a2 United States Patent
Nguyen et al.

US009462286B2

US 9,462,286 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54) METHODS AND DEVICES FOR CODING
BINARY SYMBOLS AS N-TUPLES

(75) Inventors: Nguyen Nguyen, Waterloo (CA); Dake
He, Waterloo (CA)

(73) Assignee: BlackBerry Limited, Waterloo (CA)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 902 days.

(21) Appl. No.: 13/524,583

(22) Filed: Jun. 15, 2012
(65) Prior Publication Data
US 2013/0336410 Al Dec. 19, 2013
(51) Imt.CL
HO04B 1/66 (2006.01)
HO4N 7/12 (2006.01)
HO4N 11/02 (2006.01)
HO4N 11/04 (2006.01)
HO4N 19/44 (2014.01)
HO4N 19/46 (2014.01)
HO4N 19/124 (2014.01)
HO4N 19/18 (2014.01)
(52) US. CL
CPC HO4N 19/44 (2014.11); HO4N 19/124

(2014.11); HO4N 19/18 (2014.11); HO4N
19/46 (2014.11)
(58) Field of Classification Search

CPC ..o HO4N 19/002; HO4N 19/00533;
HO4N 7/26335
USPC i 375/240.25

See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS

2007/0211950 Al
2013/0094585 Al*

9/2007 Shima
4/2013 Misra et al. 375/240.16

120

No
EP code grix

OTHER PUBLICATIONS

S.-T. Hsiang et al. (“Non-CE3: Modified method for coding trans-
form coefficient level”, JCTVC-10176, JCT-VC of ITU-T SG16
WP3 and ISO/IEC JTC1/SC29/WG11,9th Meeting, Geneva, May
2012.*

S. H. Kim, and A. Segall, “non-CE3: Improved high throughput
coding method based on last position information”, JCTVC-10337,
JCT-VC of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WGl1, 9th
Meeting, Geneva, May 2012.

W.-I. Chien, J. Chen, J. Sole, and M. Karczewicz, “TU level
threshold for Greater-than-1 Flags”, JCTVC-I0359, JCT-VC of
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 9th Meeting,
Geneva, May 2012.

W.-I. Chien, J. Chen, J. Sole, and M. Karczewicz, “CE3 subtest 2.1:
context assignment for parallel coefficient level coding”, JCTVC-
10303, JCT-VC of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/
WGL1, 9th Meeting, Geneva, May 2012.

S.-T. Hsiang, C.-W. Hsu, and S. Lei, “Non-CE3: Modified method
for coding transform coefficient level”, JCTVC-10176, JCT-VC of
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 9th Meeting,
Geneva, May 2012.

F. Bossen, “Common test conditions”, JCTVC-H1100, JCT-VC of
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 8th Meeting,
San Jose, Feb. 2012.

(Continued)

Primary Examiner — Mehrdad Dastouri
Assistant Examiner — Kristin Dobbs
(74) Attorney, Agent, or Firm — Rowand LLP

(57) ABSTRACT

Methods and devices for reconstructing coefficient levels
from a bitstream of encoded video data for a coefficient
group in a transform unit. Greater-than-one flags are
encoded by grouping them into tuples and by encoding a
tuple-based value that is a function of the greater-than-one
flags within that tuple. The tuple-based value may permit the
decoder to infer the greater-than-one flags in some cases, in
which case they are not encoded in the bitstream.

11 Claims, 11 Drawing Sheets

US 9,462,286 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

B. Bross, “Suggested bug-fixes for HEVC text specification draft
6”, JCTVC-10030, JCT-VC of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WGl1, 9th Meeting, Geneva, May 2012.

CIPO, CA Office Action relating to Application No. 2,818,023,
dated Feb. 19, 2015.

EPO, Extended European Search Report relating to EP application
No. 121724744 dated Sep. 30, 2015.

Nguyen, N. et al.: “Adaptive Thresholds for Greater-than-1 and
Greater-than-2 Flags”, 9. JCT-VC Meeting; 100. MPEG Meeting;

Apr. 27, 2012-Jul. 5, 2012; Geneva; (Joint Collaborative Team on
Video Coding of ISO/IEC JTC1/SC29/WGL1 and ITU-T SG. 16);
URL:http://witp3.itu.int/av-arch/jctve-site/,, No. JCTVC-I0281,
Apr. 17, 2012, XP030112044, Section “2 Proposal”.

Chen J. et al.: “Non-CEl: throughput improvement on CABAC
coeflicients level coding”, 8. JCT-VC Meeting; 99. MPEG Meeting;
Jan. 2, 2012-Oct. 2, 2012; San Jose; (Joint Collaborative Team on
Video Coding of ISO/IEC JTC1/SC29/WG11 and ITU-T SG:16);
URL: http://witp3.itu.int/av-arch/jctve-site/,, No. JCTVC-HO0554,
Jan. 24, 2012, XP030111581, Section “2 Proposed Method”.

* cited by examiner

U.S. Patent Oct. 4, 2016 Sheet 1 of 11 US 9,462,286 B2

10

21
24
12 / /22 K (26 14

- Spatial > Transform > Quantizer - Entropy

Predictor Processor Coder

28 —] Dequantizer

v

Inverse Transform
20 Processor

30

Coding Mode
Selector
32
36 34\ Deblocking Processor /
Motion
- Predictor i} Frame Store

FIG. 1

U.S. Patent Oct. 4, 2016 Sheet 2 of 11

58

Frame Buffer

y

Motion
Compensator

50\
-
62
54 56 57
L AL
Entropy Inverse Spatial
Decod = Dequantizer f=» Transform f=jpm e ;
ecoder Processor ompensator
K 52

FIG. 2

Deblocking |]
Processor

60}

US 9,462,286 B2

U.S. Patent Oct. 4, 2016 Sheet 3 of 11 US 9,462,286 B2

.
AN
()=

=)

FIG. 3

U.S. Patent Oct. 4,2

016 Sheet 4 of 11

US 9,462,286 B2

Group grl flags into pairs

_— 102

F .

i=i+1

104 f

124
Context code p;
122 More tuples?
106 108 —
Infer both flags zero
110 112
Griza _
presumed 0? Infer griy =1 >
114
EP code grily
118
116 \
Yes
Infer gris.g =1 —>
120\ No
EP code grily

FIG. 4

No
End

U.S. Patent Oct. 4, 2016

202
D

Decode p; <

Sheet 5 of 11

US 9,462,286 B2

/‘ 200

204

208

Griyg
presumed 07

212

EP decode gri,

214

Yes

218

\ No

i=i+1

222
220 More tuples?
206 —
Infer both flags zero
210

Infer grl,; =1 >

216 \
Infer gris, =1 —P

EP decode griy

FIG. 5

U.S. Patent Oct. 4, 2016 Sheet 6 of 11 US 9,462,286 B2

/' 300

0"

O
NS

FIG. 6

U.S. Patent Oct. 4, 2016 Sheet 7 of 11

N

| Initialize branch b

v

US 9,462,286 B2

402

402

| Group sig flags into pairs |\/

/- 400

408
es N
412 Context code p; 2 Context code p; —/
> 424
Infer 410 423 v Infer
| both Yes °S1 poth
flags = flags =
0
0 No No
[- 414
; EP code sy
418 EP code sy 496 /\ codes,
v 416

Infer es

o @ 2
No
r 420 EP code Soir1
EP code 5.1
4307] Update stats
ST
432 Set branch b

FIG. 7

i=i+1

U.S. Patent Oct. 4, 2016 Sheet 8 of 11 US 9,462,286 B2

/— 500

506
(520
510 Context code t; Context code t; —/
523

N

522 Yes | Infer

Context a” ﬂags -
code t; =0

(No

504
EP code grils; EP code grily;
3 504 /\ 3

!

Inf 514
¥ e.r Yes 526 - EP code s
grisig
1 530

"~ 518 528
gris + Infer
EP code s3i41 8rlsig grisio
=0? =1
532
EP code sz
y y
534
i=i+l

536

End

FIG. 8

U.S. Patent Oct. 4, 2016 Sheet 9 of 11 US 9,462,286 B2

/' 300

NNZ = 2 NNZ =1

ti:0/1

FIG. 9

U.S. Patent

Oct. 4, 2016

900

[

Sheet 10 of 11

US 9,462,286 B2

904

Encoder /
Processor Memory
902

906
(Encoding Application) /
1
Communications

System \. J

>

FIG. 10

U.S. Patent Oct. 4, 2016

Sheet 11 of 11

US 9,462,286 B2

1000

/ 1004

Encoder /

Processor Memory
1002
1006
(Decoding Application) /
1
Communications
System \. J

FIG. 11

US 9,462,286 B2

1
METHODS AND DEVICES FOR CODING
BINARY SYMBOLS AS N-TUPLES

COPYRIGHT NOTICE

A portion of the disclosure of this document and accom-
panying materials contains material to which a claim for
copyright is made. The copyright owner has no objection to
the facsimile reproduction by anyone of the patent document
or the patent disclosure, as it appears in the Patent and
Trademark Office files or records, but reserves all other
copyright rights whatsoever.

FIELD

The present application generally relates to data compres-
sion and, in particular, to methods and devices for coding
binary symbols as n-tuples, specifically in the case of video
coding.

