a2 United States Patent

Birsan et al.

US009442873B2

US 9,442,873 B2
*Sep. 13, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

DIRECT MEMORY ACCESS CONTROLLER
Applicant: Atmel Corporation, San Jose, CA (US)

Inventors: Laurentiu Birsan, Saint Herblain (FR);
Frode Milch Pedersen, Trondheim
(NO); Nicolas Graffet, Rousset (FR);
Stein Danielsen, Flatasen (NO);
Sebastien Jouin, [.a Chapelle-Launay

(FR)

Assignee: Atmel Corporation, San Jose, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/510,529

Filed: Oct. 9, 2014

Prior Publication Data

US 2015/0026383 Al Jan. 22, 2015

Related U.S. Application Data

Continuation of application No. 13/932,925, filed on
Jul. 1, 2013, now Pat. No. 8,880,756.

Int. CL.

GO6F 13/28 (2006.01)

GOIR 31/08 (2006.01)

U.S. CL

CPC i GO6F 13/28 (2013.01)

Field of Classification Search
CPC GOGF 13/28; GOGF 13/34
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,912,997 B1* 3/2011 Murrayccccceceennne GOGF 13/28
710/22

2004/0054822 Al 3/2004 Birsan et al.
2004/0057380 Al 3/2004 Birsan et al.
2004/0123013 Al* 6/2004 Clayton et al. 710/310
2006/0221980 Al* 10/2006 Bose et al.ccccceeeeenee 370/400
2008/0126600 Al 5/2008 Mitchell et al.
2008/0159140 Al 7/2008 Robinson et al.
2009/0271536 Al* 10/2009 Tiennotccccceceeveneee. 710/28
2011/0246686 Al1* 10/2011 Cavanagh et al. 710/22

* cited by examiner

Primary Examiner — Hyun Nam
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

Systems and methods for direct memory access are
described. One example system includes a memory module
that includes a first memory portion that maintains transfer
descriptors of direct memory access (DMA) channels, and a
second memory portion that maintains transfer descriptors
of enabled DMA channels. The system includes a controller
coupled to the memory module, the controller includes one
or more DMA channels coupled to a system bus, a channel
arbiter that selects one of the enabled DMA channels as an
active DMA channel for data transfer including re-arbitrat-
ing after each burst or beat in a given transfer, and an active
channel buffer that receives a transfer descriptor of the active
DMA channel from the second memory portion. The con-
troller is configured to write back the transfer descriptor of
the active DMA channel into the second memory portion
when the active DMA channel loses arbitration.

24 Claims, 5 Drawing Sheets

—

CPU

102 150
=
M
first memory
portion mer:gﬁsgrtion 4
f—
st | M |
buffer) -
buffer) 104 106 154 [event system
7

K data transfer 3=
i

E

K, wrlle;ack A

154
S
156 [peripheral
128

0

data transfer buffer

|

descriptor fetch buffer
112

arbiter ; Rm; . - :
active channel buffe{m L0 e ~= channel 1 |-

fetchengine 164

Request / Ack

e e I P

channel;

Event Input / Ack
Event Qutput

148

rea; -

144
[—> Interrupts
........ 15

US 9,442,873 B2

Sheet 1 of 5

Sep. 13, 2016

U.S. Patent

T 9l

Q)
Q|
i

gr] e - __
sidnuow <—J ._Ho S e 31 9uldud Yooy
F : : FIT m
— _ 1 juueyd T\. 0T <€—> Ioyng [pUUBYD DAIDE [€ Jaynq yo1a4 Jordudsep
8FT . - . . laugJe
: . : ‘|]suueyo H
- . . : - —
m| B T ”Ex. . 2! sung saysuen ere
32 |7 e M png e e
=3 Is! . — e
ol3 £ a2 T
5|5 2l
NS
=2 I I3
& Z 0 £
~ =~ _ m w,. &
8T 3T | s g T |8
Y g 2 93
_ |esayduad _ﬁ g - g
\ 4 W
_ WoIshs JusAd _ T 301 (1oyn F0T (J8yng
oFT Anq Joyduosap
fs S %0Eq 8jlM) Jaysuely)
SNQq wisgs: — | uoiod Alowsw
¢ u0o9s uopod
P Aowauw Jsay
A
=] 1\»
0sT o1
ndo

US 9,442,873 B2

Sheet 2 of 5

Sep. 13, 2016

U.S. Patent

d¢ ‘Ol

V¢ 'Ol

ot
T suigus yosy
TZT 741019 [,
TIT IND1d
7T
2T yaavoys
(1188
FIT yaavisa H
81 yaawosaa
PIT 194Nq [SUUERYD SAIDE 9T wr__mcw yoial
2 —
. T Jayng yney Joiduasap
1 4
p 357 ~—
:
H __
o : ¥TI
4! :
[gipiniuininl - eeee- . A 4
' i __ __
5T ; 501 ¥01
H uoipod ! uoipod uonlod
m fowaw) Aowaw puodss Aowsaw jsiy
. puU0DSS &’
BLT - _
01
01
ozt L oot L

U.S. Patent Sep. 13,2016 Sheet 3 of 5 US 9,442,873 B2

300
Y

Enable one or more DMA channels and transfer

corresponding transfer descriptors /310
\4
Receive transfer requests for enabled DMA channels 320

Arbitrate among enabled DMA channels 330

A

Select one of the enabled DMA channels as an active
DMA channel 340

Fetch transfer descriptor of the active DMA channel 350

Perform DMA data transfer 360

FIG. 3

U.S. Patent Sep. 13,2016 Sheet 4 of 5

US 9,442,873 B2

Transfer a burst of data using active DMA channel

410

!

