US009270460B2

a2 United States Patent
Wolrich et al.

US 9,270,460 B2
*Feb. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54) INSTRUCTIONS TO PERFORM JH
CRYPTOGRAPHIC HASHING IN A 256 BIT
DATA PATH

(52) US.CL
CPC HO4L 9/14 (2013.01); GOGF 9/30032

(2013.01); GO6F 9/30036 (2013.01); GO6F

(75) Inventors: Gilbert M. Wolrich, Framingham, MA 9/3893 (2013.01); GO6F 21/602 (2013.01);
(US); Kirk S. Yap, Framingham, MA HO4L 9/3239 (2013.01)
(US); Vinodh Gopal, Westborough, MA (58) Field of Classification Search
(US); James D. Guilford, CPC HO4L 9/0643; HO4L 2209/12; GOGF 21/64
Northborough, MA (US); Erdinc See application file for complete search history.
Ozturk, Marlborough, MA (US); Sean
M. Gulley, Boston, MA (US); Wajdi K. (56) References Cited
Feghali, Boston, MA (US); Martin G.
Dixon, Portland, OR (US) U.S. PATENT DOCUMENTS
(73) Assignee: Intel Corporation, Santa Clara, CA 7,043,016 B2 5/2006 Roelse
(US) 8,036,379 B2 10/2011 Ferguson et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 225 days. FOREIGN PATENT DOCUMENTS
This patent is subject to a terminal dis- W 1322613 B 3/2010
claimer ™W 323613 B 42010
’ ™ 1332785 B 11/2010
(21) Appl. No.: 13/995,457
OTHER PUBLICATIONS
(22) PCT Filed: Dec. 22,2011 . i~
PCT International Search Report for PCT Counterpart Application
(86) PCT No.: PCT/US2011/066719 No. PCT/US2011/066719, 4 pgs., (Aug. 28, 2013).
$371 (1), (Continued)
(2), (4) Date: Jun. 18, 2013
Primary Examiner — Mohammad A Siddiqi
(87) PCT Pub.No.: 'WO2013/112118 (74) Attorney, Agent, or Firm — Nicholson De Vos Webster
PCT Pub. Date: Aug. 1, 2013 & Elliott LLP
(65) Prior Publication Data &7 ABSTRACT
A method is described. The method includes executing one or
US 2014/0205084 A1 Jul. 24,2014 &
b ’ more JH_SBOX_L instructions to perform S-Box mappings
(51) Int.CL and a linear (L) transformation on a JH state and executing
GO6F 21/00 (2013.01) one or more JH_P instructions to perform a permutation
HO4L 9/14 (2006.01) function on the JH state once the S-Box mappings and the L
HO4L 9/32 (2006.01) transformation have been performed.
(Continued) 8 Claims, 16 Drawing Sheets
8 4y a a; a; 8; 8 8 dg A a8y ay 3 a3 Gy ag
ooanonnnaoaann
L L L L Ll e e
N
L < > > >
T SN
= \
~
s HHHHHHHHHBBBE
XJ LA T L X
o s < >
==
by by by by by bs bg by by by by by by bz by by

US 9,270,460 B2
Page 2

(51) Int.CL

GO6F 9/30 (2006.01)
GO6F 9/38 (2006.01)
GO6F 21/60 (2013.01)
(56) References Cited

U.S. PATENT DOCUMENTS

8,675,865 B2* 3/2014 Graunke 380/28
8,929,539 B2* 1/2015 Wolrichetal. . .. 380/28
2008/0148063 Al* 6/2008 Hanko etal. ... 713/189
2010/0250497 Al* 9/2010 Redlichetal. 707/661

2012/0254591 Al* 10/2012 Hughesetal. ... 712/205
2014/0053000 Al 2/2014 Yap et al.
2014/0205084 Al* 7/2014 Wolrichetal. ... 380/28

OTHER PUBLICATIONS

PCT Written Opinion of the International Searching Authority for
PCT Counterpart Application No. PCT/US2011/066719, 7 pgs.,
(Aug. 28, 2013).

PCT Notification concerning Transmittal of International Prelimi-
nary Report on Patentability (Chapter I of the Patent Cooperation
Treaty) for PCT Counterpart Application No. PCT/US2011/066719,
9 pgs., (Jul. 3, 2014).

Provelengios, G., et al. “Low Power FPGA Implementations of JH
and Fugue Hash Functions”, Digital System Design (DSD), 14
Euromicro Conference, Aug. 31-Sep. 2, 2011, pp. 417-419, Oulu,
Finland.

Murvay, P.S., et al., “Performance Improvements for SHA-3 Finalists
by Exploiting Microcontroller On-Chip Parallelism”, Risk and Secu-
rity of Internet and Systems (CRiSIS), 2011 6 International Con-
ference, Sep. 26-28, 2011, pp. 1-7, Timisoara, Romania.

Guo, X, et al., “Pre-Silicon Characterization of NIST SHA-3 Final
Round Candidates”, Digital System Design (DSD), 14 #* Euromicro
Conference, Aug. 31-Sep. 2, 2011, pp. 535-542, Oulu, Finland.
Namin, A.H., et al., “FPGA Implementation of CubeHash, Grastel,
JH, and SHAvite-3 Hash Functions”, NEWCAS Conference

(NEWCAS) 8" IEEE International, Jun. 20-23, 2010 pp. 121-124,
Montreal Quebec.

Zhang, R., et al., “A Block Cipher using Key-Dependent S-box and
P-boxes”, Industrial Electronics, ISIE, 2008, IEEE International
Symposium, Jun. 30-Jul. 2, 2008, p. 1463-1468, Cambridge, MA.
PCT International Search Report for PCT Application No. PCT/
US2011/066773, 3 pgs., (Sep. 21, 2012).

PCT Written Opinion of the International Searching Authority for
PCT Application No. PCT/US2011/066773, 5 pgs., (Sep. 21, 2012).
PCT Notification concerning Transmittal of International Prelimi-
nary Report on Patentability (Chapter I of the Patent Cooperation
Treaty) for PCT Application No. PCT/US2011/066773, 7 pgs., (Jul.
3,2014).

Wu, H., “The Hash Function JH” Submission to NIST, http://ehash.
iaik tugraz.at/uploads/1/1d/JTh20090915 .pdf, Institute for Infocomm
Research, Sep. 15, 2009, Singapore.

Intel Corporation, “Intel 64 and IA-32 Architectures, Software
Developer’s Manual, Instruction Set Reference, A-Z”, Jun. 2014,
1493 pgs., vol. 2 (2A, 2B & 2C).

PCT/US2011/066719, Written Opinion, mailed Aug. 28, 2013, 7
pages.

PCT/US2011/066719, International Search Report, mailed Aug. 28,
2013, 6 pages.

PCT/US2011/066719, International Preliminary Report, mailed Jul.
3, 2014, 9 pages.

R.O.C. Patent Application No. 101143929, Search Report (English
Translation), 1 page.

Office action with summarized English translation for Taiwan Patent
Application No. 101143929, mailed Jul. 16, 2015, 6 pages.

Office action and Search Report with English translation from Tai-
wan Patent Application No. 101146621, mailed Jan. 28, 2015, 7
pages.

Office action from U.S. Appl. No. 13/992,225, mailed May 4, 2015,
16 pages.

* cited by examiner

U.S. Patent Feb. 23,2016 Sheet 1 of 16 US 9,270,460 B2

FIG. 1
100

PROCESSOR
101

JH
ENCRYPTION / DECRYPTION
OPERATIONS
103

4
v

MEMORY CONTROLLER HUB
(MCH)

102 MEMORY

MEMORY 108
CONTROLLER

106

A

Y

INPUT / QUTPUT
CONTROLLER HUB
(ICH)

104 STORAGE
STORAGE -« L DEVICE
118

INPUT / QUTPUT 112
CONTROLLER
110

U.S. Patent Feb. 23,2016 Sheet 2 of 16 US 9,270,460 B2

FIG. 2

101
Lo 4

BUS INTERFACE UNIT

200
{k
4 \ 4
LEVEL1 ROUND LEVEL 1
INSTRUCTION CACHE KEY DATA CACHE
202 216 204
A
FETCH
\ 4 LOAD STORE
MICROCODE v
ROM
214
FETCH AND EXECUTION RETIREMENT
DECODE UNIT UNIT UNIT
206 210 212
\ 4
JH
ENCRYPTION/
E FILE
REGISTER y DECRYPTION
208 OPERATIONS
103

U.S. Patent Feb. 23,2016 Sheet 3 of 16 US 9,270,460 B2

FIG. 3
PACKED DATA
REGISTERS \
512 BITS
A
r N
Zmmg ymmyg Xmmy
ymmyg Xmmqs
|
128 BITS
k A
Y
256 BITS
ZMmmMmsg4

