a2 United States Patent

Terry et al.

US009478059B2

US 9,478,059 B2
Oct. 25, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

ANIMATED AUDIOVISUAL EXPERIENCES
DRIVEN BY SCRIPTS

Applicant: PocketGems, Inc., San Francisco, CA
us)

Inventors: Daniel Terry, New York, NY (US);
Matthew J. Donahoe, Burlingame, CA
(US); Alan Lac, Berkeley, CA (US)

Assignee: PocketGems, Inc., San Francisco, CA
(US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/444,984
Filed: Jul. 28,2014

Prior Publication Data

US 2016/0027198 Al Jan. 28, 2016

Int. CL.

GO6T 13/20 (2011.01)

GO6T 13/80 (2011.01)

GO6F 17/30 (2006.01)

GO6T 13/40 (2011.01)

GO6F 17/28 (2006.01)

U.S. CL

CPC ... GO6T 13/80 (2013.01); GOGF 17/28

(2013.01); GOGF 17/30 (2013.01); GO6T 13/40
(2013.01); GO6T 2213/12 (2013.01)

Field of Classification Search
CPC GO6F 17/20; GO6F 17/30; GOGF 17/28;
GO6T 13/80; GO6T 13/40; GO6T 2213/12;
GO6T 13/205
See application file for complete search history.

Crient e A

106

\f/”\ﬂ\

/ i
Lo Netwok N

(56) References Cited

U.S. PATENT DOCUMENTS

8,856,748 B1* 10/2014 Larsen et al. 717/125
2004/0027352 Al* 2/2004 Minakuchi 345/473
2007/0146360 Al* 6/2007 Clatworthy et al. ... 345/419
2009/0300515 Al* 12/2009 Min et al. 715/751
2013/0124984 Al* 5/2013 Kuspa 715/255
2014/0089804 Al* 3/2014 Gazitetal. 715/723

OTHER PUBLICATIONS

“Banner Ad—AdMob Android Guides”, Google Inc, available in
2006. https://developers.google.com/mobile-ads-sdk/docs/admob/
android/banner.*

“Fruit Ninja”, published by Halfbrick Studios, released in 2010.
https://itunes.apple.com/us/app/fruit-ninja/id3629498457mt=8 .*
“Episode—Choose Your Story”, published by Episode Interactive,
Nov. 17, 2014. https://itunes.apple.com/us/app/episode-choose-
your-story/id656971078?mt=8 https://play.google.com/store/apps/
details?id=com.episodeinteractive.android.catalog&hl=en http://
www.amazon.com/gp/product/BO0IIY2DP0.*

App Annie, “Episode—Choose Your Story”, p. 1-4. https://www.
appannie.com/apps/ios/app/episode-choose-your-story/.*
PocketGems Inc., “Script Format”, p. 1-3. https://pg-story.appspot.
com/write/guides?active_guide=commands.*

(Continued)

Primary Examiner — Xiao Wu

Assistant Examiner — Chong Wu

(74) Attorney, Agent, or Firm — Hickman Palermo
Becker Bingham LLP; Malgorzata A. Kulczycka

(57) ABSTRACT

In an embodiment, a computerized method comprises
receiving a meta-language file comprising a conversion of a
script file in a natural language format, the script file
including a plurality of natural language statements; inter-
preting, by a first computing device, the meta-language file
to execute at least a first portion of the meta-language file;
dynamically generating and displaying, on the first comput-
ing device, one or more visually animated graphical ele-
ments in accordance with the execution of at least the first
portion of the meta-language file.

30 Claims, 14 Drawing Sheets

Clients 106

US 9,478,059 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

PocketGems Inc., “Master List of Directing Commands”, p. 1-5.
https://pg-story.appspot.com/write/guides?active
guide=commands.*

PocketGems Inc., “Play the Tutorial 17, line 1-87. https://pg-story.
appspot.com/write/story/TutorialStory 0x15gIRU/1.*
http://www.appannie.com/appshos/app/65697 1078 /rank-history/
#vtype=day&countries=CA&start=2013-07-29&end=2015-03-18
&device=iphone&view=rank&lm=If, publication date unknown,
last accessed on Mar. 18, 2015, 3 pages.

http://www.appannie.com/apps/google-play/publisher/
20200000443897/, publication date unknown, last accessed on Feb.
13, 2015, 2 pages.
http://www.appannie.com/appshos/publisher/best-top-free-fun-
games-inc/, publication date unknown, last accessed on Feb. 13,
2015, 2 pages.

Anonymous, screenshots of Campus Crush information submitted
to iTunes, publication date unknown, last accessed on Mar. 17,
2015, 3 pages.

Anonymous, screenshots of Campus Crush, publication date
unknown, last accessed on Mar. 17, 2015, 10 pages.

* cited by examiner

U.S. Patent

Oct. 25,2016 Sheet 1 of 14 US 9,478,059 B2

100

/

¥
<

Server
[Ts72 mie Database

L 104

-y

— -

S/ Netwark R

A=)

A\ S
i \\‘\ 7 gy
%gznt e S Client
NALia2 106d
//:
Client 106D Client 106¢
Interpreter interpreter -oxow
app |
y 4
Clients 1086

FIG. 1

US 9,478,059 B2

Sheet 2 of 14

Oct. 25, 2016

U.S. Patent

Z "Old

$67 Awugr

Z uo g Aog

FAYH
LONBUUOIUE 185

Vel
L yo g Aoig

06 sboq

174
S351] ‘se8jqel 'ea|y
ASD Busodaeng

Z 4o 'y Mg

902 S JBYI0

V¥ee
LU0 'y Aois

¥OT S8l ASD JaudeyD

.v..

