United States Patent

US009317278B1

(12) 10) Patent No.: US 9,317,278 B1
Walker (45) Date of Patent: Apr. 19, 2016
(54) UPDATING SHARED ACCESS 2011/0078675 Al* 3/2011 Van Camp GOGF 8/65
R 717/170
MACHINE-READABLE CODE 2013/0067599 Al* 3/2013 Rajecccoovvevveeienns GOGF 8/65
) . 717/173
(71) Applicant: Damien N. Walker, Pace, FL (US) 2013/0263104 AL* 10/2013 Basetoovvorerrer. GOGF 8/70
717/168
(72) Inventor: Damien N. Walker, Pace, FL (US) 2013/0275553 Al* 10/2013 Shilococoeee. HO4L 67/1095
709/217
(73) Assignee: Duran Walker Group, LL.C, Pace, FL. 2014/0223423 AL* 82014 AlSina ..oooooiicoe G0761F7§1/g§
(Us)
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Ifécgg’*MiChael’ et al., “Dynamic Software Updating”, 2001, pp.
%atserét lls SZXIEeILde((i) g; adjusted under 35 Makrfs, Kristis, et al., “Immediate Multi-Threaded Dynamic Soft-
it (b) by S ware Updates Using Stack Reconstruction”, 2009, pp. 1-14.*
Ajmani, Sameer, “Automatic Software Upgrades for Distributed Sys-
(21) Appl. No.: 14/262,548 tems (PhD thesis)”, 2005, pp. 103-133.*
Gu, Tianxiao, et al., “Javelus: A Low Disruptive Approach to
(22) Filed: Apr. 25,2014 Dynamic Software Updates™ 2012, pp. 527-536.*
Neamtiu, lulian, et al., “Safe and Timely Dynamic Updates for Multi-
(51) Int.Cl threaded_ Programs”, 2009, pp. 13-2_4.*)
GOG6F 9/44 (2006.01) ﬁl:\f;}llin,z (ﬁlz?ng’ eltoz;l4: | (;A;;t(})kmatlc Updating Method Based on
GOGF 9/445 (2006.01) PSSP '
(52) US.CL * cited by examiner
CPC .. GO6F 8/65 (2013.01); GO6F 8/60 (2013.01);
GO6F 8/67 (2013.01); GO6F 8/70 (2013.01); Primary Examiner — Thuy Dao
GO6F 8/71 (2013.01) Assistant Examiner — Christopher Franco
(58) Field of Classification Search (74) Attorney, Agent, or Firm — John R. Casperson
None
See application file for complete search history. (57) ABSTRACT
. A computer system is provided comprising a client computer,
(56) References Cited a management server computer, and a communications net-
U.S. PATENT DOCUMENTS work. The client computer includes hardware and software
for executing an application utilizing data, files and code
6,134,558 A 10/2000 Hong et al. downloaded from the management server computer. The
6,351,751 Bl 2/2002 Traversat et al. management server computer includes the data, files and code
7,133,880 Bl 11/2006 Nori et al. required by the client computer for executing the application.
7,328,222 B2 2/2008 Keith et al. The management server computer includes hardware and
8,225,310 B1* 7/2012 Robertson GOGF 8/65 software for registering the client computer to receive elec-
] 717/171 tronic change notifications for any updates made to the data,
2003/0066065 AL™ 4/2003 Larkinccovvvnnn. GOGF 8/65 files and code at the management server computer. The client
N) 717177 computer includes hardware and software for updating data,
2009/0044182 AL* 22009 QUIn oooooovsiirs GOGE 8/65 files and code from the management server computer prior to
717/168 . S .
2009/0138870 Al* 5/2000 Shahindoust et al 717172 further execution of the application with any outdated data,
5010/0107150 AL* 4/2010 Kamada ... " GOGF 8/65 files or code once an electronic change notification has been
717/170 received.
2010/0169876 Al* 7/2010 Manncccceeenne GOGF 8/65
717/170 20 Claims, 6 Drawing Sheets
220 238
234
242 i 244

- 246

U.S. Patent Apr. 19,2016 Sheet 1 of 6 US 9,317,278 B1
FIG. 1
220 222 226 228 230
A A A A A
224
218 204
Y Y Yy
214
<$> 202 206
216 | 212
208
210
FIG. 2
220
|
234
242 1 244
t —— 1
232
240 - 246

