US009176879B2

a2 United States Patent

Lilly et al.

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(1)

(52)

LEAST RECENTLY USED MECHANISM FOR
CACHE LINE EVICTION FROM A CACHE
MEMORY

Applicant: Apple Inc., Cupertino, CA (US)

Inventors: Brian P. Lilly, San Francisco, CA (US);
Gerard R. Williams, III, Los Altos, CA
(US); Mahnaz Sadoughi-Yarandi,
Santa Clara, CA (US); Perumal R.
Subrameonium, San Jose, CA (US);
Hari S. Kannan, Sunnyvale, CA (US);
Prashant Jain, San Jose, CA (US)

Assignee: Apple Inc., Cupertino, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 187 days.

Appl. No.: 13/946,327

Filed: Jul. 19, 2013

Prior Publication Data

US 2015/0026404 A1 Jan. 22, 2015

Int. Cl1.
GO6F 12/08
GO6F 12/12
U.S. CL
CPC

(2006.01)
(2006.01)

GOGF 12/0862 (2013.01); GOGF 12/0897
(2013.01); GOGF 12/123 (2013.01); GO6F
12/127 (2013.01)

301

Determing
request type

303

307
g

Allocate non-

temporel requests
only fo LRY posilion
Oorl

(10) Patent No.: US 9,176,879 B2
(45) Date of Patent: Nov. 3, 2015
(58) Field of Classification Search
CPC GOGF 12/0897; GO6F 12/0862; GOG6F 12/123
USPC ittt 711/122, 136
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
7,975,107 B2 7/2011 Beckmann et al.
2007/0186045 Al 8/2007 Shannon et al.
2008/0086599 Al 4/2008 Maron et al.
2010/0191916 Al* 7/2010 Balakrishnan etal. 711/134
2011/0153953 Al 6/2011 Khemani et al.
2011/0320720 Al 12/2011 Walters et al.
2013/0111139 Al* 5/2013 Balakrishnan et al. 711/122
2013/0262770 Al* 10/2013 Ghaietal.cccccoeeee. 711/122

* cited by examiner

Primary Examiner — Than Nguyen
(74) Attorney, Agent, or Firm — Meyertons, Hood, Kivlin,
Kowert & Goetzel, P.C.

&7

ABSTRACT

A mechanism for evicting a cache line from a cache memory
includes first selecting for eviction a least recently used cache
line of a group of invalid cache lines. If all cache lines are
valid, selecting for eviction a least recently used cache line of
a group of cache lines in which no cache line of the group of
cache lines is also stored within a higher level cache memory
such as the L1 cache, for example. Lastly, ifall cache lines are
valid and there are no non-inclusive cache lines, selecting for

evictio

n the least recently used cache line stored in the cache

memory.

i~
Allocate L2 prefetch
requests onfy fo
LRU position 0 -3

I
Afcaia Trip
requests anly fo
LRU position - §

Aftocate demand
requests fo any
available LRY position

"Any ron-
inclusis fines
avallabie?,

et

327
Inlocked lineS™Y.
avalabla?
N
i

2.
Replay request until
ine is avaitable

Evictinvaiid fine and
ahlocate new ceshe fing

clusive i
with fawsst LRU and

aflocate new cashe fing

Evict fine with lowest
LRU and allocate new
cache fine

To 305

321

Promote
up fo LRUT|

17 Claims, 4 Drawing Sheets

US 9,176,879 B2

Sheet 1 of 4

Nov. 3, 2015

U.S. Patent

LD

07 xeiduiosy 1083830

ayoB) 17

-3

\i

174
BYSET LT

p
o0
f1ds

¥

og
BB
£7

o€
ug

¥

oL
O
BOURIBYO)