Update transfer descriptor of active DMA channel

420

J

Is the number of
remaining beats zero

Disable active DMA channel and
remove transfer descriptor of active
DMA channel

440

Arbitrate.
Did active DMA channel
lose arbitration?

Interrupt data transfer and re-store updated transfer descriptor
of active DMA channel

FIG. 4

460

U.S. Patent Sep. 13,2016 Sheet 5 of 5

500 \v

US 9,442,873 B2

—> Transfer a burst of data through active DMA channel

510

!

Update transfer descriptor of active DMA channel

Is the number of
remaining beats zero

Is next address valid?

Fetch next transfer descriptor of | 545
active DMA channcl /

No

Arbitrate.

y

Did active DMA channcl
lose arbitration?

Disable active DMA channel and remove transfer | g
descriptor of active DMA channel

Interrupt data transfer and re-store updated transfer descriptor
of active DMA channel

FIG. 5

560

US 9,442,873 B2

1
DIRECT MEMORY ACCESS CONTROLLER

CLAIM OF PRIORITY

This application is a continuation and claims priority to
U.S. patent application Ser. No. 13/932,925, filed on Jul. 1,
2013, the entire contents of which are hereby incorporated
by reference.

TECHNICAL FIELD

This disclosure relates generally to electronics including
controllers.

BACKGROUND

Microcontrollers can be used for controlling other
devices. Examples devices that can be controlled by micro-
controllers include analog to digital converters, digital to
analog converters, input and output ports, direct memory
access (DMA) controllers, and memories.

A DMA controller can be used to transfer data between a
memory device and another device, such as one controlled
by a microcontroller, and thus can enable high speed data
transfer with little central processing unit (CPU) involve-
ment. The DMA controller may move data between memo-
ries and devices using one or more physical DMA channels
and may support a number of independent and parallel data
transfers.

Physical DMA channels may be shared among one or
more devices and the DMA controllers may adopt a policy
of prioritizing and scheduling for assigning time slots of
physical DMA channels among the devices that share the
same physical DMA channel.

SUMMARY

In one aspect, a system includes a memory module
including a first memory portion that maintains transfer
descriptors of direct memory access (DMA) channels, and a
second memory portion that maintains transfer descriptors
of enabled DMA channels; and a controller coupled to the
memory module. The controller includes one or more DMA
channels coupled to a system bus, a channel arbiter that
selects one of the enabled DMA channels as an active DMA
channel for data transfer based on one or more criteria
including re-arbitrating after each burst or beat in a given
transfer, and an active channel buffer that receives a transfer
descriptor of the active DMA channel from the second
memory portion. The controller is configured to write back
the transfer descriptor of the active DMA channel into the
second memory portion when the active DMA channel loses
arbitration during data transfer.

In another aspect, a method includes enabling one or more
direct memory access (DMA) channels; receiving transfer
requests for enabled DMA channels; arbitrating, based on
one or more criteria, among enabled DMA channels having
pending transfer requests; selecting one of the enabled DMA
channels as an active DM A channel based on the arbitrating;
fetching a first transfer descriptor of the active DMA chan-
nel; performing data transfer using the active DMA channel;
and during the performing, checking to determine when the
active DMA channel has a priority that is less than a priority
for another one of the enabled DMA channels and when so,
disabling the then active DMA channel including writing

10

15

30

35

55

2

back to memory a current state of the first transfer descriptor
and making the another one of the enabled DMA channels
the active DMA channel.

Implementations may include one or more of the follow-
ing features. The controller may be configured to commu-
nicate with one or more peripheral devices, and each periph-
eral device may be associated with a DMA channel. Each
transfer descriptor of the first memory portion may corre-
spond to a peripheral device. The channel arbiter may
receive DMA transfer requests for the DMA channels and a
DMA transfer request may be triggered by one or more of a
peripheral device, software, or an event. The controller may
use the active DMA channel for data transfer and may
update the transfer descriptor of the active DMA channel in
the active channel buffer.

The system may include a first dedicated interface
between the first memory portion of the memory module and
the controller, and a second dedicated interface between the
second memory portion of the memory module and the
controller. The first dedicated interface can be a single
directional interface coupling the first memory portion to the
controller. The active channel buffer can be a register.

The system may be coupled to a peripheral bus interface
that may enable the configuration of the controller by an
external device. A transfer descriptor may define a block
data transfer and may include one or more parameters such
as a source address of a transfer, a destination address of the
transfer, a number of remaining transfer beats, control data
including transfer settings, or an address of a next descriptor.

The system may be configured to update one or more
parameters of the transfer descriptor of the active DMA
channel during data transfer. Updating the transfer descrip-
tor may include updating one or more parameters of the
transfer descriptor. The parameters may include the source
address of a transfer, the destination address of the transfer,
or the number of remaining transfer beats. Software may be
configured to enable or disable DMA channels.