UOIBZOWIU
JDRUOD §8800y

T7E MOIA GBAA

Jod i Wil

Yo g hioig

VeEe
LYo 'g g

EENA
Z deydeyn
Vate
L dzydeyD

317 g Aoig

g0ee
7 un 'y Aoig

viee
Loyo Yy A

20z saly NQST {Jeideys)

arie
z sodeyn

Yvid
L dendeyn

212 v Aaig

00 sofy 10uS

U.S. Patent Oct. 25, 2016 Sheet 3 of 14 US 9,478,059 B2

User inlerface component 300

Store component 310

Access conirol component 332

Test component 312

Character component 304

interpreter/render component 316

Translation component 308

SR
oy

FiG. 3

U.S. Patent

Oct. 25, 2016

Define character(s) 402

¥

Create a script in scripting language

404

¥

Automatically translate/transform
script 406

¥

Automatically translateftransform
character definitions 408

¥

Automatically test/check script and/or
transiatad filed 410

12

Provide test results

Sheet 4 of 14

400
V'

JR—

Receive file package 418

interpret file package at runtime 420

kd

Dynamically rendar/display animation
using file package at runtime 422

Y

Receive interaction with animation
{optional) 424

¥

Adjust animation in response to
interaction {optional} 426

FIG. 4

US 9,478,059 B2

U.S. Patent Oct. 25, 2016 Sheet 5 of 14 US 9,478,059 B2

500
502 7 /
508
-~
504 1

FIG. 5

U.S. Patent Oct. 25, 2016 Sheet 6 of 14 US 9,478,059 B2

600

FIG. 6A

US 9,478,059 B2

Sheet 7 of 14

Oct. 25, 2016

U.S. Patent

"9 "9l

S

SelaH asop paey

EEAS
B i eaet prsny

sa1095 Ay

3150 SUT Ul BA0T PLUIDL

0L9

US 9,478,059 B2

Sheet 8 of 14

Oct. 25, 2016

U.S. Patent

{uoysias
axeur 03 sa%eu Y] 01y UR I5004D

029

2% 701d

H

358

i X

3

I o]

AHFIEIBUL MG B F1880

US 9,478,059 B2

Sheet 9 of 14

Oct. 25, 2016

U.S. Patent

0£3

Qg "Oid

RS

sHumes ey

sy

ady 28y

]

pareny A

sy A

ey yebiae

US 9,478,059 B2

Sheet 10 of 14

Oct. 25, 2016

U.S. Patent

39 "0l

Gy 38 BN FRIEHIDEIE WA

¥v8 \

o

SRR A AR

ere

SveserTaRT BYIRONN

UNRESPT 3T ITIIHMW

oG \

US 9,478,059 B2

Sheet 11 of 14

Oct. 25, 2016

U.S. Patent

supngy 4
BRI 4

GHERSY R &

Aaman

49 "9id

................. wxﬁﬁwﬁwﬁ{wé .
BN
SROHNES 4
EFE T
sjont g

U.S. Patent Oct. 25, 2016 Sheet 12 of 14 US 9,478,059 B2

700
Muore Stories /

706

FIG. 7

US 9,478,059 B2

Sheet 13 of 14

Oct. 25, 2016

U.S. Patent

800

$

sy

FIG. 8

US 9,478,059 B2

Sheet 14 of 14

Oct. 25, 2016

U.S. Patent

776
1S0H
R
.\xz_;. u B
REOMIIN fs ‘_smm JOVAHIINI F08
WO \ NOILLYDINAKNOD HOSSIO0Ud
705
Sng
45
LINMELN
% 018 506
8eb — 301A3C AMOVEW
JOVHOLS
HAAMES NGO NIV

..................... ~1 GI6
— TOMINGD
HOSUND
N T8
W I0IASG LN
AR
AYISIC

US 9,478,059 B2

1
ANIMATED AUDIOVISUAL EXPERIENCES
DRIVEN BY SCRIPTS

FIELD OF THE DISCLOSURE

The present disclosure relates to scripted stories. The
disclosure relates more specifically to computer-imple-
mented techniques for creation and automatic performance
of scripted stories in audiovisual format.

BACKGROUND

The approaches described in this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceived or pursued. Therefore,
unless otherwise indicated, it should not be assumed that any
of the approaches described in this section qualify as prior
art merely by virtue of their inclusion in this section.

Stories in script form are typically written by scriptwriters
in plain text, a script specifying the characters, dialog,
backgrounds, props, director or stage directions, and scenes
of a story. In order for a script to be performed or acted out,
time, effort, and resources are required. Among other things,
backgrounds and sets may need to be built, props and
costumes acquired, actors are needed to play the characters,
a director is required to coordinate the actors, stagehands,
and other persons involved as specified by the script, and the
like. Each change in the script, in turn, requires a corre-
sponding change in the performance of the script.

In a computerized environment, characters may be rep-
resented as avatars and the avatars may be programmed to
speak dialog, move a certain way, or otherwise serve as
substitutes for human actors. Typically technical persons,
such as computer programmers or coders, write program
code to specify avatars and their performance actions. Such
program code is in computer programming languages that
are not familiar to non-technical writers, such as scriptwrit-
ers. Although scriptwriters are the experts in writing a story
in script form, as opposed to computer programmers, script-
writers likely lack the requisite computer programming
knowledge to write a story in script form in computer
programming languages capable of generating avatar per-
formances.

For laypersons not versed in scriptwriting or computer
programming, it is even more difficult to easily write a story
in script form and have it easily and quickly performed with
all the elements specified in the script.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 illustrates an example system for providing ani-
mated audiovisual experiences driven by scripts, according
to some embodiments.

FIG. 2 illustrates example data objects or data files
included in the system of FIG. 1, according to some embodi-
ments.

FIG. 3 illustrates example components included in the
system of FIG. 1, according to some embodiments.

FIG. 4 illustrates an example flow performed in the
system of FIG. 1, according to some embodiments.

FIG. 5 illustrates an example screenshot showing an
animated display on a client corresponding to a certain point
in time in the runtime of a selected script, according to some
embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIGS. 6A-6F illustrate example screenshots of the user
interface (UI) used to define characteristics of a character in
the system of FIG. 1, according to some embodiments.

FIG. 7 illustrates an example screenshot showing client
Ul elements displayed on a client driven by an embodiment
of a client UI script, according to some embodiments.

FIG. 8 illustrates an example screenshot showing an
example monetization function driven by an embodiment of
an access control script, according to some embodiments.

FIG. 9 illustrates a block diagram of an example computer
system upon which embodiments of the present disclosure
may be implemented.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

In the following description, for the purposes of expla-
nation, numerous specific details are set forth in order to
provide a thorough understanding of the present invention.
It will be apparent, however, that the present invention may
be practiced without these specific details. In other
instances, well-known structures and devices are shown in
block diagram form in order to avoid unnecessarily obscur-
ing the present invention.