8r
BANB(T

&

¥

gt
LGB
Yapms

&

gi
oINS

PE
ABOIUCTS
Aouspy

BE

&

hi

AHdd

gt

&

¥

Abd

gt

U.S. Patent Nov. 3, 2015 Sheet 2 of 4 US 9,176,879 B2

W s 225 Wiy
So
LRUGLRUALRUn1 LRUG LRUA LRUSLRUSI LRUs
From L1 Gachz rgfonfmf . To Mem
un . Cache
21¢ e
[
Sm-i
Data ViSIDE TMPYL PR T

FIG. 2

U.S. Patent

301
2

Determine
request fype

Nov. 3,

2015

Sheet 3 of 4

L Space ™
~~gvailable L~

317
J

307
0

1 only fo LRU posifion

Allocgte non-
femporal requests

fori

Alfocate L2 prefeich

requests only o
LRU posilion ¢ - 3

LY
[&)]

Alfocate Trip
requests only fo
LRY position 0 -5

Allocate demand
requests to any
avaifable LRU position

319

ﬁ Any

~available?

| A

323 A
FAny non—

~available?

327

o~ Tinlfocked lined™}
T available?

Replay request untii
fine is avaifable

invalid lines e

7 inglusive lings e

321

A

Evict invalid fine and
allocate new cache line

Fromote
up to LRUY

To 305
A

325
3

Evict non-inciusive fine

~3i with fowest LRU and

flocate new cache line

A4

329
,,)

Evict ling with fowest
o (R and allocate new
cache line

k 4

US 9,176,879 B2

338
]

| Promole up
1 o LRUT

339
o

Wi Fromole up
fo LRU3

FIG. 3

U.S. Patent Nov. 3, 2015 Sheet 4 of 4 US 9,176,879 B2

400
Y
Power Supply
401
External o
e Memory Peugggmis

iC 405 2L
1

FIG. 4

US 9,176,879 B2

1
LEAST RECENTLY USED MECHANISM FOR
CACHE LINE EVICTION FROM A CACHE
MEMORY

BACKGROUND

1. Technical Field

This disclosure relates to processor cache operation, and
more particularly to cache replacement mechanisms.

2. Description of the Related Art

Modern processors use a number of cache memory hierar-
chies in an effort to expedite data retrieval from main
memory. In particular, most all processor cores will have at
least a level one (1) cache that is proximal to the core. In
many cases, and especially in multi-core designs, a processor
will also have alevel two (I.2) cache, and in some cases alevel
three (L.3) cache. The [.2 and L3 caches are in many cases
shared among the various processor cores. The multiple
cache hierarchies allow a processing system to keep copies of
data that is accessed frequently in the local faster cache
memory hierarchy, rather than having to access main memory
which is typically slower.

However, even with the increasing size of the .2 and [.3
caches, they do fill up, and older cache lines need to be
evicted. Generally speaking it is typically the case that the
least recently used (LRU) cache line is the line that is evicted.
There have been many LLRU algorithms used to determine
which cache line to evict. For example, round robin algo-
rithms among others are frequently used. Many of these algo-
rithms do work. However, many of them have drawbacks that
evict cache lines that for a variety of reasons should have been
kept.

SUMMARY OF THE EMBODIMENTS

Various embodiments of a least recently used mechanism
for cache line eviction from a cache memory are disclosed.
Broadly speaking, a method and system for evicting a cache
line from a cache memory include selecting for eviction a
least recently used cache line of a group of invalid cache lines.
If all cache lines are valid, selecting for eviction a least
recently used cache line of a group of cache lines in which no
cache line of the group of cache lines is also stored within a
higher level cache memory such as the [.1 cache, for example.
Lastly, if all cache lines are valid and there are no non-
inclusive cache lines, selecting for eviction the least recently
used cache line stored in the cache memory.

