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(57) ABSTRACT

An integrated circuit may have configurable storage blocks.
A configurable storage block may include a memory array
and a control circuit. The configurable storage block may
receive a mode selection command. The control circuit may
determine to operate the configurable storage block in a first
mode which may provide random access to the memory
array or in a second mode which may provide access to the
memory array in a predefined order based on the mode
selection command. Thus, the configurable storage block
may implement first-in first-cut modules or last-in first-out
modules and variations thereof in addition to implementing
memory modules with random access.
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1
CONFIGURABLE STORAGE BLOCKS WITH
EMBEDDED FIRST-IN FIRST-OUT AND
LAST-IN FIRST-OUT CIRCUITRY

BACKGROUND

This invention relates to integrated circuits and, more
particularly, to configurable storage blocks in an integrated
circuit.

Considering a programmable logic device (PLD) as one
example of an integrated circuit, as applications for which
PLDs are used increase in complexity, it has become more
common to design PLDs to include specialized blocks such
as configurable storage blocks in addition to blocks of
generic programmable logic.

Configurable storage blocks are often arranged in arrays
of memory elements. In a typical array, data lines are used
to write data into and read data from the configurable storage
blocks. Address lines may be used to select which of the
memory elements are being accessed. A configurable storage
block is typically configurable to implement a memory of a
given depth and width, whereby the maximum depth is
based on the number of address lanes and the maximum
width on the number of data lanes.

SUMMARY

In accordance with certain aspects of the invention,
memory circuitry with input and output ports on a program-
mable integrated circuit and which include a storage circuit
and a control circuit is presented. The control circuit may be
coupled to the storage circuit and the input and output ports.
The control circuit may receive a command from the input
ports and select between a first and second access mode
based on the command. The first access mode may provide
random access to the storage circuit, and the second access
mode may provide write and read operations in a predefined
sequence. For example, the second access mode may include
a first-in first-out (FIFO) access mode or a last-in first-out
(LIFO) access mode.

It is appreciated that the present invention can be imple-
mented in numerous ways, such as a process, an apparatus,
a system, a device, or instructions executed on a program-
mable processor. Several inventive embodiments are
described below.

In certain embodiments, the above-mentioned storage
circuit may include a first multiplexer that receives a read
address from the input ports and a read pointer from the
control circuit and selects the read address in the first access
mode and the read pointer in the second access mode. The
storage circuit may further include a second multiplexer that
receives a write address from the input ports and a write
pointer from the control circuit and selects the write address
in the first access mode and the write pointer in the second
access mode. For example,

In certain embodiments, the above-mentioned control
circuit may include a read control circuit that receives a read
enable and a read clock from the input ports and generates
a read pointer that identifies a read address in the storage
circuit. The control circuit may further include a write
control circuit that receives a write enable and a write clock
from the input ports and generates a write pointer that
identifies a write address in the storage circuit.

Further features of the invention, its nature and various
advantages, will be more apparent from the accompanying
drawings and the following detailed description of the
preferred embodiments.
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2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an illustrative integrated circuit
with embedded configurable storage block in accordance
with an embodiment.

FIG. 2 is a diagram of an illustrative configurable storage
block with a memory array and a control circuit in accor-
dance with an embodiment.

FIG. 3 is a diagram of an illustrative configurable storage
block with mode selection circuitry for accessing the con-
figurable storage block in first-in first-out (FIFO), last-in
first-out (LIFO), or random-access memory (RAM) mode in
accordance with an embodiment.

FIG. 4A is a diagram of illustrative interconnect circuitry
for operating multiple configurable storage circuits in FIFO
mode in accordance with an embodiment.

FIG. 4B is a diagram of illustrative circuitry for using
multiple configurable storage blocks in FIFO mode in accor-
dance with an embodiment.

FIG. 5 is a diagram of an illustrative configurable storage
block used as an elastic FIFO in accordance with an embodi-
ment.

FIG. 6 is a flow chart showing illustrative steps for
operating a configurable storage block in FIFO, LIFO, or
RAM mode in accordance with an embodiment.

FIG. 7 is a flow chart showing illustrative steps for
operating a configurable storage block in speculative FIFO
or speculative LIFO mode in accordance with an embodi-
ment.

DETAILED DESCRIPTION

The present invention relates to integrated circuits and
more specifically to configurable storage blocks in an inte-
grated circuit.

Conventional configurable storage blocks often support a
pure memory use model in which write operations store data
in a memory array at a given address and in which subse-
quent read operations retrieve the stored data. Typically,
only a portion of a user design may perform such memory
operations and this portion may vary depending on the
design while some integrated circuits may provide a fixed
number of configurable storage blocks. Thus, situations
frequently arise where the implementation of a user design
on an integrated circuit leaves some of the available con-
figurable storage blocks unused. Consequently, it would be
desirable to use these configurable storage blocks for the
implementation of other design constructs.

For this purpose, a modified configurable storage block
with additional circuitry (e.g., with a control block in
addition to the memory array) may be provided. Such a
modified configurable storage block may facilitate the effi-
cient implementation of typical design constructs such as
first-in first-out (FIFO) modules or last-in first-out (LIFO)
modules. A LIFO module is sometimes also referred to as a
stack.

Providing an integrated circuit with a modified configu-
rable storage block which allows for efficient implementa-
tions of FIFO and LIFO modules has several advantages.
Such a modified configurable storage block may implement
any FIFO or LIFO module in a user’s design and thus
mitigate the need for specific logic and routing resources in
the integrated circuit, thereby potentially reducing the logic
resource usage and routing congestion. The implementation
of a FIFO or LIFO module in a modified configurable
storage block may also have deterministic timing and
improved performance compared to alternative implemen-



US 9,478,272 B1

3

tations of the same FIFO/LIFO module, and any engineering
change order (ECO) that changes the implementation of the
FIOF/LIFO such as adding or removing a stage or changing
the control logic may be performed by reconfiguring the
configurable storage block and thus without any impact on
routing congestion or timing of the integrated circuit imple-
mentation.