1.0 OVERVIEW

In an embodiment, a computerized method comprises
receiving a meta-language file comprising a conversion of a
script file in a natural language format, the script file
including a plurality of natural language statements; inter-
preting, by a first computing device, the meta-language file
to execute at least a first portion of the meta-language file;
dynamically generating and displaying, on the first comput-
ing device, one or more visually animated graphical ele-
ments in accordance with the execution of at least the first
portion of the meta-language file.

In an embodiment, the computerized method further
comprises, wherein the plurality of natural language state-
ments included in the script file comprises one or more
dialog natural language statements, and wherein dynami-
cally generating and displaying the one or more visually
animated graphical elements comprises dynamically gener-
ating and displaying one or more visually animated charac-
ters that speaks according to the one or more dialog natural
language statements.

In an embodiment, the computerized method further
comprises, wherein the plurality of natural language state-
ments included in the script file comprises one or more
dialog natural language statements, and wherein dynami-
cally generating and displaying the one or more visually
animated graphical elements comprises dynamically gener-
ating and displaying one or more visually animated speech
bubbles according to the one or more dialog natural lan-
guage statements.

In an embodiment, the computerized method further
comprises, wherein the one or more dialog natural language
statements is associated with a narrator of a story.

In an embodiment, the computerized method further
comprises, wherein the plurality of natural language state-
ments included in the script file comprises one or more
character movement control natural language statements,
and wherein dynamically generating and displaying the one
or more visually animated graphical elements comprises
dynamically generating and displaying one or more visually
animated characters moving according to the one or more
character movement control natural language statements.

US 9,478,059 B2

3

In an embodiment, the computerized method further
comprises, wherein the plurality of natural language state-
ments included in the script file comprises one or more stage
direction natural language statements, and wherein dynami-
cally generating and displaying the one or more visually
animated graphical elements comprises dynamically gener-
ating and displaying one or more visually animated charac-
ters located within a graphical setting according to the one
or more stage direction natural language statement.

In an embodiment, the computerized method further
comprises, wherein the plurality of natural language state-
ments included in the script file comprises one or more
character behavior natural language statements, and wherein
dynamically generating and displaying the one or more
visually animated graphical elements comprises dynami-
cally generating and displaying one or more visually ani-
mated characters performing particular behavior actions
according to the one or more character behavior natural
language statement.

In an embodiment, the computerized method further
comprises, wherein the plurality of natural language state-
ments included in the script file comprises one or more
background natural language statements, and wherein
dynamically generating and displaying the one or more
visually animated graphical elements comprises dynami-
cally generating and displaying one or more visually ani-
mated backgrounds according to the one or more back-
ground natural language statement.

In an embodiment, the computerized method further
comprises, wherein the plurality of natural language state-
ments included in the script file comprises one or more
character outfit natural language statements, and wherein
dynamically generating and displaying the one or more
visually animated graphical elements comprises dynami-
cally generating and displaying one or more visually ani-
mated characters wearing one or more respective clothing
and accessories according to the one or more character outfit
natural language statement.

In an embodiment, the computerized method further
comprises, wherein the plurality of natural language state-
ments included in the script file comprises one or more audio
natural language statements, and further comprising
dynamically generating and audibly presenting one or more
audio elements according to the one or more audio natural
language statements.

In an embodiment, one or more non-transitory machine-
readable media storing instructions which, when executed
by one or more processors, cause performance comprising:
receiving a meta-language file comprising a conversion of a
script file in a natural language format, the script file
including a plurality of natural language statements; inter-
preting, by a first computing device, the meta-language file
to execute at least a first portion of the meta-language file;
dynamically generating and displaying, on the first comput-
ing device, one or more visually animated graphical ele-
ments in accordance with the execution of at least the first
portion of the meta-language file.

In an embodiment, the one or more non-transitory
machine-readable media further comprises, wherein
dynamically generating and displaying comprises dynami-
cally generating and displaying one or more visually ani-
mated avatars representative of respective one or more
characters specified in the script file.

In an embodiment, the one or more non-transitory
machine-readable media further comprises, wherein the
meta-language file comprises a JavaScript Object Notation
(JSON) file.

10

15

20

25

30

35

40

45

50

55

60

65

4

In an embodiment, the one or more non-transitory
machine-readable media further comprises, wherein the
instructions, when executed by the one or more processors,
further cause performance comprising generating the script
file based on user input of the plurality of natural language
statements.

In an embodiment, the one or more non-transitory
machine-readable media further comprises, wherein the user
input is provided on the first computing device or a second
computing device that is different from the first computing
device.

In an embodiment, the one or more non-transitory
machine-readable media further comprises, wherein the
instructions, when executed by the one or more processors,
further cause performance comprising: receiving one or
more supporting files; wherein interpreting the meta-lan-
guage file comprises using the one or more supporting files
to identify one or more graphical representations corre-
sponding to the one or more visually animated graphical
elements; wherein dynamically generating and displaying
comprises dynamically rendering at runtime, the one or
more graphical representations in accordance with the meta-
language file to dynamically display the one of more visu-
ally animated graphical elements.

In an embodiment, the one or more non-transitory
machine-readable media further comprises, wherein
dynamically generating and displaying the one or more
visually animated graphical elements comprises: dynami-
cally generating and displaying a character image; dynami-
cally generating and displaying one or more animated
images of individual moving body parts of the character
without re-generating or re-displaying the entire character.

In an embodiment, the one or more non-transitory
machine-readable media further comprises, wherein the one
or more visually animated graphical elements comprise one
or more user interface (UI) commands associated with
presenting one or more listings of a plurality of available
story representations in a story catalog, each of the plurality
of available story representations corresponding to a respec-
tive animated story.

In an embodiment, the one or more non-transitory
machine-readable media further comprises, wherein the
plurality of natural language statements in the script file
includes one or more references to web pages; wherein
interpreting the meta-language file comprises interpreting
the meta-language file to execute a second portion of the
meta-language file associated with the one or more refer-
ences to web pages; wherein dynamically generating and
displaying comprises dynamically generating and displaying
one or more web pages in accordance with the execution of
the second portion of the meta-language file.