The system may disable a DMA channel and may remove
(e.g., delete or overwrite) the transfer descriptor of the DMA
channel from the second memory portion when the number
of remaining transfer beats of a transfer descriptor of an
enabled DMA channel reaches zero.

Performing data transfer may include transferring bursts
of data and updating the first transfer descriptor of the active
DMA channel after each burst of data including updating a
number of remaining transfer beats. After each burst of data
one of, disabling the active DMA channel and clearing the
first descriptor of the active DMA channel when the number
of remaining transfer beats reaches zero, or interrupting the
data transfer and re-storing the updated first transfer descrip-
tor of the active DMA channel when losing arbitration may
be performed.

Enabling one or more direct memory access (DMA)
channels may include fetching transfer descriptors of the
DMA channels, and storing the received transfer descriptors
of the enabled DMA channels.

The method may include retrieving a second descriptor of
the active DMA channel when the number of remaining
transfer beats of the first descriptor reaches zero. The second
descriptor may be retrieved using an address of a next
descriptor of the first transfer descriptor. The method may
include assigning priority levels to each DMA channel,
wherein a DMA channel with higher priority level may
interrupt any ongoing data transfers through DMA channels
with lower priority levels.

Aspects of the invention may implement none, one or
more of the following advantages. Proposed systems and

US 9,442,873 B2

3

methods can be used to implement a DMA controller that
incorporates virtual (shared) DMA channels and uses trans-
fer descriptors for block data transfers through DMA chan-
nels.

The details of one or more implementations are set forth
in the accompanying drawings and the description below.
Other aspects, features, and advantages will be apparent
from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an example system that can be used
for direct memory access.

FIG. 2A is a diagram of an example system for enabling
DMA channels.

FIG. 2B is a diagram of an example system for updating
transfer descriptors.

FIG. 3 is a flow diagram of an example method for
controlling a DMA system.

FIG. 4 is a flow diagram of an example method for
performing data transfer.

FIG. 5 is a flow diagram of an example method for
performing data transfer with linked descriptors.

DETAILED DESCRIPTION

Microcontrollers can be used to control one or more other
devices (as will be referred to hereafter as, peripheral
devices). A DMA controller can enable high speed transfer
of data between memories and peripheral devices with little
involvement of the CPU of the microcontroller. In addition,
DMA controllers can enable direct data transfers between
peripheral devices or between memory locations.

Data transfers can be characterized as either single beat or
burst. Burst accesses include consecutive single beat
accesses wherein a beat access includes a single bus access.
The beat size can vary depending on the architecture of the
system, and can be configured to support, for example, sizes
of a byte, a half-word, or a word. A burst may be defined as
N beats where N can be an integer, such as 1, 4, 8, or 16 in
some configurations.

A complete DMA read and write operation between
memories and/or peripherals is referred to as a DMA trans-
action. A read or write operation can be performed in data
blocks. Data block sizes may be controlled/configurable by
software and can be divided into smaller burst transfers.
Typically data block size may be configurable, such as from
1 byte to 256 KB.

A DMA transfer may be initiated when a DMA transfer
request is detected. A transfer request can be triggered by, for
example, software, a peripheral device, in response to an
event, or a combination thereof. A DMA channel may
generate an event after a beat transfer, a burst transfer, or a
block transfer.

Referring to FIG. 1, an example of a system 100 is shown
that includes a controller 110 coupled to a memory module
102. The memory module 102 includes a transfer descriptor
buffer as a first memory portion 104 and a write back buffer
as second memory portion 106.

The first memory portion 104 maintains the transfer
descriptors for the DMA channels. The transfer descriptors
of DMA channels include the data that defines a block
transfer and may include the source and destination
addresses and the number of beats to be transferred. Transfer
descriptors of DMA channels are described in greater detail
below with respect to FIG. 2B.

10

15

20

25

30

35

40

45

50

55

60

65

4

The second memory portion 106 maintains the transfer
descriptors of enabled DMA channels. The DMA channels
can be enabled by software. The enabling of DMA channels
is described in greater detail below with respect to FIG. 2A.

The controller 110 includes one or more DMA channels
120 and an active channel buffer 114. The controller 110 also
includes a channel arbiter 130 which receives transfer
requests 125 for DMA channels 120. Based on channel
priority levels and a scheduling scheme, the channel arbiter
130 selects one of the DMA channels 120 as the active DMA
channel for data transfer. In response to the active DMA
channel selection by the channel arbiter 130, the controller
110 retrieves the transfer descriptor of the selected active
channel from the second memory portion 106 and provides
the transfer descriptor for storage in the active channel buffer
114. Based on the transfer descriptor parameters in the active
channel buffer 114, the controller 110 may use the active
DMA channel for transferring data.

The system 100 includes a descriptor fetch bus interface
122 that couples the first memory portion 104 to the con-
troller 110. In some implementations, the descriptor fetch
bus interface 122 may be single directional and can be
configured to transfer the transfer descriptors from the
memory portion 104 to the controller 110. Using a single
directional descriptor fetch bus interface 122, the controller
110 may not modify the transfer descriptors maintained in
memory portion 104.

