a plurality of CSR blocks
606. As mentioned above, to establish communication to an
operating system domain, a controller must have control sta-
tus registers which are addressable by the operating system
domain. These control status registers 606 have been dupli-
cated in FIG. 6 for each operating system domain the designer
desires to support (e.g., 2,4, 8, 16, N). In one embodiment, to
ease design, each of the CSR’s 606 which are required to
support an operating system domain (OSD) are duplicated for
each supported OSD. In an alternative embodiment, only a
subset of the CSR’s 606 are duplicated, those being the reg-
isters whose contents will vary from OSD to OSD. Other ones
of'the CSR’s 606 whose contents will not change from OSD
to OSD may be not be duplicated, but rather will simply be
made available to all supported OSD’s. In one embodiment,
the minimum number of CSR’s 606 which should be dupli-
cated includes the head and tail pointers to communicate with
the OSD. And, if the drivers in the OSD are restricted to
require that they share the same base address, then even the
base address register (BAR) within the type 0 configuration
space (e.g., in a PCI-Express environment) need not be dupli-
cated. Thus, the requirement of duplicating some or all of the
CSR’s 606 is a design choice, in combination with the
whether or not modifications to the software driver are made.

Referring to FIG. 17, a block diagram illustrating a logical
view of CSR block 606 is shown. More specifically, a first
embodiment (a) illustrates a duplication of all of the CSR
registers 606, one per supported OSD, as CSR registers 1710.
Alternatively, a second embodiment (b) illustrates providing
global timing and system functions 1722 to all supported
OSD’s, providing mirrored registers 1724 for others of the
control status registers, and replicating a small set of registers
1726 (such as the head and tail pointers), per OSD. Applicant
believes that embodiment (b) requires very little impact or
change to the architecture of existing non shared controllers,
while allowing them to utilize the novel aspects of the present
invention. Moreover, as described above, the physical loca-
tion of the CSR blocks need not reside on the same chip. For
example, the global functions of the CSR block (such as
timing and system functions) may reside on the controller
600, while the mirrored and/or replicated registers may be
located in another chip or device. Thus, whether or not the
CSR functions reside on the same chip, or are split apart to
reside in different locations, both are envisioned by the inven-
tor.

In one embodiment, the CSR’s 606 contain the Control and
Status Registers used by device drivers in the OSD’s to inter-
face to the controller 600. The CSR’s 606 are responsible for
generating interrupts to the interface between the OSD’s and
the controller 600. The CSR’s 606 also include any generic
timers or system functions specific to a given OSD. In one
embodiment, there is one CSR set, with several registers
replicated per each OSD. The following table describes some
of the CSR registers 606 of an embodiment. Mirrored regis-
ters map a single or global function/register into all OSD’s.
Note that in some cases the registers may be located in sepa-
rate address locations to ensure that an OSD does not have to
do Byte accesses or RMW.

Replicated/

Register Name  Bits Mirrored  Function

INT Status
DMA Status

16 Replicated Contains all INT Status
16 Replicated Contains General status of DMA
activity

10

15

20

25

30

35

40

45

55

60

65

14
-continued
Replicated/

Register Name Bits Mirrored  Function
RX CMD 8 Replicated Initiates RX Descriptor Activity
TX CMD 8 Replicated Initiates TX Descriptor Activity
Descriptor 64 Replicated Base address for descriptor
Location rings and general status pool

in driver owned memory
Selective Reset 4 Replicated Reset of various states of the chip
Pwr Mgt 8 Replicated Status and control of Power

Management Events and Packets
MDI Control 32 Replicated Management bus access for PHY
TX Pointers 16 Replicated Head/Tail pointers for TX descriptor
RX Pointers 16 Replicated Head/Tail pointers for RX descriptor
General CFG 32 Replicated General Configuration parameters
INT Timer 16 Replicated Timer to moderate the number of

INT’s sent to a given OS domain
EEPROM R/W 16 Mirrored Read and Write of EEPROM Data
General Status 8 Mirrored  Chip/Link wide status indications
RX-Byte Count 32 Mirrored  Byte count of RX FIFO status

(Debug Only)
Flow Control 16 Mirrored  Status and CFG of MAC XON/XOFF

Referring back to FIG. 6, coupled to the mux 604 is an
EEPROM 608 having N MAC addresses 609. As mentioned
above with respect to FIG. 5, a network interface controller is
typically provided with one (or more) MAC addresses which
associate the controller with a single OSD (e.g., one MAC
address per network port). However, since the controller 600
will be associated with multiple OSD’s, the manufacturer of
the controller 600 will provide 1-N MAC addresses, depend-
ing on how many OSD’s are supported by the controller 600,
and how many ports per OSD are supported by the controller
600. For example, a controller 600 with 2 network ports (e.g.,
1 gig and 10 gig), for each of 4 OSD’s, would provide 8 MAC
addresses. One skilled in the art will appreciate that the “N”
designation for the number of DMA engines is thus not cor-
related to the “N” number of operating system domains sup-
ported by the controller 600. That is, the number of DMA
engines is not directly associated with the number of OSD’s
supported.

The controller 600 further includes DMA logic having
DMA arbitration 610 coupled to a number of DMA engines
611. Since the controller 600 will be supporting more than
one OSD, additional DMA engines 611 allow increased per-
formance for the controller 600, although additional DMA
engines 611 are not required. Thus, one DMA engine 611
could be handling communication from a first OSD, while a
second DMA engine 611 could be handling communication
from a second OSD. Or, one DMA engine 611 could be
handling transmit communication from a first OSD, while a
second DMA engine 611 could be handling receive commu-
nication for the first OSD. Thus, it is not intended to neces-
sarily provide a DMA engine 611 per supported OSD. Rather,
the manufacturer may provide any number of DMA engines
611, according to the performance desired. Further, the DMA
arbitration 610 may be configured to select/control utilization
of'the DM A engines 611 according to predefined criteria. One
simple criteria would simply be a round robin selection of
engines 611 by the supported OSD’s. Another criteria would
designate a DMA engine per OSD. Yet another criteria would
associate particular DMA engines with either transmit or
receive operations. Specifics associated with DMA arbitra-
tion are beyond the scope of the present application. However,
one skilled in the art should appreciate that it is not the
arbitration schemes which are important to the present appli-
cation, but rather, the provision of 1-N DMA engines, along



US 9,106,487 B2

15

with appropriate arbitration, to allow for desired performance
to be obtained for a desired number of supported OSD’s.