It will be recognized by one skilled in the art, that the
present exemplary embodiments may be practiced without
some or all of these specific details. In other instances,
well-known operations have not been described in detail in
order not to unnecessarily obscure the present embodiments.

An illustrative embodiment of an integrated circuit such
as a programmable logic device (PLD) 100 with a modified
configurable storage block in accordance with the present
invention is shown in FIG. 1. Programmable logic device
100 may have input/output circuitry 102 for driving signals
off of PLLD 100 and for receiving signals from other devices.
Input/output circuitry 102 include conventional input/output
circuitry, serial data transceiver circuitry, differential
receiver and transmitter circuitry, or other circuitry used to
connect one integrated circuit to another integrated circuit.

As shown, input/output circuitry 102 may be located
around the periphery of the chip. If desired, the program-
mable logic device may have input/output circuitry 102
arranged in different ways. For example, input/output cir-
cuitry 102 may form one or more columns of input/output
circuitry that may be located anywhere on the programmable
logic device (e.g., distributed evenly across the width of the
PLD). If desired, input/output circuitry 102 may form one or
more rows of input/output elements (e.g., distributed across
the height of the PLD). Alternatively, input/output circuitry
102 may form islands of input/output elements that may be
distributed over the surface of the PLD or clustered in
selected areas.

Vertical interconnection resources 140 and horizontal
interconnection resources 150 such as global and local
vertical and horizontal conductive lines and buses may be
used to route signals on PLD 100. Vertical and horizontal
interconnection resources 140 and 150 include conductive
lines and programmable connections between respective
conductive lines and are therefore sometimes referred to as
programmable interconnects.

Programmable logic regions may include programmable
components such as digital signal processing circuitry 120,
storage circuitry 130, or other combinational and sequential
logic circuitry organized in logic array blocks 110. The
programmable logic regions may be configured to perform
a custom logic function. If desired, the programmable logic
region may include digital signal processing circuitry 120
and storage circuitry 130 which both may be organized in
specialized blocks that have limited configurability. The
programmable logic region may include additional special-
ized blocks such as programmable phase-locked loop cir-
cuitry, programmable delay-locked loop circuitry, or other
specialized blocks with limited configurability.

Programmable logic device 100 contains programmable
memory elements. These memory elements can be loaded
with configuration data (sometimes also referred to as pro-
gramming data) using input/output circuitry 102. Once
loaded, the memory elements each provide a corresponding
static control signal that controls the operation of an asso-
ciated logic component in a programmable logic region. In
a typical scenario, the outputs of the loaded memory ele-
ments are applied to the gates of transistors in the program-
mable logic region to turn certain transistors on or off and
thereby configure the logic and the routing paths in the
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programmable logic region. Programmable logic circuit
elements that may be controlled in this way include parts of
multiplexers (e.g., multiplexers used for forming routing
paths in programmable interconnects), look-up tables, logic
arrays, AND, OR, NAND, and NOR logic gates, pass gates,
etc.

Memory elements may use any suitable volatile and/or
non-volatile memory structures such as random-access-
memory (RAM) cells, fuses, antifuses, programmable read-
only-memory memory cells, mask-programmed and laser-
programmed structures, combinations of these structures,
etc. Because memory elements are loaded with configura-
tion data during programming, memory elements are some-
times referred to as configuration memory, configuration
RAM, or programmable memory elements.

The circuitry of programmable logic device 100 may be
organized using any suitable architecture. As an example,
the logic of programmable logic device 100 may be orga-
nized in a series of rows and columns of larger program-
mable logic regions each of which contains multiple smaller
logic regions. The smaller regions may be, for example,
regions of logic that are sometimes referred to as logic
elements (LEs), each containing a look-up table, one or
more registers, and programmable multiplexer circuitry. The
smaller regions may also be, for example, regions of logic
that are sometimes referred to as adaptive logic modules
(ALMs). Each adaptive logic module may include a pair of
adders, a pair of associated registers and a look-up table or
other block of shared combinational logic (i.e., resources
from a pair of LEs—sometimes referred to as adaptive logic
elements or ALEs in this context). The larger regions may
be, for example, logic array blacks (LABs) containing
multiple logic elements or multiple ALMs.

During device programming, configuration data is loaded
into programmable logic device 100 that configures the
programmable logic regions so that their logic resources
perform desired logic functions.

At least a portion of storage circuitry 130 may be imple-
mented as a modified configurable storage block with added
functionality to implement FIFO/LIFO modules efficiently.
FIG. 2 shows an embodiment of a FIFO/LIFO module
implemented using a modified configurable storage block.

Configurable storage block 200 may include a control
block 210, a memory array 220, and input and output ports.
As shown, configurable storage block 200 may receive
signals write data (WP_DATA), write clock (WR_CLK),
read clock (RD_CLK), write enable (WR_EN), read enable
(RD_EN), and inverted reset (RST_N) at the input ports and
provide signals such as read data (RD_DATA) and status
signals such as FULL, ALMOST_FULL, HALF_FULL,
ALMOST_EMPTY, and EMPTY at the output ports.

Memory array 220 may be configured to operate as a
register stack 230. Data may be written to the write data port
(WR_DATA) and read from the read data port (RD_DATA)
of memory array 220. The write operation and the read
operation may be synchronized to a write clock (WR_CLK)
and a read clock (RD_CLK), respectively. The write clock
and read clock may be part of a common clock domain (i.e.,
the configurable storage block implements a single-clock
FIFO (SCFIFO) or LIFO (SCLIFO)). If desired, the write
clock and read clock may be part of separate clock domains
(i.e., the configurable storage block implements a dual-clock
FIFO (DCFIFO) or LIFO (DCLIFO). Memory array 220
may include an inbound pipeline for WR_DATA (not
shown), an outbound pipeline for RD_DATA (not shown),
and an optional bypass selector circuit for “fall-through”
mode (not shown) in which data is written into the last free
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location of the FIFO and thus data is available on the
RD_DATA output as soon as the same data enters the
memory array on the WR_DATA input.