The system 100 includes a write back bus interface 124
that couples the second memory portion 106 to the controller
110. The write back bus interface 124 can be configured to
retrieve the transfer descriptors of the enabled DMA chan-
nels from the second memory portion 106. The write back
bus interface 124 may also enable the transfer descriptors of
the enabled DMA channels to be re-stored in the second
memory portion 106.

In some implementations, the first memory portion 104
and the second memory portion 106 may be dedicated
portions of the memory module 102 assigned for maintain-
ing transfer descriptors of the DMA channels and the
transfer descriptors of enabled DMA channels.

In some implementations, the controller 110 may be
configured to communicate with one or more peripheral
devices and receive data transfer requests from a peripheral
device through the input port 146 of the controller 110. In
some implementations, each peripheral device can be asso-
ciated with one DMA channel and the data transfer requests
can be received by the channel associated with the periph-
eral device and the DMA channels 120 may transfer the
requests 125 to the channel arbiter 130.

In some implementations, the DMA channels 120 may be
configured to determine when data transfer requests 125 can
be generated. As an example, a software request, an event
received from an event system 154 through the input port
148 of the controller 110, or a request received from a
peripheral device 156 through the input port 146 can trigger
a DMA channel to initiate a DMA transfer request. in some
implementations, data transfer requests can be of the form of
a transfer request for transferring data from memory to a
peripheral device, a transfer request for transferring data
between two peripheral devices, a transfer request for trans-
ferring data from a peripheral device to memory, or a
transfer request for transferring data between two memory
locations.

In some implementations, the controller 110 includes a
descriptor fetch buffer 112 and a fetch engine 164. The fetch
engine 164 can be configured to move the transfer descriptor
of'the active DMA channel from the second memory portion

US 9,442,873 B2

5

106 to the descriptor fetch buffer 112 and then move the
transfer descriptor of the active DMA channel to the active
channel buffer 114. In some implementations, the fetch
engine 164 may directly move the transfer descriptor of the
active DMA channel from the second memory portion 106
to the active channel buffer 114.

In some implementations, the controller 110 may be
coupled to system bus 140 by a data transfer bus interface
126. The data transfer bus interface 126 can be used for
sending for receiving data through system bus 140.

In some implementations, a CPU 150 may be coupled by
a bus interface 152 to the system bus 140. In some imple-
mentations, the system bus 140 and the memory module 102
may be coupled by a bus interface 142 so as to enable the
CPU 150 to access the memory module 102. In some
implementations, software can be configured to create or
remove the transfer descriptors of DMA channels in the first
memory portion 104. In some implementations, software
can be used to command the controller 110 to enable DMA
channels (using the system bus 140 and bus interfaces 152
and 128). In some implementations, software can be con-
figured to access the first and second memory portions 104
or 106 so as to enable creation, update, or removal (e.g.,
deleting or overwriting) of the transfer descriptors.

In some implementations, a transfer request 125 can be
either acknowledged or kept pending until it has priority.
When a transfer request of a DMA channel is acknowledged
(such as by sending an acknowledge signal 127), the transfer
descriptor of the selected active DMA channel can be
retrieved from the second memory portion 106, placed in the
active channel buffer 114 and a burst transfer can be started.

In some implementations, the controller can generate
interrupt requests 135 on node 144. The interrupt requests
135 can be generated when a transaction is complete or
when the controller 110 detects an error on a DMA channel
120.

In some implementations, the active channel buffer 114 or
the descriptor fetch buffer 112 is of the form of a register. In
some implementations, the controller 110 can be configured
by the CPU 150 through the system bus 140 and interfaces
152 and 128.

Referring to FIG. 2A, an example of a system 160 for
enabling DMA channels is shown. The system 160 includes
the controller 110 and the memory module 102. The con-
troller 110 fetches a transfer descriptor of a DMA channel
from first memory portion 104 of the memory module 102
and places the descriptor in a descriptor fetch buffer 112
using the single directional descriptor fetch bus interface
122. The transfer direction is shown by arrow 166 from the
first memory portion 104 to the descriptor fetch buffer 112.
In some implementations, the descriptor fetch buffer 112 can
hold one transfer descriptor and the retrieval can be per-
formed by the fetch engine 164.

After retrieving a transfer descriptor of a DMA channel,
the controller 110 may enable the DMA channel by copying
the retrieved transfer descriptor to the second memory
portion 106 of the memory module 102 using the write back
bus interface 124. The transfer can be performed by the fetch
engine 164 and is shown by arrow 168 from the descriptor
fetch buffer 112 to the second memory portion 106.

In some implementations, the first memory portion 104
and the second memory portion 106 may be dedicated
portions of the memory module 102 that can be assigned for
maintaining transfer descriptors of the DMA channels and
the transfer descriptors of enabled DMA channels.

In some implementations, the descriptor fetch bus inter-
face 122 between the first memory portion 104 and descrip-

10

15

20

25

30

35

40

45

50

55

60

65

6

tor fetch buffer 112 can be a dedicated interface. In some
implementations, the write back bus interface 124 between
the second memory portion 106 and buffer 112 can be a
dedicated interface.