The controller 600 further includes descriptor logic having
descriptor arbitration 613, a plurality of descriptor caches
615, and in one embodiment descriptor tags 617. One skilled
in the art will appreciate that present non shared network
interface controllers contain a descriptor cache for storing
transmit/receive descriptors. The transmit/receive descriptors
are associated with the OSD to which the non shared control-
ler is attached. The descriptors are retrieved by the non shared
controller from the memory system of the OSD, and are used
to receive/transmit data from/to the OSD. With the shared
network interface controller 600 of the present invention,
descriptors must be available within the controller 600 for
each of the supported OSD’s. And, each of the descriptors
must be associated with their specific OSD. Applicant has
envisioned a number of embodiments for providing descrip-
tors for multiple OSD’s, and has illustrated these embodi-
ments in FIG. 8, to which attention is now directed.

FIG. 8 provides three embodiments (a), (b), (c), 800 of
descriptor cache arrangements for the controller 600.
Embodiment (a) includes a plurality of descriptor caches 802
(1-N), thereby duplicating a descriptor cache of a non shared
controller, and providing a descriptor cache for each sup-
ported OSD. In this embodiment, descriptors for OSD “0”
would be stored in descriptor cache “0”, descriptors for OSD
“1” would be stored in descriptor cache “17, etc. Moreover,
while not specifically illustrated, it should be appreciated that
the descriptor caches 802 for each supported OSD include a
transmit descriptor cache portion and a receive descriptor
cache portion. These transmit/receive portions may be either
the same size, or may be different in size, relative to each
other. This embodiment would be easy to implement, but
might require more on-controller memory than is desired.

Embodiment (b) includes a virtual descriptor cache 806
having tags 810. The virtual descriptor cache 806 may be used
to store descriptors for any of the supported OSD’s. But,
when a descriptor is retrieved from a particular OSD, that
OSD’s header (or some other identifier) is placed as a tag
which is associated with that descriptor. Thus, the controller
can readily identify which of the descriptors in the virtual
descriptor cache 806 are associated with which one of the
supported OSD’s. In this embodiment, descriptor arbitration
808 is used to insure that each supported OSD is adequately
supported by the virtual descriptor cache 806. For example,
the virtual descriptor cache 806 caches both transmit and
receive descriptors for all of the supported OSD’s. One sce-
nario would allocate equal memory space to transmit descrip-
tors and receive descriptors (such as shown in embodiment (c)
discussed below. An alternative scenario would allocate a
greater portion of the memory to transmit descriptors. Fur-
ther, the allocation of memory to either transmit or receive
descriptors could be made dynamic, so that a greater portion
of the memory is used to store transmit descriptors, until the
OSD’s begin receiving a greater portion of receive packets, at
which time a greater portion of the memory would be allo-
cated for receive descriptors. And, the allocation of transmit
receiver cache could be equal across all supported OSD’s, or
alternatively, could be based on pre-defined criteria. For
example, it may be established that one or more of the OSD’s
should be given higher priority (or rights) to the descriptor
cache. That is, OSD “0” might be allocated 30% of the trans-
mit descriptor cache, while the other OSD’s compete for the
other 70%. Or, rights to the cache 806 may be made in a pure
round-robin fashion, giving each OSD essentially equal
rights to the cache for its descriptors. Thus, whether the
allocation of fifo cache between transmit and receive descrip-

35

40

45

50

16

tors, and/or between OSDs is made equal, or is made unequal
based on static criteria, or is allowed to fluctuate based on
dynamic criteria (e.g., statistics, timing, etc.), all such con-
figurations are anticipated by the inventor.

One skilled in the art will appreciate that the design choices
made with respect to descriptor size, and arbitration, is a
result of trying to provide ready access to descriptors, both
transmit and receive, for each supported OSD, while also
trying to keep the cost of the controller 600 close to the cost of
a non shared controller. Increasing the descriptor cache size
impacts cost. Thus, descriptor arbitration schemes are used to
best allocate the memory used to store the descriptors in a
manner that optimizes performance. For example, if all of the
descriptor memory is taken, and an OSD needs to obtain
transmit descriptors to perform a transmit, a decision must be
made to flush certain active descriptors in the cache. Which
descriptors should be flushed? For which OSD? What has
been described above are a number of descriptor arbitration
models, which allow a designer to utilize static or dynamic
criteria in allocating descriptor space, based on the type of
descriptor and the OSD.

In embodiment (c), a virtual transmit descriptor cache 812
is provided to store transmit descriptors for the supported
OSD’s, and a virtual receive descriptor 814 is provided to
store receive descriptors for the supported OSD’s. This
embodiment is essentially a specific implementation of
embodiment (b) that prevents transmit descriptors for one
OSD from overwriting active receive descriptors. Although
not shown, it should be appreciated that tags for each of the
descriptors are also stored within the transmit/received
caches 812, 814, respectively.

What should be appreciated from the above is that for the
shared network interface controller 600 to support multiple
OSD’s, memory/storage must be provided on the controller
600 for storing descriptors, and some mechanism should exist
for associating the descriptors with their OSD. Three embodi-
ments for accomplishing the association have been shown but
others are possible without departing from the scope of the
present invention.

Referring back to FIG. 6, the controller 600 further
includes a processor 612 for executing controller instructions,
and for managing the controller. And, the controller includes
a buffer 619 coupled to transmit logic 616 and receive logic
620. The transmit logic performs transfer of data stored in the
buffer 619 to the network. The receive logic 620 performs
transfer of data from the network to the buffer 619. The buffer
includes a virtual fifo 623 and a virtual fifo 625, managed by
virtual fifo manager/buffer logic 621. The purpose of the
buffer 619 is to buffer communication from the plurality of
supported OSD’s and the network. More specifically, the
buffer 619 provides temporary storage for communication
transferred from the OSD’s to the controller 600, and for
communication transferred from the network to the OSD’s.