BACKGROUND

Data compression occurs in a number of contexts. It is
very commonly used in communications and computer
networking to store, transmit, and reproduce information
efficiently. It finds particular application in the encoding of
images, audio and video. Video presents a significant chal-
lenge to data compression because of the large amount of
data required for each video frame and the speed with which
encoding and decoding often needs to occur. The current
state-of-the-art for video encoding is the ITU-T H.264/AVC
video coding standard. It defines a number of different
profiles for different applications, including the Main profile,
Baseline profile and others. A next-generation video encod-
ing standard is currently under development through a joint
initiative of MPEG-ITU termed High Efficiency Video Cod-
ing (HEVC). The initiative may eventually result in a
video-coding standard that will form part of a suite of
standards referred to as MPEG-H.

There are a number of standards for encoding/decoding
images and videos, including H.264, that use block-based
coding processes. In these processes, the image or frame is
divided into blocks, typically 4x4 or 8x8, and the blocks are
spectrally transformed into coefficients, quantized, and
entropy encoded. In many cases, the data being transformed
is not the actual pixel data, but is residual data following a
prediction operation. Predictions can be intra-frame, i.e.
block-to-block within the frame/image, or inter-frame, i.e.
between frames (also called motion prediction). It is
expected that HEVC will also have these features.

When spectrally transforming residual data, many of
these standards prescribe the use of a discrete cosine trans-
form (DCT) or some variant thereon. The resulting DCT
coeflicients are then quantized using a quantizer to produce
quantized transform domain coefficients, or indices.

The block or matrix of quantized transform domain
coeflicients (sometimes referred to as a “transform unit™) is
then entropy encoded using a particular context model. In
H.264/AVC and in the current development work for HEVC,
the quantized transform coefficients are encoded by (a)
encoding a last significant coefficient position indicating the
location of the last non-zero coefficient in the transform unit,
(b) encoding a significance map indicating the positions in
the transform unit (other than the last significant coefficient
position) that contain non-zero coefficients, (¢) encoding the
magnitudes of the non-zero coefficients, and (d) encoding
the signs of the non-zero coefficients. This encoding of the

10

15

20

25

30

35

40

45

50

55

60

65

2

quantized transform coefficients often occupies 30-80% of
the encoded data in the bitstream.

BRIEF DESCRIPTION OF THE DRAWINGS

Reference will now be made, by way of example, to the
accompanying drawings which show example embodiments
of the present application, and in which:

FIG. 1 shows, in block diagram form, an encoder for
encoding video;

FIG. 2 shows, in block diagram form, a decoder for
decoding video;

FIG. 3 shows a state machine used to determine context
for encoding greater-than-one flags;

FIG. 4 shows one example process for tuple-based encod-
ing of greater-than-one flags;

FIG. 5 shows a corresponding example process for tuple-
based decoding of greater-than-one flags;

FIG. 6 shows an example state machine for context
derivation for encoding/decoding tuple-based values in the
processes of FIGS. 4 and 5;

FIG. 7 shows an example method for tuple-based encod-
ing of significant-coefficient flags;

FIG. 8 shows an example method of 3-tuple-based encod-
ing of greater-than-one flags;

FIG. 9 shows an example state machine for determining
context for encoding/decoding tuple values in the process
shown in FIG. 8;

FIG. 10 shows a simplified block diagram of an example
embodiment of an encoder; and

FIG. 11 shows a simplified block diagram of an example
embodiment of a decoder.

Similar reference numerals may have been used in dif-
ferent figures to denote similar components.

DESCRIPTION OF EXAMPLE EMBODIMENTS

The present application describes methods and encoders/
decoders for encoding and decoding residual video data. In
particular, the present application describes methods and
devices for reconstructing coefficient levels from a bitstream
of encoded video data for a coefficient group in a transform
unit. Greater-than-one flags are encoded by grouping them
into tuples and by encoding a tuple-based value that is a
function of the greater-than-one flags within that tuple. The
tuple-based value may permit the decoder to infer the
greater-than-one flags in some cases, in which case they are
not encoded in the bitstream.

In a first aspect, the present application describes a
method of decoding a bitstream of encoded video in a video
decoder to reconstruct a plurality of greater-than-one flags
for a coeflicient group, wherein the plurality of greater-than-
one flags are grouped in scan order into tuples of greater-
than-one flags. The method includes decoding a tuple-based
value from the bitstream for each tuple; and, for each tuple,
inferring or decoding the greater-than-one flags for that tuple
based on that tuple’s decoded tuple-based value, wherein the
tuple-based value is a function of the greater-than-one flags
in that tuple.

In another aspect, the present application describes a
method of encoding video in a video encoder to output a
bitstream of encoded data by encoding a plurality of greater-
than-one flags for a coefficient group, wherein the plurality
of greater-than-one flags are grouped in scan order into
tuples of greater-than-one flags. The method includes group-
ing the greater-than-one flags in scan order into non-over-
lapping tuples of greater-than-one flags; determining a tuple-

US 9,462,286 B2

3

based value for each tuple as a function of the greater-than-
one flags in that tuple; encoding the tuple-based values in the
bitstream; and, for each tuple, for each greater-than-one flag
in that tuple, if that greater-than-one flag cannot be inferred
then encoding that greater-than-one flag in the bitstream.

In another aspect, the present application describes a
method of decoding a bitstream of encoded video to recon-
struct a set of coeflicients in a video decoder, the set of
coeflicients including at least two non-zero coefficients each
having a magnitude greater than one. The method includes
decoding a significant coefficient flag for each coefficient in
the set, wherein each significant coefficient flag indicates
whether its associated coeflicient is non-zero; and for each
non-overlapping tuple of non-zero coefficients, wherein
each non-overlapping tuple of non-zero coefficients corre-
sponds to a tuple of respective greater-than-one flags, decod-
ing a tuple-based value, wherein the tuple-based value is a
function of the greater-than-one flags in that tuple, and based
on the decoded tuple-based value, inferring or decoding the
greater-than-one flags for that tuple.

In a further aspect, the present application describes
encoders and decoders configured to implement such meth-
ods of encoding and decoding.

In yet a further aspect, the present application describes
non-transitory computer-readable media storing computer-
executable program instructions which, when executed, con-
figured a processor to perform the described methods of
encoding and/or decoding.

Other aspects and features of the present application will
be understood by those of ordinary skill in the art from a
review of the following description of examples in conjunc-
tion with the accompanying figures.

In the description that follows, some example embodi-
ments are described with reference to the H.264 standard for
video coding and/or the developing HEVC standard. Those
ordinarily skilled in the art will understand that the present
application is not limited to H.264/AVC or HEVC but may
be applicable to other video coding/decoding standards,
including possible future standards, multi-view coding stan-
dards, scalable video coding standards, and reconfigurable
video coding standards.

In the description that follows, when referring to video or
images the terms frame, picture, slice, tile and rectangular
slice group may be used somewhat interchangeably. Those
of'skill in the art will appreciate that, in the case of the H.264
standard, a frame may contain one or more slices. The term
“frame” may be replaced with “picture” in HEVC. Other
terms may be used in other video coding standards. It will
also be appreciated that certain encoding/decoding opera-
tions might be performed on a frame-by-frame basis, some
are performed on a slice-by-slice basis, some picture-by-
picture, some tile-by-tile, and some by rectangular slice
group, depending on the particular requirements or termi-
nology of the applicable image or video coding standard. In
any particular embodiment, the applicable image or video
coding standard may determine whether the operations
described below are performed in connection with frames
and/or slices and/or pictures and/or tiles and/or rectangular
slice groups, as the case may be. Accordingly, those ordi-
narily skilled in the art will understand, in light of the present
disclosure, whether particular operations or processes
described herein and particular references to frames, slices,
pictures, tiles, rectangular slice groups are applicable to
frames, slices, pictures, tiles, rectangular slice groups, or
some or all of those for a given embodiment. This also

10

15

20

25

30

35

40

45

50

55

60

65

4

applies to transform units, coding units, groups of coding
units, etc., as will become apparent in light of the description
below.

Reference is now made to FIG. 1, which shows, in block
diagram form, an encoder 10 for encoding video. Reference
is also made to FIG. 2, which shows a block diagram of a
decoder 50 for decoding video. It will be appreciated that the
encoder 10 and decoder 50 described herein may each be
implemented on an application-specific or general purpose
computing device, containing one or more processing ele-
ments and memory. The operations performed by the
encoder 10 or decoder 50, as the case may be, may be
implemented by way of application-specific integrated cir-
cuit, for example, or by way of stored program instructions
executable by a general purpose processor. The device may
include additional software, including, for example, an oper-
ating system for controlling basic device functions. The
range of devices and platforms within which the encoder 10
or decoder 50 may be implemented will be appreciated by
those ordinarily skilled in the art having regard to the
following description.

The encoder 10 receives a video source 12 and produces
an encoded bitstream 14. The decoder 50 receives the
encoded bitstream 14 and outputs a decoded video frame 16.
The encoder 10 and decoder 50 may be configured to operate
in conformance with a number of video compression stan-
dards. For example, the encoder 10 and decoder 50 may be
H.264/AVC compliant. In other embodiments, the encoder
10 and decoder 50 may conform to other video compression
standards, including evolutions of the H.264/AVC standard,
like HEVC.