Memory array 220 may be configured to have HEIGHT
rows and WIDTH columns to implement the register stack
230. As shown, the control block 210 may selectively access
the HEIGHT rows through addresses 0 to HEIGHT-1. If
desired, the control block may access the WIDTH columns
through addresses 0 to WIDTH-1 instead.

Control block 210 may enable memory access to at most
two independently addressable rows of the memory array at
any one time, with one memory access executing a read
operation and the other memory access executing a write
operation. A read pointer (RD_PTR) and a write pointer
(WR_PTR) may act as address counters. Control block 210
may increment the read and write pointers based on control
signals “write to” (WR_TO) and “read from” (RD_FROM),
respectively. A WR_PTR may point to the next available
row for writing (e.g., the next available empty row), while
a RD_PTR may point to the next available row for reading
(e.g., the next unread row). Control block 210 may receive
read enable (RD_EN) and write enable (WR_EN) which the
control block may use to enable read and write operations on
the register stack 230 respectively.

Control block 210 may generate status information based
on the contents of the register stack 230 and provide the
status information to the user. For example, the control block
may generate signals FULL, ALMOST_FULL,
HALF_FULL, ALMOST_EMPTY, and EMPTY. A FULL
signal may indicate that the register stack 230 is in a state in
which all of the addressable space in the FIFO/LIFO is used
and an additional write operation may lead to an overflow of
the FIFO/LIFO. As a result, control block 210 may disable
any write operation for as long as the register stack 230 is
full. In response to receiving a FULL signal, a user may
enable an overflow protection circuit. As an example, an
overflow protection circuit may apply back-pressure (i.e.,
sending a request to the producer of the WR_DATA to stall
the production and/or the transmission of that WR_DATA).
An overflow protection circuit may also discard any data
that the FIFO/LIFO receives while the control circuit 210
asserts the FULL signal.

An EMPTY signal may indicate that the register stack 230
doesn’t contain any data that hasn’t been retrieved already
and an additional read operation may lead to an underflow
of the FIFO/LIFO. As a result, control block 210 may
disable any read operation for as long as the register stack
230 is empty. In response to receiving an EMPTY signal, a
user may enable an underflow protection circuit. As an
example, an underflow protection circuit may prevent the
consumer of the RD_DATA from making read requests to
the FIFO/LIFO. An underflow protection circuit may also
provide predetermined data that the consumer of the FIFO/
LIFO data knows is invalid.

An ALMOST_FULL signal may serve as an early indi-
cator of the FULL signal. Similarly, an ALMOST_EMPTY
signal may serve as an early indicator of the EMPTY signal.
A HALF_FULL signal may indicate that the FIFO/LIFO is
exactly half full.

FIG. 3 shows an embodiment of a configurable storage
block 300 which may operate as a FIFO, LIFO, or random-
access memory (RAM). Configurable storage block 300
may include FIFO/LIFO/RAM control block 310, read
control block 320, write control block 330, selector circuits
350 and 360, in addition to a simple dual-port storage block
that includes memory array 340, registers for write address
370, write enable 372, write data 374, read address 380, read
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6

enable 382, and read data 384, and selector circuit 390 to
select between data read from memory array 340 and data
read from memory array 340 that has been stored in read
data register 384.

For example, memory array 340, write data register 374,
read data register 384, and selector circuit 390 may form
memory array 220 of FIG. 2. FIFO/LIFO/RAM control
block 310, read control block 320, write control block 330,
selector circuits 350 and 360 may form control block 210 of
FIG. 2 with read and write control blocks 320 and 330
handling the RD_FROM and WR_TO signals of FIG. 2
internally.

Configurable storage block 300 is merely illustrative and
is not intended to limit the scope of the present invention. If
desired, configurable storage block may include a storage
block with a different port configuration such as a true
dual-port storage block, a quad-port storage block, etc.

FIFO/LIFO/RAM control block 310 may receive mode
selection bits (MODE_SEL). FIFO/LIFO/RAM control
block 310 may configure configurable storage block 300 to
access memory array 340 in FIFO mode, LIFO mode, or
RAM mode based on the received mode selection bits. The
RAM mode selection may further differentiate between
memory array access modes based on the mode selection
bits and the included storage block. For example, a configu-
rable storage block which includes a true-dual port storage
block (not shown) may be configured to operate as a
single-port RAM (i.e., the read and write operations share
the same address and read and write operations occur on the
same port), a simple dual-port RAM (i.e., write and read
operations use different ports and have dedicated addresses),
a true dual-port RAM (i.e., write and read operations are
available on both ports), a single-port ROM (i.e., a single-
port RAM with a disabled write operation), or a dual-port
ROM (i.e., a true dual-port RAM with disabled read opera-
tions on both ports).

Consider the example in which configurable storage block
300 is configured to implement a FIFO based on the mode
selection bits received by FIFO/LIFO/RAM control block
310. In this example, read control block 320 and write
control block 330 may implement and use memory array
address counters as read pointer (RD_PTR) and write
pointer (WR_PTR) respectively and direct selection circuits
350 and 360 to select read pointer and write pointer instead
of the read address (RD_ADDR) and write address
(WR_ADDR).

The read pointer and write pointer may increment with
each write and read operation according to control bits
WR_TO and RD_FROM. The read pointer may chase the
write pointer in a circular (i.e., unidirectional) path, from
bottom to top recursively. Both pointers may be imple-
mented as counters of width N, where 2"N entries reflect the
FIFO depth (i.e., the with N-bits addressable space of
memory array 340), and N reflects the width (i.e., address)
for each of the read and write pointers. Both write and read
pointers may act separately and independently within each
clock domain based on their respective WR_TO and
RD_FROM sampling, with just a one-word transfer per
sample per clock event (e.g., on the rising clock edge).