A number of embodiments for accomplishing such buffer-
ing are envisioned by the applicant, and are illustrated in FIG.
7 to which attention is now directed. More specifically, three
embodiments (a), (b), (c) are shown which perform the nec-
essary buffering function. Embodiment (a) includes 1-N
transmit fifo’s 704, and 1-N receive fifo’s 708, coupled to
transmit/receive logic 706/710 respectively. In this embodi-
ment, a transmit fifo is provided for, and is associated with,
each of the OSD’s supported by the shared network controller
600. And, areceive fifo is provided for, and is associated with,
each of the OSD’s supported by the shared network controller
600. Thus, communication transmitted from OSD “0” is
placed into transmit fifo “0”, communication transmitted
from OSD “1” is placed into transmit fifo “1” and communi-



US 9,106,487 B2

17

cation to be transmitted to OSD “N” is placed into receive fifo
“N”. Since transmit/receive fifos 704, 708 are provided for
each OSD, no tagging of data to OSD is required.

Embodiment (b) provides a virtual transmit fifo 712 and a
virtual receive fifo 716, coupled to OSD management 714,
718, respectively. In addition, the transmit fifo 712 includes
tag logic 713 for storing origin OSD tags (or destination MAC
address information) for each packet within the fifo 712, and
the receive fifo 716 includes tag logic 715 for storing desti-
nation OSD tags (or destination MAC address information)
for each packet within the fifo 716. The virtual fifo’s are
capable of storing communication from/to any of the sup-
ported OSD’s as long as the communication is tagged or
associated with its origin/destination OSD. The purpose of
the OSD management 714, 718 is to insure such association.
Details of how communication gets associated with its OSD
will be described below with reference back to FIG. 6.

Embodiment (c) provides a single virtual fifo 720, for
buffering both transmit and receive communication for all of
the supported OSD’s, and tag logic 721 for storing tag infor-
mation to associate transmit and receive communication with
the supported OSD’s, as explained with reference to embodi-
ment (b). The single virtual fifo is coupled to OSD manage-
ment 722, as above. The OSD management 722 tags each of
the communications with their associated OSD, and indicates
whether the communication is transmit or receive. One
skilled in the art will appreciate that although three embodi-
ments of transmit/receive fifo’s are shown, others are pos-
sible. What is important is that the controller 600 provide
buffering for transmit/receive packets for multiple OSD’s,
which associates each of the transmit/receive packets with
their origin or destination OSD(s).

Referring back to FIG. 6, the controller 600 further
includes association logic 622 having 1-N OSD entries 623,
and 1-N MAC address entries 625. At configuration, for each
of'the OSD’s that will be supported by the controller 600, at
least one unique MAC address is assigned. The OSD/MAC
association is stored in the association logic 622. In one
embodiment, the association logic 622 is a look up table
(LUT). The association logic 622 allows the controller 600 to
associate transmit/receive packets with their origin/destina-
tion OSD. For example, when a receive packet comes into the
controller 600 from the network, the destination MAC
address of the packet is determined, and compared with the
entries in the association logic 622. From the destination
MAC address, the OSD(s) associated with that MAC address
is determined. From this determination, the controller 600
can manage transfer of this packet to the appropriate OSD by
placing its OSD header in the packet transferred from the
controller 600 to shared I/O switch. The shared 1/O switch
will then use this OSD header to route the packet to the
associated OSD.

The controller 600 further includes statistics logic 624. The
statistics logic provides statistics, locally per OSD, and glo-
bally for the controller 600, for packets transmitted and
received by the controller 600. For example, local statistics
may include the number of packets transmitted and/or
received per OSD, per network port. Global statistics may
included the number of packets transmitted and/or received
per network port, without regard to OSD. Further, as will be
explained further below, it is important for loopback, broad-
cast, and multicast packets, to consider the statistics locally
per OSD, and globally, as if such packets were being trans-
mitted/received through non shared interface controllers.
That is, a server to server communication through the shared
network interface controller should have local statistics that
look like X packets transmitted by a first OSD, and X packets

30

40

45

50

55

18

received by a second OSD, even though as described below
with reference to FIG. 12, such packets may never be trans-
mitted outside the shared controller 600.

What has been described above is one embodiment of a
shared network interface controller 600, having a number of
logical blocks which provide support for transmitting/receiv-
ing packets to/from a network for multiple OSD’s. To accom-
plish the support necessary for sharing the controller 600
among multiple OSD’s, blocks which are considered OSD
specific have been replicated or virtualized with tags to asso-
ciate data with its OSD. Association logic has also been
provided for mapping an OSD to one (or more) MAC
addresses. Other embodiments which accomplish these pur-
poses are also envisioned.

Further, one skilled in the art will appreciate that the logical
blocks described with reference to FIG. 6, although shown as
part of a single controller 600, may be physically placed into
one or more distinct components. For example, the bus inter-
face and OS ID logic 602 may be incorporated in another
device, such as in the shared I/O switch described in FIG. 2.
And, other aspects of the controller 600 (such as the repli-
cated CSR’s, descriptor cache(s), transmit/receive fifo’s, etc.
may be moved into another device, such as a network proces-
sor, or shared 1/O switch, so that what is required in the
network interface controller is relatively minimal. Thus, what
should be appreciated from FIG. 6 is an arrangement of
logical blocks for implementing sharing of an interface to a
network, without regard to whether such arrangement is pro-
vided within a single component or chip, separate chips, or
located disparately across multiple devices.

Referring now to FIG. 9, a block diagram is shown of an
alternative embodiment 900 of the present invention. More
specifically, the processing complexes 902, 904, 906 are
shown coupled directly to a shared network interface control-
ler 920 via an OSD aware load-store bus 908. In this embodi-
ment, each of the processing complexes 902, 904, 906 have
incorporated OSD aware information in their load-store bus
908, so that they may be coupled directly to the shared net-
work interface controller 920. Alternatively, the load-store
bus 908 is not OSD aware, but rather, the shared network
interface controller 920 incorporates a shared /O switch
within the controller, and has at least three upstream ports for
coupling the controller 920 to the processing complexes.
Such an embodiment is particularly shown in FIG. 10 to
which attention is now directed.