US 9,317,278 B1

Sheet 2 of 6

Apr. 19,2016

U.S. Patent

FIG. 3

> |—
ﬁ IIIIIIIIIIIIIIIIIIIII
| <t| |
il
| o
| © [c'e) |
_ I%e] > © I
_ N N _
I |
| \ _
[I |
| o~ |
| Yol
_ o
I | o o < _
| Ye) © > O
_ N N N |
I |
I |
|) ._
i =
&l
| 2_
|
| o o |
_ Lo > © _
_ N N _
I |
[|
|

FIG. 4

—_—_———— e ————

| <t |
Lo
| ol
| o N |
| | - _
_ ~ ~ _
I |
_ 1 _
[I |
[o
| o |
[N
_ o © o _
| ~ M~ > N~
_ N N o~ |
I |
I |
_) _
——fF———- e]
_ 3!
Q1
| A
[N NS |
_ ~ » I~ _
! o~ o~ _
I |
[|
e—— |
> |—

US 9,317,278 B1

Sheet 3 of 6

Apr. 19,2016

U.S. Patent

FIG. 5

> |—
ﬁ IIIIIIIIIIIIIIIIIIIII
_ M__
| 4
| © 0| <t © |
| 0| - S| | & [
_ ~ ~ N N _
I |
_) 1 _
[R R |
[o~
| Yol
_ o
I | < o o _
| (o) >» » O
_ N N N |
I |
I |
| h
F————————— ———— ——
| y ROu_
_ 2_
|
I o] o |
| o = O I
_ N « _
I |
[|
|

FIG. 6

_ 3!
| A
< © o < _
_ 0_ - O ~ » — |
! 152} 152} e ™ |
I |
_) 1 _
- r-—--d4 - r-_——-—-—_-__ |
| n/_._
_ 5__
[N
[PN © o _
| O O '
_ I3e) I3e) ™ |
I |
I |
I |
- ———————— i
_ :0u__
_ &l
|
| © o) I
b - _
_ ™ ™ _
I |
[|
e—— |
> |—

U.S. Patent Apr. 19,2016 Sheet 4 of 6 US 9,317,278 B1

FIG. 7
101~
« | -
2111 |- | m
102)
2112 |« —
103~ f
21
T\ r113
213
¢ 1211
21t 1212
2122 1213
212 1214
4 121
12
2 1
FIG. 8
m >
- 108
- 110
- 12
114 -
Y - 116
il " 21

U.S. Patent Apr. 19,2016 Sheet 5 of 6 US 9,317,278 B1

FIG. 9 FIG. 10
118 146
/ Y
120 148
i \
122 150
'
124 1562 (+)
126 (+) (-)
154
(-)]
128 156
/ y
130 158
y
132 162 1 160
(+)
150 164

—
[OF)
[@>]
—_—
[o>]
[o>]

—
D [t
(@0
—
[oe]
/'

—
|-
(@)
—_—
\l
(]

142 172

U.S. Patent Apr. 19,2016 Sheet 6 of 6 US 9,317,278 B1

FIG. 11

—
(@]

180 (+)

(-) 188

—

<o

[@p]
A

—
©
(@]

N
[a=]
[aw)

US 9,317,278 Bl

1
UPDATING SHARED ACCESS
MACHINE-READABLE CODE

BACKGROUND OF THE INVENTION

Making updates to computer programs which have been
distributed to multiple users or updates to items of machine-
readable code which are accessible to multiple users such as
web pages or shared databases is without interrupting or
interfering with the users or making difterent updates avail-
able to different users has long been a problem.

It is an object of this invention to make machine-readable
code updates to multiple users in an improved fashion.

SUMMARY OF THE INVENTION

In one embodiment of the invention, there is provided a
computer system comprising a client computer, a manage-
ment server computer, and a communications network. The
client computer includes hardware and software for executing
an application utilizing data, files and code downloaded from
the management server computer. The management server
computer includes the data, files and code required by the
client computer for executing the application. The communi-
cations network is for conveying a request from the client
computer to the management server computer for the data,
files and code and for downloading the data, files and code
from the management server computer to the client computer.
The management server computer includes hardware and
software for registering the client computer to receive elec-
tronic change notifications for any updates made to the data,
files and code at the management server computer. The client
computer includes hardware and software for updating data,
files and code from the management server computer prior to
further execution of the application with any outdated data,
files or code once an electronic change notification has been
received.