The encoder 10 includes a spatial predictor 21, a coding
mode selector 20, transform processor 22, quantizer 24, and
entropy encoder 26. As will be appreciated by those ordi-
narily skilled in the art, the coding mode selector 20 deter-
mines the appropriate coding mode for the video source, for
example whether the subject frame/slice is of I, P, or B type,
and whether particular coding units (e.g. macroblocks, cod-
ing units, etc.) within the frame/slice are inter or intra coded.
The transform processor 22 performs a transform upon the
spatial domain data. In particular, the transform processor 22
applies a block-based transform to convert spatial domain
data to spectral components. For example, in many embodi-
ments a discrete cosine transform (DCT) is used. Other
transforms, such as a discrete sine transform or others may
be used in some instances. The block-based transform is
performed on a coding unit, macroblock or sub-block basis,
depending on the size of the macroblocks or coding units. In
the H.264 standard, for example, a typical 16x16 macrob-
lock contains sixteen 4x4 transform blocks and the DCT
process is performed on the 4x4 blocks. In some cases, the
transform blocks may be 8x8, meaning there are four
transform blocks per macroblock. In yet other cases, the
transform blocks may be other sizes. In some cases, a 16x16
macroblock may include a non-overlapping combination of
4x4 and 8x8 transform blocks.

Applying the block-based transform to a block of pixel
data results in a set of transform domain coefficients. A “set”
in this context is an ordered set in which the coefficients
have coeflicient positions. In some instances the set of
transform domain coefficients may be considered as a
“block” or matrix of coefficients. In the description herein
the phrases a “set of transform domain coefficients” or a
“block of transform domain coefficients” are used inter-
changeably and are meant to indicate an ordered set of
transform domain coefficients.

US 9,462,286 B2

5

The set of transform domain coefficients is quantized by
the quantizer 24. The quantized coefficients and associated
information are then encoded by the entropy encoder 26.

The block or matrix of quantized transform domain
coeflicients may be referred to herein as a “transform unit”
(TU). In some cases, the TU may be non-square, e.g. a
non-square quadrature transform (NSQT).

Intra-coded frames/slices (i.e. type 1) are encoded without
reference to other frames/slices. In other words, they do not
employ temporal prediction. However intra-coded frames do
rely upon spatial prediction within the frame/slice, as illus-
trated in FIG. 1 by the spatial predictor 21. That is, when
encoding a particular block the data in the block may be
compared to the data of nearby pixels within blocks already
encoded for that frame/slice. Using a prediction algorithm,
the source data of the block may be converted to residual
data. The transform processor 22 then encodes the residual
data. H.264, for example, prescribes nine spatial prediction
modes for 4x4 transform blocks. In some embodiments,
each of the nine modes may be used to independently
process a block, and then rate-distortion optimization is used
to select the best mode.

The H.264 standard also prescribes the use of motion
prediction/compensation to take advantage of temporal pre-
diction. Accordingly, the encoder 10 has a feedback loop that
includes a de-quantizer 28, inverse transform processor 30,
and deblocking processor 32. The deblocking processor 32
may include a deblocking processor and a filtering proces-
sor. These elements mirror the decoding process imple-
mented by the decoder 50 to reproduce the frame/slice. A
frame store 34 is used to store the reproduced frames. In this
manner, the motion prediction is based on what will be the
reconstructed frames at the decoder 50 and not on the
original frames, which may differ from the reconstructed
frames due to the lossy compression involved in encoding/
decoding. A motion predictor 36 uses the frames/slices
stored in the frame store 34 as source frames/slices for
comparison to a current frame for the purpose of identifying
similar blocks. Accordingly, for macroblocks or coding units
to which motion prediction is applied, the “source data”
which the transform processor 22 encodes is the residual
data that comes out of the motion prediction process. For
example, it may include information regarding the reference
frame, a spatial displacement or “motion vector”, and
residual pixel data that represents the differences (if any)
between the reference block and the current block. Infor-
mation regarding the reference frame and/or motion vector
may not be processed by the transform processor 22 and/or
quantizer 24, but instead may be supplied to the entropy
encoder 26 for encoding as part of the bitstream along with
the quantized coefficients.

Those ordinarily skilled in the art will appreciate the
details and possible variations for implementing video
encoders.

The decoder 50 includes an entropy decoder 52, dequan-
tizer 54, inverse transform processor 56, spatial compensator
57, and deblocking processor 60. The deblocking processor
60 may include deblocking and filtering processors. A frame
buffer 58 supplies reconstructed frames for use by a motion
compensator 62 in applying motion compensation. The
spatial compensator 57 represents the operation of recover-
ing the video data for a particular intra-coded block from a
previously decoded block.

The bitstream 14 is received and decoded by the entropy
decoder 52 to recover the quantized coefficients. Side infor-
mation may also be recovered during the entropy decoding
process, some of which may be supplied to the motion

10

15

20

25

30

35

40

45

50

55

60

65

6

compensation loop for use in motion compensation, if
applicable. For example, the entropy decoder 52 may
recover motion vectors and/or reference frame information
for inter-coded macroblocks.

The quantized coefficients are then dequantized by the
dequantizer 54 to produce the transform domain coefficients,
which are then subjected to an inverse transform by the
inverse transform processor 56 to recreate the “video data”.
It will be appreciated that, in some cases, such as with an
intra-coded macroblock or coding unit, the recreated “video
data” is the residual data for use in spatial compensation
relative to a previously decoded block within the frame. The
spatial compensator 57 generates the video data from the
residual data and pixel data from a previously decoded
block. In other cases, such as inter-coded macroblocks or
coding units, the recreated “video data” from the inverse
transform processor 56 is the residual data for use in motion
compensation relative to a reference block from a different
frame. Both spatial and motion compensation may be
referred to herein as “prediction operations”.

The motion compensator 62 locates a reference block
within the frame buffer 58 specified for a particular inter-
coded macroblock or coding unit. It does so based on the
reference frame information and motion vector specified for
the inter-coded macroblock or coding unit. It then supplies
the reference block pixel data for combination with the
residual data to arrive at the reconstructed video data for that
coding unit/macroblock.

A deblocking/filtering process may then be applied to a
reconstructed frame/slice, as indicated by the deblocking
processor 60. After deblocking/filtering, the frame/slice is
output as the decoded video frame 16, for example for
display on a display device. It will be understood that the
video playback machine, such as a computer, set-top box,
DVD or Blu-Ray player, and/or mobile handheld device,
may buffer decoded frames in a memory prior to display on
an output device.

It is expected that HEVC-compliant encoders and decod-
ers will have many of these same or similar features.
Quantized Transform Domain Coefficient Encoding and
Decoding

The present application describes example processes and
devices for encoding and decoding transform coefficients of
a transform unit. The non-zero coefficients are identified by
a significance map. A significance map is a block, matrix,
group, or set of flags that maps to, or corresponds to, a
transform unit or a defined unit of coefficients (e.g. several
transform units, a portion of a transform unit, or a coding
unit). Each flag indicates whether the corresponding position
in the transform unit or the specified unit contains a non-zero
coeflicient or not. In existing standards, these flags may be
referred to as significant-coefficient flags. In existing stan-
dards, there is one flag per coefficient from the DC coeffi-
cient to the last significant coefficient in a scan order, and the
flag is a bit that is zero if the corresponding coefficient is
zero and is set to one if the corresponding coeflicient is
non-zero. The term “significance map” as used herein is
intended to refer to a matrix or ordered set of significant-
coeflicient flags for a transform unit, as will be understood
from the description below, or a defined unit of coefficients,
which will be clear from the context of the applications.

The significance map may be converted to a vector in
accordance with the scan order (which may be vertical,
horizontal, diagonal, zig-zag, or any other scan order per-
mitted under the applicable standard). The scan is typically
done in “reverse” order, i.e. starting with the last significant
coeflicient and working back through the significant map in

US 9,462,286 B2

7

reverse direction until the significant-coefficient flag in the
upper-left corner at [0,0] is reached. In the present descrip-
tion, the term “scan order” is intended to mean the order in
which flags, coefficients, or groups, as the case may be, are
processed and may include orders that are referred to col-
loquially as “reverse scan order”. Each significant-coeffi-
cient flag is then entropy encoded using the applicable
context-adaptive coding scheme.

The levels for those non-zero coefficients may then be
encoded. In some standards, levels are encoded by encoding
one or more level flags. If additional information is required
to signal the magnitude of a quantized transform domain
coeflicient, then remaining-level data may be encoded. In
one example implementation, the levels may be encoded by
first encoding a map of those non-zero coefficients having an
absolute value level greater than one, i.e. greater-than-one
flags. Another map may then be encoded of those non-zero
coeflicients having a level greater than two, i.e. greater-than-
two flags. The value or level of any of the coefficients having
an absolute value greater than two is then encoded, i.e.
remaining-level data. The value encoded in the remaining-
level integer may be the actual value minus three. The sign
of each of the non-zero coeflicients is also encoded. Each
non-zero coefficient has a sign bit indicating whether the
level of that non-zero coefficient is negative or positive.

In some implementations, coefficients in a transform unit
are partitioned into coefficient groups. For example, a 16x16
TU may be partitioned into sixteen 4x4 coefficient groups.
Each coefficient group may have a significant-coefficient-
group flag that indicates whether any of the significant-
coeflicient flags in that group are non-zero, or whether they
are all zero (or may be inferred to be all zero). The
significant-coefficient-group flag indicates whether the bit-
stream contains any significant-coefficient flags (and other
level related flags) or whether the decoder may infer that the
group contains all zero coeflicients. The encoder and
decoder may process all parameters within a coeflicient
group in a scan order within the group before moving to the
next group. The encoder and decoder may progress from
coeflicient group to coefficient group in a group scan order
(which may or may not be the same as the scan order used
within groups). Coeflicient groups may be square, e.g. 4x4,
or may be non-square, e.g. 2x8 or 8x2, etc.