In an embodiment, the one or more non-transitory
machine-readable media further comprises, wherein the
plurality of natural language statements in the script file
includes one or more monetization commands, and wherein
dynamically generating and displaying comprises dynami-
cally generating and displaying the one or more visually
animated graphical elements to use virtual or real currency
by a user interfacing with the first computing device.

In an embodiment, the one or more non-transitory
machine-readable media further comprises, wherein the one
or more monetization commands includes one or more
counter commands to selectively alter a state value associ-
ated with the user to control access to one or more portions
of the script file by the user.

In an embodiment, the one or more non-transitory
machine-readable media further comprises, wherein the

US 9,478,059 B2

5

plurality of natural language statements in the script file
includes one or more choice commands, and wherein the
instructions, when executed by the one or more processors,
further cause performance comprising: receiving, at the first
computing device, a user selection of a choice from among
at least a first choice and a second choice associated with the
one or more choice commands, at least the first and second
choices presented as the one or more visually animated
graphical elements; in response to receiving the first choice
as the user selected choice, interpreting the meta-language
file comprising interpreting the meta-language file to
execute the first portion of the meta-language file corre-
sponding to a first branch associated with the first choice,
and dynamically generating and displaying comprising
dynamically generating and displaying one or more first
visually animated graphical elements in accordance with the
execution of the first portion of the meta-language file
corresponding to the first branch associated with the first
choice; in response to receiving the second choice as the user
selected choice, interpreting the meta-language file to
execute a second portion of the meta-language file corre-
sponding to a second branch associated with the second
choice, and dynamically generating and displaying one or
more second visually animated graphical elements in accor-
dance with the execution of the second portion of the
meta-language file corresponding to the second branch asso-
ciated with the second choice.

In an embodiment, the one or more non-transitory
machine-readable media further comprises, wherein the
instructions, when executed by the one or more processors,
further cause performance comprising saving the user
selected choice for use in dynamically generating and dis-
playing an another portion of the meta-language file or an
another meta-language file associated with an another script
file that is different from the script file.

In an embodiment, one or more non-transitory machine-
readable media storing instructions which, when executed
by one or more processors, cause performance comprising:
dynamically generating and displaying, at a first computing
device, one or more visually animated graphical elements in
accordance with script data; wherein the script data com-
prises one or more dialog statements and at least one of one
or more character movement control statements and one or
more character animation statements one or more stage
direction statements composed in natural language syntax;
wherein the one or more visually animated graphical ele-
ments comprise one or more speech bubbles according to the
one or more dialog statements.

In an embodiment, the one or more non-transitory
machine-readable media further comprises, wherein the
instructions, when executed by the one or more processors,
further cause performance comprising: receiving, at the first
computing device, the script data or representation of the
script data in response to a selection of the script data by a
user; responsive to the selection of the script data, dynami-
cally interpreting, by the first computing device, the script
data or representation of the script data to render at least a
first portion of the script data.

In an embodiment, the one or more non-transitory
machine-readable media further comprises, wherein the
representation of the script data comprises a translation of
the script data in a computer-readable format.

In an embodiment, the one or more non-transitory
machine-readable media further comprises, wherein the
instructions, when executed by the one or more processors,
further cause performance comprising: receiving the script
data based on user input of the one or more dialog statements

10

15

20

25

30

35

40

45

50

55

60

65

6

and at least one of the one or more character movement
control statements and the one or more character animation
statements composed in natural language syntax; wherein
dynamically generating and displaying are prevented until
errors identified in an automatic testing of the script data are
resolved in the script data.

In an embodiment, the one or more non-transitory
machine-readable media further comprises, wherein the
script data comprises at least one of: (1) one or more user
interface (UI) statements associated with dynamically gen-
erating and displaying one or more listings of a plurality of
available story representations in a story catalog, each of the
plurality of available story representations corresponding to
a respective animated story, (2) one or more references to
web pages associated with dynamically generating and
displaying one or more web pages in accordance with the
one or more references to the web pages, and (3) one or more
choice statements associated with dynamically generating
and displaying one or more graphical choice elements for
interaction with a user during the dynamically generating
and displaying of the one or more visually animated graphi-
cal elements.

In an embodiment, the one or more non-transitory
machine-readable media further comprises, wherein the
script data comprises one or more audio natural language
statements, and wherein the instructions, when executed by
the one or more processors, further cause performance
comprising: dynamically generating and audibly presenting
one or more audio elements according to the one or more
audio natural language statements.

In an embodiment, the one or more non-transitory
machine-readable media further comprises, wherein
dynamically generating and displaying the one or more
visually animated graphical elements comprises: dynami-
cally generating and displaying a character image; dynami-
cally generating and displaying one or more animated
images of individual moving body parts of the character
without re-generating or re-displaying the entire character.

In some embodiments, any combination of features and/or
sub-features of the above methods and/or instructions stored
in non-transitory machine-readable media are possible to
form new combinations of methods, non-transitory
machine-readable media storing instructions, and apparatus
for performing the methods. Thus, the present disclosure is
not intended to be limited to the embodiments shown, but is
to be accorded the widest scope consistent with the prin-
ciples and features disclosed herein.

2.0 EXAMPLE COMPUTER SYSTEM
IMPLEMENTATION

In one embodiment, a computer-implemented method
enables creation of script files in a scripting language having
natural language scripting elements and interactive if/then
logic elements. The natural language scripting elements may
include dialog, character movement, character placement,
character outfit changes, background control, camera con-
trol, audio control, and the like. The if/the logic elements
may include interactive choices, branching, and complex
branching operations. Each script file may be automatically
transformed into a meta-language file that is executable on
a client device. The script file, the corresponding meta-
language file, and/or character definitions also may be used
to generate one or more data tables to support the meta-
language file. Character definitions may be specified using a
GUI environment that is separate from script creation.

US 9,478,059 B2

7

In an embodiment, in response to a user request at a
mobile device for a particular chapter of a story, which
corresponds to a particular script file, a file package may be
automatically generated for transmission to the mobile
device. The file package may include the meta-language file
corresponding to the particular script file and one or more
supporting files or data. The mobile device, at runtime,
dynamically animates visual and/or audio elements in accor-
dance with the meta-language file and the one or more
supporting files or data. The animated audiovisual experi-
ence comprises a performance of acting out of the scripted
chapter story. During performance of the scripted chapter
story, the animation may be user interactive. The perfor-
mance may be dynamically customized based on the user
response(s). Other embodiments may operate using a single
computer and do not require a separate authoring computer
and mobile device or other second computer.