In another embodiment of the invention, there is provided
a method for managing application code, data and files being
used in remote systems by distributing these items from a
single source and flagging the items for updates. In the
method, a request is received on a first client machine to
execute an application utilizing data, files and code residing
on a management server. A request is sent over a communi-
cations network to the management server for the code. The
management server fills the request from a local file system
and registers a change notification for the code. The code is
returned over the communications network to a repository
client residing on the first client machine. The repository
client dynamically assembles the code and makes the code
available as an application to further execute the request. A
request is sent over the communications network to the man-
agement server for the data and files for use by the applica-
tion. The management server fills the request from the local
file system and registers a change notification for the
requested data and files. The requested data and files is
returned over the communications network to the repository
client for use in the application.

In the event of that an update is received at the management
server for any of code, data or other files, an update notifica-
tion can be sent to the first client so that steps can be taken to
update the code, data or other files at the first client before the
first client takes further action involving the changed items.

In another embodiment of the invention, there is provided
a method for coordinating usage of a database that is main-
tained in a repository and that is being updated as it is used. In
the method, a repository management server receives an elec-

10

15

20

25

30

35

40

45

50

55

60

65

2

tronic request for machine-readable code stored in a reposi-
tory computer memory served by the repository management
server. The management retrieves the requested machine-
readable code from the repository computer memory and
electronically transmits it to the requestor. The requestor elec-
tronically stores the transmitted machine-readable code in a
requestor computer device. The repository management
server registers the transmitted machine-readable code for
update notifications from the repository management server.
At least one proposed update to the previously transmitted
data is received electronically at the repository management
server from an editor. The repository management server
accepts the at least one proposed update, stores the accepted
update in the repository computer memory and deletes any
outdated machine-readable code that has been superseded by
updated machine-readable code. The update notification is
transmitted to the requestor and outdated machine-readable
code is replaced on the requestor’s computer with updated
machine-readable code prior to a next access by the request-
or’s computer of any outdated machine-readable code.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a box system diagram illustrating certain trans-
actions which can be carried out with embodiments of the
present invention.

FIG. 2 is a box diagram of overall system architecture
which can be employed in an embodiment of the invention.

FIG. 3 is a sequence diagram illustrating conducting an
Administrative Data Modification according to an embodi-
ment of the invention.

FIG. 4 is a sequence diagram illustrating conducting an
Administrative Code Modification according to an embodi-
ment of the invention.

FIG. 5 is a sequence diagram illustrating conducting a Data
Modification from the Client or Target Application according
to an embodiment of the invention.

FIG. 6 is a sequence diagram illustrating conducting an
Application Code Modification from the Client or Target
according to an embodiment of the invention.

FIG. 7 is a box diagram illustrating certain features of a
repository server and client system according to an embodi-
ment of the invention.

FIG. 8 is a Sequence diagram illustrating the Repository
Management System issuing Code Change Notification to a
client.

FIG. 9 is a Flow Chart illustrating a Client for the Reposi-
tory Management System making an HTML file request for a
Web/Ecommerce application.

FIG. 101is a Flow Chart illustrating a Client for the Reposi-
tory Management System generating a User Interface for a
Desktop Application.

FIG. 11 is a Flow Chart illustrating a Client for the Reposi-
tory Management System requesting a dynamic class load for
a Web/Ecommerce application.

DETAILED DESCRIPTION OF THE INVENTION

In one embodiment of the invention, there is provided a
computer system comprising a client computer, a manage-
ment server computer, and a communications network. The
client computer includes hardware and software for executing
an application utilizing data, files and code downloaded from
the management server computer. The management server
computer includes the data, files and code required by the
client computer for executing the application. The communi-
cations network is for conveying a request from the client

US 9,317,278 Bl

3

computer to the management server computer for the data,
files and code and for downloading the data, files and code
from the management server computer to the client computer.
The management server computer includes hardware and
software for registering the client computer to receive elec-
tronic change notifications for any updates made to the data,
files and code at the management server computer. The client
computer includes hardware and software for updating data,
files and code from the management server computer prior to
further execution of the application with any outdated data,
files or code once an electronic change notification has been
received.