Significance flags are encoded using context-adaptive
encoding. For example, in many applications a context-
adaptive binary arithmetic coding (CABAC) scheme may be
used. In 4x4 and 8x8 TUs, the context for a significance flag
depends upon its position in the TU. In other TUs, the
context for a significance flag depends both on its position
and on the significant-coefficient-group flag of neighbouring
right and lower coefficient groups.

HEVC limits the number of context-coded greater-than-
one flags to 8 per TU and limits the number of greater-than-
two flags to 1 per TU. A context set is selected based upon
the frame type and the region in which the coefficient group
is located in the TU. The context set for greater-than-one
flags includes four contexts. FIG. 3 shows an example state
machine used for determining the context used for coding a
greater-than-one flags. The machine starts with context 1
and transitions to other states dependent upon the value of
the greater-than-one flag. Accordingly, when coding a
greater-than-one flag, context is determined by the state
machine and is then updated based on the value of the coded
greater-than-one flag. It will be appreciated that the need to
update and determine context based upon the value of the
previous greater-than-one flag when coding the next greater-
than-one flag limit data throughput because context cannot

20

25

40

45

8

be derived in parallel. In some example implementations,
there is one context for greater-than-two flags.

Remaining levels are not encoded using context-adaptive
coding. In HEVC, remaining levels are coded using Rice
codes and a 0”-order exponential Golumb code. Sign bits
are coded using EP (equiprobable) coding. Coding of
remaining levels and signs are referred to as “bypass cod-
ing” since they do not involve context derivation and
updates. Context-based coding generally provides better
compression, but is more complex than bypass coding.
Worst-Case Throughput

In hardware design, the worst-case must be accommo-
dated. Even if the average throughput is improved, if a
design causes the worst-case scenario to require additional
memory and/or processor resources, then it is more costly
from a hardware point of view. In the case of video encoders
and decoders, worst case throughput (insofar as transform
domain coeflicient coding/decoding is concerned) is mea-
sured as the number of context-coded bins per transform
coeflicient. Ideally, this number is as small as possible. The
assessment focusses on context-coded bins because they are
significantly more complex than encoding/decoding bypass
bins (which can be dealt with in parallel in many cases). In
HEVC, the current specification results in a worst case
throughput of 1.5625 context-coded bins per transform
coeflicient. This is calculated as follows:

Assume a 4x4 TU in which all 16 coeflicients are non-

zero and have a magnitude greater-than-one

1. 16 significant coefficient flags are context-coded

2. 8 greater-than-one flags are context-coded

3. 1 greater-than-two flag is context-coded (16+8+1)/

16=1.5625
Tuple-based Coding

In accordance with one aspect of the present application,
binary symbols are grouped into n-tuples (disjoint ordered
sets of two or more symbols). The tuples may be context-
coded, and information regarding the tuple may be exploited
to improve or reduce the coding of the elements of the tuples
(i.e. the binary symbols in the tuple). When symbols are
sparsely distributed, n-tuples are efficient coding mecha-
nisms. The ideas herein may be applied to coding of normal
video, base, enhanced or both layers in scalable video,
3D-video coding, multi-view video coding, and other video
coding schemes. It may also be applied to coding beyond
video, including other media, like images and audio.

The tuple-based coding examples described below are
applied to the coding of greater-than-one flags and signifi-
cance flags. It will be appreciated that the tuple-based coding
solution is more broadly applicable to coding of other binary
symbols. In the context of video coding, and HEVC in
particular, prediction unit flags, coding tree flags, or any
other entropy-coded syntax element are example of binary
symbols that may be coded using the tuple-based process
described herein. In addition, non-binary symbols, if first
binarized, may also be coded using n-tuple coding.

Some of the examples below divert bins that are usually
context-coded to EP (equiprobable) bypass coding. It will be
understood that the elements of a tuple need not be EP
bypass coded and may, in other examples, be coded using
other coding schemes, including Rice codes, Exponential
Golumb coding, variable-to-variable (V2V) codes, or other
such techniques.

In general, the tuple-based coding process begins with
grouping binary symbols into n-tuples. An n-tuple i is a set
of'n elements denoted as i<>=<X,,;, X,,;, 15 - - - s Xppisp_1s = FOL
example, if six binary symbols are grouped into pair-based
tuples (n=2), then i=0, 1, or 2. As an example, i=2 is

US 9,462,286 B2

9
<K,z Xy “=<X,, Xs>. These example 2-tuples are disjoint
ordered pairs of symbols, where the order is based upon the
scan order within the transform unit or coefficient group.
A function is used to determine a tuple-based value for
each tuple based on its elements and, in some cases, other
relevant information, which may include statistics available
at both the encoder and decoder. For example, the function
f may be a linear combination:

S=E(a;*x,) for j={ni+1, ni+n-1}

where a, are weights determined by the probability of a
particular n-tuple, the probability of x,=1 or some other
factor. If a=1/n, then f is an average or, presuming equal
probability in this example, the probability that a binary
symbol equals 1. Other example functions f include the
median, the minimum, or the maximum. The function f may
also be a count, such as the number of 1s(or 0s) in the tuple.
In another example, the function f may be a logical binary
operation, such as the XOR of the elements of the tuple. The
function f may be a mapping that uniquely identifies each
n-tuple with an integer. For example, if n=3 and the elements
are binary symbols, then the function f could be the binary
representation of the integer obtained from concatenation of
the ordered binary symbols of the tuple:

<0, 0, 0> maps to 0

<0, 0, 1> maps to 1

<0, 1, 0> maps to 2

In some cases, more than one function may be applied to
the elements of the tuple to realize the tuple-based value. In
some cases, additional information may be used to select a
specific function. For example, the additional information
may be used to select between two or more predefined
functions. In another example, the additional information
may be used to determine the weights a; applied in the
function. Other functions and processes for determining a
tuple-based value from the elements of the n-tuple will be
appreciated in light of the foregoing description and the
following examples.

The tuple-based value is encoded in the bitstream. The
encoding of the tuple-based value may be context-based in
some embodiments. Available relevant information may be
used to determine a context, and that context may be
adaptive (i.e. the associated probability is updated with each
tuple-based value having that context). As an example, in the
case of coding 2-tuples of greater-than-one flags for a
coeflicient group, the context for the 2-tuple may be based
upon the value(s) of previously encoded/decoded 2-tuples,
the numGreaterl variable (a variable in HEVC that is a
geometrically decaying average of the number of coeffi-
cients that are greater than 1 in the transform unit), the
number of greater-than-one flags that are equal to 1 in one
or more previous coeflicient groups, the number of signifi-
cant flags that are equal to 1 in one or more previous
coefficient groups, the number of significant flags (i.e.
non-zero coefficients) in the current coefficient group, or the
position of the elements (coefficients) of the current tuple in
the current transform unit or coefficient group. A number of
other possible factors may be used in determining the
context for the current tuple.

Once the tuple is encoded or decoded, its value is used in
the encoding/decoding of its elements. In many cases, the
tuple-based value (and in some cases side information)
determines one or more of the elements of the tuple. If the
elements of a tuple are related, then n-tuple-based value
encapsulates a measure of the correlation between those
elements through the function used to create the tuple-based
value. The n-tuple-based value may be used to infer the

10

15

20

25

30

35

40

45

50

55

60

65

10

value of the contained elements in some cases, thereby
avoiding the encoding/decoding of those elements. In other
cases, the tuple-based value signals that one or more of the
contained elements is to be encoding/decoded using another
context, context set, mode, coding scheme, etc., which could
be used to improve efficiency, reduce complexity, or both.

In one example implementations, the tuple-based coding
does not replace existing coding models, but is conditionally
used in place of one of the existing coding schemes. When
the condition(s) is not met, the existing coding scheme is
used. If the condition(s) is met, the tuple-based coding
scheme is used. The condition may be applied at the level of
a coeflicient group, transform unit, coding unit, slice, frame,
group-of-pictures, etc. In any implementation, the granular-
ity of the switching between tuple-based coding and an
existing coding model depends on the balance struck
between being more adaptive (and thus possibly achieving
better performance) and the computational cost of conduct-
ing condition checks more frequently. In the finest granu-
larity, condition checks could be applied after each n-tuple.
2-Tuple Encoding and Decoding Example: Greater-than-
One Flags

In one example, tuple-based coding is used to encode and
decode greater-than-one flags. As noted above, current
HEVC proposals would restrict coding of greater-than-one
flags to a maximum of eight per transform unit.

Reference is now made to FIG. 4, which illustrates in
flowchart form an example process 100 for encoding
greater-than-one flags using tuple-based coding. The process
100 in this example is applied on a coeflicient group basis,
although in other embodiments it could be applied per
transform unit, per coding unit, per frame, per slice, etc.
depending on the applicable standard.

The process 100 begins with grouping of greater-than-one
flags into pairs in operation 102. The grouping may be
implemented by forming a 2-tuple (disjoint ordered pair—
i.e. non-overlapping pairs formed in order) using the first
two greater-than-one flags encountered in the transform unit
in (reverse) scan order. Subsequent pairs may be formed in
subsequent iterations of the process 100 if additional
greater-than-one flags remain in the coefficient group. If
there are an odd number of greater-than-one flags, then the
last flag in the (reverse) scan order is the first element of a
tuple that contains a dummy or zero element as the second
element. The dummy or padding element need not be
actually encoded/decoded because both the encoder and
decoder know the total number of greater-than-one flags
based on the significance map.