In one embodiment, a method includes selecting for evic-
tion, from a cache memory that stores one or more cache
lines, a least recently used cache line of a group of invalid
cache lines. The method may also include in response to a
determination that no cache lines are invalid, selecting for
eviction from the cache memory a least recently used cache
line of a group of cache lines in which no cache line of the
group of cache lines is also stored within a higher level cache
memory. The method may further include in response to a
determination that no cache lines are invalid, and in response
to a determination that all cache lines of the group of cache
lines are also stored within the higher level cache memory,
selecting for eviction from the cache memory a least recently
used cache line of the one or more cache lines stored in the
cache memory.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of one embodiment of an inte-
grated circuit.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 is a block diagram of depicting more detailed
aspects of an embodiment of the cache hierarchy of FIG. 1.

FIG. 3 is a flow diagram describing operational aspects of
the L2 cache memory of FIG. 1 and FIG. 2.

FIG. 4 is a block diagram of one embodiment of a system
including the integrated circuit of FIG. 1 and FIG. 2.

Specific embodiments are shown by way of example in the
drawings and will herein be described in detail. It should be
understood, however, that the drawings and detailed descrip-
tion are not intended to limit the claims to the particular
embodiments disclosed, even where only a single embodi-
ment is described with respect to a particular feature. On the
contrary, the intention is to cover all modifications, equiva-
lents and alternatives that would be apparent to a person
skilled in the art having the benefit of this disclosure.
Examples of features provided in the disclosure are intended
to be illustrative rather than restrictive unless stated other-
wise.

As used throughout this application, the word “may” is
used in a permissive sense (i.e., meaning having the potential
t0), rather than the mandatory sense (i.e., meaning must).
Similarly, the words “include,” “including,” and “includes”
mean including, but not limited to.

Various units, circuits, or other components may be
described as “configured to” perform a task or tasks. In such
contexts, “configured to” is a broad recitation of structure
generally meaning “having circuitry that” performs the task
ortasks during operation. As such, the unit/circuit/component
can be configured to perform the task even when the unit/
circuit/component is not currently on. In general, the circuitry
that forms the structure corresponding to “configured to” may
include hardware circuits. Similarly, various units/circuits/
components may be described as performing a task or tasks,
for convenience in the description. Such descriptions should
be interpreted as including the phrase “configured to.” Recit-
ing a unit/circuit/component that is configured to perform one
or more tasks is expressly intended not to invoke 35 U.S.C.
§112, paragraph six, interpretation for that unit/circuit/com-
ponent.

The scope of the present disclosure includes any feature or
combination of features disclosed herein (either explicitly or
implicitly), or any generalization thereof, whether or not it
mitigates any or all of the problems addressed herein. Accord-
ingly, new claims may be formulated during prosecution of
this application (or an application claiming priority thereto)
to any such combination of features. In particular, with ref-
erence to the appended claims, features from dependent
claims may be combined with those of the independent
claims and features from respective independent claims may
be combined in any appropriate manner and not merely in the
specific combinations enumerated in the appended claims.

DETAILED DESCRIPTION

Turning now to FIG. 1, a block diagram illustrating one
embodiment of a portion of an integrated circuit (IC) is
shown. In the illustrated embodiment, IC 10 includes proces-
sor complex 20, coherence point 12, switch fabric 15, devices
16 and 18, memory controller 34, and memory physical inter-
face circuits (PHY's) 36 and 38. It is noted that IC 10 may also
include many other components not shown in FIG. 1. In
various embodiments, IC 10 may also be referred to as a
system on chip (SoC), an application specific integrated cir-
cuit (ASIC), or an apparatus.

Processor complex 20 may include central processing units
(CPUs) 22 and 26, level two (I.2) cache 30, and bus interface
unit (BIU) 32. In other embodiments, processor complex 20

US 9,176,879 B2

3
may include other numbers of CPUs. CPUs 22 and 26 may
also be referred to as processors or processor cores. It is noted
that processor complex 20 may also include other compo-
nents not shown in FIG. 1.