The scripting language may be configured for use in areas
outside of scriptwriting. Possible uses include, but are not
limited to, scripts configured to provide a user interface (UI)
on the mobile device for consuming stories; scripts config-
ured to control access to the stories from mobile devices by
enforcing a monetization policy; scripts configured to ref-
erence web pages; and the like. A scripting portal may
provide a wealth of supporting services to facilitate easy use
and quality scripts.

Various modifications to the embodiments will be readily
apparent to those skilled in the art, and the generic principles
defined herein may be applied to other embodiments and
applications without departing from the spirit and scope of
the invention. Moreover, in the following description,
numerous details are set forth for the purpose of explanation.
However, one of ordinary skill in the art will realize that
embodiments of the invention may be practiced without the
use of these specific details. In other instances, well-known
structures and processes are not shown in block diagram
form in order not to obscure the description of the invention
with unnecessary detail. Thus, the present disclosure is not
intended to be limited to the embodiments shown, but is to
be accorded the widest scope consistent with the principles
and features disclosed herein.

FIG. 1 illustrates an example system 100 in which the
techniques described herein may be practiced, according to
some embodiments. System 100 is a computer-based sys-
tem. The various components of system 100 are imple-
mented at least partially by hardware at one or more com-
puting devices, such as one or more hardware processors
executing instructions stored in one or more memories for
performing various functions described herein. System 100
illustrates only one of many possible arrangements of com-
ponents configured to perform the functionality described
herein. Other arrangements may include fewer or different
components, and the division of work between the compo-
nents may vary depending on the arrangement.

System 100 includes a server computer or “server” 102,
a database 104, one or more client computers or “clients”
106, and a network 108. Each of the server 102, database
104, and clients 106 is in wired or wireless communication
with the network 108.

Server 102 comprises one or more servers, computers,
processors, database servers, web server, and/or computing
devices configured to communicate with the database 104
and/or clients 106 via network 108. The server 102 facili-
tates performance of the techniques described herein. Server
102 hosts one or more applications, websites, portals, or
other visual or user interface mechanisms related to ani-
mated audiovisual experiences driven by scripts as described

10

15

20

25

30

35

40

45

50

55

60

65

8

in detail below. Server 102 may be located at one or more
geographically distributed locations. Although one server
102 is shown in FIG. 1, system 100 may, depending on the
embodiment, comprise one, two, or any number of servers
102, which may work alone and/or collectively to provide
the functionality described herein.

Database 104 comprises one or more databases or storage
devices configured to store and maintain data and/or instruc-
tions for use by server 102 and/or clients 106 as described
herein. Database 104 may, in some embodiments, be located
at one or more geographically distributed location relative to
server 102. Server 102 and/or clients 106 may, in some
embodiments, access database 104 via network 108. Alter-
natively, server 102 may access database 104 without need-
ing network 108. As another alternative, database 104 may
be included within server 102. System 100 may, depending
on the embodiment, comprise one, two, or any number of
databases 104 configured to individually and/or collectively
store the data described herein.

Clients 106 comprise computing devices, including but
not limited to, work stations, personal computers, general
purpose computers, laptops, Internet appliances, handheld
devices, wireless devices, wired devices, portable devices,
wearable computers, cellular or mobile phones, portable
digital assistants (PDAs), smart phones, tablets, multi-pro-
cessor systems, microprocessor-based or programmable
consumer electronics, game consoles, set-top boxes, net-
work PCs, mini-computers, and the like. An individual one
of the clients 106 is denoted as a client 1064, client 1065,
client 106¢, client 1064, or a client 106. Each of the clients
106 includes applications, app, software, and/or other
executable instructions to facilitate various aspects of the
techniques described herein. At least a few of the clients 106
include an interpreter app (also referred to as an interpreta-
tion app), a dedicated application for facilitating animated
audiovisual experiences driven by scripts, downloaded from
server 102. Others of the clients 106 include a web browser
application and/or the interpreter app. Clients 106 may also
include additional applications or other interface capabilities
to communicate with the server 102 and/or database 104.
Clients 106 may, depending on the embodiment, be located
geographically dispersed from each other. Although four
clients 106 are shown in FIG. 1, more or less than four
clients 106 may be included in system 100. Clients 106 are
also referred to as devices, requesting devices, requesting
clients, requestors, and the like.

Network 108 comprises a communications network, such
as a local area network (LAN), a wireless LAN (WLAN), a
wide area network (WAN), a wireless WAN (WWAN), a
metropolitan area network (MAN), an ad hoc network, an
intranet, an extranet, a virtual private network (VPN), a
portion of the Internet, the Internet, a portion of a public
switched telephone network (PSTN), a cellular network, or
a combination of two or more such networks. When network
108 comprises a public network, security features (e.g.,
VPN/SSL secure transport) may be included to ensure
authorized access within system 100.

FIG. 2 illustrates example data objects or data files
included in the database 104, according to some embodi-
ments. For purposes of illustrating clear examples, some
embodiments are described with reference to using
JavaScript Object Notation (JSON) files and/or Comma
Separated Value (CSV) files or data structures for storing
various data. However, other embodiments may use other
data structures or file formats and the references to JSON
and CSV are not intended as requirements.

US 9,478,059 B2

9

Data objects may include, without limitation, script files
200, JSON files 202, chapter CSV files 204, and other files
206. The script files 200 may comprise a plurality of chapter
script files 214 A, 214B, 218A, 218B, one or more client user
interface (UI) script file 220, one or more webviews script
file 222, and one or more access control script file 224 (also
referred to as monetization script file 224). Script files 214A,
214B, 218A, 218B may comprise stories written in script
form using a scripting language by users; and script files
220, 222, and 224 comprise additional uses of the scripting
language to enable other functionalities relating to animated
audiovisual experiences.