In preferred embodiments, the client computer comprises a
cache memory for storing the data and files and a JVM for
executing the code. The management server computer has a
repository for storing the data, files and code. The data is in
the form of Java serialized objects stored in the form of a
hybrid object oriented/relational database and the code is in
the form of Java class files. The application executes without
XML or SQL mapping. An administrative console is in com-
munication with the management server for managing the
data in the repository.

In another embodiment of the invention, there is provided
a method for managing application code, data and files being
used in remote systems by distributing these items from a
single source and flagging the items for updates. In the
method, a request is received on a first client machine to
execute an application utilizing data, files and code residing
on a management server. A request is sent over a communi-
cations network to the management server for the code. The
management server fills the request from a local file system
and registers a change notification for the code. The code is
returned over the communications network to a repository
client residing on the first client machine. The repository
client dynamically assembles the code and makes the code
available as an application to further execute the request. A
request is sent over the communications network to the man-
agement server for the data and files for use by the applica-
tion. The management server fills the request from the local
file system and registers a change notification for the
requested data and files. The requested data and files is
returned over the communications network to the repository
client for use in the application.

Preferably, when an update is received to the requested data
and files at the repository management server, the requested
data and files at the repository management server is replaced
with the update. The change notification is sent to a repository
cache manager in the first client machine. The requested data
and files are deleted from a data repository in the first client
machine. A request is sent over the communications network
to the management server from the first client machine for the
update when called for use by the application which is filled
at the management server repository local file system. The
repository management system registers a change notifica-
tion for the update. The update is returned over the commu-
nications network to the first client machine client for use in
the application.

The request for the code is preferably filled at the manage-
ment server repository by retrieving a class file containing the
code. The class file is downloaded to a class loader in the first
client machine and made available for use in the first client
machine in a JVM runtime environment. The data preferably
comprises serialized objects.

The update can be received from a console physically
operably associated with the repository, or from a second
client machine through the communications network. The

10

15

20

25

30

35

40

45

50

55

60

65

4

number of client machines linked to the repository is limited
only by practical considerations.

In another embodiment of the invention, there is provided
a method for coordinating usage of a database that is main-
tained in a repository and that is being updated as it is used. In
the method, a repository management server receives an elec-
tronic request for machine-readable code stored in a reposi-
tory computer memory served by the repository management
server. The management retrieves the requested machine-
readable code from the repository computer memory and
electronically transmits it to the requestor. The requestor elec-
tronically stores the transmitted machine-readable code in a
requestor computer device. The repository management
server registers the transmitted machine-readable code for
update notifications from the repository management server.
At least one proposed update to the previously transmitted
data is received electronically at the repository management
server from an editor. The repository management server
accepts the at least one proposed update, stores the accepted
update in the repository computer memory and deletes any
outdated machine-readable code that has been superseded by
updated machine-readable code. The update notification is
transmitted to the requestor and outdated machine-readable
code is replaced on the requestor’s computer with updated
machine-readable code prior to a next access by the request-
or’s computer of any outdated machine-readable code.

The machine-readable code can be selected from applica-
tion code, data from a database, and other files such as image
files or sound files. Preferably the machine-readable code
comprises Java application data, files and code. Preferably,
the database is a hybrid object-oriented/relational database
and it is transmitted for use with previously transmitted appli-
cation code. Where the application is to display web pages,
the machine-readable code generally further comprises
image files.

Data from the database is preferably stored in a cache
memory of the requestor’s computer device and at least a
portion of the data is removed from the cache memory in
response to the update notification concerning the data.

The requestor’s computer device preferably includes a
software shell to assemble the application code into a func-
tional application and the application code is reloaded from
the repository in response to the update notification concern-
ing the application code.

Updates are preferably made by first initiating a transaction
session for receiving proposed updates into the repository
management server from the editor. All updates proposed
during the session are recorded. The proposed updates are
committed to the repository at the end of the transaction
session if all the proposed updates were successfully received
and valid, and the update notification is transmitted at the
close of the transaction session. An update notification is
preferably also transmitted to the editor.