The CPUs 22 and 26 may include circuitry to execute
instructions defined in an instruction set architecture. Specifi-
cally, one or more programs comprising the instructions may
be executed by CPUs 22 and 26. Any instruction set architec-
ture may be implemented in various embodiments. For
example, in one embodiment, the ARM™ instruction set
architecture (ISA) may be implemented. The ARM instruc-
tion set may include 16-bit (or Thumb) and 32-bit instruc-
tions. Other exemplary ISA’s may include the PowerPC™
instruction set, the MIPS™ instruction set, the SPARC™
instruction set, the x86 instruction set (also referred to as
1A-32), the IA-64 instruction set, etc.

As shown, CPU 22 includes a level one (L.1) cache 24 and
CPU 26 includes an L1 cache 28, and L1 caches 24 and 28 are
coupled to L2 cache 30. Other embodiments may include
additional cache levels (e.g., level three (L.3) cache). L1
caches 24 and 28 and [.2 cache 30 may comprise any capacity
and configuration (e.g. direct mapped, set associative). [.2
cache 30 may be coupled to memory controller 34 via BIU 32,
coherence point 12, and switch fabric 15. BIU 32 may include
various logic structures to couple CPUs 22 and 26 and 1.2
cache 30 to various other devices and blocks.

Coherence point 12 may be configured to act as a gateway
between the coherent and non-coherent domains in IC 10.
Coherence point 12 may be the location in IC 10 where
memory operations become globally visible. Coherence
point 12 may also include tags from [.2 cache 30 for all
coherent agents in IC 10 and which may be snooped by
coherence point 12 for coherency operations. Coherence
point 12 may also include additional logic (e.g., coherence
control unit, memory interface unit, current transaction table)
not shown in FIG. 1. For example, in various embodiments,
coherence point 12 may include cache coherency logic
employing a cache coherency protocol to ensure data
accessed by each agent is kept up to date. An example of a
cache coherency protocol includes the MOESI protocol with
the Modified (M), Owned (O), Exclusive (E), Shared (S), and
Invalid (I) states. Coherence point 12 may be coupled to
switch fabric 15, and coherence point 12 may be coupled to
devices 16 and 18 via switch fabric 15. Devices 16 and 18 are
representative of any number and type of devices within IC
10. In another embodiment, coherence point 12 and switch
fabric 15 may be integrated within a single coherence con-
troller.

Devices 16 and 18 may generally be any type of peripheral
device or interface, implementing any hardware functionality
included in the system other than the CPUs. For example, the
devices 16 and 18 may include video peripherals such as
cameras, camera interfaces, image processors, video encod-
ers/decoders, scalers, rotators, blenders, graphics processing
units, display controllers, etc. The devices 16 and 18 may
include audio peripherals such as microphones, speakers,
interfaces to microphones and speakers, audio processors,
digital signal processors, mixers, etc. The devices 16 and 18
may include interface controllers for various interfaces exter-
nal to IC 10, including interfaces such as Universal Serial Bus
(USB), peripheral component interconnect (PCI) including
PCI Express (PCle), serial and parallel ports, etc. The devices
16 and 18 may include networking peripherals such as media
access controllers (MACs). It is noted that in some embodi-
ments, one or more of devices 16 and 18 may be external to IC
10.

10

15

20

25

30

35

40

45

50

55

60

65

4

Memory controller 34 may include any number of memory
ports and may include circuitry configured to interface to
memory. For example, memory controller 34 may be config-
ured to interface to dynamic random access memory
(DRAM) such as synchronous DRAM (SDRAM) (including
mobile versions of the SDRAMSs such as mDDR3, etc., and/or
low power versions of the SDRAMSs such as LPDDR2, etc.),
RAMBUS DRAM (RDRAM), double data rate (DDR)
SDRAM, DDR2 SDRAM, Rambus DRAM (RDRAM),
static RAM (SRAM), etc. Memory controller 34 may also be
coupled to memory physical interface circuits (PHY's) 36 and
38. Memory PHY's 36 and 38 are representative of any num-
ber of memory PHYs which may be coupled to memory
controller 34. Memory PHY's 36 and 38 may be configured to
interface to memory devices (not shown). Memory PHY's 36
and 38 may handle the low-level physical interface to the
memory devices. For example, the memory PHY's 36 and 38
may be responsible for the timing of the signals, for proper
clocking to synchronous DRAM memory, etc.