Each scripted story 212, 216 may be organized in one or
more chapters, each chapter corresponding to a chapter
script file. Each chapter script file may be associated with a
chapter JSON file, a chapter CSV file, and one or more other
files. As described in detail below, chapter JSON files,
chapter CSV files, and one or more other files may comprise
translations of script files and character definitions into
formats useable in runtime rendering of the corresponding
animated audiovisual elements of a script (e.g., act out or
perform the scripted story).

Scripted story 212 includes at least a chapter script file
214A for chapter 1 of the story and a chapter script file 214B
for chapter 2 of the story. A chapter JSON file 230A and a
chapter CSV file 234A correspond with chapter script file
214A. A chapter JSON file 230B and a chapter CSV file
234B correspond with chapter script file 214B. Similarly,
scripted story 216 includes at least a chapter script file 218A
for chapter 1 of the story and a chapter script file 218B for
chapter 2 of the story. A chapter JSON file 232A and a
chapter CSV file 236 A correspond with chapter script file
218A. A chapter JSON file 232B and a chapter CSV file
236B correspond with chapter script file 218B.

In an alternative embodiment, the various chapter CSV
files (e.g., chapter CSV files 234A, 234B, 236A, 236B) can
be combined into a single chapter CSV file that is main-
tained as new chapter script files are created and/or updated,
and which is associated with all of the chapter script files.

Although not shown, each of the UI script file 220, web
view script file 22, and access control script file 224 has a
corresponding JSON file and also, in some instances, one or
more CSV files.

The other files 206 include supporting files 240 (e.g., CSV
files and/or property list (plist) files, such as a place CSV
file), a log file 250, a user information file 252, and library
254. The other files 206 comprise data used to facilitate
animation rendering, system administration, and user profile
administration. Library 254 includes a plurality of sound
files, music files, audio files, graphical image files (e.g.,
avatars, backgrounds, outfits), character animations or
behavior files, and the like. The plurality of files may be files
pre-defined by the server 102. At least some of the plurality
of files may comprise user-generated or user-supplied files
uploaded to the library 254, in some embodiments.

FIG. 2 and the associated description comprise one imple-
mentation embodiment for automatically providing ani-
mated audio and/or visual experiences driven by scripts. In
other embodiments, as noted above, JSON files 202 may be
files in other formats than in the JSON format. JSON files
202, chapter CSV files 204, and/or supporting files 240 may
be omitted, in some embodiments. Chapter CSV files 204
and/or supporting files 240 may be included in the corre-
sponding JSON files 202 or equivalent, in some embodi-
ments. Files in CSV format (e.g., CSV files 204 and one or

10

15

20

25

35

40

45

50

55

60

65

10

more of the supporting files 240) may be in other tabbed or
tabular formats than in the CSV format, in some embodi-
ments.

Details regarding these data files are described in specific
sections below. In this disclosure, the term for a data file and
the contents of the data file may be used interchangeably.
For example, the terms script file, script data file, and script
may be used interchangeably herein.

FIG. 3 illustrates example components that may be
included in system 100 to perform the script creation,
animation rendering, and associated functionalities, accord-
ing to some embodiments. The components are associated
with a script writing and/or delivery pipeline. The various
components of system 100 are implemented at least partially
by hardware at one or more computing devices, such as one
or more hardware processors executing instructions stored in
one or more memories for performing various functions
described herein. The components are communicatively
coupled (e.g., via appropriate interfaces) to each other and to
various data sources, so as to allow information to be passed
between the components and/or to share and access common
data. FIG. 3 illustrates only one of many possible arrange-
ments of components configured to perform the functional-
ity described herein. Other arrangements may include fewer
or different components, and the division of work between
the components may vary depending on the arrangement.

System 100 includes a user interface component 300, an
access control component 302, a character component 304,
a scripting component 306, a translation component 308, a
store component 310, a test component 312, a log compo-
nent 314, and a interpreter/render component 316. In some
embodiments, components 300-314 are included in the
server 102, and at least component 316 is included in the
interpreter app of one or more of clients 106. In other
embodiments, components 300-314 are included in the
server 102, and components 300, 310, and 316 are included
in the interpreter app of one or more of clients 106.

The user interface component 300 provides user interface
functionalities to users interfacing with clients 106 to enable
writing scripts, defining characters in the scripts, receiving
user inputs such as selection of a particular chapter to
animate, user authentication data, user selection in response
to conditionals presented during the animation, and the like.
In some embodiments, one or more of the user interface
functionalities at a rendering client 106 may be performed
by render/interpreter component 316 instead of user inter-
face component 300.

The access control component 302 relates to controlling
user access to the system 100 (e.g., based on valid user login
and password), user access to specific scripts, coordinating
passes and virtual currency used in system 100, monetiza-
tion functionalities, and the like. Character component 304
relates to defining characters in each of a given script, such
as specifying avatars, outfits, character names, and the like.
Scripting component 306 is involved in creation of scripts
by users using a scripting language. The character defini-
tions and written scripts are translated by the translation
component 308 into JSON and CSV files, which are stored
in database 104 by store component 310.

When a script is first created, the test component 312
automatically performs one or more checks or tests on the
created script to automatically flag errors, inconsistencies,
incomplete creation, and/or other checks associated with
proper rendering of the script in animation format. Test
component 312 may also facilitate enabling version control
of scripts, or pre-publication and publication functionalities.

US 9,478,059 B2

11

The JSON and CSV files corresponding to a given script
are sent to the client 106 requesting playback of the given
script, and they are rendered by the interpreter/render com-
ponent 316. As described in detail below, the rendering is
performed dynamically at runtime and may involve access-
ing additional data such as image files to perform the
rendering. As the user views and/or interacts with the
audiovisual animation corresponding to the given script,
user interactions or actions taken in relation to the animation
are logged by log component 314. Various files, data, and
other items generated in the course of interpreting the files,
rendering the files, interacting with the files, selection of
files, and the like may also be logged by log component 314
and stored in database 104 in log file 250.

In one embodiment, components 300-316 comprise one
or more software components, programs, applications, or
other units of code base or instructions configured to be
executed by one or more processors included in the server
102 and/or a client 106. Although components 300-316 are
depicted as distinct components in FIG. 3, components
300-316 may be implemented as fewer or more components
than illustrated. Any of components 300-316 may commu-
nicate with one or more devices included in the system 100,
such as server 102, database 104, or clients 106.