FIG. 10 illustrates a shared network interface controller
1002 having three load-store buses 1004 for coupling the
controller 1002 to upstream processing complexes. In this
embodiment, the load-store buses 1004 are not OSD aware.
The controller 1002 contains a shared i/o switch 1005, and
OSD ID logic 1006 for associating communication from/to
each of the processing complexes with an OS identifier. The
OSD ID logic 1006 is coupled via an OS aware link to core
logic 1008, similar to that described above with respect to
FIG. 6. Applicant intends to illustrate in these Figures that the
shared network interface controller of the present invention
may be incorporated within a shared 1/O switch, or may
incorporate a shared I/O switch within it, or may be coupled
directly to OSD aware processing complexes. Any of these
scenarios are within the scope of the present invention.

Referring now to FIG. 11, a block diagram 1100 is shown
which illustrates packet flow through the shared network
interface controller of the present invention. More specifi-
cally, processing complexes 1102, 1104, 1106 (designated as
“07, “17, “N” to indicate 1-N supported processing com-
plexes) are coupled via a non OSD aware load-store link 1108
to a shared I/O switch 1110. The switch 1110 is coupled to a



US 9,106,487 B2

19

shared network interface controller 1101 similar to that
described with reference to FIG. 6. The controller 1101 is
coupled to a network 1140 such as Ethernet. With respect to
FIGS. 11-13, packets originating from or destined for pro-
cessing complex 1102 (“0”) are illustrated inside a square,
with the notation “0”. Packets originating from or destined for
processing complex 1104 (“1”) are illustrated inside a circle,
with the notation “1”. Packets originating from or destined for
processing complex 1106 (“N”) are illustrated inside a tri-
angle, with the notation “N”. In this example, each of the
packets “0”, “1”, and “N” are unicast packets. Flow will now
be described illustrating transmit packets “0” and “N” from
processing complexes 1102, 1106 respectively, and receive
packet “1” to processing complex 1104, through the shared
network interface controller 1101.

At some point in time, processing complex 1102 alerts the
controller 1101 that it has packet “0” in its memory, and
requires that it be transferred to the network. Typically, this is
accomplished by writing into a head pointer within the CSR
1120 associated with that processing complex 1102. The
controller 1101 will arbitrate for one of the dma engines 1124
to dma the descriptors associated with the packet into its
descriptor cache 1122. The controller will then use the
descriptors, and initiates a dma of the packet into its virtual
transmit fifo 1130. When the packet is placed into the fifo
1130, a tag indicating the OSD origin of the packet is placed
into the fifo 1130 along with the packet.

At another point in time, processing complex 1106 alerts
the controller 1101 that it has packet “N” in its memory, and
requires that it be transferred to the network. The controller
1101 obtains the descriptors for packet “N” similar to above,
and then dma’s the packet into the fifo 1130.

As shown, the packets arrive in the order “N”, then “0”, and
are placed into the fifo 1130 in that order. The packets are then
transmitted to the network 1140.

Also, at some point in time, packet “1” is received from the
network 1140 and is placed into the receive fifo 1132. Upon
receipt, the destination MAC address of the packet is looked
up in the association logic 1128 to determine which OSD
corresponds to the packet. In this case, processing complex
1104 (“17) is associated with the packet, and the packet is
tagged as such within the fifo 1132. Once the packet is in the
fifo 1132, the controller 1101 determines whether receive
descriptors exist in the descriptor cache 1122 for processing
complex 1104. If so, it uses these descriptors to initiate a dma
of'the packet from the controller 1101 to processing complex
1104. If the descriptors do not exist, the controller 1101
obtains receive descriptors from processing complex 1104,
then dma’s the packet to processing complex 1104 to the
memory locations specified by the descriptors. Communica-
tion to the processing complex 1104 from the controller 1101
contains OSD header information, specifically designating to
the shared I/O switch 1110 which of its upstream processing
complexes 1102, 1104, 1106 the communication is intended.

The description above with respect to FIG. 11 provides a
general understanding of how transmit/receive packets flow
between the processing complexes and the network. Packet
flow will now be described with respect to a multicast trans-
mit packet. One skilled in the art will appreciate that a mul-
ticast packet is a packet tagged as such in the packet header,
and thus determined to be a multicast packet when the packet
is received, either from an originating OSD, or from the
network. The multicast packet is compared against filters
(perfect and hash filters being the most common), and virtual
lans (VLAN’s), that are established by the driver, and main-
tained per OSD, to determine if the packet is destined for any
of the OSD’s supported by the shared controller.

10

15

20

25

30

35

40

45

50

55

60

65

20

Referring now to FIG. 12, a block diagram similar to that
described above with respect to FIG. 11 is shown, reference
elements being the same, the hundreds digits replaced with a
12. In addition, the perfect/hash filters, and VL AN logic (per
OSD) 1219 is shown included within the replication logic
1218. In this case, a transmit packet “0” originates from
processing complex 1202. The processing complex 1202
alerts the controller 1201 of the packet by writing to CSR
block 1220. The controller 1201 arbitrates for a dma engine
1224, and dma’s a descriptor to the descriptor cache 1222.
The controller 1201 uses the descriptor to dma packet “0”
from processing complex 1202 to the data path mux 1216.
When the packet arrives it is examined to determine its des-
tination MAC address. A lookup into the association logic
1228 is made to determine whether the destination MAC
address includes any of the MAC addresses for which the
controller 1201 is responsible. If not, then the packet is placed
into the transmit fifo 1230 for transfer to the network 1240.
Alternatively, if the lookup into the association logic 1228
determines that the destination MAC ADDRESS is one of the
addresses for which the controller 1201 is responsible, packet
replication logic 1218 causes the packet to be written into the
receive fifo 1232 instead of the transmit fifo 1230. In addition,
the packet is tagged within the fifo 1232 with the OSD cor-
responding to the destination MAC address. This causes the
controller 1201 to treat this packet as a receive packet, thereby
initiating transter of the packet to it associated processing
complex.