It is noted that other embodiments may include other com-
binations of components, including subsets or supersets of the
components shown in FIG. 1 and/or other components. While
one instance of a given component may be shown in FIG. 1,
other embodiments may include two or more instances of the
given component. Similarly, throughout this detailed descrip-
tion, two or more instances of a given component may be
included even if only one is shown, and/or embodiments that
include only one instance may be used even if multiple
instances are shown. In addition, in other embodiments, the
connections between components of IC 10 may differ from
those shown in FIG. 1. In other words, direct connections
between components may be used for components that are
not directly connected in FIG. 1, and components with direct
connections in FIG. 1 may instead connect via one or more
other components.

Referring to FIG. 2, a block diagram of one embodiment of
the L2 cache of FIG. 1 is shown. As shown in FIG. 2, the L2
cache 30 includes a cache control unit 210 coupled to a
storage array 225. In one embodiment, the L2 cache 30 may
be configured as a set associative n-way cache. In the illus-
trated embodiment, the [.2 cache 30 includes n ways, which
are labeled W, through W, ,, where n may be any natural
number. Similarly, the 1.2 cache 30 is configured to have m
sets, which are labeled S, through S, ;, where m may be any
natural number.

In one embodiment, the storage array 225 may be config-
ured to store data in a cache line configuration. It is noted that
a cache line may be any number of bytes. A representative
cache line 250 is shown in the exploded view of FIG. 2. As
shown, the cache line 250 includes storage for data as well as
a number of state and indicator bits. More particularly, the
cache line 250 includes state bits (e.g., V, S, D), and indicator
bits (e.g., TMP bit, PF bit, and T bit).

The state bits may indicate the coherence state of the cache
line. In one embodiment, the state bits may include a valid
(V), shared (S), and dirty (D) bit. The indicator bits indicate
various properties of a cache line. In one embodiment, a
memory request may be characterized and so indicated by the
TMP bit when it is correlated with other memory requests that
occur near to it in time. Because these types of memory
requests are correlated, they may have precedence when
determining least recently used allocation priorities, as
described further below. Thus, the TMP bit is a temporal bit
that indicates whether the cache line was stored in the L2
cache 30 as a result of a temporal memory request. In one
embodiment, the cache control unit 210 may perform
prefetch operations from the system memory into the storage

m-13

US 9,176,879 B2

5

array 225. Accordingly, the PF bit indicates whether the cache
line was stored in the .2 cache 30 as a result of a prefetch
operation by the cache control unit 210. The PF bit may also
be used when a cache line is evicted. More particularly, the
cache control unit 210 may use the PF bit to determine
whether or not the evicted cache line may be stored to a victim
buffer. In one embodiment, prefetched cache lines that were
not accessed are not stored to the victim buffer when evicted
from the L2 cache 30.

Cache lines from the .2 cache 30 that are stored back to the
L1 cache 24 or 28 (i.e., made a trip), may be considered to be
used more frequently, and may therefore be considered a
higher priority in the 1.2 cache 30. The Trip or T bit indicates
that the cache line has been stored in the L1 cache 24 or 28,
and was subsequently stored back in the [.2 cache 30. Thus, in
one embodiment, the T bit may be a sticky bit which is set
when a cache line makes more than one trip between the L1
cache 24 or 28 and the L2 cache 30.