U.S. Patent Feb. 23,2016 Sheet 4 of 16 US 9,270,460 B2

w0 L2
~ ~
© L
< xt+
™~ ~
© L
™ ™
A -
© £Q
N N
~ A
© £Q
~ ~
~ ~
© £Q
(] (=}
~—~ ~—
(v} KQ

dg dg
“
‘-‘_
bg by

v
)
N N
5 ” T
O ©©
[4v} Q
w w0
[4v] QO
< NS
[4v] £Q
o o)
[4v] O
N N
(14} £Q
- -
[4v} Q
O O

US 9,270,460 B2

Sheet 5 of 16

Feb. 23, 2016

U.S. Patent

VS 814

SINSOY 2101

suonoUN,J | pue Xog-g WI0JI]

qas "siy
doig
0LS
SINSY 2018
A
095
mzoﬁﬁdgﬁum E.ﬁo,ﬁom
-1
0SS

SUON03G PONTUIDJ-A1] SASILTOY

IS
SI01S130Y WOIY $)If] 11§ ANy

ues

U.S. Patent

Fig. 6

|

Feb. 23,2016 Sheet 6 of 16 US 9,270,460 B2
YMMI S-Box Mapping
610 |
J
y
YMM2 S-Box Mapping
620
YMM3 S-Box Mapping
630
y
B
YMM4 S-Box Mapping ‘
640 |

Y

Even YMM3, YMMI1 Transform

[#))
N
few]

|

Even YMM4, YMM?2 Transform

N
N
fenl

|

A J

0Odd YMM3, YMM1 Transform

N
~J
[ew]

3

Odd YMM4, YMM?2 Transform

N
o0
[e]

|

U.S. Patent Feb. 23,2016 Sheet 7 of 16 US 9,270,460 B2

ais
|
S
I
S
|
bis

Ay
|
S
l
S
|
b4

@1 Q2 Qg
] | |
S S)
| | |
L L
S S S
| | |
L L
by by bys

\
b1o

“
‘
b; bg by

FIG. 7

-~ -
~ <+
@ P w 3
o ™
@ P @ Q

- -

N N
© P 9 Q
& o o H 3

-~ ~J

US 9,270,460 B2

Sheet 8 of 16

Feb. 23, 2016

U.S. Patent

Feunwuz
Ly
598 SLi9 v diy
S1id 952
— Wllq‘riij
078 slazusoW | L8 oL
—*
058 slgzesoviaa | STwwx | Sk
0F8 suasiMod | 0y
58 SlIA 9L MSH 4 ST
SUALSIOTA MSYIN AL
T Owwix | OwwiA Owiwz
068 Tl4 ¥3LSI93Y Gi8 C y
Lv14 LN QaN0Yd XMW sLgzi6
SLIa 9 018~
- A \ SYALSIDIY YOLDIA
N]
_
| GGg
aasvIv
| sLggl X9
0 _ SY3LSI9TY INTWO3S
]
. v)
Aw:m owv -
d3/8% 8
114 ¥3LSIOT HOVLS d WY VO SFB SLIE P9 X 9l
SY3LSI9TY 3S0d¥Nd TYHINTO
008
JUNLOALIHONY ¥3LSIOIY

8 'OIid

US 9,270,460 B2

Sheet 9 of 16

Feb. 23, 2016

U.S. Patent

906
FHOYO V1VQ 11

A\

c06
NJOMEIN ONIY

A

706

JHOYI 21
3H1 40 1388NS 301

'y
A

906
JHIYOQ 8 IHOVOT 17

A 3
\ 4 Y

76 1
SY31SI03y SY3LSIOY
dJOLO3A dvvoS

4 4

Y Y 4 A

zr443 [7443
1d43ANOD 1d3ANOD
JIFIANN JIMIANN

J

7i6
SYALS103
d0L33A
Yy VvV V Y

026 [Z4]
JF1ZZIMS EINIREL]
vy VvV V¥ A4

826
NIV ¥OLO3A 3dIM-9L
A
v
926
SYILSIOFE HSYIN ILIIM
g6 'Oid

016
LINN
40103A

306

LINA
dYIvOS

A
\

A

006

300030 NOILONHLSNI

V6 'Oid

U.S. Patent Feb. 23,2016 Sheet 10 of 16 US 9,270,460 B2
L1 BRANCH PREDICTION Ul
o PRED - NSTRUCT)SSI‘;CACHE W
L2 BRANGH PREDICTION "
UNIT 1022 INSTRUCTIONTLBUNIT 1026 |
v
INSTRUCTION FETCH AND
FRONT END UNIT PREDECODE UNIT 1028
1005 i
INSTRUCTION QUEUE UNIT 1030
¥
DECODE UNIT 1032
COMPLEX SIMPLE SIMPLE SIMPLE
ﬂ%?f%%%” DECODER || DECODER || OECODER || DECODER
L% 1L uNT 1034 || UNIT 1036 | | UNIT 7038 | | UNIT 1040
LOOP STREAM DETECTOR -
UNIT 1044 >
EXECUTION y
ENGINE UNIT 1010 RENAME / ALLOCATOR L4
Iy UNIT 1056 IND
RETIREMENT UNIT L e
1074 [UNFIEDSCHEDULER UNT 1058 T T
v
REORDER Y
BUFFER UNIT PHYSICAL REGISTER FILES UNIT 1076
1078 VECTOR WRITE MASK SCALAR
REGISTERS || REGISTERS REGISTERS
A ¥e]
’{ | UNIT 70774 || UNIT 10778 UNIT 1077C g
i —
=
> / Y v v v Y =
MIXED MIXED MIXED >
SCALAR& || SCALARS || LOAD STORE STORE || SCALARS& =
VECTOR VECTOR UNIT | | ADDRESS | | DATA VECTOR w
UNIT UNIT 1066 UNIT UNIT UNIT
1062 1064 3 1068 1070 1072
EXECUTION UNITS 7060
A 4 A 4 -
DATATLB UNIT 1052 (2 CACHE UNIT 7048 E}_»
DATA CACHE UNIT 1054
FIG. 10 L1 DAT N (3 CACHE & BEYOND 1050

US 9,270,460 B2

U.S. Patent Feb. 23, 2016 Sheet 11 of 16
FIG. 11
—j//——1ﬁ5
F————— - _K
| F———
| PROCI :
| | PROC
, ; PROCESSOR
Sp—
L 1110
DISPLAY GMCH MEMORY
1145 1120 1140
ICH
1150
EXTERNAL
GRAPHICS PERIPHERAL
DEVICE .
1160 He

US 9,270,460 B2

Sheet 12 of 16

Feb. 23, 2016

U.S. Patent

3009 ™\~ ez 1zel zz2l
55T $30IA30 ISNOW
JOVHOLS YLIVa WNOD JAYYCGATH
P N I]
ezl 7izt grer
onoiany S30IA3Q O/l 390149 Snd
SNL ﬁ
9621~ _| 4/ 262l ~ | 41 gl
9671 | .. 062) - SOIHAYHO
dd} 138dHO $624~{ dd mwﬁ H43d-HOH
A A
rszi~_| | 262k~ |
d-d| |dd Axw d-d d-d
8824
[eset 221
2 75T
Il Ml
AHOWIN AMOWIN
0ozl 0Zzr
¥03$300Md ¥08SI00Yd
. X002
2l "9OI4

US 9,270,460 B2

Sheet 13 of 16

Feb. 23, 2016

U.S. Patent

vecl

AJONIN

X4

AJONIN

GIET
0l AQ¥9T
9626~ |
86¢i~ d-d Hmmm_fo $6¢i~| d-d
A A
pGel~] | e~ |
dd| |dd| x‘ d-d d-d
mmmsmu‘mmmﬁmp 062! 8/2i 9/¢t
N\.NJ
owl [~ e8¢ oMl
08zl 02T
¥0SS3004d ¥0S$3008d
PIEl
S30IA3C ON
g€l "9id

//(.oom“

US 9,270,460 B2

Sheet 14 of 16

Feb. 23, 2016

U.S. Patent

1523
243 ZEFT OEFL (S)LINN
1NN LINN LINN ¥ITIONLINOD
AVIdSIa YIa WYYS AYONIN
Q3LYHOILNI
9IFr
(S)LINN
mujmﬂzoo Z0P7 (S)LINN LOINNOONALNI
r— -7 " — "=/ — "™ = - = = A
| ot “
| (S)LINN IHOYD aFHVHS |
Fe— — — — —— — —— — — — —
h&wh _ | 2 | _
LN VL Ngoer | 7202
NIV PL@LNN T e o (S)LINN
NALSAS |) 3HOVYD | | JHOYD
b |
| NZ0%I 34001 V20FL 340D
S, |
OFFE MOSSID0Md NOILYOIddY