In a preferred embodiment, a separate modification space
is provided for each transaction session and the proposed
updates are recorded and available to only to that transaction
session.

Further Description of Preferred Embodiments

One preferred embodiment of the invention provides a
repository management system for defining, creating, persist-
ing, delivering and assembling Java application data, files and
code provided.

One example is a client/server environment in which a
repository management system resides and is initialized on

US 9,317,278 Bl

5

the management server and a repository client resides and is
initialized on a client machine.

The client and the server may reside on the same physical
machine, but it is not necessary.

The repository client may receive a request to execute an
application utilizing data, files and code residing on the Man-
agement Server. First, the repository client sends a request to
the repository management system for all code required.

The management system retrieves the class file from the
local file system, registers a change notification for the
requested class file and then returns the requested code to the
repository client.

The repository client then dynamically assembles the pro-
vided code and makes this code available for use within the
JVM runtime environment for the request.

The repository client then send requests to the repository
management system for any data and/or files requested via the
Repository API within the executing application code pro-
vided.

The repository management System retrieves data (Serial-
ized Objects) and files from the local file system, registers a
change notification for the requested data and files and then
returns the data and files requested to the repository client for
use within the application.

All changes occurring through the repository management
system to any of the application data, files or code will result
in a change notification being sent from the repository man-
agement system to the repository client which results in the
changed data, file or code being discarded and reloaded from
the repository management system upon the next request for
that data, file or code.

Access permissions to the local file system is determined
by the Operating System user executing the Repository Man-
agement System application the server.

The framework of a preferred embodiment of the invention
provides a method for the development, management, storage
and delivery of application code, data and files to remote
systems. The framework is divided into three application
layers, a repository layer, and administration layer, and a
target application layer.

The repository layer provides a storage and delivery
mechanism by means of a hybrid relational/object-oriented
database, preferably written in Java. The repository allows
different applications to work together and to communicate
by means of notifications. The repository not only stores data,
but also code and content. Applications have the ability to
receive notifications about modifications made to the data-
base by other applications, and act in response, for example,
by being reassembled or by deleting and updating their cache.

As an example, Application A could modify code, data or
content of another Application B based on a modification or
series of modifications to a third Application C. Application A
could also modify multiple other applications based on spe-
cific ordered changes in applications B and C. Applications
are automatically notified of modification to their codes and
are reassembled during their runtime.

The administration layer provides a development and man-
agement environment by means of individual graphical user
interface applications imbedded within a single host console
application. These applications interact with the repository as
described previously to allow users to create, update or delete
application code, data or files.

The target application layer which interacts with the
repository as previously described to assemble the applica-
tion code, data and files required for execution. Since the
repository is object oriented, no data mapping is required for
assembly. Target applications continue to interact with the

10

15

20

25

30

35

40

45

50

55

60

65

6

repository during run time to receive and deliver application
code, data, files or modifications.

In contrast to previous methods, which must divide devel-
opment, management, storage and delivery into completely
separate and isolated applications, one preferred embodiment
of'the invention supplies a seamless collaboration within the
framework to provide a single administration point for all
target applications and an awareness between applications
and layers which allows for real time responsiveness to any
change within the framework. The result is a more intelligent
and productive system with increased usability, control and
manageability while providing previously unattainable levels
of interaction between the framework applications.

Additionally, one preferred embodiment of the invention
provides compliance with the principles of the ACID model
{Atomicity, Consistency, Isolation, Durability) of database
design while providing the speed and agility inherent to the
No SQL Base modeled databases. Atomicity is assured by
initializing a modification transaction for each repository ses-
sion. The transaction records all changes requested during the
session and commits those changes to the database upon
success or rolls the changes back in the case of failure. If one
part of the transaction fails, the entire transaction fails. All
modifications strictly follow the “all or nothing” rule. Con-
sistency is assured by requiring, in each session transaction,
that all modifications be valid and successful to allow the
commit to succeed. If, for any reason, a modification fails, the
entire transaction will be rolled back automatically and the
database returned to the last consistent state. Isolation is
assured by maintaining a separate modification space for each
session where the modification is recorded and available to
only that transaction. Therefore, no transaction is aware of
modifications performed within any other transaction. Upon
successful execution of a commit, the global state is updated
to reflect the transaction modifications. Upon rollback or a
transaction-time-out-induced automatic rollback, the trans-
action modification space is cleared and all modifications are
discarded. Durability is assured by logging each committed
transaction for recovery in the case of failures.