The cache control unit 210 may be configured to control
storage to and retrieval from the cache storage array 225. In
one embodiment, the cache control unit 210 may include
logic to determine, allocate, and keep track of the least
recently used (LRU) position of cache line entries in the
different ways of the cache storage array 225 using a true
LRU replacement. The LRU position may be used in deter-
mining which cache line is evicted when the cache storage
array 225 is full and a new cache line needs to be stored. In one
embodiment, each way may be assigned to one of the possible
LRU positions, and each set includes all the LRU positions.
As shown in the embodiment of FIG. 2, way W, of an arbi-
trary set corresponds to LRU, and way W, of the same set
corresponds to LRU, and so onup to LRU,_ ;. Inthis scenario
LRU, represents the least recently used cache line, and the
LRU,, , represents the most recently used (MRU) cache line.
In other embodiments, different LRU positions may be allo-
cated to different ways of a given set.

In FIG. 3, a flow diagram depicting operational aspects of
the embodiments of the L2 cache of FIG. 1 and FIG. 2 is
shown. Referring collectively to FIG. 1 through FIG. 3, and
beginning in block 301 of FIG. 3, cache control unit 210 of
FIG. 2 receives a request. If the request hits in the cache
storage array 225 (block 303), the cache control unit deter-
mines the type of request. If the request is a non-temporal
request (block 333) it may be promoted up to LRU1 if it hits
in a low LRU position such as LRUO. However, if a non-
temporal request hits on a cache line with an LRU4, for
example, the cache line would not be down-graded. If the
request is not a non-temporal request (block 333), but the
request is an [.2 prefetch request (block 337), it may be
promoted up to an LRU3 position (block 339). Similarly, the
cache line that hit would not be down-graded in the event that
it has a higher LRU position. If the request is not an [.2
prefetch, then it may be promoted up to the highest LRU
position (e.g., LRU7 in an eight-way cache). It is noted that in
other embodiments, other LRU allocations are possible and
contemplated.

Referring back to block 303, if the request misses in the
cache storage array 225, the cache control unit 210 may
determine whether there is any space available in the cache
storage array 225 to store the cache line (block 304). If there
is space available, the cache control unit 210 may allocate the
LRU position according to the request type. More particu-
larly, if the request is a non-temporal request (block 305), the
control unit 210 may allocate the request as an LRUO position
or LRUT1 position (block 307). If the request is not a non-
temporal request, but the request is an L2 prefetch request
(block 309), the control unit 210 may allocate the request as

10

15

20

25

30

35

40

45

50

55

60

65

6

an LRUO position through LRU3 position (block 3011). If the
request is not an [.2 prefetch request, but the request has the T
bit set (block 313), the control unit 210 may allocate the
request as any LRU position, beginning with the LRU7 posi-
tion (block 315). Lastly, if the request corresponds to a
demand request, the control unit 210 may allocate the request
as any LRU position (block 317).

Referring back to block 304, if there is no space available,
the cache control unit 210 may determine which cache line to
evict based upon the LRU positions of the various cache lines
in a given set. More particularly, the cache control unit 210
may first look for an invalid cache line (block 319) in the set,
and if there are invalid cache lines, the cache control unit 210
may evict the first invalid cache line in the set, and allocate the
new cache line (block 321) as described above beginning at
block 305. If there are no invalid lines in the set (block 319),
the cache control unit 210 may determine whether there are
any cache lines that are non-inclusive inthe [.1 cache 24 or 28.
If there are non-inclusive cache lines (block 232), the cache
control unit 210 may evict the non-inclusive cache line with
the lowest LRU position in the set, and allocate the new cache
line (block 329) as described above beginning at block 305. If
there no non-inclusive cache lines (block 232), the cache
control unit 210 may determine whether there are any cache
lines that are unlocked and available. If there are unlocked
cache lines available (block 327), the cache control unit 210
may evict the cache line with the lowest LRU position (block
329). The new cache line is allocated as described above
beginning at block 305. However, if there are no unlocked
cache lines available, the cache control unit 210 may request
that the request be replayed until a cache line is available
(block 331).