03ain _

o_%< |

JOVAI

801 SOIHdYYHO
GALV¥DIINI

0crL
(S)HOSSIO0NMd Vidan

vl 'Old

/ 00yt

dIHO ¥ NO W31SAS

US 9,270,460 B2

Sheet 15 of 16

Feb. 23, 2016

U.S. Patent

Fe A ____---ZI---J
| rivl X ZIPL ONIY

p BN e e e e —
L | YITIONINOD | _ GOFL (S)LINN FHOYD QIUVHS |
O B e s B e i

S - == —
sng LLsIN (SIINN |
5T oy YO 1 IHOYO | |
| Lm 1 |
INFOVIILSAS | mempT 3900 | VZ0FT 3400 |
Lo e e o — —) i

Sl '9OI4

lllll |

1 |

_

|

_

0P “

SOHdvdo |

Q3LYY93INI “

lllll d

«/%E

¥055300¥d

US 9,270,460 B2

Sheet 16 of 16

Feb. 23, 2016

U.S. Patent

¢09} FOVNONYT
13AFTHOH

v09it
d31dINOD
98X

809} ¥31dWOD
13S NOILINHLSNI
INLYNYILTY

909/
3000 AdVNIg
98X

¢L9) H3ILYIANOD
NOILONYLSNI

0191 3000 AdYNIG
13S NOILONYLSNI
JAILYNY3LY

TUVMLI0S
... JmaavH N\
v
9797 FI97
3409 135 NOILONYLSNI 3400 135 NOILONYLSNI 98X
98X INO LSv31 NY LNOHLIM 40SS300¥d
1 HLIM ¥0SS3004d
91 Oi4

US 9,270,460 B2

1
INSTRUCTIONS TO PERFORM JH
CRYPTOGRAPHIC HASHING IN A 256 BIT
DATA PATH

CROSS-REFERENCE TO RELATED
APPLICATION

This patent application is a U.S. National Phase Applica-
tion under 35 U.S.C. §371 of International Application No.
PCT/US2011/066719, filed Dec. 22, 2011, entitled
INSTRUCTIONS TO PERFORM JH CRYPTOGRAPHIC
HASHING IN A 256 BIT DATA PATH.

FIELD OF THE INVENTION

This disclosure relates to cryptographic algorithms and in
particular to the JH Hashing algorithm.

BACKGROUND

Cryptology is a tool that relies on an algorithm and a key to
protect information. The algorithm is a complex mathemati-
cal algorithm and the key is a string of bits. There are two
basic types of cryptology systems: secret key systems and
public key systems. A secret key system also referred to as a
symmetric system has a single key (“secret key”) that is
shared by two or more parties. The single key is used to both
encrypt and decrypt information.

The JH hash function (JH) is a cryptographic function that
has been submitted for the National Institute of Standards and
Technology (NIST) hash function competition to develop a
new SHA-3 function to replace the older SHA-1 and SHA-2.
JH is based on an algorithm that includes four variants (JH-
224, JH-256, JH-384 and JH-512), which produce different
sized digests. However, each variant of JH implements the
same compression function.

Currently, JH may be executed in a general purpose pro-
cessor using instructions in either Streaming SIMD Exten-
sions (SSE) or Advanced Vector Extensions (AVX). None-
theless, such applications may require the execution of up to
30 instructions to perform the JH algorithm.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained from the following detailed description in conjunc-
tion with the following drawings, in which:

FIG. 1is a block diagram illustrating one embodiment of a
system,

FIG. 2 is a block diagram illustrating one embodiment of a
processor;

FIG. 3 is a block diagram illustrating one embodiment of
packed data registers;

FIG. 4 illustrates one embodiment of a resultant nibble
permutation;

FIGS. 5A and 5B are flow diagrams illustrating one
embodiment of processes preformed by instructions;

FIG. 6 illustrates one embodiment of implementing
instructions to perform a round of the JH algorithm;

FIG. 7 illustrates an embodiment of two rounds of JH using
instructions;

FIG. 8 is a block diagram of a register architecture accord-
ing to one embodiment of the invention;

FIG. 9A is a block diagram of a single CPU core, along
with its connection to the on-die interconnect network and
with its local subset of the level 2 (L.2) cache, according to
embodiments of the invention;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 9B is an exploded view of part of the CPU core
according to embodiments of the invention;

FIG. 10 is a block diagram illustrating an exemplary out-
of-order architecture according to embodiments of the inven-
tion;

FIG. 11 is a block diagram of a system in accordance with
one embodiment of the invention;

FIG. 12 is a block diagram of a second system in accor-
dance with an embodiment of the invention;

FIG. 13 is a block diagram of a third system in accordance
with an embodiment of the invention;

FIG. 14 is a block diagram of a system on chip (SoC) in
accordance with an embodiment of the invention;

FIG. 15 is a block diagram of a single core processor and a
multi-core processor with integrated memory controller and
graphics according to embodiments of the invention; and

FIG. 16 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention.

DETAILED DESCRIPTION

In the following description, for the purposes of explana-
tion, numerous specific details are set forth in order to provide
a thorough understanding of the present invention. It will be
apparent, however, to one skilled in the art that the present
invention may be practiced without some of these specific
details. In other instances, well-known structures and devices
are shown in block diagram form to avoid obscuring the
underlying principles of the present invention.

Reference in the specification to “one embodiment™ or “an
embodiment” means that a particular feature, structure, or
characteristic described in connection with the embodiment
is included in at least one embodiment of the invention. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment.

A mechanism including instructions to process the JH
Hashing algorithm is described. According to one embodi-
ment, the JH Hashing algorithm is implemented via instruc-
tions in the AVX instruction set. The AVX instruction set is an
extension to the x86 instruction set architecture (ISA), which
increases the register file from 128 bits.

FIG. 1 is a block diagram of one embodiment of a system
100 that includes an AVX instruction set extension for per-
forming JH encryption and decryption in a general purpose
processor.

The system 100 includes a processor 101, a Memory Con-
troller Hub (MCH) 102 and an Input/Output (I/O) Controller
Hub (ICH) 104. MCH 102 includes a memory controller 106
that controls communication between the processor 101 and
memory 108. The processor 101 and MCH 102 communicate
over a system bus 116.

The processor 101 may be any one of a plurality of proces-
sors such as a single core Intel® Pentium IV® processor, a
single core Intel Celeron processor, an Intel® XScale proces-
sor or a multi-core processor such as Intel® Pentium D,
Intel® Xeon® processor, Intel® Core® i3, 15, 17, 2 Duo and
Quad, Xeon®, Itanium® processor, or any other type of pro-
Ccessor.

The memory 108 may be Dynamic Random Access
Memory (DRAM), Static Random Access Memory (SRAM),
Synchronized Dynamic Random Access Memory (SDRAM),
Double Data Rate 2 (DDR2) RAM or Rambus Dynamic
Random Access Memory (RDRAM) or any other type of
memory.

US 9,270,460 B2

3

The ICH 104 may be coupled to the MCH 102 using a high
speed chip-to-chip interconnect 114 such as Direct Media
Interface (DMI). DMI supports 2 Gigabit/second concurrent
transfer rates via two unidirectional lanes.

The ICH 104 may include a storage 1/O controller 110 for
controlling communication with at least one storage device
112 coupled to the ICH 104. The storage device may be, for
example, a disk drive, Digital Video Disk (DVD) drive, Com-
pact Disk (CD) drive, Redundant Array of Independent Disks
(RAID), tape drive or other storage device. The ICH 104 may
communicate with the storage device 112 over a storage

10

4

operations called micro operations (pops). The execution unit
210 schedules and executes the micro operations. In the
embodiment shown, the JH function 103 in execution unit
210 includes micro operations for the AVX instruction. The
retirement unit 212 writes the results of the executed instruc-
tions to registers or memory.

JH function 103 performs a compression function includ-
ing three functions that are run for 42 rounds. The first func-
tion is the S-Box function, which includes the implementa-
tion of one of two transforms (S, and S,) to transform
adjacent 4-bit nibbles. Table 1 illustrates one embodiment of
S-Box transforms S,(x) and S, (x).

TABLE 1
X 0 1 2 3 4 5 6 7 8% 9 10 11 12 13 14 15
So(x) 9 0 4 11 13 12 3 15 1 10 2 6 7 5 8 14
S, (x) 3 012 6 13 5 7 1 915 2 0 4 11 10 14 8
20

protocol interconnect 118 using a serial storage protocol such
as, Serial Attached Small Computer System Interface (SAS)
or Serial Advanced Technology Attachment (SATA).

In one embodiment, processor 101 includes a JH function
103 to perform JH encryption and decryption operations. The
JH function 103 may be used to encrypt or decrypt informa-
tion stored in memory 108 and/or stored in the storage device
112.