Further, one preferred embodiment of the invention pro-
vides an application programming interface that unifies the
communication for accessing repository data and content.
The interface provides auditing, authentication and encryp-
tion functions. The auditing function provides observation
capabilities for monitoring user actions. The Authentication
function provides repository data and content to only valid
and verified users. The Encryption function stores and deliv-
ered sensitive data in encrypted form only.

The application programming interface (API) for access-
ing the repository provides access only to authorized clients
to ensure that proper permissions are granted for read and
write activities. The permissions are granted from the reposi-
tory’s host operating system.

The auditing function includes a messaging system for
activity tracking. Messages notifying of all modifications are
sent to all registered users of the repository. Application reg-
istration is available to client applications through the reposi-
tory APIs.

The authentification function requires that each client must
provide a valid user name and password to gain access to the
repository for any operation.

The encryption function provides the ability to mark sen-
sitive data as encrypted. All data defined to be encrypted will
be both stored and delivered as the encrypted value. All calls
to create such data should be transmitted via a secure protocol
such as HTTPS (Hyper-Text Transfer Protocol Secure)

US 9,317,278 Bl

7

One important aspect of a preferred embodiment of the
invention is a repository which utilizes the hybridization of
object oriented and relational database concepts to maximize
performance and flexibility while minimizing overhead.
Since there is no XML (Extensible Markup Language) or
SQL (Structured Query Language) mapping required for
object initialization, a reduction in application load times can
be observed as well as a reduction in development time. There
are also increased search and query response speeds due to the
unique use of relation concepts. While data is stored as seri-
alized objects, the repository also stores code and files as well.
The repository client API allows access to all stored content
and provides built in session based transaction management,
version control, file locking, session crash recovery and oper-
ating system based file security as well as encryption. These
features ensure that the framework adheres to the ACID
model of database design. The repository also provides a
messaging system which monitors changes to all content and
allows both target and administration applications to register
for and receive notifications based on event type.

A preferred embodiment of the invention utilizes an
administration console that is a desktop application devel-
oped in Java that allows individually packaged applications to
be executed as plugins. The repository API is exposed to all
executed applications and therefore requires no additional
integration considerations. This provides the ability to
quickly develop customized administration application for
individual customer needs. For example, a “Page Manager”
plug-in for web developers and a “Data Manager” plug in for
loading, viewing and managing data.

The target applications in a preferred embodiment of the
invention are developed in Java and utilize the repository API
and custom class loader to assemble the code, data and files
required. An example of a target application is a web or web
service application, but it could be any application developed
using the repository API. Target applications can be deployed
on any Java enabled device.

Preferred embodiment of the present invention are further
explained in the attached drawings, in which the reference
numerals are defined as follows:

DRAWING REFERENCES

1 Management Server

2 Client Machine

11 Repository Management System
111 Notification System

21 Client Application

211 Repository Client

2111 Repository Cache Manager
2112 Repository Class Loaders

212 Dynamically Loaded Code
2121 Remote Data Object

2122 Remote File

213 Repository Application Program Interface (API)
12 Local File System

121 Repository Context

1211 Data (Serialized Objects)
1212 Object Indexes

1213 Files

1214 Code (Class Files)

113 Repository Application Program Interface (API)
101 Client/Server Protocol

102 Notification

103 Notification

21' Client Application 1

22" Client Application 2

20

30

40

45

50

55

60

65

8

106 Request application code

108 Return application code

110 Update application code

112 Notify of code change

114 Request application code

116 Return application code

118 Start

120 Client web application receives request for HTML file

122 Client web appl. attempts to retrieve the HTML file from
the Repository client

124 Repository Client consults repository cache for HTML
file

126 Found? Yes(+), No(-)

128 Open a session with Repository Management System

130 Send request to Repository Management System for
HTML file

132 Repository Management System consults the local file
system for HTML file

134 Found? Yes(+), No(-)

136 Repository Management System Streams HTML file

138 Repository Client puts returned HTML file in cache and
closes session

140 Repository Client returns HTML file to Client applica-
tion

142 Client web application writes HTML content to output
stream

144 End

146 Start

148 Client Desktop application is executed to user

150 Client appl. attempts to load the UI objects from the
Repository Class Loader

152 Found? Yes (+), No (-)

154 Open a session with Repository Management System

156 Send request to Repository Management System for
class files

158 Repository Management System consults the local file
system for class file

160 Found? Yes (+), No (-)

162 Return not found error

164 Repository Management System streams class files

166 Repository Class Loader loads class files into JVM and
closes session

168 Repository Class Loader returns class generated objs to
Client Desktop Appl.

170 Client Desktop Application executes object code to gen-
erate User Interface

172 End

174 Start

176 Client web Appl receives request for dynamic content
generated by object code

178 Client Appl attempts to load the object from the Reposi-
tory Class Loader

180 Found? Yes (+), No (-)

182 Open a session with Repository Management System

184 Send request to Repository Management system for class
file

186 Repository Management System consults the local file
system for the class file

188 Found? Yes (+), No (-)

190 Return not found error

192 Repository Management System stream class file

194 Repository Class Loader loads class file into JVM and
closes session

196 Repository Class Loader returns class generated object to
Client web Appl.

198 Client web application executes object code

200 End

US 9,317,278 Bl

202 Repository
204 Console
206 Lock and Transaction Management
208 Control Client privileges and repository structure
210 Messaging System for endpoint notifications
212 Template defines create, read, update and delete (CRUD)
214 Database Management System (DBMS)
216 Database Management System (DBMS)
218 Participates in XA transactions
220 Web Application
222 Mobile Application
224 Can be connected as Java Connector Architecture (JCA)
adapter
226 Desktop Application
228 Grade of Service-Mobile
230 Grade of Service
232 Repository
234 Console
236 Data Administration Graphical User Interface (GUI)
238 Code/Content Administration GUI
240 Target: Desktop Application
242 Target: Kiosk Application
244 Target: Web Application
246 Target: Mobile Application
250 Administration GUI
252 Repository
254 Target Applications
256 Session Transaction
258 Data Loaded
260 Data Modified
262 Transaction Commit
264 Notification Message Sent
266 Notification Message Received
268 Remove Cached Data
270 Session transaction
272 Data Loaded
274 Code Modified
276 Transaction Commit
278 Notification Message Sent
280 Notification Message Received
282 Reload Code
284 Session Transaction
286 Data Loaded
288 Data Modified
290 Transaction Commit
292 Notification Message Sent
294 Notification Message Received
296 Remove Cached Data
298 Notification Message Received
300 Remove Cached Data
302 Session Transaction
304 Code Loaded
306 Code Modified
308 Transaction Commit
310 Notification Message Sent
312 Notification Message Received
314 Reload Code
316 Notification Message Received
318 Reload Code
While certain preferred embodiments have been described
herein, the invention is not to be construed as being so limited,
except to the extent that such limitations are found in the
claims.
What is claimed is:
1. A method comprising
receiving, from a requestor, at a repository management
server, an electronic request for machine-readable code

10

15

20

25

35

40

50

60

10

stored in a repository computer memory served by the
repository management server,

retrieving the requested machine-readable code from the

repository computer memory,

electronically transmitting the retrieved machine-readable

code to the requestor,

electronically storing the transmitted machine-readable

code in a requestor computer device,

registering the transmitted machine-readable code for

update notifications from the repository management
server,

receiving, electronically from an editor, at the repository

management server, at least one proposed update to the
transmitted machine-readable code,
accepting the at least one proposed update,
storing the at least one accepted update to the machine-
readable code in the repository computer memory and
deleting any outdated machine-readable code that has
been superseded by updated machine-readable code,

transmitting the update notification to the requestor,

replacing outdated machine-readable code on the request-
or’s computer device with updated machine-readable
code prior to a next access by the requestor’s computer
device of any outdated machine-readable code,

wherein the machine-readable code comprises data from a

database,

and wherein data from the database is stored in a cache

memory of the requestor’s computer device and at least
a portion of the data is automatically removed from the
cache memory in response to the update notification.