In operation 104, a tuple-based value is encoded for the
tuple. The tuple-based value is a function of the elements of
the tuple. In this example, for the i* pair the tuple-based
value, p,, is given by:

Dpi=(grlantgrl :,1>0)1:0

That is, the tuple-based value in this example is based on
a logical OR: if either or both of the elements is 1 then the
tuple-based value is 1, otherwise it is zero.

The tuple-based value may be encoded in operation 104
using any selected coding scheme. In this example, the
tuple-based value is context coded. Further details regarding
an example embodiment of a context model for coding p, are
given later below.

In operation 106, the encoder determines whether the
tuple-based value is zero. If so, then it is known (i.e. the
encoder infers) that both elements of the tuple are zero, as
indicated by operation 108. Thus, the encoder does not need
to encode anything further for the tuple in order for the

US 9,462,286 B2

11

decoder to completely decode the elements based on the
context-coded tuple-based value of 0.

If the tuple-based value p, is non-zero, then in operation
110, the encoder assesses whether it can presume that the
second element, grly,;, 3, is zero. This may occur, for
example, if there are an odd number of greater-than-one
flags, meaning that the encoder and decoder both know that
the second element of the last tuple is zero. In this case, the
tuple-based value of the last tuple uniquely identifies the
value of the first element. Accordingly, in operation 112, the
greater-than-one flag grl,, is inferred to be zero and need not
be encoded.

If the second element cannot be presumed to be zero, then
in operation 114 the encoder EP bypass codes the first
element grl,,. Although this example process 100 uses EP
bypass coding other non-context-based coding schemes
could be used in other embodiments.

The encoder then assesses whether the first element grl,,
is zero in operation 116. If so, then the encoder is able to
infer from the tuple-based value p; that the second element,
grl .1y, is 1, and thus it does not need to encode the second
element, as indicated in operation 118.

If, however, the first greater-than-one flag in the tuple is
1, then the value of the second element cannot be inferred
and it needs to be encoded, as indicated by operation 120.
The second element is EP bypass coded in this example.

The process 100 then determines whether additional
tuples (pairs, in this case) remain to be encoded in operation
122. If so, then the index i is incremented in operation 124
and the process 100 returns to operation 104. Otherwise, it
ends.

An example of a corresponding decoding process 200 is
shown in flowchart form in FIG. 5. The process 200 includes
decoding of a tuple-based value p, from the bitstream in
operation 202, where i is an index to the number of tuples.
The decoding may be context-based, in some examples. An
example context model for coding/decoding of tuple-based
values will be described later below. It will be appreciated
that the decoder will have already decoded a significance
map for the transform unit or coefficient group, as the case
may be. The significance map identifies the location of the
non-zero coefficients. The significant coefficient flags equal
to 1 identify the positions for which there are greater-than-
one flags. Accordingly, it will be understood that non-
overlapping pairs of non-zero coefficients have correspond-
ing non-overlapping pairs of greater-than-one flags, i.e.
tuples, as described herein.

In operation 204, the decoder assesses whether the
decoded tuple-based value p, is zero. If so, then it knows that
both elements of the tuple are zero because the function used
to determine the tuple-based value would have been a
logical OR (in this example). Accordingly, in operation 206
the decoder infers (sets) the both greater-than-one flags,
grl,, and grly,,, 3, to zero.

If the decoded tuple-based value is non-zero, then in
operation 208 the decoder determines whether the second
element may be presumed to be zero (for example, because
it is dealing with the last tuple and there are an odd number
of greater-than-one flags). If so, then in operation 210, the
decoder infers (sets) the first element, greater-than-one flag
grl,,, to 1.

If that presumption cannot be made, then in operation 212
the decode EP decodes the first greater-than-one flag gr,, of
the tuple from the bitstream. In operation 214 the decoder
assesses whether the decoded greater-than-one flag grl,, is
zero. If so, then the decoder can infer (set) the second
greater-than-one flag of the tuple, grl (,,,}, to 1, as indicated

10

15

20

25

30

35

40

45

50

55

60

65

12

by operation 216. If not, then the decoder EP decodes the
second greater-than-one flag grly,,,,, from the bitstream.

After the tuple of greater-than-one flags has been decoded
or inferred (in some cases one element may be decoded and
the other inferred, like in operation 216), then in operation
220 the decoder determines whether there are any additional
tuples to be decoded. If so, then in operation 222 the index
iis incremented, that the decoder returns to operation 202 to
decode the next tuple-based value from the bitstream. Oth-
erwise, the process 200 ends.

The context model used to encode or decode the tuple-
based values may, in one example embodiment, include four
contexts. The model may further include multiple context
sets each having four contexts. The context set may be
selected based upon the picture type (luma or chroma), the
region of the transform unit in which the coefficient group is
located, and/or other factors. The context within a context
set may be determined using a state machine, such as the
example state machine 300 shown in FIG. 6.

In the example state machine 300, there is a distinct
context, context 1, for cases in which there is a single
greater-than-one flag to be coded/decoded in the tuple. In
other cases, the first context is context 2, following which
the machine moves to context state 3 if the tuple-based value
is zero, and it stays in that context until a tuple-based value
of 1 is encountered. A tuple-based value of 1 causes the
machine to transition to context 0, where it remains until
reset. The state machine may be reset to context 2 at the
beginning of each transform unit, coding unit, frame, slice,
or at other granularities.

It will be appreciated that the foregoing example 2-tuple
coding process for greater-than-one flags results in a worst
throughput (as defined earlier) of 1.3125 versus 1.5625 for
current HEVC processes. This occurs by diverting context-
coded greater-than-one flags to EP coding and coding a
maximum of four context-coded tuple-based values per
coeflicient group. The throughput is thus given by (16+4+
1)/16=1.3125.

In one variation on the above-describes processes, the
coding of the tuple-based values and elements are de-
interleaved. That is, all the tuple-based values are context-
coded. Then the first elements, grl,,, are EP encoded where
the tuple-based value equals 1 and the second element
cannot be presumed to be zero. Then the second elements,
gr1{2i+1}, are EP encoded for each tuple in which the first
element has been encoded and the first element is equal to
1.

Advantageously, the EP coded bypass bins (greater-than-
one flags) may be decoded in parallel because the context-
coding does not impose a throughput restriction. All the
grl,, bins may be decoded in one cycle and all the grl(,,, ;3
bins decoded in the next cycle.

The following pseudo-code illustrates one example
implementation of the 2-tuple greater-than-one flag decod-
ing method in a video decoding process. In this example, a
single sign bit is hidden per coefficient group. The condition
for sign bit hiding is the number of non-zero coefficients in
the group, unless it is the last coefficient group in the
transform unit.

It will be noted that some details of the decoding process
have been omitted where they are not germane to the
description of the present example of coefficient level recon-
struction.

US 9,462,286 B2

13 14
residual__coding(%0, y0, log2TrafoWidth, log2TrafoHeight, scanldx, cIdx) { Descriptor
..//decode last significant coefficient position
..//decode significant coefficient group flags
numSigCoeff = 0
for(n=15n>=0;n- -) {
xC = ScanOrder| log2TrafoWidth][log2TrafoHeight][scanldx][n + offset][0]
yC = ScanOrder[log2TrafoWidth][log2TrafoHeight][scanldx][n + offset][1]
if{ (n + offset) < (numCoeff — 1) && significant_coeff _group_ flag] xCG][yCG] &&
(n >0 | | implicitNonZeroCoeff = =0)) {
significant__coeff flag[xC][yC] ae(v)
if(significant__coeff flag xC][yC]==1)
implicitNonZeroCoeff = 0
¥
if{ significant__coeff__flag[xC J[yC]==1)
num§SigCoeff ++
numGreaterl Flags = min(numSigCoeff, 8)
for(n = (numGreaterlFlags >> 1) - 1; n >=0; n— -)
coeff_abs_ level_greaterl _pair_ flag[n] ae(v)
if(coeff__abs_ level_greaterl_ pair_flag[0] Il coeff_abs_ level greaterl_pair_flag[1] Il
coeff__abs__level _greater]l__pair_flag[2] Il coeff__abs__level__greater] __pair_flag[3])
coeff_abs_ level_ greater2_ flag ae(v)
for(n = (numGreaterl Flags >> 1) - 1; n >=0; n- -) {
if(coeff _abs_ level greaterl_pair_flagfn]==1)
coeff_abs_ level greater]l_flag[(n << 1) + 1] ae(v)

for(n = (numGreaterl Flags >> 1) - 1; n >=0; n- -) {

if(coeff _abs_ level greaterl_flag] (n << 1) + 1] == 1 && !(n == 0 && (numGreater] Flags &

D==1))

coeff_abs_ level greater]l_flag[n <<'1]

)

firstNZPosInCG = 16

lastNZPosInCG = -1

numSigCoeff = 0

firstGreater] Coeffldx = -1

coeff_abs_level greater1[16] = {0, O, ..., 0}
coeff_abs_level greater2[16] = {0, O, ..., 0}

for(n = 15, m = numGreater1Flags - 1; n >=0; n— -) {

ae(v)

xC = ScanOrder| log2TrafoWidth][log2TrafoHeight][scanldx][n + offset][0]
yC = ScanOrder[log2TrafoWidth][log2TrafoHeight][scanldx][n + offset][1]

if{ significant_coeffflag[xC][yC 1) {
if(numSigCoeff < 8) {

coeff_abs_ level greaterl[n] = coeff_abs_ level greaterl flag[m]

m- —
numSigCoeff++

if(coeff_abs_ level greaterl[n] && firstGreaterl Coeffldx = = -1)

firstGreater1 Coeftldx = n

}

if(lastNZPosInCG = = -1)
lastNZPosInCG = n

firstNZPosInCG = n

}

signHidden = (1astNZPosInCG - firstNZPosInCG >= sign__hiding threshold) 2 1 : 0

if{ firstGreaterl CoeffIdx != -1)

coeff_abs_ level_ greater2[firstGreaterlCoeffldx] = coeff__abs_ level greater2_ flag

...//decode sign bits
...//decode remaining level data

¥
¥

In terms of semantics, the following variables used in the
pseudo-code above may have the following properties.

coefl_abs_level_greaterl_pair_flag[n] specifies for the
n-th pair of positions in which there are non-zero transform
coeflicients whether there are transform coefficient levels
greater than 1. When coeff_abs_level_greater]l_pair_flag[n]
is not present, it is inferred to be equal to 0.

coefl_abs_level_greaterl_flag[n| specifies for the scan-
ning position n in which there is a non-zero transform
coeflicient whether there are transform coeflicient levels
greater than 1. When coeff_abs_level_greater]l_flag[n] is not
present, it is inferred to be equal to O.

coefl_abs_level_greater2_flag specifies for the last scan-
ning position in which there is a non-zero transform coef-

55

60

65

ficient whether there are transform coefficient levels greater
than 2. When coeff__abs_level_greater2_flag is not present, it
is inferred to be equal to 0.