FIG. 2 is a block diagram illustrating one embodiment of
processor 101. Processor 101 includes a fetch and decode unit
202 for decoding processor instructions received from Level
1 (L.1) instruction cache 202. Data to be used for executing the
instruction may be stored in register file 208. In one embodi-
ment, the register file 208 includes a plurality of registers that
are used by an AVX instruction to store data for use by the
AVX instruction.

FIG. 3 is a block diagram of an example embodiment of a
suitable set of packed data registers in register file 208. The
illustrated packed data registers include thirty-two 512-bit
packed data or vector registers. These thirty-two 512-bit reg-
isters are labeled ZMMO through ZMM31. In the illustrated
embodiment, the lower order 256-bits of the lower sixteen of
these registers, namely ZMMO0-ZMM15, are aliased or over-
laid on respective 256-bit packed data or vector registers
labeled YMMO-YMM15, although this is not required.

Likewise, in the illustrated embodiment, the lower order
128-bits of YMMO-YMMI15 are aliased or overlaid on
respective 128-bit packed data or vector registers labeled
XMMO-XMM]1, although this also is not required. The 512-
bit registers ZMMO through ZMM31 are operable to hold
512-bit packed data, 256-bit packed data, or 128-bit packed
data.

The 256-bit registers YMMO-YMM15 are operable to hold
256-bit packed data, or 128-bit packed data. The 128-bit
registers XMMO0-XMMI1 are operable to hold 128-bit packed
data. Each of the registers may be used to store either packed
floating-point data or packed integer data. Different data ele-
ment sizes are supported including at least 8-bit byte data,
16-bit word data, 32-bit doubleword or single precision float-
ing point data, and 64-bit quadword or double precision float-
ing point data. Alternate embodiments of packed data regis-
ters may include different numbers of registers, different sizes
of registers, and may or may not alias larger registers on
smaller registers.

Referring back to FIG. 2, the fetch and decode unit 202
fetches macroinstructions from L1 instruction cache 202,
decodes the macroinstructions and breaks them into simple

25

30

35

40

45

50

55

60

65

The second function is the Linear Transformation (L) that
implements a (4, 2, 3) Maximum Distance Separable (MDS)
code over GF(2*), where GF 2* is defined as the multiplica-
tion of binary polynomials modulo the irreducible polyno-
mial X*+X+1. The linear transformation is performed on
adjacent 8 bit bytes (or two adjacent S-Box outputs). Let A, B,
C and D denote 4-bit words, then L transforms (A,B) into
(C,D) as (C,D)=L(A,B)=(5-A+2-B, 2-A+B). Thus the func-
tion (C,D)=L(A,B) is computed as:

D0=B0DA1; D1=B1bA42;
D2=B2DA43D40; D3=B3DA0;
C0=40BD1; C1=41D2;

C2=42BD3PBDO; C3=43DD0.

The third function is the Permutation function (P,). P,is a
simple permutation on 2d elements, constructed from m,
(swap alternating nibbles), P'; (swap nibbles from low half
low half of state and high half of state) and ¢, (swap nibbles
in high half of state). FIG. 4 illustrates on embodiment of a
resultant nibble permutation P, (rt,, P';, ¢ ;) for d=4 in a 64-bit
data path, where d is the dimension of a block of bits. In one
embodiment, the JH function uses d=8 for a data width of 256
4-bit nibbles (or 1024 bits).

In conventional systems, the JH is “bit sliced”, instead of
operating on nibbles in bytes. Bit slicing enables bits of the
nibbles to be partitioned into separate words. Thus, S-Box
nibbles permit all S-Box nibbles to be executed in parallel via
SSE/AVX instructions. Further, combining bit slicing with
alternating odd and even SBOX registers enables both SBOX
and L transform evaluation. Full permutation is not necessary
for every round in the bit-slice implementation. Specifically,
the appropriate odd S-Box is put into position to operate with
the proper even S-Box for the next round. This is done by with
7 swapping permutations which repeat 6 times for the 42 JH
rounds.

While the bit slicing approach enables parallel execution of
all SBOX calculation and L transforms, 20 instructions are
required to perform 23 logic functions of the SBOX logic and
10 instructions are needed (for 2 operand XORs) for the 10
XOR functions comprising the L. transform. Such perfor-
mance can be improved.

According to one embodiment, new instructions and data
paths are defined that operate on 4 bit nibbles and pairs of
nibbles to perform the SBOX and L-Transform functions
using the 256 bitYMM registers in register file 208. In such an

US 9,270,460 B2

5

embodiment, new instructions JH_SBOX_L and JH_PD are
implemented to accelerate the JH algorithm.

In one embodiment, JH_SBOX_L creates an instruction
and data path to implement 64 S-Box mappings and 32 L
Transforms on one-fourth of the JH state. In a further embodi-
ment, JH_SBOX_L is defined as JH_SBOX_L YMMO,
YMM1, YMM2, where YMMO is the 256 bit section destina-
tion/result, YMMI1 is the 256-bit section source and YMM2 is
the 64 bits of constants for the S-Box0/S-Box1 selection.

FIG. 5A is a flow diagram illustrating one embodiment of
a process preformed by the JH_SBOX_L instruction. In one
embodiment, the 1024 state bits are organized consecutively
as represented in the JH specification from 0 to 1023 in four
YMM registers. In such an embodiment, the registers are
organized as follows: YMMO(0:255); YMM1(256:511);
YMM2(512:767), YMM3(768:1023). In a further embodi-
ment, YMMO(0:3) includes SBOX0, YMMO(4:7) includes
SBOX1, YMMO(8:11) includes SBOX2 continuing to
YMM3(252:255) representing state bits 1020 to 1023.

At processing block 510, a 256-bit section representing Y4
of the state bits is retrieved from one of registers YMMO-
YMM3. At processing block 520, the S-Box and L transforms
are performed on the retrieved state bits. At processing block
530 the 256-bit results of the transforms are stored in a des-
tination register. The JH_SBOX_L instruction is executed
four times to complete a round of S-Box and L transforms for
the full JH state.

The JH_PD instruction and data path perform the Permu-
tation step P, for each of the YMM registers that hold one-
fourth of the JH state. In one embodiment, the JH_PD instruc-
tion is defined as JH_PD YMMdest, YMMsrcl, YMMsrc2,
imm, where YMMdest is the P, permuted Y4 of the state,
YMMsrcl is one pre-permuted %4 section of the JH state,
YMMsrc2 is a second pre-permuted V4 section of the JH state,
and imm=0-3 specifies the first, second, third, and fourth
sections.

FIG. 5B is a flow diagram illustrating one embodiment of
aprocess preformed by the JH_PD instruction. At processing
block 550, two pre-permuted % sections of the JH state are
retrieved. At processing block 560, the permutation process is
performed for the retrieved bits. In one embodiment, a first
permutation section (represented by imm0) includes a per-
mutation that is performed on YMM1 and YMM2. At pro-
cessing block 570, the results of the permutation are stored in
the specified destination register.

The JH_PD instruction is repeated four times to complete
a round of permutations, where imm in each subsequent
execution designates which V4 section the permutation is to be
performed. For instance,

YMM1<YMMI1, YMM2 imm=0

YMM2<-YMM3, YMM4 imm=1

YMM3<-YMMI1, YMM2 imm=2

YMM4<-YMM3, YMM4 imm=3

Such that a second permutation section (represented by
imml) includes a permutation that is performed on YMM3
and YMM4. Similarly, a third permutation section (repre-
sented by imm?2) includes a permutation that is performed on
YMM1 and YMM?2 and a fourth permutation section (repre-
sented by imm3) includes a permutation that is performed on
YMM3 and YMM4.

The JH_PD instruction uses the key property that when
partitioning the JH state into four sections, the result ofthe P,
permute for each section is determined from state bits in only
two sections of the JH state. Referring back to FIG. 4, it can
be observed that if a,, a,, a,, a, are the nibbles in the first 1/4;
a,, as, a4, a, are the nibbles in the first 24; ag, ay, a; , a;; arethe
nibbles in the first 3%4; and a, ,, a, 5, a4, a, 5 are the nibbles in

10

15

20

25

30

35

40

45

50

55

60

65

6

the first 44of the JH state prior to permute, then a,, a;, a,, a,
permutes to by, by, b,, b, (e.g., section 1 output is obtained
from section 1 and section 2 input), ag, a,,, a, 5, a, s permutes
to by, bs, b, b, (e.g., section 2 output is obtained from section
3 and section 4 input), a,,,a,, as, as permutesto bg, by, b, b,
(e.g., section 3 output is obtained from section 1 and section
2 input), and a, ,, ag, a,,, a,; permutes to b ,, b;5, b4, bas
(e.g., section 4 output is obtained from section 3 and section
4 input).

The implementation of the JH_SBOX_[. and JH_PD
instructions discards with having to perform the excessive
computations associated with bit-slice processing.