3.0 FUNCTIONAL OVERVIEW RELATING TO
AUTHOR USER

FIG. 4 illustrates an example flow 400 to create and
perform a script, according to one embodiment. In an
embodiment, each of the processes described in connection
with the functional blocks of FIG. 4 may be implemented
using one or more computer programs, other software ele-
ments, and/or digital logic in any of a general-purpose
computer or a special-purpose computer, while performing
data retrieval, transformation and storage operations that
involve interacting with and transforming the physical state
of memory of the computer. Flow 400 of FIG. 4 is described
below in conjunction with the objects and components of
FIGS. 2-3.

Flow 400 relates to functionalities provided in connection
with a user that creates or writes a script, such user referred
to as an author user, authoring user, or author. Users that did
not create a given script can also view performance of the
given script, once the given script is released for general
access (e.g., given script is designated as a published or
production script). Performance of a script comprises ren-
dering animated audio and/or visual elements specified by
the script. Users capable of viewing or viewing performance
of a script are referred to as viewing users, consuming users,
or viewer users. Flow 400 is intended to be a high level
overview. Additional details regarding blocks comprising
flow 400 are discussed in the sections below.

In an embodiment, an author user accesses functionalities
of'blocks 402-414 on a portal or website hosted by the server
102 via a web browser application or an interpreter app
included in a client 106. Block 402 comprises the character
component 304, in conjunction with the user interface
component 300, configured to define the character(s) to be
included in a script based on character specifics inputted by
the author user. Character definition includes, among other
things, naming a character; selecting an avatar to graphically
represent the character; selecting avatar clothes; selecting
avatar accessories (e.g., eyeglasses, bag); modifications, if
any, to avatar hair color, eye color, etc.; and the like. Block
402 may be repeated one or more times for each character
to be included in the script.

20

25

30

40

45

55

12

Block 404 comprises the scripting component 306, in
conjunction with the user interface component 300, config-
ured to create a script in a scripting language. The author
user writes the script, typically a chapter of a story, in a
scripting language to be described in detail below.

Blocks 406,408 comprise the translation component 308
configured to automatically translate, transform, or convert
the script and associated information (e.g., character defi-
nitions) into translated files. Block 406 comprises automatic
translation of the script in the scripting language to another
programming language or format that is executable by
machines. In an embodiment, the script is translated to a
JSON format to generate a JSON file (also referred to as a
structured interpretation file, interpretation file, translated
file, intermediate file, or intermediation file). Block 406 also
comprises automatically translating the portions of the
script, or the corresponding JSON file, specifying use of
specific pre-defined items, such as a specific background,
sound, music, character animation, outfit, etc., to CSV
format to generate a chapter CSV file and one or more
possible other CSV files.

Block 408 comprises the translation component 308 auto-
matically translating the character definitions/characteristics
(e.g., avatar selection, outfit, avatar modifications, etc.) to a
CSV format. The character definitions/characteristics are
generated independent of and outside of the script, in an
embodiment. The translated character definitions are
included in a character CSV file associated with the script.

Blocks 406 or 408 may be optional if, for example, no
intermediate file (e.g., JSON file) is used or the script
includes no characters, respectively.

In some embodiments, the information comprising the
chapter CSV file may be added to an existing chapter CSV
file. A single chapter CSV file may be maintained for all of
the chapter scripts.

The JSON formatted file, chapter CSV file, and character
CSV file (as necessary) are collectively referred to as
translated files corresponding to a script.

Although not shown, each of these created data objects is
stored in database 104 by store component 310. For
example, in FIG. 2, the translated files corresponding to the
chapter script file 214 A are the JSON file 230A and chapter
CSV file 234A.

Block 410 comprises the test component 312 configured
to automatically test or check the created script and/or
translated files for errors, inconsistencies, or other issues that
may prevent rendering as animation. In an embodiment, a
two-stage check is performed. The first stage comprises
detecting errors in the created script itself, such as incor-
rectly formatted script elements (e.g., incomplete pairs of
brackets or delineators). This may be similar to word pro-
cessors automatically indicating spelling errors, grammati-
cal errors, and the like. The second stage comprises detect-
ing errors in the corresponding JSON file by running the test
on the entire story associated with the created script, due to
states that may carry over between chapters of a given story.
The second stage test includes, among other things, testing
all possible combinations of if/then logic and branching
outcomes for possible logic failure. In an embodiment, the
second stage test occurs only after the errors detected in the
first stage are corrected. This is to avoid unnecessarily
generating JSON files of scripts that are already known to
contain errors.

Block 412 comprises the user interface component 300, in
conjunction with the test component 312, providing the test
results to the author user. If errors are found and/or edits are
desired to be made to the character definition(s), outfit

US 9,478,059 B2

13

definition(s), and/or script for any reason, yes branch of
block 414, then flow 400 returns to block 404 to enable edits
by the author user. Otherwise no changes are made, no
branch of block 414, and the script is ready for display as
animation to at least the author user. At this point, the script
may be considered to be in a pre-production or pre-publi-
cation stage, which means that the author user has full access
to the script but non-author users may not have access to
and/or be aware of the existence of the script. Alternatively,
the created script may immediately publish without going
through a pre-production or pre-publication stage.

In an embodiment, functionalities of blocks 416-428 are
performed by the interpreter app or a simulator application
included in a client 106. The particular client 106 used by the
author user in connection with blocks 402-414 can be the
same client or a different client used in connection with
blocks 426-428. In the same (or single) client usage case, the
client 106 may be a laptop or desktop. For example, on client
106a, the author user accesses the portal/website hosted on
the server 102 via a web browser application included in the
client 1064 in connection with functionalities of blocks
402-414 (e.g., script creation), and uses a simulator appli-
cation included in the client 106a in connection with func-
tionalities of blocks 416-428 (e.g., viewing animation of the
created script). In the same (or single) client usage case, the
client 106 may be a tablet, smart phone, handheld device, or
mobile device. As another example, on client 1065, the
author user accesses the portal/website hosted on the server
102 via a web browser application included in the client
1065 in connection with functionalities of blocks 402-414
(e.g., script creation), and uses an interpreter app included in
the client 1065 in connection with functionalities of blocks
416-428 (e.g., viewing animation of the created script). In
the different (or two) client usage case, a script creation
client may be a laptop or desktop and a script animation
client may be a tablet, smart phone, handheld device, or
mobile device. For example, the author user accesses the
portal/website hosted on the server 102 via a web browser
application included in the client 1064 in connection with
functionalities of blocks 402-414, and uses an interpreter
app included in a different client device, client 1065, in
connection with functionalities of blocks 416-428 (e.g.,
viewing animation of the created script).