In the example illustrated in FIG. 12, packet “0” is a mul-
ticast packet, with header information which must be com-
pared to the filters/vlan logic 1218 per OSD to determine
whether it should be destined for other OSD’s supported by
the controller. In this instance, packet “0” is destined for
processing complexes 1204, 1206, and a device on the net-
work 1240. Thus, packet “0” is written into the transmit fifo
1230 to be transferred to the network 1240. And, packet “0” is
written into the receive fifo 1232 to be transferred to process-
ing complex 1204. Once packet “0” has been transferred to
processing complex 1204, packet replication logic 1218, in
combination with the filter/vlan logic 1219 determines that
the packet is also destined for processing complex 1206.
Thus, rather than deleting packet “0” from the receive fifo
1232, packet replication logic 1218 retains the packet in the
fifo 1232 and initiates a transfer of the packet to processing
complex 1206. Once this transfer is complete, packet “0” is
cleared from the fifo 1232. One skilled in the art should
appreciate that packet “0” could have been a unicast packet
from processing complex 1202 to processing complex 1204
(or 1206). In such instance, packet replication logic 1218
would have determined, using the destination MAC address
in packet “0”, that the destination OSD was either processing
complex 1204 or 1206. In such instance, rather than writing
packet “0” into the transmit fifo 1230, it would have written it
directly into receive fifo 1232. Processing complex 1204 (or
1206) would have then been notified that a packet had been
received for it. In this case, packet “0” would not ever leave
the shared controller 1201, and, no double buffering would
have been required for packet “0” (i.e., on both the transmit
and receive side). One skilled in the art should also appreciate
that the statistics recorded for such a loopback packet should
accurately reflect the packet transmit from processing com-
plex 1202 and the packet receive to processing complex 1204
(or 1206) even though packet “0” never left the shared con-
troller 1201, or even hit the transmit fifo 1230.

The above example is provided to illustrate that packets
transmitted by any one of the supported processing com-
plexes may be destined for one of the other processing com-



US 9,106,487 B2

21

plexes connected to the shared controller 1201. If this is the
case, it would be inappropriate (at least within an Ethernet
network) to present such a packet onto the network 1140,
since it will not be returned. Thus, the controller 1201 has
been designed to detect, using the destination MAC address,
and the association logic 1228, whether any transmit packet is
destined for one of the other processing complexes. And, if
such is the case, packet replication logic causes the packet to
be placed into the receive fifo 1232, to get the packet to the
correct processing complex(es).

Referring now to FIG. 13, a block diagram 1300 is shown
illustrating receipt of a multicast packet from the network
1340. Diagram 1300 is similar to FIGS. 11 and 12, with
references the same, the hundreds digits replaced with 13. In
this instance, packet “0” is received into the receive fifo 1332.
The destination MAC address for the packet is read and
compared to the entries in the association logic 1328. Further,
the packet is determined to be a multicast packet. Thus, filters
(perfect and hash) and VLLAN tables 1319 are examined to
determine which, if any, of the OSD’s are part of the multi-
cast. The packet is tagged with OSD’s designating the appro-
priate upstream processing complexes. In this instance,
packet “0” is destined for processing complexes 1304, 1306.
The controller 1301 therefore causes packet “0” to be trans-
ferred to processing complex 1304 as above. Once complete,
the controller 1301 causes packet “0” to be transferred to
processing complex 1306. Once complete, packet “0” is
cleared from receive fifo 1332.

Each of the above packet flows, with respect to FIGS.
11-13, have been simplified by showing no more than three
upstream processing complexes, and no more than 3 packets
at a time, for which transmit/receive operations must occur.
However, as mentioned above, applicant envisions the shared
network interface controller of the present invention to sup-
port from 1 to N processing complexes, with N being some
number greater than 16. The shared 1/O switch that has been
repeatedly referred to has been described in considerable
detail in the parent applications referenced above. Cascading
of the shared 1/O switch allows for at least 16 upstream
processing complexes to be uniquely defined and tracked
within the load-store architecture described. It is envisioned
that the shared network interface controller can support at
least this number of processing complexes, but there is no
need to limit such number to 16. Further, the number of
packets that may be transmitted/received by the shared net-
work interface controller within a given period of time is
limited only by the bandwidth of the load-store link, or the
bandwidth of the network connection. As long as resources
exist within the shared network interface controller appropri-
ate to each supported processing complex (e.g., descriptor
cache, CSR’s, etc.), and association logic exists to correlate
processing complexes with physical MAC addresses, and
data within the controller may be associated with one or more
of the processing complexes, the objectives of the present
invention have been met, regardless of the number of process-
ing complexes supported, the details of the resources pro-
vided, or the physical links provided either to the load-store
link, or the network.

Referring now to FIG. 18, three embodiments of a loop-
back mechanism 1800 according to the present invention are
shown. More specifically, the above discussion with refer-
ence to FIGS. 12 and 13 illustrated a feature of the present
invention which prevents packets originating from one of the
OSD’s supported by the shared controller 600 and destinated
for another one of the OSD’s supported by the shared con-
troller 600, from entering the network. This feature is termed
“loopback™. In operation, the shared controller 600 detects,

10

15

20

25

30

35

40

45

50

55

60

65

22

for any packet transmitted from an OSD, whether the packet
is destined for another one of the OSD’s supported by the
controller. As described with reference to FIG. 12, packet
replication logic 1218 makes this determination, by compar-
ing the destination MAC address in the packet with its corre-
sponding OSD provided by the association logic 1228. This is
merely one embodiment of accomplishing the purpose of
preventing a packet destined for another one of the OSD’s
from entering the network. Other embodiments are envi-
sioned by the inventor. For example, in embodiment (a)
shown in FIG. 18, packet replication logic 1818 is located
between the bus interface 1814 and the transmit receive fifo’s
1830 and 1832. However, in this embodiment, a modification
in the controller’s driver (loaded by each OSD) requires that
the driver specify the destination MAC address for a packet
within the transmit descriptor. Thus, when a transmit descrip-
tor is downloaded into the controller 600, the packet replica-
tion logic 1818 can examine the descriptor to determine
whether the packet will require loopback, prior to download-
ing the packet. If this is determined, the location for the
loopback packet, whether in the transmit fifo, or the receive
fifo, is made prior to transfer, and indicated to the appropriate
DMA engine.