In an alternative embodiment, instructions are specified for
the S-Box and L transform functions. In such an embodiment,
the Pd permute is accomplished without a new instruction by
partitioning the odd S-Box nibbles into two 256 bit YMM
registers and the even S-Box nibbles into two 256 bit YMM
registers and performing a swapping algorithm on the even
S-Box registers to pair the appropriate 4-bit S-Box sections
for the L calculation of the subsequent JH round.

Similar to the bit-slice mechanism for permutes, the swap-
ping algorithm avoids building a JH_PD instruction similar to
that described above. Thus, odd S-Box calculations are put
into position to work with the proper even S-Box calculation
for the next round. This is done with swapping permutations
that repeat six times, resulting in all bits returning to their
original position.

The swapping rounds include:

Round 0 mod7: swap adjacent even nibbles (odd/even

nibbles i, i+1);

Round 1 mod7 swap even nibble pairs;

Round 2 mod7 swap even groups of 4 nibbles;

Round 3 mod7 swap even groups of 8 nibbles;

Round 4 mod7 swap even groups of 16 nibbles;

Round 5 mod7 swap even groups of 32 nibbles; and

Round 6 mod7 swap even groups of 64 nibbles.

According to one embodiment, three new instructions are
implemented for this approach. These instructions include a
JH_SBOX instruction performed on YMMI1, YMM2,
YMM3,YMM4, a JH_LTRANSFORM_ODD instruction to
process the L transform for two YMM registers with odd
nibbles, and a JH_ITRANSFORM_EVEN to process the L
transform for two YMM registers with even nibbles. In this
embodiment, the 1024 bits of JH state are stored as follows:
YMMI1-odd nibbles 1-64, YMM2-odd nibbles 65-128,
YMM3-even nibbles 1-64 and YMM4-even nibbles 65-128.

FIG. 6 illustrates one embodiment of a round implement-
ing the JH_SBOX, JH_LTRANSFORM_ODD and JH_L-
TRANSFORM_EVEN instructions to perform the JH algo-
rithm. At processing block 610, a JH_SBOX YMM1, YMM2
(constants) odd nibbles low instruction is executed to perform
S-Box mapping for odd nibbles 1-64 stored in YMM?2. In one
embodiment, the constants are 128-bit values that select the
S-Box function s1 or sO for each nibble. The constants will be
loaded into a YMM register prior to the JH_S-Box instruction
so that the instruction will appear as JH_SBOX YMMI,
YMM2.

At processing block 620, a JH_SBOX YMMI1, YMMn
(constants) odd nibbles high instruction is executed to per-
form S-Box mapping for odd nibbles 65-128 stored in
YMM2. At processing block 630, a JH_SBOX YMM3,
YMMn (constants) even nibbles low instruction is executed
to perform S-Box mapping for even nibbles 1-64 stored in
YMM3. At processing block 640, a JH_SBOX YMM4,
YMMn constants even nibbles high instruction is executed to
perform S-Box mapping for even nibbles 65-128 stored in
YMM4. At processing block 650, a JH_LTRANS-

US 9,270,460 B2

7
FORM_EVEN YMM3, YMMI1 instruction is executed to
perform an L transform operation on nibbles 1-64. At pro-
cessing block 660, a JH_L.TRANSFORM_EVEN YMM4,
YMM2 instruction is executed to perform an L. transform
operation on nibbles 65-128.

In one embodiment, the L transform is executed for the
even nibbles first in order to perform the permute on the even
nibbles while the L transform is being preformed for the odd
nibbles. At processing block 660, a JH_LTRANSFOR-
M_ODD YMM1, YMM3 instruction is executed to perform
an L transform operation on nibbles 1-64. At processing block
660, a JH_ LTRANSFORM_ODD YMM?2, YMM4 instruc-
tion is executed to perform an L transform operation on
nibbles 65-128.

In one embodiment, the Permutes for even nibbles in
rounds 0 to 4 (mod7) are identical to the bit-slice permute for
rounds 2 to 6. Round 5 is a swap of 128 bits within a 256 bit
YMM, and round 6 is a swap of 256 bit even YMM registers
which can be done with zero instructions by altering the code
for alternate mod7 passes of the rounds. In a further embodi-
ment, the JH_SBOX instruction maps the nibble S-Box func-
tion and can complete in a 3-cycle pipe. The JH_TRANS-
FORM instructions also complete in a 3_cycle pipe.

The permute of the even YMM registers takes 4 instruc-
tions or 2 cycles per round on average with 2 SIMD ports: 2
times 5 instructions for adjacent nibbles round 0, 2 times 3
instructions for groups of 8 and 16 rounds 1 and 2, 2 times
shuftle groups of 32 and 64 for rounds 3 and 4. 2 times 1
vperm128 for groups of 128 for round 5 and 0 for the group of
256, ful YMM register renaming. FIG. 7 illustrates two of 42
rounds of JH using the above-described instructions.

Exemplary Register Architecture—FI1G. 8

FIG. 8is ablock diagram illustrating a register architecture
800 according to one embodiment of the invention. The reg-
ister files and registers of the register architecture are listed
below:

Vector register file 810—in the embodiment illustrated,
there are 32 vector registers that are 512 bits wide; these
registers are referenced as zmmO through zmm31. The lower
order 856 bits of the lower 16 zmm registers are overlaid on
registers ymmO-16. The lower order 128 bits of the lower 16
zmm registers (the lower order 128 bits of the ymm registers)
are overlaid on registers xmmO0-15.

Write mask registers 815—in the embodiment illustrated,
there are 8 write mask registers (kO through k7), each 64 bits
in size. In one embodiment of the invention the vector mask
register kO cannot be used as a write mask; when the encoding
that would normally indicate kO is used for a write mask, it
selects a hardwired write mask of OxFFFF, effectively dis-
abling write masking for that instruction.

Multimedia Extensions Control Status Register (MXCSR)
1020—in the embodiment illustrated, this 32-bit register pro-
vides status and control bits used in floating-point operations.

General-purpose registers 825—in the embodiment illus-
trated, there are sixteen 64-bit general-purpose registers that
are used along with the existing x86 addressing modes to
address memory operands. These registers are referenced by
the names RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP, and
R8 through R15.

Extended flags (EFLAGS) register 830—in the embodi-
ment illustrated, this 32 bit register is used to record the
results of many instructions.

Floating Point Control Word (FCW) register 835 and
Floating Point Status Word (FSW) register 840—in the
embodiment illustrated, these registers are used by x87
instruction set extensions to set rounding modes, exception

10

15

20

25

30

35

40

45

50

55

60

65

8

masks and flags in the case of the FCW, and to keep track of
exceptions in the case of the FSW.

Scalar floating point stack register file (x87 stack) 845 on
which is aliased the MMX packed integer flat register file
1050—in the embodiment illustrated, the x87 stack is an
eight-element stack used to perform scalar floating-point
operations on 32/64/80-bit floating point data using the x87
instruction set extension; while the MMX registers are used to
perform operations on 64-bit packed integer data, as well as to
hold operands for some operations performed between the
MMX and XMM registers.

Segment registers 855—in the illustrated embodiment,
there are six 16 bit registers use to store data used for seg-
mented address generation.

RIPregister 865—in the illustrated embodiment, this 64 bit
register that stores the instruction pointer.

Alternative embodiments of the invention may use wider or
narrower registers. Additionally, alternative embodiments of
the invention may use more, less, or different register files and
registers.

Exemplary In-Order Processor Architecture—FIGS.
6A-6B

FIGS. 9A and B illustrate a block diagram of an exemplary
in-order processor architecture. These exemplary embodi-
ments are designed around multiple instantiations of an in-
order CPU core that is augmented with a wide vector proces-
sor (VPU). Cores communicate through a high-bandwidth
interconnect network with some fixed function logic,
memory [/O interfaces, and other necessary 1/O logic,
depending on the application. For example, an implementa-
tion of this embodiment as a stand-alone GPU would typi-
cally include a PCle bus.

FIG. 9A is a block diagram of a single CPU core, along
with its connection to the on-die interconnect network 902
and with its local subset of the level 2 (1.2) cache 904, accord-
ing to embodiments of the invention. An instruction decoder
900 supports the x86 instruction set with an extension. While
in one embodiment of the invention (to simplify the design) a
scalar unit 908 and a vector unit 910 use separate register sets
(respectively, scalar registers 912 and vector registers 914)
and data transferred between them is written to memory and
then read back in from a level 1 (I.1) cache 906, alternative
embodiments of the invention may use a different approach
(e.g., use a single register set or include a communication path
that allow data to be transferred between the two register files
without being written and read back).

The L1 cache 906 allows low-latency accesses to cache
memory into the scalar and vector units. Together with load-
op instructions in the vector friendly instruction format, this
means that the L1 cache 906 can be treated somewhat like an
extended register file. This significantly improves the perfor-
mance of many algorithms.