In one example embodiment, the context derivation pro-
cess for determining the context for encoding the pair value
may include the following operations. Inputs to this process
are the colour component index cldx, the 16 coeflicient
subset index 1, the pair n of syntax elements
coeff’_abs_level_greater]_flag within the current subset, and
the number of non-zero transform coefficients in subset
index i. Output of this process is ctxIdxInc.

The variable ctxSet specifies the current context set and
for its derivation the following applies:

1. If n is equal to 3 or all previous syntax elements

coeff’_abs_level_greaterl_pair_flag[p] with p greater

US 9,462,286 B2

15

than n are derived to be equal to O instead of being

explicitly parsed, the following applies:

a. The variable ctxSet is initialized by, if the current
subset index i is equal to 0 or cldx is greater than O,
set ctxSet=0. Otherwise (i is greater than 0 and cldx
is equal to 0), set ctxSet=2.

b. When the subset i is not the first one to be processed
in this subclause, the following applies:

i. The variable numGreater]l is set equal to the
variable numGreater] that has been derived dur-
ing the last invocation of subclause 9.2.3.1.6 for
the syntax element coeff_abs_level_greater2_flag
for the subset i+1.

ii. When (numGreater1>>1) is greater than 0, ctxSet
is incremented by one.

c. When there is only one non-zero transform coeffi-
cient in the subset i, the variable greater]PairCtx is
set equal to 1. Otherwise, the variable
greater] PairCtx is set equal to 2.

2. Otherwise (coeff_abs_level greaterl_pair_flag[n] is
not the first to be parsed within the current subset i), for
the derivation of ctxSet and greater1Ctx the following
applies:

a. The variable ctxSet is set equal to the variable ctxSet
that has been derived during the last invocation of
this subclause.

b. The variable greater1 Ctx is set equal to the variable
greater] Ctx that has been derived during the last
invocation of this subclause.

c. When greater1PairCtx is greater than 0, the variable
lastGreater1PairFlag is set equal to the syntax ele-
ment coeff_abs_level_greater]l_pair_flag that has
been used during the last invocation of this subclause
and greater]PairCtx is modified as follows:
i. If lastGreaterlPairFlag is equal

greater1PairCtx is set equal to 0.

ii. Otherwise (lastGreater1PairFlag is equal to 0),
greater] PairCtx is incremented by 1.

The context index increment ctxIdxInc is derived using

the current context set ctxSet and the current context
greater] PairCtx as follows:

to 1,

ctxldxInc=(ctxSet*4)+Min(3,greater1PairCex)

When cldx is greater than 0, ctxldxInc is modified as
follows:

ctxldxInc=ctxldxInc+16

It will be appreciated that the foregoing pseudo-code and
semantics present one example embodiment, and that the
present application is not limited to this specific embodi-
ment.
2-Tuple Encoding and Decoding Example: Significance
Flags

In this next example, tuple-based coding is used to encode
and decode significant-coefficient flags. As noted above,
current HEVC proposals involve coding up to sixteen sig-
nificant-coefficient flags per coefficient group.

Reference is now made to FIG. 7, which illustrates in
flowchart form an example process 400 for encoding sig-
nificant-coefficient flags using tuple-based coding. The pro-
cess 400 in this example is applied on a coeflicient group
basis, although in other embodiments it could be applied per
transform unit, per coding unit, per frame, per slice, etc.
depending on the applicable standard.

The process 400 uses two branches, identified or selected
using the variable b, which can take the values 0 and 1. In
this example process 400, the variable b is initialized in

10

15

20

25

30

35

40

45

50

55

60

65

16

operation 402. The branch variable may be initialized
depending on the region in which the coefficient group
resides, the size of the TU and statistics derived from any
previously-coded coefficient groups. For example, if the
number of significant-coefficient flags=1 in the previous
coeflicient group is greater than a threshold, initialize the
branch to 1, otherwise, initialize it to 0. The significant-
coeflicient flags are then grouped into 2-tuples in operation
404. As noted previously, each 2-tuple is a disjoint pair of
significant-coefficient flags formed in scan order.

At operation 406, the encoder determines whether to use
the first branch or the second branch based on the value of
variable b.

The first branch includes operations 408 through 420.
Operation 408 is the context coding of the tuple-based value
p;- The tuple-based value may be realized through a suitable
function of the elements of the tuple. In this example, the
tuple-based value p; is a logical OR, which may be expressed
as:

D527+ (2121370)?1:0

In this expression the significant-coefficient flags in the
tuple are s,, and sy,,, ,y. If the tuple-based value is zero, as
assessed in operation 410, then the encoder is able to infer
that both significant-coefficient flags are zero, and nothing
further need be encoded, as indicated by operation 412. If,
however, the tuple-based value is non-zero, then in operation
414 the first significant-coefficient flag s,, is encoded using
EP bypass coding, in this example.

If the first significant-coefficient flag is zero, as assessed
in operation 416, then the encoder can infer that the second
significant-coefficient flag is 1, as indicated by operation
418. Otherwise, the second significant-coefficient flag is
encoded using EP bypass coding, as indicated by operation
420.

The second branch will now be described, which is
reflected in operations 422 through 428. The second branch
is different in that it uses a different function to realize a
tuple-based value p;,. In operation 422, the tuple-based value
is determined and context encoded. In this case, the tuple-
based value is determined as the logical AND of the sig-
nificant-coefficient flags. This may be expressed as:

(527 =8 21y =1)?1:0

If the tuple-based value is found to equal 1 in operation
423 then the encoder can infer that both significant-coeffi-
cient flags in the tuple are 1, as indicated by operation 424,
and nothing further need be encoded. Otherwise, both sig-
nificant-coefficient flags are encoded, as indicated by opera-
tions 426 and 428.

The branch used for encoding a tuple may be selected
based upon the expected probability that the significant-
coeflicient flags equal 1. If the likelihood that the significant-
coeflicient flag=1 is high, then the second branch may result
in more effective compression. If the likelihood of the
significant-coefficient flag=0 is high, then the first branch
may result in more effective compression.

Irrespective of the branch used, in operation 430 the
statistics gathered for the current coefficient group (and/or
transform unit) are updated based upon the encoded tuple of
significant-coefficient flags. For example, the encoder may
track the number of significant-coefficient flags=1 in the
current coefficient group (and/or transform unit), and the
number of tuple-based values=1 in the coeflicient group
(and/or transform unit) perhaps broken down into first
branch and second branch.

US 9,462,286 B2

17

The branch for encoding the next tuple is selected in
operation 432. The selection may be based on the statistics
updated in operation 430. In one example, values k, and M,
and k, and M,, may be used to control the switching mecha-
nism. The selection, in one example, may be made as
follows:

If at least k, out of the last M, significant-coeflicient
flags=1, set b=1

If at least k, out of the last M, significant-coeflicient
flags=0, set b=0

The threshold values k;, M|, k,, and M, may be fixed or
adaptive.

In operation 434 the encoder determines whether any
significant coefficient pairs remain and, if so, it increments
the index i in operation 436 and returns to operation 406.

The context model used to code the pair values in the
multi-branch solution may be the same as the context model
for a single-branch solution. Alternatively, the context model
can minor the context model for significance flags in the
current HEVC design. That is, p, has the same number of
contexts as the significance-coefficient flags, and the context
used to code p; is selected identically as the context that
would otherwise have been used to code s,

In one variation on the above example, the decision to use
one or the other of the branches is made at the coefficient
group level instead of at the tuple level. The decision is made
based on a threshold number of the significant-coefficient
flags=1 in the previous coefficient group(s) and/or neigh-
boring coeficient group(s). This threshold can be fixed or
dynamic. Another piece of information that can be used is
the position of the current coefficient group within the TU,
e.g. lower frequency coefficient groups have a lower thresh-
old than higher frequency coefficient groups.

In one example, such as the current HEVC design, each
coeflicient group contains 0 or 16 significance flags for
transform coefficients. However, if there are an odd number
of elements to code (e.g., if this solution is used in another
application), the last pair value is the value of the last
element. Thus, (de)coding can terminate immediately after
that value is (de)coded.