In some implementations, software can be used to com-
mand the controller to enable one or more DMA channels.
In some implementations, the descriptor fetch buffer 112
may hold more than one transfer descriptor. In some imple-
mentations, one or more peripheral devices may be coupled
to the controller 110. One corresponding DMA channel for
each peripheral device can be designated and one corre-
sponding transfer descriptor for each DMA channel can be
stored in first memory portion 104.

Referring to FIG. 2B, an example of a system 170 for
retrieving and updating a transfer descriptor of an active
DMA channel is shown. The system 170 includes the
controller 110 that can fetch the transfer descriptor of an
active DMA channel from second memory portion 106 of
the memory module 102 and transfer the descriptor to the
active channel buffer 114 using the write back bus interface
124. The data transfer is shown by arrow 179 from the
second memory portion 106 to the active channel buffer 114.
As an example, the active channel buffer 114 can hold one
transfer descriptor and the retrieval can be performed by the
fetch engine 164.

The transfer descriptor of the active DMA channel can be
used for performing a DMA data transfer transaction and
may, in some implementations, include five fields. In the
example shown, the transfer descriptor may include a first
block transfer control (BTCTRL) field 171 that can desig-
nates transfer control parameters and may include a second
block transfer counter (BTCNT) field 172 that can designate
the number of beats to be transferred. The third source
address (SRCADDR) field 176 may define the address from
which the data can be read during a transfer and the fourth
destination address (DSTADDR) field 174 may define the
address to which the data may be written during a data
transfer. The fifth descriptor next address (DESCADDR)
field 178 may include the memory address where the next
descriptor can be retrieved.

The BTCTRL field 171 defines transfer parameters and
the transfer descriptor of the active DMA channel can be
updated by the controller 110 after each transfer burst. As an
example the update can include updating the number of
remaining beats (BTCNT field 172), the source address
(SRCADDR field 176), or the destination address
(DSTADDR field 174).

When the active DMA channel loses arbitration and
another channel wins arbitration, the transfer descriptor in
the active channel buffer 114 can be re-stored to the second
memory portion 106. The data transfer is shown by arrow
175 from the active channel buffer 114 to the second
memory portion 106 and can be performed by the fetch
engine 164.

The BTCTRL field 171 may specify one or more param-
eters for controlling the data transfer. As an example the
BTCTRL field 171 may include a parameter that indicates
the descriptor is a valid transfer descriptor. The BTCTRL
field 171 may hold data transfer parameters indicating when
an event or an interrupt request is generated by a DMA
channel and may include bus access type, burst size, or
transfer size.

In some implementations, the DESCADDR field 178 can
be set to zero indicating the transfer descriptor may be used
for transfer of a single data block. In some implementations,
the DESCADDR field 178 can be set to a valid memory
address indicating a linked list of descriptors when multiple

US 9,442,873 B2

7

blocks may be transferred. Linked transfer descriptors are
described with reference to FIG. 5. In some implementa-
tions, based on some settings in BTCTRL field 171, the
destination address and the source address may be static. In
some implementations, based on some settings in BTCTRL
field 171, the destination address and the source address may
be incremented.

In some implementations when the number of remaining
beats (BTCNT field 172) of the transfer descriptor of the
active DMA channel becomes zero and the data transfer is
complete, the associated DMA channel may be disabled and
the corresponding transfer descriptor may be removed (e.g.,
deleted, erased, or overwritten) from the second memory
portion 106.

In some implementations when the number of remaining
beats (BTCNT field 172) of the transfer descriptor of the
active DMA channel becomes zero and the data transfer is
complete, the associated DMA channel may be disabled and
the corresponding transfer descriptor may be removed from
the second memory portion 106 during the next enabling of
one or more DMA channels.

In some implementations, depending on DMA channel
settings, when a DMA channel is triggered (i.e., initiated)
the DMA channel may send different types of transfer
requests including a block transfer request, a burst transfer
request, a beat transfer request, or a multi block transfer
request.

Referring to FIG. 3 a flow diagram for a method 300
transferring data is shown. As an example, the method 300
can be performed by the system 100 of FIG. 1. The method
includes enabling one or more DMA channels and transfer
corresponding transfer descriptors (310). As an example, the
enabling of the DMA channels can be performed by the
controller 110 and with respect to FIG. 2A. DMA channel
enabling can be initiated by software and can include
fetching transfer descriptors of the enabled DMA channels
from a first memory portion 104, and storing the fetched
transfer descriptors of the enabled DMA channels to an
second memory portion 106.

Transfer requests for enabled DMA channels are received
(320). As an example, the transfer requests may be received
by the channel arbiter 130. The transfer requests may be
generated by, for example, a peripheral device 156 and
received by the corresponding DMA channel through the
input node 146. In one example, one of the DMA channels
120 receives a transfer request from the associated periph-
eral device 156 and transfers the request to the channel
arbiter 130.

Arbitration is performed among enabled DMA channels
(330). As an example the arbitration may be performed by
the channel arbiter 130 among transfer requests received for
DMA channels to determine which transfer request may be
serviced. The arbitration can be performed based on DMA
channel priority level wherein each channel has an assigned
priority level. In some implementations, the arbitration can
use scheduling scheme to ensure all DMA channel requests
are serviced.