The local subset of the 1.2 cache 904 is part of a global 1.2
cache that is divided into separate local subsets, one per CPU
core. Each CPU has a directaccess path to its own local subset
of'the [.2 cache 904. Data read by a CPU core is stored in its
L2 cache subset 904 and can be accessed quickly, in parallel
with other CPUs accessing their own local 1.2 cache subsets.
Data written by a CPU core is stored in its own [.2 cache
subset 904 and is flushed from other subsets, if necessary. The
ring network ensures coherency for shared data.

FIG. 9Bis an exploded view of part of the CPU core in FIG.
9A according to embodiments of the invention. FIG. 9B
includes an [.1 data cache 906 A part of the L1 cache 904, as
well as more detail regarding the vector unit 910 and the
vector registers 1114. Specifically, the vector unit 910 is a
16-wide vector processing unit (VPU) (see the 16-wide ALU

US 9,270,460 B2

9

928), which executes integer, single-precision float, and
double-precision float instructions. The VPU supports swiz-
zling the register inputs with swizzle unit 920, numeric con-
version with numeric convert units 922A-B, and replication
with replication unit 924 on the memory input. Write mask
registers 926 allow predicating the resulting vector writes.

Register data can be swizzled in a variety of ways, e.g. to
support matrix multiplication. Data from memory can be
replicated across the VPU lanes. This is a common operation
in both graphics and non-graphics parallel data processing,
which significantly increases the cache efficiency.

The ring network is bi-directional to allow agents such as
CPU cores, L2 caches and other logic blocks to communicate
with each other within the chip. Each ring data-path is 1012-
bits wide per direction.

Exemplary Out-of-Order Architecture—FIG. 7

FIG. 10 is a block diagram illustrating an exemplary out-
of-order architecture according to embodiments of the inven-
tion. Specifically, FIG. 10 illustrates a well-known exemplary
out-of-order architecture that has been modified to incorpo-
rate the vector friendly instruction format and execution
thereof. In FIG. 10 arrows denote a coupling between two or
more units and the direction of the arrow indicates a direction
of data flow between those units. FIG. 10 includes a front end
unit 1005 coupled to an execution engine unit 1010 and a
memory unit 1015; the execution engine unit 1010 is further
coupled to the memory unit 1015.

The front end unit 1005 includes a level 1 (L1) branch
prediction unit 1020 coupled to a level 2 (L2) branch predic-
tionunit 1022. The [.1 and .2 brand prediction units 1020 and
1022 are coupled to an L1 instruction cache unit 1024. The [.1
instruction cache unit 1024 is coupled to an instruction trans-
lation lookaside buffer (TLB) 1026 which is further coupled
to an instruction fetch and predecode unit 1028. The instruc-
tion fetch and predecode unit 1028 is coupled to an instruction
queue unit 1030 which is further coupled a decode unit 1032.
The decode unit 1032 comprises a complex decoderunit 1034
and three simple decoder units 1036, 1038, and 1040. The
decode unit 1032 includes a micro-code ROM unit 1042. The
decode unit 7 may operate as previously described above in
the decode stage section. The L1 instruction cache unit 1024
is further coupled to an [.2 cache unit 1048 in the memory unit
1015. The instruction TLB unit 1026 is further coupled to a
second level TLB unit 1046 in the memory unit 1015. The
decode unit 1032, the micro-code ROM unit 1042, and a loop
stream detector unit 1044 are each coupled to a rename/
allocator unit 1056 in the execution engine unit 1010.

The execution engine unit 1010 includes the rename/allo-
cator unit 1056 that is coupled to a retirement unit 1074 and a
unified scheduler unit 1058. The retirement unit 1074 is fur-
ther coupled to execution units 1060 and includes a reorder
buffer unit 1078. The unified scheduler unit 1058 is further
coupled to a physical register files unit 1076 which is coupled
to the execution units 1060. The physical register files unit
1076 comprises a vector registers unit 1077 A, a write mask
registers unit 10778, and a scalar registers unit 1077C; these
register units may provide the vector registers 510, the vector
mask registers 515, and the general purpose registers 825; and
the physical register files unit 1076 may include additional
register files not shown (e.g., the scalar floating point stack
register file 845 aliased on the MMX packed integer flat
register file 850). The execution units 1060 include three
mixed scalar and vector units 1062, 1064, and 1072; a load
unit 1066; a store address unit 1068; a store data unit 1070.
The load unit 1066, the store address unit 1068, and the store
data unit 1070 are each coupled further to a data TLB unit
1052 in the memory unit 1015.

5

10

15

20

25

30

40

45

50

55

60

65

10

The memory unit 1015 includes the second level TLB unit
1046 which is coupled to the data TLB unit 1052. The data
TLB unit 1052 is coupled to an [.1 data cache unit 1054. The
L1 data cache unit 1054 is further coupled to an .2 cache unit
1048. In some embodiments, the .2 cache unit 1048 is further
coupled to L3 and higher cache units 1050 inside and/or
outside of the memory unit 1015.

By way of example, the exemplary out-of-order architec-
ture may implement the process pipeline 8200 as follows: 1)
the instruction fetch and predecode unit 728 perform the fetch
and length decoding stages; 2) the decode unit 732 performs
the decode stage; 3) the rename/allocator unit 1056 performs
the allocation stage and renaming stage; 4) the unified sched-
uler 1058 performs the schedule stage; 5) the physical register
files unit 1076, the reorder buffer unit 1078, and the memory
unit 1015 perform the register read/memory read stage; the
execution units 1060 perform the execute/data transform
stage; 6) the memory unit 1015 and the reorder buffer unit
1078 perform the write back/memory write stage 1960; 7) the
retirement unit 1074 performs the ROB read stage; 8) various
units may be involved in the exception handling stage; and 9)
the retirement unit 1074 and the physical register files unit
1076 perform the commit stage.

Exemplary Computer Systems and Processors—FIGS.
8-10

FIGS. 11-13 are exemplary systems suitable for including
the processor 101. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs, per-
sonal digital assistants, engineering workstations, servers,
network devices, network hubs, switches, embedded proces-
sors, digital signal processors (DSPs), graphics devices,
video game devices, set-top boxes, micro controllers, cell
phones, portable media players, hand held devices, and vari-
ous other electronic devices, are also suitable. In general, a
huge variety of systems or electronic devices capable of
incorporating a processor and/or other execution logic as
disclosed herein are generally suitable.

Referring now to FIG. 11, shown is a block diagram of a
system 1100 in accordance with one embodiment of the
invention. The system 1100 may include one or more proces-
sors 1110, 1115, which are coupled to graphics memory
controller hub (GMCH) 1120. The optional nature of addi-
tional processors 1115 is denoted in FIG. 11 with broken
lines.

Each processor 1110, 1115 may be some version of pro-
cessor 1100. However, it should be noted that it is unlikely
that integrated graphics logic and integrated memory control
units would exist in the processors 1110 and 1115.

FIG. 11 illustrates that the GMCH 1120 may be coupled to
amemory 1140 that may be, for example, a dynamic random
access memory (DRAM). The DRAM may, for at least one
embodiment, be associated with a non-volatile cache.

The GMCH 1120 may be a chipset, or a portion of a
chipset. The GMCH 1120 may communicate with the pro-
cessor(s) 1110, 1115 and control interaction between the
processor(s) 1110, 1115 and memory 1140. The GMCH 1120
may also act as an accelerated bus interface between the
processor(s) 1110, 1115 and other elements of the system
1100. For at least one embodiment, the GMCH 1120 com-
municates with the processor(s) 1110, 1115 via a multi-drop
bus, such as a frontside bus (FSB) 1195.

Furthermore, GMCH 1120 is coupled to a display 1145
(such as a flat panel display). GMCH 1120 may include an
integrated graphics accelerator. GMCH 1120 is further
coupled to an input/output (I/O) controller hub (ICH) 1150,
which may be used to couple various peripheral devices to
system 1100. Shown for example in the embodiment of FIG.

US 9,270,460 B2

11

11 is an external graphics device 860, which may be a discrete
graphics device coupled to ICH 1150, along with another
peripheral device 1170.

Alternatively, additional or different processors may also
be present in the system 1100. For example, additional pro-
cessor(s) 1115 may include additional processors(s) that are
the same as processor 1110, additional processor(s) that are
heterogeneous or asymmetric to processor 1110, accelerators
(such as, e.g., graphics accelerators or digital signal process-
ing (DSP) units), field programmable gate arrays, or any other
processor. There can be a variety of differences between the
physical resources 1110, 1115 in terms of a spectrum of
metrics of merit including architectural, micro-architectural,
thermal, power consumption characteristics, and the like.
These differences may effectively manifest themselves as
asymmetry and heterogeneity amongst the processing ele-
ments 1110, 1115. For at least one embodiment, the various
processing elements 1110, 1115 may reside in the same die
package.