In the multi-branch solution described above, context-
coded and bypass bins are interleaved. In order to be able to
de-interleave them for faster processing speed, the encoder/
decoder may switch between branches based on a threshold
of pair values, instead of individual elements.

Although there is not a data dependency problem in
significant-coefficient flag coding, this solution does
improve the worst case throughput. In the worst case, there
are 8, 8 and 1 context-coded bins for significant-coeflicient
flags, greater-than-one flags and greater-than-two flags,
respectively, in a 4x4 TU. This amounts to a worst case
throughput of 17/16=1.0625. If the proposed n-tuple coding
methods described above are applied to both significant-
coeflicient flags and greater-than-one flags, the worst case
throughput becomes 13/16=0.8125.

Coding Model Selection

In one embodiment, the encoder and decoder implement
both a tuple-based coding model and a more conventional
video coding model, and they dynamically select between
these two models. Using, for example, the 2-tuple coding
model described above for greater-than-one flags, the selec-
tion may be based on assessment of whether the tuple-based
model fits current probability distributions. In particular, the
n-tuple model is efficient when the greater-than-one flags are
mostly zero and, if a given tuple-based value is 1, then the
probability of the first greater-than-one flag being 1 (or 0) is
about 0.5 (since EP coding is used). In cases, where these

10

15

20

25

30

35

40

45

50

55

60

65

18

conditions are not generally applicable, the conventional
HEVC coding model may be more efficient.

The probably of a tuple-based value being equal to zero
may be defined as p. Then q is defined as the probability that
the first greater-than-one flag in the tuple is 1. That is,
p=Pr{p,=0} and gq=Pr{grl,~0lp~1}. The n-tuple coding
model is advantageous under this scenario when:

p¥1+(1-p)(g*2+(1-¢)*3)<2

This inequality may be derived as follows. In the n-tuple
coding model, if p,=0, a single (context-coded) bin is
required to code the pair of greater-than-one flags. This
happens with probability p. Otherwise, p,=1 with probability
(1-p) and either two or three bins are required to code the
pair of grl flags. Two bins (1 context-coded bin for the
tuple-based value and 1 EP bin for the first greater-than-one
flag) are required if grl,,=0 and p,=1 (probability q*(1-p))
while three bins (1 context-coded bin for the tuple-based
value and 2 EP bins for the greater-than-one flags) are
required if grl ,,=1 and p,=1 (probability (1-q)*(1-p)). On
the other hand, in the HEVC coding model, 2 (context-
coded) bins are required to code a pair of greater-than-one
flags.

This inequality provides an example rule to determine
how to switch between the two coding models. When p and
q are such that the condition is true, use the n-tuple coding
method; otherwise, use the HEVC coding method. p and q
are statistics that can be easily collected and updated by both
the encoder and decoder. In one embodiment, we assume
that q=Y%, meaning that only one statistic needs to be
maintained, p, and the condition above becomes p>=Y4.

When we switch between the coding models may be an
implementation decision. At the finest granularity, the
encoder and decoder may switch between the HEVC and
n-tuple coding models on a pair-by-pair basis. Theoretically,
this will provide the most coding efficiency gain. However,
in practice, certain implementations may prefer to limit
switching in order to keep complexity low. Instead of
checking whether to switch between coding models after
each pair of greater-than-one flags, certain implementations
can do this on a coefficient group by coefficient group basis.
To further reduce complexity, other implementations will
perform the check and potentially switch coding models
after a certain number of coefficient groups, such as after
pre-defined regions in the TU. For example, in one embodi-
ment, the encoder and decoder potentially switch the coding
model only twice per TU: once before processing the highest
frequency coeflicient group (i.e., at the start of the TU) and
once at the beginning of the lowest frequency coeflicient
group (the coefficient group containing the DC).
3-Tuple Encoding and Decoding Example

In yet another example of tuple-based coding, the encoder
and decoder may use 3-tuples, each containing three greater-
than-one flags. An example encoding process 500 is shown
in flowchart form in FIG. 8. This process 500 has multiple
branches, the selection of which depends on the number of
non-zero coefficient left in the coefficient group.

In operation 502, the number of non-zero (NNZ) coeffi-
cients remaining is checked. If just one NNZ is left, then in
operation 504 the tuple-based value (which is denoted t, in
this example) is context encoded. In this case, the tuple-
based value is the value of the only greater-than-one flag in
the 3-tuple. The other two elements of the tuple are padding/
Zeros.

If the NNZ is equal to two, then the 3-tuple contains two
elements and a zero to pad the tuple to three elements:
<grls, grlis;,y, 0> The tuple-based value is given by:

US 9,462,286 B2

19
to=(grls+erls,,,3>0)1:0, which is effectively a logical OR
operation. This value is context encoded in operation 506.

In operation 508, the encoder assesses whether the tuple-
based value is zero. If so, then both elements may be
presumed to be zero, as indicated by operation 510, and
nothing further need be encoded. If, however, the tuple-
based value is 1 then in operation 512 the first greater-than-
one flag, grl;,, is EP bypass encoded. In operation 514, the
encoder assesses whether the first greater-than-one flag is
zero. If so, then the second greater-than-one flag is known to
be 1, as indicated by operation 516 and nothing further need
be encoded. Otherwise, in operation 518, the second greater-
than-one flag is EP bypass encoded.

If at operation 502 it is determined that there are more
than two NNZ coefficients left in the coefficient group, then
the encoder employs the process shown in operations 520 to
536. In particular, in this example, the encoder context
encodes the tuple-based value t, in operation 520, where the
tuple-based value is given by:

17=(grl3tgr1 35,1487 1 (3:,2>0)71:0

It will be appreciated that this example function for
determining the 3-tuple’s tuple-based value is a logical OR.
If any of the greater-than-one flags in the tuple are 1 then the
tuple-based value is 1; otherwise, it is zero. Other functions
may be used in other embodiments. In some embodiments
different functions may be used based on a multi-branch
process, such as that described in connection with FIG. 7.

In operation 522, the encoder assesses whether the tuple-
based value is zero. If so, then it may assume that all
elements, i.e. all three greater-than-one flags, are zero as
indicated by operation 523. In that case, nothing further need
be encoded. If not, then the encoder goes on to encode the
first and second greater-than-one flags, as indicated by
operations 524 and 526, respectively.

In operation 528, the encoder determines whether the first
and second greater-than-one flags are both zero. If so, then
it may assume that the third greater-than-one flag in the tuple
is equal to 1 and nothing further need be encoded, as
indicated by operation 530. Otherwise, it encodes the third
greater-than-one flags in operation 532.

The encoder then assesses whether there are further tuples
to encode in operation 534. If there are, then it increments
the tuple index i in operation 536 and returns to operation
502.

The context used for encoding the tuple-based value in
this example may be selected party based upon the number
of non-zero coefficient remaining in the coefficient group.
FIG. 9 illustrates one example embodiment of a state
machine 600 for selecting context in this example encoding
process. In this example, a fixed context, context 0, is used
for encoding the tuple-based value in the case where there is
only one non-zero coeflicient remaining in the coeflicient
group, i.e. where the tuple only includes one greater-than-
one flag. Similarly, context 1 is used to encode the tuple-
based value when only two non-zero coefficients remain in
the coefficient group.

If there are more than two greater-than-one flags still to be
encoded for the coefficient group, then the context selected
starts with context 2. If a tuple-based value of 1 is encoun-
tered, then the encoder moves to context 3, where it remains
unless it needs to switch to context 1 or 0 due to the number
of non-zero coefficients remaining
Fixed Grouping of Greater-than-one Flags

In all the embodiments discussed thus far, greater-than-
one flags are only present if the corresponding significant
coeflicient indicates a non-zero coefficient in that position.

5

10

20

25

30

35

40

45

50

55

60

65

20

As a result, the grouping of greater-than-one flags (e.g. the
pairing in the case of 2-tuples) depends on the significance
map. In some embodiments, the number of greater-than-one
flags may also be limited to a maximum number per coef-
ficient group, such as 8. In that case, the maximum 8
greater-than-one flags may appear in any of the sixteen
positions within the coefficient group, depending upon
which coefficients happen to be non-zero in that coeflicient
group. In other words that are C(16, 8) combinations for a
given n-tuple grouping.

In this embodiment, the grouping of greater-than-one
flags is independent of the significance map. A greater-than-
one flag is defined for every coefficient position. This new
greater-than-one flag is denoted grl' herein. It replaces the
grl flag discussed above. A grl, flag for transform coeffi-
cient x, is defined as follows:

grl;=0 if x;=1

grl/=1if x>1

Therefore, there are exactly 16 grl' flags in a coefficient
group. Every n consecutive grl' flags in scan order are
grouped as an n-tuple. If the grouping is pairwise, i.e. n=2,
there will be 8 pairs.

Each tuple is coded by encoding a tuple-based value. The
tuple-based value is determined partly based on the signifi-
cance map. In other words, the significance map is used as
side information for determining the tuple-based value or the
meaning of the tuple-based value. Each n-tuple has n grl'
flags and, thus, n significant-coefficient flags.

Using a 2-tuple as an example, the significant-coefficient
flags may be used to interpret the tuple-based value as
follows:

1. If both significant-coeflicient flags=0, code nothing
since both significant-coefficient flags are zero and,
thus, both grl' flags can be inferred to be zero.

2. If one significant-coefficient flag=0, then the value of
the corresponding grl' flag can be inferred to be zero
and the tuple-based value is equal to the value of the
other grl' flag (that has a corresponding significant-
coefficient flag=1).