After RESET assertion (e.g., using RST_N of FIG. 2),
both write and read pointers may point to the same segment
of memory array 340 (e.g., address zero) and therefore be
equal. During operation, the read pointer may catch up with
the write pointer in which case both write and read pointers
point to the same segment of memory array 340. Both of
these cases in which the read end write pointers have the
same value identify a valid EMPTY state. When the write
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pointer reaches the maximum number that can be formed
using N-bits, the write pointer may wrap around (e.g.,
become zero again) and catch up with the read pointer. In
this scenario, both pointers are having the same value (i.e.,
both pointers address the same segment of memory array
340). However, the FIFO is now FULL. Thus, a simple
pointer comparison may not suffice to distinguish a FULL
state from an EMPTY state.

Read control block 320 and write control block 330 may
use an extra bit at the most-significant-bit (MSB) position of
the write and read pointers. A write pointer (WR_PTR) or
read pointer (RD_PTR) that extends beyond the maximum
number that can be formed using N-bits (i.e., wraps around)
may invert the respective MSB (e.g., a first wrap around may
set the MSB to logic “1” and a second wrap around may set
the MSB to logic “0”, etc.). The MSB of the read and write
pointer may then be used to distinguish a FULL state from
an EMPTY state. The FIFO is FULL in the event that both
MSBs are different, because the write pointer has wrapped
one more time than the read pointer. However, if both MSBs
are the same, then both pointers have wrapped around the
same number of times and the FIFO is EMPTY.

In the example of a dual-clock FIFO, the distinction
between a FULL state and an EMPTY state may depend on
both read and write pointers, each of which is based on a
different, independent clock domain. Thus, read and write
pointer must both be synchronized to each other’s clock
domain to ensure that any write operation is disabled in the
write clock domain when the FIFO is FULL and any read
operation is disabled in the read clock domain when the
FIFO is EMPTY. As both counters are multi-bit vectors, the
use of Gray-code counters, which only change one bit at a
time and thus requires the synchronization of a single bit at
a time, is appropriate to create a version of the write pointer
that is synchronous with the read clock domain, and a
version of the read pointer that is synchronous with the write
clock domain.

Consider the example in which configurable storage block
300 is configured to implement a LIFO based on the mode
selection bits received by FIFO/LIFO/RAM control block
310. In this example, read control block 320 and write
control block 330 may implement and use memory array
address counters as read pointer (RD_PTR) and write
pointer (WR_PTR) respectively and direct selection circuits
350 and 360 to select read pointer and write pointer instead
of the read address (RD_ADDR) and write address
(WR_ADDR).

Read and write pointers may be implemented as counters
of width N, where 2°N entries reflect the LIFO depth (i.e.,
the with N-bits addressable space of memory array 340), and
N reflects the width (i.e., address) for each of the read and
write pointers. Both write and read pointers may act sepa-
rately and independently within each clock domain based on
their respective WR_TO and RD_FROM sampling, with just
a one-word transfer per sample per clock event (e.g., on the
rising clock edge). In this configuration, the LIFO is in state
EMPTY when the WR_PTR is equal to zero and in state
FULL when the RD_PTR is equal to N-1.

During RESET assertion (e.g., using RST_N of FIG. 2),
both write and read pointers may point to the same segment
of memory array 340 (e.g., address zero) and the LIFO is in
state EMPTY. After reset, the read pointer and write pointer
may increment with a write operation and decrement with a
read operation with some exceptions. For example, the read
pointer may not increment with a write operation to a LIFO
that was in state EMPTY before the write operation and not
decrement with a read operation from a LIFO that is in state
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EMPTY after the read operation. Similarly, a write pointer
may not increment with a write operation to a LIFO that is
in state FULL after the write operation and not decrement
with a read operation from a LIFO that was in state FULL
before the read operation.

A write operation may store data in the memory array at
a location that corresponds to the current WR_PTR. Upon
completion of the write operation, the write pointer and the
read pointer may both be incremented with the exceptions
described previously. A read operation may retrieve the
contents of the memory array stored at the current RD_PTR
value. Upon completion of the read operation, the read
pointer and the write pointer may both be decremented with
the exceptions previously described.

In FIFO or LIFO configuration, FIFO/LIFO/RAM control
block 310 may generate status flags such as EMPTY,
ALMOST_EMPTY, HALF_FULL, ALMOST_FULL, or
FULL based on data received from read control block 320
and write control block 330. If desired, FIFO/LIFO/RAM
control block 310 may provide additional status information.
For example, FIFO/LIFO/RAM control block 310 may
access the address counters for read pointer and write
pointer and compute the number of available locations for
read and write operations. FIFO/LIFO/RAM control block
310 may provide the number of available locations at every
clock event (e.g., rising clock edge) of a provider’s clock
signal and a consumer’s clock signal.

The providers and consumers of FIFO and LIFO data may
capture the number of available locations within their own
internal counters. As a result, a provider may potentially
send data in a single burst until reaching the FULL limit with
precision, while a consumer may potentially burst to the
available EMPTY limit with precision.

In some scenarios, the implementation of a FIFO may
require the use of multiple configurable memory blocks. A
single-clock FIFO may operate by concatenating multiple
configurable storage blocks. However, a dual-clock FIFO
may have an asynchronous clock-domain crossing involved
in the computation of FULL and EMPTY states and the
movement of pointers, which may require the synchroniza-
tion of the multiple configurable storage blocks. For this
purpose, one configurable storage block may be dedicated as
master, and the remaining blocks may be configured to
receive the read pointer and write pointer from the master
via a cascade connection.

FIG. 4A shows an embodiment of configurable storage
circuits 404A, 404B, 404C, 404D, etc. having inputs 403
and outputs 405. The configurable storage circuits may be
coupled by cascade chains 407 and 409 which may enable
the implementation of a FIFO using more than one configu-
rable storage circuit. Cascade chains 407 and 409 may carry
information related to read and write pointers and/or status
information from one configurable storage circuit (e.g.,
404A) to the next configurable storage circuit (e.g., 404B).