In an alternative embodiment (b), the replication logic
1818 is placed between the transmit/receive fifo’s 1830, 1832
and the transmit/receive logic. Thus, a loopback packet is
allowed to be transferred from an OSD into the transmit fifo
1830. Once it is in the transmit fifo 1830, a determination is
made that its destination MAC address corresponds to one of
the OSD’s supported by the controller. Thus, packet replica-
tion logic 1818 causes the packet to be transferred into the
receive fifo 1832 for later transfer to the destination OSD.

Inyetanother embodiment (c), the replication logic 1818 is
placed either between the fifo’s and the transmit/receive
logic, or between the bus interface 1814 and the fifo’s 1830,
1832. In either case, a loopback fifo 1833 is provided as a
separate buffer for loopback packets. The loopback fifo 1833
can be used to store loopback packets, regardless of when the
loopback condition is determined (i.e., before transfer from
the OSD; or after transfer into the transmit fifo 1830).

What should be appreciated from the above discussion is
that a number of implementations exist to detect whether a
transmit packet from one OSD has as its destination any of the
other OSD’s supported by the shared controller. As long as
the controller detects such an event (a “loopback™), and for-
wards the packet to the appropriate destination OSD(s), the
shared controller has efficiently, and effectively communi-
cated the packet accurately.

Referring now to FIG. 14, a flow chart 1400 is shown
illustrating the method of the present invention when a packet
is received by the network interface controller. Flow begins at
block 1402 and proceeds to decision block 1404.

At decision block 1404, a determination is made as to
whether a packet has been received. If not, flow proceeds back
to decision block 1404. If a packet has been received, flow
proceeds to decision block 1406. In an alternative embodi-
ment, a determination is made as to whether the header por-
tion of a packet has been received. That is, once the header
portion of a packet is received, it is possible to associate the
destination MAC address with one (or more) OSD’s, without
waiting for the packet to be completely received.

At decision block 1406, a determination is made as to
whether the destination MAC address of the packet matches
any of the MAC addresses for which the controller is respon-
sible. If not, flow proceeds to block 1408 where the packet is
dropped. However, if a match exists, flow proceeds to block
1410.



US 9,106,487 B2

23

Atblock 1410, association logic is consulted to determine
which OSD’s correspond to the destination MAC addresses
referenced in the received packet. A further determination is
made as to whether the MAC addresses correspond to par-
ticular virtual lans (VLLAN’s) for a particular OSD. Flow then
proceeds to block 1412.

At block 1412, the packet is stored in the receive fifo, and
designating with its appropriate OSD(s). Flow then proceeds
to decision block 1414.

At decision block 1414, a determination is made as to
whether the controller contains a valid receive descriptor for
the designated OSD. If not, flow proceeds to block 1416
where the controller retrieves a valid receive descriptor from
the designated OSD, and returns flow to block 1418. If the
controller already has a valid receive descriptor for the des-
ignated OSD, flow proceeds to block 1418.

Atblock 1418, the packet begins transfer to the designated
OSD (via the shared I/O switch). Flow then proceeds to block
1420.

At block 1420, packet transfer is completed. Flow then
proceeds to decision block 1422.

At decision block 1422, a determination is made as to
whether the packet is destined for another OSD. If not, flow
proceeds to block 1424 where the method completes. But, if
the packet is destined for another OSD, flow returns to deci-
sion block 1414 for that designated OSD. This flow continues
for all designated OSD’s.

Referring now to FIG. 15, a flow chart 1500 is shown
illustrating the method ofthe present invention for transmit of
a packet through the shared network interface controller of
the present invention.

Flow begins at block 1502 and proceeds to block 1504.

Atblock 1504, a determination is made as to which OSD is
transmitting the packet. Flow then proceeds to block 1506.

At block 1506, a valid transmit descriptor for the transmit
OSD is obtained from the OSD. Flow then proceeds to block
1507.

At block 1507, the packet is dma’ed into the transmit fifo.
Flow then proceeds to decision block 1508. Note, as dis-
cussed above, in one embodiment, the OSD places the desti-
nation MAC address within the descriptor to allow the packet
replication logic to determine whether a loopback condition
exists, prior to transferring the packet into the transmit fifo. In
an alternative embodiment, the OSD does not do the copy, so
the shared controller does not associate a packet with loop-
back until the first part of the header has been read from the
OSD. In either case, the loopback condition is determined
prior to block 1520. If the destination MAC address (and/or
an indication of broadcast or multicast) is sent with the
descriptor, the packet replication logic can determine whether
a loopback condition exists, and can therefore steer the dma
engine to transfer the packet directly into the receive fifo.
Alternatively, if the descriptor does not contain the destina-
tion MAC address (for loopback determination), then a deter-
mination of loopback cannot be made until the packet header
comes into the controller. In this instance, the packet header
could be examined while in the bus interface, to alert the
packet replication logic whether to steer the packet into the
transmit fifo, or into the receive fifo. Alternatively, the packet
could simply be stored into the transmit fifo, and await for
packet replication logic to determine whether a loopback
condition exists.

At decision block 1508 a determination is made as to
whether the transmit packet is either a broadcast or a multicast
packet. If the packet is either a broadcast or multicast packet,
flow proceeds to block 1510 where packet replication is noti-
fied. In one embodiment, packet replication is responsible for

25

40

45

24

managing packet transfer to multiple MAC addresses by tag-
ging the packet with information corresponding to each des-
tination OSD, and for insuring that the packet is transmitted to
each destination OSD. While not shown, one implementation
utilizes a bit-wise OSD tag (i.e., one bit per supported OSD),
such that an eight bit tag could reference eight possible OSD
destinations for a packet. Of course, any manner of designat-
ing OSD destinations for a packet may be used without
departing from the scope of the present invention. Once the
tagging of the packet for destination OSD’s is performed,
flow proceeds to decision block 1512.