One of the enabled DMA channels is selected as the active
channel (340). As an example the channel arbiter 130 selects
one of the enabled DMA channels as the active channel. The
selection may be performed among enabled DMA channels
that have a pending transfer request.

The transfer descriptor of the active channel is fetched
(350). As an example, the transfer descriptor can be fetched
by the controller 110 from second memory portion 106 and
placed in the active channel buffer 114 (as described above
with respect to FIG. 2B). The selected active DMA channel

10

15

20

25

30

35

40

45

50

55

60

65

8

and the transfer descriptor of the selected DM A channel may
be used for a DMA data transfer.

DMA data transfer is performed (360). As an example,
data may be transferred by the controller 110 and through the
active DMA channel. DMA data transfer can be made
between two peripheral devices, between a memory and a
peripheral device, or between memories and is described in
more detail with respect to FIG. 4.

In some implementations, a transfer request may be
triggered in a DMA channel by a peripheral device, by an
event, from software, or a combination therefrom. In some
implementations, the transfer request may be sent from a
DMA channel to the channel arbiter 130 when the channel
associated with the transfer request is enabled.

In some implementations, priority levels may be assigned
to DMA channels, one or more DMA channel may be
assigned to each priority level and a DMA channel with
higher priority level may interrupt any ongoing data transfer
of DMA channels with lower priority levels. In some imple-
mentations, among the channels having the same priority
level, a DMA channel with lower channel number may be
assigned a higher priority. In some implementations, among
the channels having the same priority level, a round-robin
scheduling method may be implemented wherein within a
priority level the last acknowledged channel request receives
a lowest priority.

In some implementations, more than one physical DMA
channel can be supported and the channel arbiter 130 may
select more than one active DMA channel. In some imple-
mentations, a DMA channel can generate an event at the end
of each transaction. In some implementations, a DMA
channel can generate an event when a selectable descriptor
is executed, allowing different events from different descrip-
tors.

In some implementations, the transfer descriptors of a
DMA channel may be arranged as a linked list of transfer
descriptors and when enabling the DMA channel all linked
transfer descriptors may be fetched from the first memory
portion 104 and stored in an the second memory portion 106.

Referring to FIG. 4 a flow diagram of an example method
400 for transferring a block of data is shown. As an example,
the method 400 can be performed by the system 100 of FIG.
1 for transferring a block of data. The method includes
transferring a burst of data using active DM A channel (410).
As an example, the data transfer can be performed by the
controller 110 using the active DMA channel and the trans-
fer descriptor in active channel buffer 114. As an example,
data transfer can be performed using the date transfer buffer
116 and using the data transfer bus interface 126 and system
bus 140. The data transfer can originate from a memory or
a peripheral device and can end in a memory or peripheral
device.

The transfer descriptor of the active DMA channel is
updated (420). As an example, after each burst of data
transfer, the controller 110 updates the transfer descriptor of
the active DMA channel in active channel buffer 114 and the
update may include changing the number of remaining beats
to be transferred in the BTCNT field 172.

A check is made to determine the number of remaining
beats (430). As an example, after updating the transfer
descriptor of the active DMA channel, the controller 110
checks the transfer descriptor in active channel buffer 114
and determines whether data transfer may be complete. The
data transfer may be complete when the number of remain-
ing beats of the transfer descriptor of the active DMA
channel reaches zero.

US 9,442,873 B2

9

When data transfer is complete, the active DMA channel
is disabled and the transfer descriptor of the active DMA
channel is removed (440). As an example, the transfer
descriptor of the current active DMA channel may be
removed from the second memory portion 106, indicating
the disabling of the active DMA channel. Data transfer of a
DMA channel may become complete when the correspond-
ing DMA channel is designated as the active DMA channel.
A disabled channel may be re-enabled, for example by
software, as is described above with respect to FIG. 2A.
When a data transfer is complete, arbitration can be per-
formed among enabled DMA channels as described with
respect to method 300. As discussed above, channel arbiter
130 arbitrates among enabled DMA channels having transfer
requests and selects a new active DMA channel (340).

When data transfer is not complete, a re-affirmation of the
selected DMA channel can be performed (i.e., arbitrate and
check whether the active DMA channel loses arbitration)
(450). In some implementations, arbitration can be per-
formed by channel arbiter 130 after each burst of data
transfer. In some situations, there may be a DMA channel
with higher priority than the current active DMA channel
and resulting in the current active DMA channel to lose
arbitration. When the current active DMA channel does not
lose arbitration, the data transfer continues with transferring
a burst of data (410).

When the current active DMA channel loses arbitration,
the data transfer is interrupted and the transfer descriptor of
the active DMA channel is re-stored (460). As an example,
the updated transtfer descriptor of the active DMA channel
may be saved to the second memory portion 106 using the
write back bus interface 124.

In some implementations, the data buffer 116 can be
extended and implemented as FIFO. In some implementa-
tions, the source address (SRCADDR field 176) and the
destination address (DESTADDR field 174) may be updated
after each burst of data transfer.

In some implementations, an interrupt can be generated
when a single transfer is completed, when a multi-buffer
transfer is completed, after each single transfer in multi-
buffer mode of operation, or when an error occurs during the
transfer.