As shown, the information related to FIFO flows from an
upper configurable storage circuit to a lower configurable
storage circuit (i.e., the cascade chain passes information
“down” only). In alternative embodiments, the cascade
chain may pass information up, left, right, or in multiple
directions based on the arrangements of the configurable
storage circuits that form the FIFO. If desired, the cascade
chain may connect all configurable storage circuits in a row
or column on an integrated circuit. Alternatively, the cascade
chain may be limited to connect configurable storage circuits
within regions of the integrated circuit (e.g. groups of 4
mutually connected configurable storage circuits).
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FIG. 4B shows an embodiment of cascade chain 400,
which may enable the operation of a FIFO using multiple
configurable storage blocks. Cascade chain 400 may include
memory elements 410, 415, 450, 455, 470, and 475, selector
circuits 420, 425, 440, and 445, registers 430 and 435,
increment circuits 422 and 427, and comparators 460 and
465. Memory elements 410 and 415 may store initial
addresses for the write and read pointers, respectively.
Memory elements 470 and 475 may store threshold values
for ALMOST_FULL and ALMOST_EMPTY status, respec-
tively.

Upon asserting reset (e.g., setting signal RST), selector
circuits 420 and 425 may select the initial addresses stored
in memory elements 410 and 415, and registers 430 and 435
may store the initial addresses as write and read pointers.
When reset is de-asserted, selector circuits 420 and 425 may
select the input from the increment circuits 422 and 427,
respectively. Register 430 may store the result of the incre-
mented write pointer after a write operation (e.g., based on
signals FIFO_WR_CE and FIFO_WR_CLK). Similarly,
register 435 may store the result of the incremented read
pointer after a read operation (e.g., based on signals
FIFO_RD_CE and FIFO_RD_CLK). Selector circuits 440
and 445 may select between the write pointer and read
pointer stored in registers 430 and 435 and the write pointer
and read pointer generated by a neighboring configurable
storage block (e.g., FIFO_WADDR and FIFO_RADDR)
based on the cascade configuration stored in memory ele-
ments 450 and 455.

Comparators 460 and 465 may ecach receive the write
pointer and read pointer from selector circuits 440 and 445.
Comparator 460 may also receive the threshold value for
ALMOST_FULL from memory element 470, and generate
an ALMOST_FULL status signal based on the difference
between write pointer and read pointer and the received
threshold value. Similarly, comparator 465 may receive the
threshold value for ALMOST_EMPTY from memory ele-
ment 475, and generate an ALMOST_EMPTY status signal
based on the difference between write pointer and read
pointer and the received threshold value.

Cascade chain 400 may include additional circuitry which
is not shown in FIG. 4B. For example, additional compara-
tors may compare the read pointer and write pointer and
generate additional status information such as EMPTY,
FULL, HALF_FULL, or the exact number of available
locations for read or write operations.

FIG. 5 shows an illustrative configurable storage block
used as an elastic FIFO (e.g., a FIFO that interfaces between
circuits that operate in different clock domains) in accor-
dance with an embodiment. Consider the scenario of an
elastic FIFO coupled between a first circuit that writes data
to the elastic FIFO and a second circuit that reads data from
the elastic FIFO. The first and second circuits are sometimes
also referred to as producer (e.g., producer 510) and con-
sumer (e.g., consumer 530), respectively. For example,
producer 510 and consumer 530 may be programmable
logic. Producer 510 may be configured to generate and
provide write data to the elastic FIFO, and consumer 530
may be configured to retrieve and process read data from the
elastic FIFO.

Producer 510 may operate in a first clock domain which
may provide clock signal WR_CLK, while consumer 530
operates in a second clock domain which may provide clock
signal RD_CLK. The first and second clock domains may be
part of the same clock domain or part of different clock
domains. Producer 510 may write data (WR_DATA) to
configurable storage block 520 based on the write clock
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10
(WR_CLK) and the write enable (WR_EN), and consumer
530 may retrieve data from configurable storage block 520
based on the read clock (RD_CLK) and the read enable
(RD_EN).

If desired, configurable storage block 520 may provide
status information to producer 510 and consumer 530. For
example, configurable storage block 520 may provide a
FULL status signal to producer 510 for as long as the elastic
FIFO is unable to receive any more data end an EMPTY
status signal to consumer 530 for as long as the elastic FIFO
is unable to provide data. Configurable storage block 520
may provide additional information (e.g., HALF_FULL or
HALF_EMPTY) to producer 510 and consumer 530. If
desired, configurable storage block 520 may access the
address counters used for implementing the FIFO’s read
pointer and write pointer and compute the number of avail-
able locations for read and write operations. Configurable
storage block 520 may provide the number of available
locations at every clock event (e.g., rising clock edge) of a
write clock (WR_CLK) and read clock (RD_CLK) to pro-
vider 510 and consumer 530, respectively.

Provider 510 and consumer 530 may capture the number
of available locations within their own internal (burst-
length) counters. As a result, provider 510 may potentially
send data in a single burst until reaching the FULL limit with
precision, while consumer 530 may potentially burst to the
available EMPTY limit with precision.

FIG. 6 is a flow chart showing illustrative steps for
operating a configurable storage block in FIFO, LIFO, or
RAM mode in accordance with an embodiment. The steps of
FIG. 6 may, for example, be performed by control circuitry
such as control circuitry 310 of FIG. 3. During step 605, the
configurable storage block may receive a command that
selects between a first and second access mode, whereby the
first access mode provides random-access to a memory array
in the configurable storage block while the second access
mode performs read and write operations on the memory
array in a predefined sequence. In response to determining
that the command selects the first access mode during step
607, the configurable storage block may provide random-
access to a memory array during step 610. In response to
determining that the command does not select the first
access mode, the configurable storage block may generate a
read pointer and a write pointer that identify a storage
location between an initial and a last storage location of a
memory array during step 620.