Referring now to FIG. 9, shown is a block diagram of a
second system 1200 in accordance with an embodiment of the
present invention. As shown in FIG. 12, multiprocessor sys-
tem 1200 is a point-to-point interconnect system, and
includes a first processor 1270 and a second processor 1280
coupled via a point-to-point interconnect 1250. As shown in
FIG. 12, each of processors 1270 and 1280 may be some
version of the processor 101.

Alternatively, one or more of processors 1270, 1280 may
be an element other than a processor, such as an accelerator or
a field programmable gate array.

While shown with only two processors 1270, 1280, it is to
be understood that the scope of the present invention is not so
limited. In other embodiments, one or more additional pro-
cessing elements may be present in a given processor.

Processor 1270 may further include an integrated memory
controller hub (IMC) 1272 and point-to-point (P-P) interfaces
1276 and 1278. Similarly, second processor 1280 may
include a IMC 1282 and P-P interfaces 1286 and 1288. Pro-
cessors 1270, 1280 may exchange data via a point-to-point
(PtP) interface 1250 using PtP interface circuits 1278, 1288.
As shown in FIG. 12, IMC’s 1272 and 1282 couple the
processors to respective memories, namely a memory 1242
and a memory 1244, which may be portions of main memory
locally attached to the respective processors.

Processors 1270, 1280 may each exchange data with a
chipset 1290 via individual P-P interfaces 1252, 1254 using
point to point interface circuits 1276, 1294, 1286, and 1298.
Chipset 1290 may also exchange data with a high-perfor-
mance graphics circuit 938 via a high-performance graphics
interface 1239.

A shared cache (not shown) may be included in either
processor outside of both processors, yet connected with the
processors via P-P interconnect, such that either or both pro-
cessors’ local cache information may be stored in the shared
cache if'a processor is placed into a low power mode. Chipset
1290 may be coupled to a first bus 1216 via an interface 1296.
In one embodiment, first bus 916 may be a Peripheral Com-
ponent Interconnect (PCI) bus, or a bus such as a PCI Express
bus or another third generation I/O interconnect bus, although
the scope of the present invention is not so limited.

As shown in FIG. 12, various /O devices 1214 may be
coupled to first bus 1216, along with a bus bridge 1218 which
couples first bus 1216 to a second bus 1220. In one embodi-
ment, second bus 1220 may be a low pin count (LPC) bus.
Various devices may be coupled to second bus 1220 includ-
ing, for example, a keyboard/mouse 1222, communication
devices 1226 and a data storage unit 1228 such as a disk drive

10

15

20

25

30

35

40

45

50

55

60

65

12

or other mass storage device which may include code 1230, in
one embodiment. Further, an audio /O 1224 may be coupled
to second bus 1220. Note that other architectures are possible.
For example, instead of the point-to-point architecture of
FIG. 12, a system may implement a multi-drop bus or other
such architecture.

Referring now to FIG. 13, shown is a block diagram of a
third system 1300 in accordance with an embodiment of the
present invention. Like elements in FIGS. 12 and 13 bear like
reference numerals, and certain aspects of FIG. 12 have been
omitted from FIG. 13 in order to avoid obscuring other
aspects of FIG. 13.

FIG. 13 illustrates that the processing elements 1270, 1280
may include integrated memory and I/O control logic (“CL”)
1272 and 1282, respectively. For at least one embodiment, the
CL 1272, 1282 may include memory controller hub logic
(IMC). In addition, CL. 1272, 1282 may also include 1/O
control logic. FIG. 10 illustrates that not only are the memo-
ries 1242, 1244 coupled to the CL 1272, 1282, but also that
1/0O devices 1214 are also coupled to the control logic 1272,
1282. Legacy 1/O devices 1215 are coupled to the chipset
1290.

Referring now to FIG. 14, shown is a block diagram of a
SoC 1400 in accordance with an embodiment of the present
invention. Similar elements in FIG. 15 bear like reference
numerals. Also, dashed lined boxes are optional features on
more advanced SoCs. In FIG. 14, an interconnect unit(s) 1402
is coupled to: an application processor 1410 which includes a
set of one or more cores 1402A-N and shared cache unit(s)
1406; a system agent unit 1410; a bus controller unit(s) 1414;
an integrated memory controller unit(s) 1414; a set or one or
more media processors 1420 which may include integrated
graphics logic 1408, an image processor 1424 for providing
still and/or video camera functionality, an audio processor
1426 for providing hardware audio acceleration, and a video
processor 1428 for providing video encode/decode accelera-
tion; an static random access memory (SRAM) unit 1430; a
direct memory access (DMA) unit 1432; and a display unit
1440 for coupling to one or more external displays.

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combina-
tion of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or pro-
gram code executing on programmable systems comprising
at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least
one input device, and at least one output device.

Program code may be applied to input data to perform the
functions described herein and generate output information.
The output information may be applied to one or more output
devices, in known fashion. For purposes of this application, a
processing system includes any system that has a processor,
such as, for example; a digital signal processor (DSP), a
microcontroller, an application specific integrated circuit
(ASIC), or a microprocessor.

The program code may be implemented in a high level
procedural or object oriented programming language to com-
municate with a processing system. The program code may
also be implemented in assembly or machine language, if
desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes

US 9,270,460 B2

13

the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the logic
O processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type of
disk including floppy disks, optical disks (compact disk read-
only memories (CD-ROMs), compact disk rewritables (CD-
RWs)), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), magnetic or optical cards, or any
other type of media suitable for storing electronic instruc-
tions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions the vector friendly instruction format or contain-
ing design data, such as Hardware Description Language
(HDL), which defines structures, circuits, apparatuses, pro-
cessors and/or system features described herein. Such
embodiments may also be referred to as program products.

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a target
instruction set. For example, the instruction converter may
translate (e.g., using static binary translation, dynamic binary
translation including dynamic compilation), morph, emulate,
or otherwise convert an instruction to one or more other
instructions to be processed by the core. The instruction con-
verter may be implemented in software, hardware, firmware,
ora combination thereof. The instruction converter may be on
processor, off processor, or part on and part off processor.

FIG. 16 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention. In the illustrated
embodiment, the instruction converter is a software instruc-
tion converter, although alternatively the instruction con-
verter may be implemented in software, firmware, hardware,
or various combinations thereof.

FIG. 16 shows a program in a high level language 1602
may be compiled using an x86 compiler 1604 to generate x86
binary code 1606 that may be natively executed by a proces-
sor with at least one x86 instruction set core 1616 (it is assume
that some of the instructions that were compiled are in the
vector friendly instruction format). The processor with at
least one x86 instruction set core 1816 represents any proces-
sor that can perform substantially the same functions as a Intel
processor with at least one x86 instruction set core by com-
patibly executing or otherwise processing (1) a substantial
portion of the instruction set of the Intel x86 instruction set
core or (2) object code versions of applications or other soft-
ware targeted to run on an Intel processor with at least one x86
instruction set core, in order to achieve substantially the same
result as an Intel processor with at least one x86 instruction set
core. The x86 compiler 1804 represents a compiler that is
operable to generate x86 binary code 1606 (e.g., object code)
that can, with or without additional linkage processing, be
executed on the processor with at least one x86 instruction set
core 1616. Similarly, FIG. 90 shows the program in the high
level language 1602 may be compiled using an alternative

20

25

40

45

55

14

instruction set compiler 1608 to generate alternative instruc-
tion set binary code 1610 that may be natively executed by a
processor without at least one x86 instruction set core 1614
(e.g., aprocessor with cores that execute the MIPS instruction
set of MIPS Technologies of Sunnyvale, Calif. and/or that
execute the ARM instruction set of ARM Holdings of Sunny-
vale, Calif.). The instruction converter 1612 is used to convert
the x86 binary code 1606 into code that may be natively
executed by the processor without an x86 instruction set core
1614. This converted code is not likely to be the same as the
alternative instruction set binary code 1610 because an
instruction converter capable of'this is difficult to make; how-
ever, the converted code will accomplish the general opera-
tion and be made up of instructions from the alternative
instruction set. Thus, the instruction converter 1612 repre-
sents software, firmware, hardware, or a combination thereof
that, through emulation, simulation or any other process,
allows a processor or other electronic device that does not
have an x86 instruction set processor or core to execute the
x86 binary code 1606.

Certain operations of the instruction(s) may be performed
by hardware components and may be embodied in machine-
executable instructions that are used to cause, or at least result
in, a circuit or other hardware component programmed with
the instructions performing the operations. The circuit may
include a general-purpose or special-purpose processor, or
logic circuit, to name just a few examples. The operations
may also optionally be performed by a combination of hard-
ware and software. Execution logic and/or a processor may
include specific or particular circuitry or other logic respon-
sive to a machine instruction or one or more control signals
derived from the machine instruction to store an instruction
specified result operand. For example, embodiments of the
instruction(s) disclosed herein may be executed in one or
more the systems of embodiments of the instruction(s) in the
vector friendly instruction format may be stored in program
code to be executed in the systems. Additionally, the process-
ing elements of these figures may utilize one of the detailed
pipelines and/or architectures (e.g., the in-order and out-of-
order architectures) detailed herein. For example, the
decode unit of the in-order architecture may decode the
instruction(s), pass the decoded instruction to a vector or
scalar unit, etc.