In one embodiment, the cache control unit 210 may imple-
ment a linear feedback shift register (LFSR) based pointer to
select the cache line to evict. In such an embodiment, begin-
ning with the position pointed to by the LFSR pointer, the first
invalid cache line is picked, and if no lines are invalid, then
pick the first non-inclusive cache line. If all lines are valid and
inclusive, then pick the first cache line that is not an [.2
prefetch. Lastly, if no such lines exist, pick the first unlocked
cache line pointed to by the LFSR pointer.

Turning to FIG. 4, a block diagram of one embodiment of
a system that includes the IC 10 of FIG. 1 is shown. The
system 400 includes at least one instance of the IC 10 of FIG.
1 coupled to one or more peripherals 407 and an external
system memory 405. The system 400 also includes a power
supply 401 that may provide one or more supply voltages to
the IC 10 as well as one or more supply voltages to the
memory 405 and/or the peripherals 407. In some embodi-
ments, more than one instance of the IC 10 may be included.

The peripherals 407 may include any desired circuitry,
depending on the type of system. For example, in one
embodiment, the system 400 may be included in a mobile
device (e.g., personal digital assistant (PDA), smart phone,
etc.) and the peripherals 407 may include devices for various
types of wireless communication, such as WiFi, Bluetooth,
cellular, global positioning system, etc. The peripherals 407
may also include additional storage, including RAM storage,
solid-state storage, or disk storage. The peripherals 407 may
include user interface devices such as a display screen,
including touch display screens or multitouch display
screens, keyboard or other input devices, microphones,
speakers, etc. In other embodiments, the system 400 may be
included in any type of computing system (e.g., desktop per-
sonal computer, laptop, tablet, workstation, net top, etc.).

The system memory 405 may include any type of memory.
For example, the system memory 405 may be in the DRAM

US 9,176,879 B2

7

family such as synchronous DRAM (SDRAM), double data
rate (DDR, DDR2, DDR3, etc.), or any low power version
thereof. However, system memory 405 may also be imple-
mented in SDRAM, static RAM (SRAM), or other types of
RAM, etc.

Although the embodiments above have been described in
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the follow-
ing claims be interpreted to embrace all such variations and
modifications.

What is claimed is:

1. A method comprising:

selecting for eviction, from a cache memory that stores one
or more cache lines, a least recently used cache line of a
group of invalid cache lines, wherein each cache line
stores a prefetch bit that indicates whether the cache line
was generated in response to a cache memory prefetch
operation;

in response to a determination that no cache lines are
invalid, selecting for eviction from the cache memory a
least recently used cache line of a group of cache lines in
which no cache line of the group of cache lines is also
stored within a higher level cache memory;

in response to a determination that no cache lines are
invalid, and in response to a determination that all cache
lines ofthe group of cache lines are also stored within the
higher level cache memory, selecting for eviction from
the cache memory a least recently used cache line of the
one or more cache lines stored in the cache memory.

2. The method of claim 1, further comprising replaying a
memory request in response to a determination that there are
no least recently used cache lines available for eviction.

3. The method of claim 1, further comprising allocating a
cached line within a least recently used priority scheme
including priority positions zero through seven, wherein the
lowest least recently used priority is assigned to positions
zero and one, and allocating the lowest least recently used
priority to a cache line associated with a non-temporal
request, wherein a lower position may be selected for eviction
before a higher position.

4. The method of claim 3, further comprising allocating a
mid-level least recently used priority to a cache line associ-
ated with a cache memory prefetch request, wherein the mid-
level least recently used priority is assigned to positions zero
through three.

5. The method of claim 1, wherein each cache line stores a
trip bit that is indicative of a number of times the correspond-
ing cache line has been stored in the higher level cache
memory and subsequently stored in the cache memory.

6. The method of claim 1, wherein each cache line stores a
temporal bit that indicates whether the cache line was gener-
ated in response to a temporal memory request.