During step 621, the configurable storage block may
verify if a reset signal was received. In response to deter-
mining that a reset signal was received, the configurable
storage block may update the read and write pointers to
identify an initial storage location during step 622. During
step 624, the configurable storage block may generate a
status signal that indicates an empty memory array in the
configurable storage block and prevent a read operation
from the memory array for as long as no data is received.

When data is received as determined by step 627, the
configurable storage block may store the data at the storage
location of the memory array that is identified by the write
pointer during step 630. During step 632, the configurable
storage block may update the write pointer to identify a next
storage location and remove the status signal that indicates
an empty memory array during step 633. During step 637,
the configurable storage block may verify whether the
selected access mode is last-in first-out. In the event that the
configurable storage block operates in LIFO mode, the
configurable storage block may during step 638 update the
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read pointer to identify the storage location that was
accessed by the write operation during step 630.

After a successful write operation, the configurable stor-
age block may verify whether the memory array may receive
additional data (i.e., whether the memory array is full).
During step 639 in which the configurable storage block
operates in LIFO mode, the configurable storage block may
verify whether the updated read pointer identifies the last
storage location. During step 634 in which the configurable
storage block operates in FIFO mode, the configurable
storage block may verify whether the write pointer equals to
the read pointer. In response to determining that the memory
array is full (e.g., during step 634 or during step 639), the
configurable storage block may generate a status signal that
indicates a full memory array during step 635. During step
636, the configurable storage block may prevent any write
operations to the full memory array for as long as no read
request is received.

When a read request is received as determined by step
640, the configurable storage block may retrieve the data
from the storage location of the memory array that is
identified by the read pointer during step 641. During step
642, the configurable storage block may update the read
pointer to identify a next storage location and remove the
status signal that indicates a full memory array during step
643. During step 644, the configurable storage block may
verify whether the selected access mode is last-in first-out.
In the event that the configurable storage block operates in
LIFO mode, the configurable storage block may during step
648 update the write pointer to identify the storage location
that was accessed by the read operation during step 641.

After a successful read operation, the configurable storage
block may verify whether additional data may be retrieved
from the memory array (i.e., whether the memory array is
empty). During step 649 in which the configurable storage
block operates in LIFO mode, the configurable storage block
may verify whether the updated write pointer identifies the
initial storage location. During step 645 in which the con-
figurable storage block operates in FIFO mode, the configu-
rable storage block may verify whether the write pointer
equals to the read pointer. In response to determining that
additional data may not be retrieved from the memory array
(e.g., during step 634 or during step 639), the configurable
storage block may generate a status signal that indicates an
empty memory array during step 624.

If desired, write operation (i.e., step 630 and consecutive
steps) and read operation (i.e., step 641 and consecutive
steps) may be performed in parallel.

In an embodiment of the invention, a configurable storage
block may provide support for the implementation of a FIFO
or LIFO that performs speculative read and write operations.
The configurable storage block may be configured as a
speculative FIFO or LIFO using the mode selection bits of
FIG. 3. When implementing a speculative FIFO, the con-
figurable storage block may receive four additional bits, one
bit to revert a write operation (WRITE-REVERT), one bit to
commit a write operation (WRITE-COMMIT), one bit to
revert a read operation (READ-REVERT), and one bit to
commit a read operation (READ-COMMIT). When imple-
menting a speculative LIFO, the configurable storage block
may receive two additional bits, one bit to commit the read
and write operations and one bit to invalidate all read and
write operations since the last commit. The control bits
related to the write operation (i.e., WRITE-REVERT and
WRITE-COMMIT) are provided by the producer of the
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data, while the control bits related to the read operation (i.e.,
READ-REVERT and READ-COMMIT) are provided by the
consumer of the data.

A speculative FIFO or LIFO may require an additional
write and an additional read pointer. For example, the
configurable storage block may generate a speculative read
pointer and a speculative write pointer. The configurable
storage block may update the speculative read and specu-
lative write pointers during read and write operations. How-
ever, the configurable storage block may update the read and
write pointers to match the speculative read and speculative
write pointers only after receiving a commit and update the
speculative read and speculative write pointers to match the
read and write pointers after receiving a revert or invalidate
signal.

FIG. 7 is a flow chart showing illustrative steps for
operating a configurable storage block in speculative FIFO
mode in accordance with an embodiment. During step 705,
the configurable storage block may configure a random-
access memory block to perform write operations in a first
sequence. During step 710, the configurable storage block
may configure the random-access memory block to perform
read operations in a second sequence. For example, the
configurable storage block may configure the random-access
memory block to operate in FIFO mode by configuring the
random-access memory block to perform read and write
operations in the same sequence.

During step 720, the configurable storage block may
generate a write pointer and a speculative write pointer that
identify a first and second memory address. During step 725,
the configurable storage block may generate a read pointer
and a speculative read pointer that identify a third and fourth
memory address.

Whenever data is received, the configurable storage block
may store the data at the memory address identified by the
speculative write pointer during step 730. During step 732,
the configurable storage block may update the speculative
write pointer to identify a next memory address. During step
734, in response to determining that a write commit signal
is received, the configurable storage block may update the
write pointer to identify the memory address identified by
the speculative write pointer. During step 736, in response to
determining that a write revert signal is received, the con-
figurable storage block may update the speculative write
pointer to identify the memory address identified by the
write pointer. In response to determining that no write
commit signal and no write revert is received or after steps
734 and 736, the configurable storage block may check if
data is received.