At decision block 1512, a determination is made as to
whether the transmit packet is a loopback packet. As men-
tioned above, on an Ethernet network, a network interface
controller may not transmit a packet which is ultimately des-
tined for one of the devices it supports. In non shared control-
lers, this is never the case (unless an OSD is trying to transmit
packets to itself). But, in a shared controller, it is likely that for
server to server communications, a transfer packet is pre-
sented to the controller for a destination MAC address that is
within the realm of responsibility of the controller. This is
called a loopback packet. Thus, the controller examines the
destination MAC address of the packet to determine whether
the destination is for one of the OSD’s for which the control-
ler is responsible. If not, flow proceeds to block 1520. How-
ever, ifthe packet is a loopback packet, flow proceeds to block
1514.

At block 1514, the packet is transferred to the receive fifo
rather than the transmit fifo. Flow then proceeds to block
1516.

Atblock 1516, the destination OSD is notified that a packet
has been received for it. In one embodiment this requires
CSR’s for the destination OSD to be updated. Flow then
proceeds to block 1518.

At block 1518, flow proceeds to the flow chart of FIG. 14
where flow of a receive packet was described.

Atblock 1520, the packet is transferred to the transmit fifo.
Flow then proceeds to block 1522.

Atblock 1522, the packet is transmitted out to the network.
Flow then proceeds to block 1524.

At block 1524, packet transmit is completed. Flow then
proceeds to block 1526 where the method completes.

Referring now to FIG. 16, a block diagram 1600 is shown
which illustrates eight processing complexes 1602 which
share four shared I/O controllers 1610 utilizing the features of
the present invention. In one embodiment, the eight process-
ing complexes 1602 are coupled directly to eight upstream
ports 1606 on shared I/O switch 1604. The shared I/O switch
1604 is also coupled to the shared 1/O controllers 1610 via
four downstream ports 1607. In one embodiment, the
upstream ports 1606 are PCI Express ports, and the down-
stream ports 1607 are PCI Express+ ports, although other
embodiments might utilize PCI Express+ ports for every port
within the switch 1604. Routing Control logic 1608, along
with table lookup 1609 is provided within the shared I/O
switch 1604 to determine which ports packets should be
transferred to.

Also shown in FIG. 16 is a second shared 1/O switch 1620
which is identical to that of shared I/O switch 1604. Shared
1/0 switch 1620 is also coupled to each of the processing
complexes 1602 to provide redundancy of 1/O for the pro-
cessing complexes 1602. That is, if a shared I/O controller
1610 coupled to the shared /O switch 1604 goes down, the
shared I/O switch 1620 can continue to service the processing
complexes 1602 using the shared I/O controllers that are
attached to it. One skilled in the art will appreciate that among



US 9,106,487 B2

25

the shared 1/O controllers 1610 shown are a shared network
interface controller according to the present invention.

While not particularly shown, one skilled in the art will
appreciate that many alternative embodiments may be imple-
mented which differ from the above description, while not
departing from the scope of the invention as claimed. For
example, the context of the processing complexes, i.e., the
environment in which they are placed has not been described
because such discussion is exhaustively provided in the par-
ent application(s). However, one skilled in the art will appre-
ciate that the processing complexes (or operating system
domains) of the present application should be read to include
at least one or more processor cores within a SOC, or one or
more processors within a board level system, whether the
system is a desktop, server or blade. Moreover, the location of
the shared 1/0 switch, whether placed within an SOC, on the
backplane of a blade enclosure, or within a shared network
interface controller should not be controlling. Rather, it is the
provision of a network interface controller which can process
transmits/receives for multiple processing complexes, as part
of their load-store domain, to which the present invention is
directed. This is true whether the OSD ID logic is within the
shared network interface controller, or whether the shared
network interface controller provides multiple upstream OSD
aware (or non OSD aware) ports. Further, it is the tracking of
outstanding transmits/receives such that the transmits/re-
ceives are accurately associated with their upstream links (or
OSD’s) that is important.

Additionally, the above discussion has described the
present invention within the context of three processing com-
plexes communicating with the shared network interface con-
troller. The choice of three processing complexes was simply
for purposes of illustration. The present invention could be
utilized in any environment that has one or more processing
complexes (servers, CPU’s, etc.) that require access to a
network.

Further, the present invention has utilized a shared 1/O
switch to associate and route packets from processing com-
plexes to the shared network interface controller. It is within
the scope of the present invention to incorporate the features
of the present invention within a processing complex (or
chipset) such that everything downstream of the processing
complex is shared /O aware (e.g., PCI Express+). I[f this were
the case, the shared network interface controller could be
coupled directly to ports on a processing complex, as long as
the ports on the processing complex provided shared 1/O
information to the shared network interface controller, such
as OS Domain information. What is important is that the
shared network interface controller be able to recognize and
associate packets with origin or upstream OS Domains,
whether or not a shared I/O switch is placed external to the
processing complexes, or resides within the processing com-
plexes themselves.

And, if the shared I/O switch were incorporated within the
processing complex, it is also possible to incorporate one or
more shared network interface controllers into the processing
complex. This would allow a single processing complex to
support multiple upstream OS Domains while packaging
everything necessary to talk to fabrics outside of the load/
store domain (Ethernet, Fiber Channel, SATA, etc.) within the
processing complex. Further, if the upstream OS Domains
were made shared /O aware, it is also possible to couple the
domains directly to the network interface controllers, all
within the processing complex.