7. An integrated circuit comprising:

a processor unit coupled to a system memory and config-
ured to execute instructions from the system memory,
wherein the processor unit includes one or more proces-
sor cores, each including a level one cache memory;

alevel two cache memory coupled to the processorunit and
configured to store cache lines retrieved from the system
memory, wherein each cache line stores a trip bit that is
indicative of a number of times the corresponding cache
line has been stored in the level one cache memory and
subsequently stored in the level two cache memory;

wherein the level two cache memory includes a control unit
configured to:

5

10

15

20

25

30

35

40

45

50

55

60

65

8

select for eviction, from the level two cache memory, a
least recently used cache line of a group of invalid
cache lines;

in response to a determination that no cache lines are
invalid, select for eviction from the level two cache
memory a least recently used cache line of a group of
cache lines in which no cache line of the group of
cache lines is also stored within the level one cache
memory;

in response to a determination that no cache lines are
invalid, and in response to a determination that all
cache lines of the group of cache lines are also stored
within the level one cache memory, select for eviction
from the level two cache memory a least recently used
cache line of the one or more cache lines stored in the
level two cache memory.

8. The integrated circuit of claim 7, wherein in response to
a determination that there are no unlocked least recently used
cache lines available for eviction the control unit is configured
to replay a memory request that misses in the level two cache
memory.

9. The integrated circuit of claim 7, wherein the control unit
is further configured to allocate a cached line within a least
recently used priority scheme including priority positions
zero through seven, wherein position zero may be selected for
eviction before a higher numbered position, and to allocate
position zero through position one to a cache line associated
with a non-temporal request.

10. The integrated circuit of claim 9, wherein the control
unit is further configured to allocate a cache line associated
with a level two cache memory prefetch request to positions
zero through three.

11. The integrated circuit of claim 9, wherein the control
unit is configured to promote a cache line to a higher position
in response to a hit in the level two cache memory dependent
upon whether a related memory request corresponds to a
non-temporal request, a prefetch request, or a temporal
request.

12. The integrated circuit of claim 7, wherein each cache
line stores a prefetch bit that indicates whether or not the
cache line was generated in response to a level two cache
memory prefetch operation.

13. The integrated circuit of claim 7, wherein each cache
line stores a temporal bit that indicates whether the cache line
was generated in response to a temporal memory request.

14. A mobile device comprising:

a system memory configured to store instructions and data;

a processor unit coupled to the system memory and con-

figured to execute the instructions, wherein the proces-

sor unit includes one or more processor cores, each
including a level one cache memory;

alevel two cache memory coupled to the processor unit and

configured to store cache lines retrieved from the system
memory, wherein each cache line stores a prefetch bit
that indicates whether or not the cache line was gener-
ated in response to a level two cache memory prefetch
operation;

wherein the level two cache memory includes a control unit

configured to:

select for eviction, from the level two cache memory, a
least recently used cache line of a group of invalid
cache lines;

in response to a determination that no cache lines are
invalid, select for eviction from the level two cache
memory a least recently used cache line of a group of

US 9,176,879 B2

9

cache lines in which no cache line of the group of
cache lines is also stored within the level one cache
memory;

in response to a determination that no cache lines are
invalid, and in response to a determination that all
cache lines of the group of cache lines are also stored
within the level one cache memory, select for eviction
from the level two cache memory a least recently used
cache line of the one or more cache lines stored in the
level two cache memory.

15. The mobile device of claim 14, wherein the control unit
is further configured to allocate a cached line within a least
recently used priority scheme including priority positions
zero through seven, wherein position zero may be selected for
eviction before a higher numbered position, and to allocate
position zero through position one to a cache line associated
with a non-temporal request.

16. The mobile device of claim 15, wherein the control unit
is further configured to allocate a cache line associated with a
level two cache memory prefetch request to positions zero
through three.

17. The mobile device of claim 14, wherein each cache line
stores a trip bit that is indicative of a number of times the
corresponding cache line has been stored in the level one
cache memory and subsequently stored in the level two cache
memory.

10

15

20

25

10