Whenever a read request is received, the configurable
storage block may retrieve the data from the memory
address identified by the speculative read pointer during step
740. During step 742, the configurable storage block may
update the speculative read pointer to identify a next
memory address. During step 748, in response to determin-
ing that a read commit signal is received, the configurable
storage block may update the read pointer to identify the
memory address identified by the speculative read pointer.
During step 746, in response to determining that a read
revert signal is received, the configurable storage block may
update the speculative read pointer to identify the memory
address identified by the read pointer. In response to deter-
mining that no read commit signal and no read revert signal
is received or after steps 746 and 748, the configurable
storage block may check if a read request is received.

The configurable storage block may implement specula-
tive LIFO mode by updating speculative read and write
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pointers after write and read operations, respectively. The
speculative FIFO implementation described in FIG. 7 may
provide additional features. For example, the speculative
FIFO implementation may provide detailed status informa-
tion about speculatively available storage locations.

The memory array of the configurable storage block
described herein may be implemented using any storage
technology (e.g., static random access memory (SRAM),
dynamic random access memory (DRAM), flash memory,
etc.). The functions implemented by the configurable storage
block may apply to any memory array capacity, latency, and
bandwidth, memory data-path implementation (e.g., com-
mon input/output or split input/output), number and type of
configurable storage block interface ports, command/ad-
dress/read-write control protocol, interface signaling
method (e.g., parallel or serial), and the physical integration
topology of the configurable storage block (e.g., single-die,
2.5-dimensional multiple-die, 3-dimensional stacked
through-silicon-vias (3D TSV)).

The method and apparatus described herein may be
incorporated into any suitable electronic device or system of
electronic devices. For example, the method and apparatus
may be incorporated into numerous types of devices such as
microprocessors or other ICs. Exemplary ICs include pro-
grammable array logic (PAL), programmable logic arrays
(PLAs), field programmable logic arrays (FPLAs), electri-
cally programmable logic devices (EPLDs), electrically
erasable programmable logic devices (EEPLDs), logic cell
arrays (LCAs), field programmable gate arrays (FPGAs),
application specific standard products (ASSPs), application
specific integrated circuits (ASICs), just to name a few.

The integrated circuit described herein may be part of a
data processing system that includes one or more of the
following components; a processor; memory; 1/O circuitry;
and peripheral devices. The integrated circuit can be used in
a wide variety of applications, such as computer networking,
data networking, instrumentation, video processing, digital
signal processing, or any suitable other application where
the advantage of using configurable storage blocks is desir-
able.

Although the method operations were described in a
specific order, it should be understood that other operations
may be performed in between described operations,
described operations may be adjusted so that they occur at
slightly different times or described operations may be
distributed in a system which allows the occurrence of the
processing operations at various intervals associated with
the processing, as long as the processing of the overlay
operations are performed in a desired way.

The foregoing is merely illustrative of the principles of
this invention and various modifications can be made by
these skilled in the art without departing from the scope and
spirit of the invention. The foregoing embodiments may be
implemented individually or in any combination.

What is claimed is:

1. Memory circuitry on a programmable integrated cir-
cuit, the memory circuitry comprising:

input and output ports;

a plurality of storage circuits coupled to the input and
output ports, wherein each of the storage circuits has
first and second access modes, wherein the first access
mode provides random access to storage locations in
the storage circuits, wherein the second access mode
provides access to storage locations in the storage
circuits in a predetermined sequence, and wherein each
of the storage circuits comprises:

a memory array; and
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a control circuit coupled to the memory array and the
input and output ports, wherein the control circuit
receives a specified access mode from one of the
input ports, wherein the control circuit provides
access to the memory array by selecting between the
first and second access modes based on the specified
access mode, and wherein a cascade chain circuit is
coupled between at least two storage circuits in the
plurality of storage circuits.

2. The memory circuitry of claim 1, wherein the memory
array receives data from the input ports, and wherein the
control circuit directs the memory array to store the data at
the storage locations according to the specified access mode.

3. The memory circuitry of claim 1, wherein the control
circuit directs the memory array to retrieve data from the
storage locations according to the specified access mode and
to provide the retrieved data at the output ports.

4. The memory circuitry of claim 1, wherein each of the
storage circuits further comprises:

a first multiplexer coupled to the memory array that
receives a read address from the input ports and a read
pointer from the control circuit and selects the read
address in the first access mode and the read pointer in
the second access mode; and

a second multiplexer coupled to the memory array that
receives a write address from the input ports and a write
pointer from the control circuit and selects the write
address in the first access mode and the write pointer in
the second access mode.

5. The memory circuitry of claim 1, wherein the second

access mode comprises a first-in first-out access mode.

6. The memory circuitry of claim 1, wherein the second
access mode comprises a last-in first-out access mode.

7. The memory circuitry of claim 1, wherein the control
circuit further comprises:

a read control circuit that receives a read enable and a read
clock from the input ports and generates a read pointer
that identifies a read address in the storage circuit; and

a write control circuit that receives a write enable and a
write clock from the input ports and generates a write
pointer that identifies a write address in the storage
circuit.

8. The memory circuitry of claim 7, wherein identical read

and write pointers indicate a full or an empty storage circuit.

9. The memory circuitry of claim 7, wherein the cascade
chain circuit comprises:

a first multiplexer that receives the read pointer from the

read control circuit and an additional read pointer from

a neighboring storage circuit through the input ports

and selects between the read pointer and the additional

read pointer based on the command; and

a second multiplexer that receives the write pointer from
the write control circuit and an additional write pointer
from a neighboring storage circuit through the input
ports and selects between the write pointer and the
additional write pointer based on the command.

10. The memory circuitry of claim 7, wherein the read and
write pointers have an extra bit and wherein the extra bit
distinguishes between a full and an empty storage circuit.

11. The memory circuitry of claim 10, wherein the control
circuit prevents a read operation from an empty storage
circuit and a write operation to a full storage circuit using the
extra bit of the read and write pointers.