And, it is envisioned that multiple shared I/O switches
according to the present invention be cascaded to allow many
variations of interconnecting processing complexes with

10

20

25

30

35

40

45

50

55

60

65

26

downstream 1/O devices such as the shared network interface
controller. In such a cascaded scenario, an OS Header may be
global, or it might be local. That is, it is possible that a local ID
be placed within an OS Header, the local ID particularly
identifying a packet, within a given link (e.g., between a
processing complex and a switch, between a switch and a
switch, and/or between a switch and an endpoint). So, a local
ID may exist between a downstream shared /O switch and an
endpoint, while a different local ID may be used between an
upstream shared /O switch and the downstream shared 1/O
switch, and yet another local ID between an upstream shared
1/0O switch and a root complex. In this scenario, each of the
switches would be responsible for mapping packets from one
port to another, and rebuilding packets to appropriately iden-
tify the packets with their associating upstream/downstream
port.

It is also envisioned that the addition of an OSD header
within a load-store fabric, as described above, could be fur-
ther encapsulated within another load-store fabric yet to be
developed, or could be further encapsulated, tunneled, or
embedded within a channel-based fabric such as Advanced
Switching (AS) or Ethernet. AS is a multi-point, peer-to-peer
switched interconnect architecture that is governed by a core
AS specification along with a series of companion specifica-
tions that define protocol encapsulations that are to be tun-
neled through AS fabrics. These specifications are controlled
by the Advanced Switching Interface Special Interest Group
(ASI-SIG), 5440 SW Westgate Drive, Suite 217, Portland,
Oreg. 97221 (Phone: 503-291-2566). For example, within an
AS embodiment, the present invention contemplates employ-
ing an existing AS header that specifically defines a packet
path through a I/O switch according to the present invention.
Regardless of the fabric used downstream from the OS
domain (or root complex), the inventors consider any utiliza-
tion of the method of associating a shared 1/0 endpoint with
an OS domain to be within the scope of their invention, as
long as the shared I/O endpoint is considered to be within the
load-store fabric of the OS domain.

Further, the above discussion has been directed at an
embodiment of the present invention within the context of the
Ethernet network protocol. This was chosen to illustrate the
novelty of the present invention with respect to providing a
shareable controller for access to anetwork. One skilled in the
art should appreciate that other network protocols such as
Infiniband, OC48/0C192, ATM, SONET, 802.11 are encom-
passed within the above discussion to allow for sharing con-
trollers for such protocols among multiple processing com-
plexes. Further, Ethernet should be understood as including
the general class of IEEE Ethernet protocols, including vari-
ous wired and wireless media. It is not the specific protocol to
which this invention is directed. Rather, it is the sharing of a
controller by multiple processing complexes which is of
interest. Further, although the term MAC address should be
appreciated by one skilled in the art, it should be understood
as an address which is used by the Media Access Control
sublayer of the Data-Link Layer (DLC) of telecommunica-
tion protocols. There is a different MAC sublayer for each
physical device type. The other sublayer level in the DL.C
layer is the Logical Link Control sublayer.

Although the present invention and its objects, features and
advantages have been described in detail, other embodiments
are encompassed by the invention. In addition to implemen-
tations of the invention using hardware, the invention can be
implemented in computer readable code (e.g., computer read-
able program code, data, etc.) embodied in a computer usable
(e.g., readable) medium. The computer code causes the
enablement of the functions or fabrication or both of the



US 9,106,487 B2

27

invention disclosed herein. For example, this can be accom-
plished through the use of general programming languages
(e.g., C, C++, JAVA, and the like); GDSII databases; hard-
ware description languages (HDL) including Verilog HDL,
VHDL, Altera HDL (AHDL), and so on; or other program-
ming and/or circuit (i.e., schematic) capture tools available in
the art. The computer code can be disposed in any known
computer usable (e.g., readable) medium including semicon-
ductor memory, magnetic disk, optical disk (e.g., CD-ROM,
DVD-ROM, and the like), and as a computer data signal
embodied in a computer usable (e.g., readable) transmission
medium (e.g., carrier wave or any other medium including
digital, optical or analog-based medium). As such, the com-
puter code can be transmitted over communication networks,
including Internets and intranets. It is understood that the
invention can be embodied in computer code (e.g., as part of
an IP (intellectual property) core, such as a microprocessor
core, or as a system-level design, such as a System on Chip
(SOC)) and transformed to hardware as part of the production
of integrated circuits. Also, the invention may be embodied as
a combination of hardware and computer code.

Finally, those skilled in the art should appreciate that they
canreadily use the disclosed conception and specific embodi-
ments as a basis for designing or modifying other structures
for carrying out the same purposes of the present invention
without departing from the spirit and scope of the invention as
defined by the appended claims.

I claim:

1. A method for correlating Ethernet packets within a
shared network interface controller with a plurality of
upstream operating system domains on multiple processors,
comprising:

receiving the packets into the shared network interface

controller;

associating the packets with the plurality of upstream oper-

ating system domains, by the shared network interface

1

w

35

28

controller, by correlating destination MAC addresses
within the packets with ones of the plurality of upstream
operating system domains;

caching, by the shared network interface controller,

descriptors for each of the plurality of upstream operat-
ing system domains which define where in their memo-
ries the packets are to be transferred; and

transferring the packets, per the descriptors, from the

shared network interface controller, to the plurality of
upstream operating system domains via a PCI-Express
load-store link which allows the packets to be tagged
with information which associates the packets with their
upstream operating system domain.

2. A method for transmitting packets from a plurality of
operating system domains (OSDs) on multiple processors to
an Ethernet network thru a shared network interface control-
ler, comprising:

requesting a packet transmit from one of the plurality of

operating system domains to the controller;

tagging the request with an OSD header to associate the

request with its operating system domain;

transmitting the request to the shared network interface

controller, via a PCI-Express load-store link;

within the shared network interface controller, correlating

the request with its operating system domain;

utilizing the OSD header for the request to determine asso-

ciated descriptors for the request;

transferring data from the operating system domain, cor-

responding to the request utilizing the associated
descriptors, via the PCI-Express load-store link;
buffering the transferred data; and

transmitting the buffered data to the Ethernet network.

3. The method of claim 2, wherein transferring the data is
performed by a direct memory access (DMA) engine.

4. The method of claim 1, wherein transferring the packets
is performed by a direct memory access (DMA) engine.

#* #* #* #* #*