3. If both significant-coefficient flags=1, then the coding
process follows the techniques set out in one of the
above-described embodiments for coding grl flags.
That is the tuple-based value is some function of the
grl' flags within the tuple, such as a logical OR or a
logical AND of the flags.

One possible advantage of the above-described embodi-
ment is that a fixed grouping of tuples is used. Accordingly,
the tuples contain grl' flags that are contiguous in scan order
and are, therefore, likely to be close together in the coeffi-
cient group (depending on the scan order). If tuples are
formed from grl flags, the tuples may contain flags that are
separated by a significant distance. It will be appreciated that
this may result in a poor correlation between the grl flags in
such a tuple.

Reference is now made to FIG. 10, which shows a
simplified block diagram of an example embodiment of an
encoder 900. The encoder 900 includes a processor 902,
memory 904, and an encoding application 906. The encod-
ing application 906 may include a computer program or
application stored in memory 904 and containing instruc-
tions for configuring the processor 902 to perform opera-
tions such as those described herein. For example, the
encoding application 906 may encode and output bitstreams
encoded in accordance with the processes described herein.
It will be understood that the encoding application 906 may

US 9,462,286 B2

21

be stored in on a computer readable medium, such as a
compact disc, flash memory device, random access memory,
hard drive, etc.

Reference is now also made to FIG. 11, which shows a
simplified block diagram of an example embodiment of a
decoder 1000. The decoder 1000 includes a processor 1002,
a memory 1004, and a decoding application 1006. The
decoding application 1006 may include a computer program
or application stored in memory 1004 and containing
instructions for configuring the processor 1002 to perform
operations such as those described herein. It will be under-
stood that the decoding application 1006 may be stored in on
a computer readable medium, such as a compact disc, flash
memory device, random access memory, hard drive, etc.

It will be appreciated that the decoder and/or encoder
according to the present application may be implemented in
a number of computing devices, including, without limita-
tion, servers, suitably-programmed general purpose comput-
ers, audio/video encoding and playback devices, set-top
television boxes, television broadcast equipment, and
mobile devices. The decoder or encoder may be imple-
mented by way of software containing instructions for
configuring a processor to carry out the functions described
herein. The software instructions may be stored on any
suitable non-transitory computer-readable memory, includ-
ing CDs, RAM, ROM, Flash memory, etc.

It will be understood that the encoder described herein
and the module, routine, process, thread, or other software
component implementing the described method/process for
configuring the encoder may be realized using standard
computer programming techniques and languages. The pres-
ent application is not limited to particular processors, com-
puter languages, computer programming conventions, data
structures, other such implementation details. Those skilled
in the art will recognize that the described processes may be
implemented as a part of computer-executable code stored in
volatile or non-volatile memory, as part of an application-
specific integrated chip (ASIC), etc.

Certain adaptations and modifications of the described
embodiments can be made. Therefore, the above discussed
embodiments are considered to be illustrative and not
restrictive.

What is claimed is:
1. A method of decoding a bitstream of encoded video in
a video decoder to reconstruct a plurality of greater-than-one
flags for a coefficient group, wherein the plurality of greater-
than-one flags are grouped in scan order into a plurality of
2-tuples of pairs of greater-than-one flags for the coeflicient
group, the method comprising:
for each of the plurality of 2-tuples of pairs of greater-
than-one flags for the coefficient group,
context-adaptively decoding a tuple-based value from
the bitstream for that tuple; and
inferring or decoding the greater-than-one flags for that
tuple based on that tuple’s decoded tuple-based
value, wherein the tuple-based value is a logical OR
of the greater-than-one flags in that tuple, and
wherein decoding comprises non-context-based
bypass decoding, and wherein the inferring or decod-
ing includes
if the tuple-value is zero, inferring that both greater-
than-one flags of that tuple are zero, and
if the tuple-value is non-zero, decoding a first
greater-than-one flag of the pair for that tuple and,
if the first greater-than-one flag is zero, then
inferring that a second greater-than-one flag of the

20

30

35

40

45

50

22

pair for that tuple is non-zero and, otherwise,
decoding the second greater-than-one flag of the
pair.

2. The method claimed in claim 1, wherein each tuple
contains two greater-than-one flags unless a number of
greater-than-one flags in the coefficient group is odd, in
which case a last tuple in the coefficient group contains one
greater-than-one flag and a zero.

3. The method claimed in claim 1, wherein decoding of
greater-than-one flags comprises equiprobability decoding.

4. The method claimed in claim 1, applied to reconstruct
a set of coefficients for the coefficient group and further
comprising:

decoding a significant coefficient flag for each coefficient

in the coeflicient group, each significant coefficient flag
indicating whether its corresponding coefficient is non-
Zero;

decoding additional level information for each coefficient

having a magnitude greater-than-one;

decoding sign information for at least one non-zero coef-

ficient; and

reconstructing the set of coefficients based on the decoded

significant coefficient flags, the decoded or inferred
greater-than-one flags, the decoded additional level
information, and the decoded sign information.

5. A method of encoding video in a video encoder to
output a bitstream of encoded data by encoding a plurality
of greater-than-one flags for a coefficient group, the method
comprising:

grouping the greater-than-one flags in scan order into a

plurality of non-overlapping 2-tuples of pairs of
greater-than-one flags for the coefficient group;

for each of the plurality of 2-tuples of pairs of greater-

than-one flags for the coefficient group,
determining a tuple-based value for that tuple as a
logical OR of the greater-than-one flags in that tuple;
context-adaptively encoding the tuple-based values in
the bitstream; and
for each greater-than-one flag in that tuple, if that
greater-than-one flag is not inferable, then encoding
that greater-than-one flag in the bitstream, wherein
the encoding is non-context-based bypass encoding,
including,
if the tuple-value is zero, not encoding either of the
pairs of greater-than-one flags, and
if the tuple-value is non-zero, encoding a first
greater-than-one flag of the pair for that tuple and,
if the first greater-than-one flag is zero, not encod-
ing a second greater-than-one flag of the pair of
that tuple and, otherwise, encoding the second
greater-than-one flag of the pair.

6. A decoder for decoding a bitstream of encoded video in
a video decoder to reconstruct a plurality of greater-than-one
flags for a coefficient group, wherein the plurality of greater-
than-one flags partitioned in scan order form a plurality of
2-tuples of pairs of greater-than-one flags for the coeflicient
group, the decoder comprising:

a processor;

a memory; and

a decoding application stored in memory and containing

instructions that, when executed, cause the processor to
for each of the plurality of 2-tuples of pairs of greater-
than-one flags for the coefficient group,
context-adaptively decode a tuple-based value from
the bitstream for that tuple; and
infer or decode the greater-than-one flags for that
tuple based on that tuple’s decoded tuple-based

US 9,462,286 B2

23

value, wherein the tuple-based value is a logical
OR of the greater-than-one flags in that tuple, and
wherein decoding comprises non-context-based
bypass decoding, and wherein the processor is to
infer or decode by
if the tuple-value is zero, inferring that both
greater-than-one flags of that tuple are zero, and
if the tuple-value is non-zero, decoding a first
greater-than-one flag of the pair for that tuple
and, if the first greater-than-one flag is zero,
then inferring that a second greater-than-one
flag of the pair for that tuple is non-zero and,
otherwise, decoding the second greater-than-
one flag of the pair.

7. The decoder claimed in claim 6, wherein each tuple
contains two greater-than-one flags unless a number of
greater-than-one flags in the coefficient group is odd, in
which case a last tuple in the coefficient group contains one
greater-than-one flag and a zero.

8. The decoder claimed in claim 6, wherein the decoder is
configured to decode greater-than-one flags using equiprob-
ability decoding.

9. The decoder claimed in claim 6, applied to reconstruct
a set of coefficients for the coefficient group and wherein the
decoder is further configured to:

decode a significant coefficient flag for each coefficient in

the coeflicient group, each significant coefficient flag
indicating whether its corresponding coefficient is non-
Zero;

decode additional level information for each coeflicient

having a magnitude greater-than-one;

decode sign information for at least one non-zero coeffi-

cient; and

reconstruct the set of coefficients based on the decoded

significant coefficient flags, the decoded or inferred
greater-than-one flags, the decoded additional level
information, and the decoded sign information.

25

24

10. A non-transitory processor-readable medium storing
processor-executable instructions which, when executed,
configures one or more processors to perform the method
claimed in claim 1.

11. An encoder for encoding video in a video encoder to
output a bitstream of encoded data by encoding a plurality
of greater-than-one flags for a coefficient group, the encoder
comprising:

a processor;

a memory; and

an encoding application stored in memory and containing

instructions that, when executed, cause the processor
to:
group the greater-than-one flags in scan order into a
plurality of non-overlapping 2-tuples of pairs of
greater-than-one flags for the coefficient group;
for each of the plurality of 2-tuples of pairs of greater-
than-one flags for the coefficient group,
determine a tuple-based value for that tuple as a
logical OR of the greater-than-one flags in that
tuple;
context-adaptively encode the tuple-based values in
the bitstream; and
for each greater-than-one flag in that tuple, if that
greater-than-one flag is not inferable, then encode
that greater-than-one flag in the bitstream using
non-context-based bypass encoding, including,
if the tuple-value is zero, not encoding either of
the pairs of greater-than-one flags, and
if the tuple-value is non-zero, encoding a first
greater-than-one flag of the pair for that tuple
and, if the first greater-than-one flag is zero, not
encoding a second greater-than-one flag of the
pair of that tuple and, otherwise, encoding the
second greater-than-one flag of the pair.

#* #* #* #* #*