12. A method of interfacing between programmable logic
and a storage circuit using a control circuit, the method
comprising:
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receiving a predetermined access mode with the control
circuit;

with the control circuit, providing access to the storage
circuit by selecting between first and second access
modes based on the predetermined access mode,
wherein the first access mode provides random access
to storage locations in the storage circuit, and wherein
the second access mode provides access to storage
locations in the storage circuit in a predefined
sequence;

at a first multiplexer that has an output coupled to a read
address port of the storage circuit, receiving first and
second read address identifiers;

at a second multiplexer that has an output coupled to a
write address port of the storage circuit, receiving first
and second write address identifiers; and

in the first access mode, controlling the first multiplexer
to route the second read address identifier to the output
of the first multiplexer while controlling the second
multiplexer to route the second write address identifier
to the output of the second multiplexer, wherein the
second read address identifier is different from the
second write address identifier.

13. The method of claim 12, further comprising:

with the control circuit, in response to selecting the
second access mode, generating a write pointer signal
that identifies a first storage location of the storage
circuit; and

with the control circuit, generating a read pointer signal
that identifies a second storage location of the storage
circuit.

14. The method of claim 13, further comprising:

with the control circuit, receiving a reset signal;

with the control circuit, updating the write pointer signal
to identify an initial storage location of the storage
circuit; and

with the control circuit, updating the read pointer signal to
identify the initial storage location of the storage cir-
cuit.

15. The method of claim 14, further comprising:

with the control circuit, in response to receiving the reset
signal, generating a status signal that indicates an
empty storage circuit; and

disabling read operations for as long as the status signal
indicates the empty storage circuit.

16. The method of claim 12, further comprising:

with the storage circuit, receiving data;

storing the data at the first storage location of the storage
circuit identified by the write pointer signal; and

with the control circuit, updating the write pointer signal
to identify a third storage location of the storage circuit.

17. The method of claim 16, further comprising:

comparing the updated write pointer signal and the read
pointer signal to determine whether the storage circuit
is full;

with the control circuit, in response to determining that
the storage circuit is full, generating a status signal that
indicates a full storage circuit; and

disabling write operations for as long as the status signal
indicates the full storage circuit.

18. The method of claim 16, further comprising:

with the control circuit, updating the read pointer signal to
identify the first storage location of the storage circuit.

19. The method of claim 18, further comprising:

with the control circuit, generating a virtual empty signal
that identifies the initial storage location of the storage
circuit;
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comparing the updated write pointer signal and the virtual
empty signal to determine whether the storage circuit is
full;

with the control circuit, in response to determining that
the storage circuit is full, generating a status signal that
indicates a full storage circuit; and

disabling write operations for as long as the status signal
indicates the full storage circuit.

20. The method of claim 12, further comprising:

with the storage circuit receiving a read request;

retrieving data from the second storage location of the
storage circuit identified by the read pointer signal; and

with the control circuit, updating the read pointer signal to
identify a third storage location of the storage circuit.

21. The method of claim 20, further comprising:

comparing the updated read pointer signal and the write
pointer signal to determine whether the storage circuit
is empty;

with the control circuit, in response to determining that
the storage circuit is empty, generating a status signal
that indicates an empty storage circuit; and

disabling read operations for as long as the status signal
indicates the empty storage circuit.

22. The method of claim 20, further comprising:

with the control circuit, updating the write pointer signal
to identify the second storage location of the storage
circuit.

23. The method of claim 22, further comprising:

with the control circuit, generating a virtual empty signal
that identifies the initial storage location of the storage
circuit;

comparing the updated read pointer signal and the virtual
empty signal to determine whether the storage circuit is
empty;

with the control circuit, in response to determining that
the storage circuit is empty, generating a status signal
that indicates an empty storage circuit; and

disabling read operations for as long as the status signal
indicates the empty storage circuit.

24. A method for operating a random-access memory

block embedded in an integrated circuit, comprising:

receiving a mode selection signal at an input of the
memory block;

with a control circuit in the random-access memory block,
determining based on the mode selection signal
whether the random-access memory block performs
sequential memory access operations for a memory
array in the random-access memory block;

in response to determining that the random-access
memory block performs sequential memory access
operations, configuring the random-access memory
block to perform write operations to a first sequence of
memory locations in the memory array based on the
mode selection signal by dynamically controlling a first
multiplexer using the control circuit;

configuring the random-access memory block to perform
read operations from a second sequence of memory
locations in the memory array based on the mode
selection signal by dynamically controlling a second
multiplexer using the control circuit; and

using the control circuit to transmit at least one of the
memory locations of the first sequence of memory
locations to another control circuit in another random-
access memory block.

25. The method of claim 24 further comprising:

generating a write pointer signal that identifies a first
address of the random-access memory block;
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generating a speculative write pointer signal that identifies
the first address of the random-access memory block;

generating a read pointer signal that identifies a second
address of the random-access memory block; and

generating a speculative read pointer signal that identifies
the second address of the random-access memory
block.

26. The method of claim 25 further comprising:

receiving data at an input of the random-access memory
block;

storing the data at the first address of the random-access
memory block; and

updating the speculative write pointer signal to identify a
third address of the random-access memory block.

27. The method of claim 26 further comprising:

receiving a write revert signal at an input of the random-
access memory block; and

updating the speculative write pointer signal to identify
the first address of the random-access memory block.

28. The method of claim 26 further comprising:

receiving a write commit signal at an input of the random-
access memory block; and
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updating the write pointer signal to identity the third
address of the random-access memory block.

29. The method of claim 25 further comprising:

receiving a read request at an input of the random-access
memory block;

retrieving data at the second address of the random-access
memory block; and

updating the speculative read pointer signal to identify a
third address of the random-access memory block.

30. The method of claim 29 further comprising:

receiving a read commit signal at an input of the random-
access memory block; and

updating the read pointer signal to identify the third
address of the random-access memory block.

31. The method of claim 29 further comprising:

receiving a read revert signal at an input of the random-
access memory block; and

updating the speculative read pointer signal to identify the
second address of the random-access memory block.

#* #* #* #* #*