Referring to FIG. 5 a flow diagram of a method 500 for
transferring multi blocks of data is shown. As an example,
the method 500 can be performed by the system 100 of FIG.
1 for transferring multi blocks of data. The method includes
transferring a burst of data using an active DMA channel
(510). As an example, the data transfer can be performed by
the controller 110 using the active DMA channel and the
transfer descriptor in active channel buffer 114. As an
example, data transfer can be performed using the active
channel buffer 114 and through data transfer bus interface
126 and system bus 140. The data transfer can originate from
a memory or a peripheral device and can end in a memory
or peripheral device.

The transfer descriptor of the active DMA channel is
updated (520). As an example, after each burst of data
transfer, the controller 110 updates the transfer descriptor of
the active DMA channel in the active channel buffer 114 and
the update may include changing the number of remaining
beats to be transferred in the BTCNT field 172.

A check is made to determine the number of remaining
beats (530). As an example, after updating the transfer
descriptor of the active DMA channel, the controller 110
checks the transfer descriptor in active channel buffer 114
and determines whether data transfer may be complete. The

10

15

20

25

30

35

40

45

50

55

60

65

10

data transfer may be complete when the number of remain-
ing beat of the transtfer descriptor of the active DMA channel
reaches zero.

When data transfer is complete, a check is made for a
valid next address (535). As an example the controller 110
may check the next address in field 178 of the current
transfer descriptor of the active DMA channel. A non-empty
next address field 178 contains the address of the next
transfer descriptor and the next transfer descriptor may be
loaded to the active channel buffer 114.

When data transfer is complete and the next address is not
valid, the active DMA channel is disabled and the transfer
descriptor of the active DMA channel is removed (540). As
an example, the transfer descriptor of the active DMA
channel in the second memory portion 106 may be removed,
indicating the disabling of the active DMA channel. A
disabled channel may be re-enabled, for example by soft-
ware, as described above with respect to FIG. 2A. When a
data transfer is complete, arbitration may be performed
among enabled DMA channels as described with respect to
flow diagram 300. Channel arbiter 130 can arbitrate among
enabled DMA channels having transfer requests pending and
select a new active DMA channel (340).

When the next address is valid (non-empty next address
field), the next transfer descriptor of the active DMA channel
is fetched (545) from the indicated memory location. As an
example the next transfer descriptor may be fetched by the
controller 110 from the second memory portion 106 and
transferred to the active channel buffer 114. Retrieving a
linked transfer descriptor may indicate a multi block data
transfer and that the transfer may continue using the same
DMA channel.

When data transfer is not complete, a new arbitration may
occur (i.e., arbitrate and check whether the active DMA
channel loses arbitration) (550). In some implementations,
arbitration can be performed by a channel arbiter 130 after
each burst of data transfer to identify a DMA channel with
higher priority than the current active DMA channel if any.
When the current active DMA channel does not lose arbi-
tration, the data transfer continues with transferring a burst
of data (510).

When the current active DMA channel loses arbitration,
the data transfer is interrupted and the transfer descriptor of
the active DMA channel is re-stored (560). As an example,
the updated transfer descriptor of the active DMA channel
may be saved to the second memory portion 106 using the
write back bus interface 124.

Particular implementations of the subject matter have
been described. Other implementations are within the scope
of' the following claims. In some cases, the actions recited in
the claims can be performed in a different order and still
achieve desirable results. In addition, the processes depicted
in the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve
desirable results. In certain implementations, multitasking
and parallel processing may be advantageous.

What is claimed is:

1. A DMA controller comprising:

a channel arbiter configured to select an enabled DMA

channel as an active DMA channel for a data transfer
and to arbitrate among enabled DMA channels after a
beat of data is transferred in the data transfer; and

a channel buffer coupled to the channel arbiter and

configured to receive a transfer descriptor of the active
DMA channel, the data transfer being performable
using the active DMA channel and the transfer descrip-
tor,

US 9,442,873 B2

11

wherein the DMA controller is configured to enable a
DMA channel by storing a fetched transfer descriptor in
a portion of memory.

2. The DMA controller of claim 1 configured to:

determine whether the active DMA channel loses arbitra-

tion based on the arbitration among the enable DMA
channels after the beat in the data transfer, and

write back the transfer descriptor when the active DMA

channel loses arbitration during the data transfer.

3. The DMA controller of claim 1, wherein the channel
arbiter is configured to arbitrate among enabled DMA
channels having pending transfer requests after each burst or
beat in a given data transfer.

4. The DMA controller of claim 1, wherein the channel
arbiter is configured to receive DMA transfer requests for
DMA channels, and

wherein a DMA transfer request of a DMA channel is

triggered by one or more of:
a peripheral device,
software, or

an event.

5. The DMA controller of claim 1 configured to commu-
nicate with one or more peripheral devices, wherein each
peripheral device is associated with a DMA channel.

6. The DMA controller of claim 1 configured to:

perform the data transfer using the active DMA channel

and the transfer descriptor of the active DMA channel
in the channel buffer, and

update the transfer descriptor of the active DMA channel

in the channel buffer.