The above description is intended to illustrate preferred
embodiments of the present invention. From the discussion
above it should also be apparent that especially in such an area
of'technology, where growth is fast and further advancements
are not easily foreseen, the invention can may be modified in
arrangement and detail by those skilled in the art without
departing from the principles of the present invention within
the scope of the accompanying claims and their equivalents.
For example, one or more operations of a method may be
combined or further broken apart.

Alternative Embodiments

While embodiments have been described which would
natively execute the vector friendly instruction format, alter-
native embodiments of the invention may execute the vector
friendly instruction format through an emulation layer run-
ning on a processor that executes a different instruction set
(e.g., a processor that executes the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif., a processor that
executes the ARM instruction set of ARM Holdings of
Sunnyvale, Calif.). Also, while the flow diagrams in the fig-
ures show a particular order of operations performed by cer-
tain embodiments of the invention, it should be understood
that such order is exemplary (e.g., alternative embodiments
may perform the operations in a different order, combine
certain operations, overlap certain operations, etc.).

US 9,270,460 B2

15

In the description above, for the purposes of explanation,
numerous specific details have been set forth in order to
provide a thorough understanding of the embodiments of the
invention. It will be apparent however, to one skilled in the art,
that one or more other embodiments may be practiced with-
out some of these specific details. The particular embodi-
ments described are not provided to limit the invention but to
illustrate embodiments of the invention. The scope of the
invention is not to be determined by the specific examples
provided above but only by the claims below.

What is claimed is:

1. A method of performing a JH algorithm in a computer
processor, comprising:

storing JH state bits in a plurality of registers;

decoding one or more instructions of a first and a second

type;

executing one or more decoded instructions of the first type

to perform S-Box mappings and a linear (L) transforma-
tion on a JH state, by
executing an instruction of the first type a first time to
perform the S-Box mappings and the L transforma-
tion on a first component of the JH state stored in a
first source register and store the results in a first
destination register as first JH state results,
executing an instruction of the first type a second time to
perform the S-Box mappings and the L transforma-
tion on a second component of the JH state stored in a
second source register and store the results in a second
destination register as second JH state results,
executing an instruction of the first type a third time to
perform the S-Box mappings and the L transforma-
tion on a third component of the JH state stored in a
third source register and store the results in a third
destination register as third JH state results, and
executing an instruction of the first type a fourth time to
perform the S-Box mappings and the L transforma-
tion on a fourth component of the JH state stored in a
fourth source register and store the results in a fourth
destination register as fourth JH state results, wherein
an execution of an instruction of the first type per-
forms 64 S-box mappings and 32 L transformations
on a quarter of the JH state and a format of the instruc-
tion of the first type includes a source vector register
operand, a destination vector register operand, and an
operand to store constraints for S-box selection; and
executing one or more decoded instructions of the second
type to perform a permutation function on the JH state
once the S-Box mappings and the L transformation have
been performed by one or more instructions of the first
type by retrieving JH state results from two of the des-
tination registers and

performing a permutation function on the JH state results

from the two destination registers.

2. The method of claim 1 wherein performing the permu-
tation function comprises:

performing a first permutation function on the first JH state

results and the second JH results;

performing a second permutation function on the third JH

state results and the fourth JH results;

performing a third permutation function on the first JH

state results and the second JH results; and

performing a fourth permutation function on the third JH

state results and the fourth JH results.

3. An apparatus comprising:

a plurality of data registers;

a decode unit to decode instructions of a first and a second

type; and

10

15

20

25

30

35

40

45

50

60

65

16

an execution unit coupled with the plurality of the data
registers, to execute one or more instructions of the first
type to perform S-Box mappings and a linear (L) trans-
formation on a JH state and one or more instructions of
the second type to perform a permutation function on the
JH state once the S-Box mappings and the L. transfor-
mation have been performed by one or more instructions
of'the first type, wherein an execution of an instruction of
the first type performs 64 S-box mappings and 32 L
transformations on a quarter of the JH state and a format
of the instruction of the first type includes a source
vector register operand, a destination vector register
operand, and an operand to store constraints for S-box
selection,

wherein the execution unit to store the results of the first

execution of the instruction of a first type in a first
destination register as first JH state results, stores the
results of the second execution of the instruction of a first
type in a second destination register as second JH state
results, stores the results of the third execution of the
instruction of a first type of in a third destination register
as third JH state results and stores the results of the
fourth execution of the instruction of a first type of
instruction in a fourth destination register as fourth JH
state results,

wherein the execution unit to execute an instruction of a

first type a first time to perform the S-Box mappings and
the L transformation on a first component of the JH state
stored in a first source register, a second time to perform
the S-Box mappings and the L transformation on a sec-
ond component of the JH state stored in a second source
register, a third time to perform the S-Box mappings and
the L transformation on a third component of the JH state
stored in a third source register and a fourth time to
perform the S-Box mappings and the L transformation
on a fourth component of the JH state stored in a fourth
source register, and

wherein the execution unit to retrieve JH state results from

two of the destination registers and perform the permu-
tation function on the JH state results from the two
destination registers.

4. The apparatus of claim 3 wherein the execution unit to
perform a first permutation function on the first JH state
results and the second JH results, perform a second permuta-
tion function on the third JH state results and the fourth JH
results, perform a third permutation function on the first JH
state results and the second JH results, and perform a fourth
permutation function on the third JH state results and the
fourth JH results.

5. An article of manufacture comprising:

anon-transitory machine-readable storage medium includ-

ing one or more solid data storage materials, the
machine-readable storage medium storing instructions,
which when executed causes a processor to:

store JH state bits in a plurality of registers;

decode one or more instructions of a first and a second type;

execute one or more instructions of the first type to perform

S-Box mappings and a linear (L) transformation on a JH
state, wherein an execution of an instruction of the first
type performs 64 S-box mappings and 32 L. transforma-
tions on a quarter of the JH state and a format of the
instruction of the first type includes a source vector
register operand, a destination vector register operand,
and an operand to store constraints for S-box selection;
and

US 9,270,460 B2

17

execute one or more instructions of a second type to per-
form a permutation function on the JH state once the
S-Box mappings and the L transformation have been
performed by
performing a first permutation function on the first JH
state results and the second JH results,
performing a second permutation function on the third
JH state results and the fourth JH results,
performing a third permutation function on the first JH
state results and the second JH results, and
performing a fourth permutation function on the third JH
state results and the fourth JH results.
6. A method of performing a process-in a computer pro-
cessor, comprising:
storing a first set of odd nibbles of JH state in a first register;
storing a second set of odd nibbles of JH state in a second
register;
storing a first set of even nibbles of JH state in a third
register;
storing a second set of even nibbles of JH state in a fourth
register;
decoding one or more instructions of a first and a second
type;
executing one or more decoded instructions of a first type
to perform S-Box mappings on a JH state by
executing the instruction of a first type a first time to
perform the S-Box mappings on the first set of odd
nibbles and store the results in a first destination reg-
ister as first odd nibbles results,
executing the instruction of a first type a second time to
perform the S-Box mappings on the second set of odd
nibbles and store the results in a second destination
register as second odd nibbles results,

10

15

20

25

30

18

executing the instruction of a first type a third time to
perform the S-Box mappings on the first set of even
nibbles and store the results in a third destination
register as first even nibbles results, and
executing the instruction of a first type a fourth time to
perform the S-Box mappings on the second set of
even nibbles and store the results in a fourth destina-
tion register as second even nibbles results; and
executing one or more decoded instructions of a second
type to perform a linear (L) transformation on the S-Box
mappings of the JH state by
performing a first L. transformation on the first even
nibbles results,
performing a second L transformation on the second
even nibbles results,
performing a third L. transformation on the first odd
nibbles results, and
performing a fourth L. transformation on the second odd
nibbles results; and
executing one or more decoded instructions of a third type
to perform a permutation function by retrieving JH state
results from two of the destination registers and per-
forming a permutation function on the JH state results
from the two destination registers.
7. The method of claim 6 further comprising performing a
swap operation performing the L. transformations.
8. The method of claim 6 wherein the swap operation
comprises one of swapping adjacent even nibbles, swapping
even nibble pairs, swapping even groups of 4 nibbles, swap-

ping even groups of 8 nibbles, swapping even groups of 16
nibbles, swapping even groups of 32 nibbles and swapping

even groups of 64 nibbles.

#* #* #* #* #*