2. A method as in claim 1 wherein the machine-readable
code further comprises application code.

3. A method as in claim 1 wherein the machine-readable
code further comprises image files.

4. A method as in claim 1 wherein the database is a hybrid
object oriented/relational database.

5. A method as in claim 2 wherein the machine-readable
code further comprises image files.

6. A method as in claim 2 wherein the requestor’s computer
device includes a software shell to assemble the application
code into a functional application and the application code is
reloaded from the repository in response to the update noti-
fication.

7. A method as in claim 1 further comprising

initiating a transaction session for receiving proposed

updates into the repository management server from the
editor,

recording all updates proposed during the session, and

committing the proposed updates to the repository at the

end of the transaction session if all the proposed updates
were successfully received and valid,

wherein

the update notification is transmitted at the close of the

transaction session.

8. A method as in claim 7 further comprising transmitting
an update notification to the editor.

9. A method as in claim 7 further comprising

maintaining a separate modification space for each trans-

action session wherein the proposed updates are
recorded and available to only to that transaction ses-
sion.

10. A method as in claim 1 wherein the machine-readable
code comprises Java application data, files and code.

11. A method comprising

receiving a request on a first client machine to execute an

application utilizing data, files and code residing on a
management server,

US 9,317,278 Bl

11

sending a request over a communications network to the

management server for the code,

filling the request at a management server repository from

a local file system,

registering a change notification for the code at the man-

agement servet,
returning the code over the communications network to a
repository client residing on the first client machine,

dynamically assembling the code in the repository client
and making the code available as an application to fur-
ther execute the request,

sending a request over the communications network to the

management server for the data and files for use by the
application,

filling the request at the management server repository

local file system,

registering a change notification for the requested data and

files at the management server,

returning the requested data and files over the communi-

cations network to the repository client for use in the
application,

receiving an update to the requested data and files at the

repository management server,

replacing the requested data and files at the repository

management server with the update,

sending the change notification to a repository cache man-

ager in the first client machine,

deleting the requested data and files from a data repository

in the first client machine,

sending a request over the communications network to the

management server from the first client machine for the
update when called for use by the application,

filling the request at the management server repository

local file system,

registering a change notification in the repository manage-

ment system for the update, and

returning the update over the communications network to

the first client machine client for use in the application.

12. A method as in claim 11 wherein the request for the
code is filled at the management server repository by retriev-
ing a class file containing the code, the class file is down-
loaded to a class loader in the first client machine and made
available for use in the first client machine in a Java Virtual
Machine runtime environment.

13. A method as in claim 11 wherein the data comprises
serialized objects.

14. A method as in claim 11 wherein the update is received
from a console physically operably associated with the
repository.

15. A method as in claim 11 wherein the update is received
from a second client machine through the communications
network.

10

15

20

25

30

35

40

45

50

12

16. A computer system comprising

a client computer comprising hardware and software for
executing an application utilizing data, files and code
downloaded from a management server computer,

a management server computer having the data, files and
code required by the client computer for executing the
application,

a communications network for conveying a request from
the client computer to the management server computer
for the data, files and code and for downloading the data,
files and code from the management server computer to
the client computer,

said management server computer having hardware and
software for registering the client computer to receive
electronic change notifications for any updates made to
the data, files and code at the management server com-
puter,

wherein the updates comprise data from a database,

and wherein data from the database is stored in a cache
memory of the requestor’s computer device and at least
a portion of the data is automatically removed from the
cache memory in response to the update notification,

said client computer having hardware and software for
updating data, files and code from the management
server computer prior to further execution of the appli-
cation with any outdated data, files or code once an
electronic change notification has been received by
sending a request over the communications network to
the management server for updated data, files or code for
which an electronic change notification has been
received when the outdated data, files or code is called
for use by the application.

17. A computer system as in claim 16 wherein

the client computer comprises a cache memory for storing

the data and files and a Java Virtual Machine for execut-
ing the code.

18. A computer system as in claim 17 wherein the manage-
ment server computer has a repository for storing the data,
files and code, the data being in the form of Java serialized
objects stored in the form of a hybrid object oriented/rela-
tional database and the code being in the form of Java class
files.

19. A computer system as in claim 18 wherein the appli-
cation executes without Extensible Markup Language or
Structured Query Language mapping.

20. A computer system as in claim 19 further comprising

an administrative console in communication with the man-

agement server for managing data in the repository.

#* #* #* #* #*