7. The DMA controller of claim 1, further comprising:

a first dedicated interface coupled to a first memory

portion of a memory module; and

a second dedicated interface coupled to a second memory

portion of the memory module, wherein the first
memory portion is configured to maintain transfer
descriptors of DMA channels, and the second memory
portion is configured to maintain transfer descriptors of
enabled DMA channels.

8. The DMA controller of claim 1 configured to enable a
DMA channel by fetching the transfer descriptor of the
DMA channel from a different memory portion of the
memory and store the fetched transfer descriptor in the
memory portion of the memory.

9. The DMA controller of claim 8, wherein the channel
buffer is configured to receive the transfer descriptor of the
DMA channel from the memory portion when the DMA
channel is selected as the active DMA channel.

10. The DMA controller of claim 8, configured to write
back a current state of the transfer descriptor of the active
DMA channel into the memory portion when the active
DMA channel loses arbitration during the data transfer.

11. The DMA controller of claim 1 configured to:

when a number of remaining transfer beats of a transfer

descriptor of an enabled DMA channel reaches zero,
disable the DMA channel and remove the transfer
descriptor of the DMA channel from the memory
portion.

12. The DMA controller of claim 1, further comprising:

a single directional interface for coupling the memory

portion to the DMA controller.

13. The DMA controller of claim 1 configured to be
coupled to a peripheral bus interface to enable configuration
of the DMA controller by an external device.

14. The DMA controller of claim 1, wherein the transfer
descriptor defines a block data transfer and includes one or
more parameters: a source address of a transfer, a destination

15

20

25

30

40

45

50

12

address of the transfer, a number of remaining transfer beats,
control data including transfer settings, or an address of a
next descriptor, and

wherein the DMA controller is configured to, during the

data transfer, update one or more parameters of the
transfer descriptor of the active DMA channel includ-
ing: the source address of a transfer, the destination
address of the transfer, or the number of remaining
transfer beats.

15. The DMA controller of claim 1, wherein software is
configured to enable or disable DM A channels, and wherein
the channel buffer is a register.

16. A method comprising:

selecting an enabled DMA channel as an active DMA

channel;

receiving a transfer descriptor of the active DMA channel

from a portion of memory, the DMA channel being
enabled by storing the transfer descriptor in the
memory portion;

performing a data transfer using the active DMA channel

and the received transfer descriptor; and

arbitrating among enabled DMA channels after a beat of

data is transferred in the data transfer.
17. The method of claim 16, further comprising:
determining whether the active DMA channel loses arbi-
tration based on the arbitrating among the enabled
DMA channels after the beat in the data transfer; and

in response to determining that the active DMA channel
loses arbitration, writing back the transfer descriptor of
the active DMA channel.

18. The method of claim 17, wherein determining that the
active DMA channel loses arbitration comprises determin-
ing that the active DMA channel has a priority that is less
than a priority for another enabled DMA channel, and

wherein the method further comprises: in responding to

determining that the active DMA channel loses arbi-
tration, interrupting the data transfer and making the
another enabled DMA channel the active DMA chan-
nel.

19. The method of claim 16, wherein performing data
transfer further includes:

transferring bursts of data;

updating the transfer descriptor of the active DMA chan-

nel after each burst of data including a number of
remaining transfer beats; and

performing, after each burst of data, one of:

disabling the active DMA channel and clearing the trans-

fer descriptor of the active DMA channel when the
number of remaining transfer beats reaches zero, or
interrupting the data transfer and re-storing the updated
transfer descriptor of the active DMA channel when
losing arbitration.

20. The method claim 16, wherein the transfer descriptor
includes one or more parameters: a source address of a
transfer, a destination address of the transfer, the number of
remaining transfer beats, control data including transfer
settings, or an address of a next descriptor, and

wherein the method further comprises updating one or

more parameters of the transfer descriptor including:
the number of remaining transfer beats, the source
address of a transfer, or the destination address of the
transfer.

21. The method of claim 16, further comprising: enabling
two or more direct memory access (DMA) channels by:

fetching transfer descriptors of the DMA channels from a

different portion of the memory; and

US 9,442,873 B2
13

storing the received transfer descriptors of the enabled
DMA channels in the memory portion.

22. The method of claim 16, further comprising:

retrieving a second transfer descriptor of the active DMA
channel when a number of remaining transfer beats of 5
the transfer descriptor reaches zero, wherein the second
transfer descriptor is retrieved using an address of a
next descriptor of the transfer descriptor.

23. The method of claim 16, further comprising:

assigning priority levels to each DMA channel, wherein a 10
DMA channel with higher priority level interrupts any
ongoing data transfers through DMA channels with
lower priority levels.

24. A DMA controller comprising:

two or more DMA channels; 15

a channel arbiter configured to select an enabled DMA
channel as an active DMA channel for a data transfer
based on one or more criteria including arbitrating after
a beat of data is transferred in the data transfer; and

a channel buffer configured to receive a transfer descriptor 20
of the active DMA channel from memory for the data
transfer, wherein the DMA controller is configured to
enable the DMA channel by storing the transfer
descriptor in the memory,

wherein the DMA controller is configured to determine 25
whether the active DMA channel loses arbitration
based on the arbitration after the beat in the data
transfer and write back the transfer descriptor of the
active DMA channel into the memory when the active
DMA channel loses arbitration during the data transfer. 30

#* #* #* #* #*