Whether one, two, or more clients are used to create and
view animation of scripts, the client 106 used by the author
user to create a script may be referred to as an authoring
client, authoring client device, authoring computing device,
writer client, writer client device, writer computing device,
script creation client, script creation client device, script
creation computer device, and the like. Similarly, the client
106 used by the author user or non-author user to view the
animation of a script may be referred to as a reader client,
reader client device, reader computing device, viewing
client, viewing client device, viewing computing device, and
the like.

Block 416 comprises the author user selecting the created
script to “read” and requesting the created script to be
animated. The author user may wish to preview how the
created script turned out, and after viewing the result, edit
the script. A Ul for interfacing with the author user may be
locally provided at the client side. In some embodiments, to
be described in detail below, the Ul may be implemented
using a JSON file and one or more CSV files associated with
the client UT script file 220.

In response, the server 102 obtains and packages the files
for animating the selected script. Block 418 comprises the
interpreter/render component 316 configured to receive the

30

40

45

55

14

file package. The file package includes a JSON file, a
corresponding chapter CSV file, one or more supporting files
(e.g., supporting files 240), and, in some instances, a portion
or all of the contents of the library 254. If the necessary
portions of or contents of library 254 are already maintained
in client 106 used to view the created script, such content
need not be packaged with the files. The file package is
dynamically downloaded to the client of interest, and with-
out any pre-configuration in preparation of rendering the
animation. Alternatively, in some embodiments, the first
chapter of a story may be pre-configured and/or pre-loaded
for faster rendering.

Block 420 comprises the interpreter/render component
316 configured to interpret the file package at runtime to
render or display the selected script in animation format.
Block 422 comprises the interpreter/render component 316
configured to dynamically render animated audiovisual ele-
ments (e.g., visually animated characters, visually animated
backgrounds, audio, visually animated character outfits,
visually animated character animation/behavior, visually
animated speech bubbles, etc.) corresponding to the script at
runtime. The JSON file is executed at runtime, finding the
necessary supporting or underlying data in the other files of
the file package. FIG. 5 illustrates an example screen 500
showing an animated display on a client 106 corresponding
to a certain point in time in the runtime of the selected script.
The screen 500 includes a background 502, a first character
504, a second character 506, and a speech bubble 508
associated with the first character 504. Each of the first and
second characters 504, 506 is represented by a particular
avatar wearing a particular outfit (e.g., clothes and accesso-
ries) as specified by the authoring user in block 402.

If the script includes one or more interactive choices or
branching logic, the author user interacts with the animation
to continue viewing the story, in block 424. In response to
the interaction action(s), the interpreter/render component
316 adjusts the animation in block 426.

During occurrence of blocks 416-426, one or more state
data, user inputs, client response, server response, and other
information about the session are logged in block 428. The
log data is uploaded to server 102 for storage in the log file
250. In some embodiments, the log data can be used to
enable consistency or persistence of interactive choice
response(s) across more than one script (e.g., an interactive
choice response made in a first script impacts the particular
animation of a second script).

Blocks 416-428 associated with viewing animation of a
script is also applicable to viewing users in general at their
respective clients 106. When a viewing user, including a
non-author user, selects a particular chapter or story within
a story catalog presented to the viewing user, performance of
blocks 416-428 occurs. In some embodiments, as described
below, the viewing user is able to view animation of a
chapter/script upon satisfying one or more criteria (e.g.,
valid user login, having sufficient number of viewing passes,
etc.).

Although blocks 402-428 are shown in a certain order, it
is contemplated that one or more of the blocks can be
performed simultaneously or in a different order than shown.
For example, block 410 may be performed prior to blocks
406, 408 if the testing comprises checking the script. As
another example, block 428 may occur throughout the
session (e.g., during performance of blocks 416-426).

In alternative embodiments, block 406 may be omitted if
the script is rendered as animation without use of a trans-
lated/intermediate file (e.g., a JSON file). In this case, the file
package received in block 418 may include the script or

US 9,478,059 B2

15

representation of the script data that is not a translation to a
different computer language and which retains the natural
language syntax/format of the scripting language. Blocks
420-422 may comprise interpreting and displaying/render-
ing using the script (or representation of the script data) and
supporting files in the file package.

4.0 DEFINITION OF CHARACTERS

In an embodiment, the characteristics of each character in
a given chapter script are defined by the author user via a
series of Ul screens provided at the author user’s client 106
(e.g., client 106a) from the server 102. Defining character(s)
in block 402 of FIG. 4 may be performed using a series of
UI screens.

FIG. 6A illustrates a portion of an example screen 600 to
initiate creation of a new story. Since each story is organized
into one or more chapters, creation of a new story comprises
creation of chapter 1 of the story. By actuating a new story
icon 602, a story name input field 604 is displayed to accept
a name for the story. For example, the story name may be
“Torrid Love in the USPTO.” When a create icon 606 is
actuated, a screen 610 in FIG. 6B is displayed.

Screen 610 includes a characters icon 612 to start speci-
fying characteristics of a character or actor that will appear
in chapter 1. Upon actuation of characters icon 612, a screen
620 of FIG. 6C is displayed. Screen 620 includes various Ul
elements to accept input of a character name in a character
name input field 622, and to select an avatar to graphically
represent the character via an avatar selection element 624
and/or 626. In screen 620, a character is named “Michelle
Lee” and the “Charlotte” avatar is selected to represent the
“Michelle Lee” character.

Although the selected avatar has certain default charac-
teristics or attributes, such as certain hair color, skin color,
body shape, and the like, one or more of these default
characteristics can be changed by the author user. FIG. 6D
shows a screen 630 that includes various avatar character-
istics that can be changed by selecting modification choices
provided in dropdown fields 632. For example, the avatar’s
hair color, hair style, face shape, skin color, eye shape, eye
color, mouth shape, mouth color, body shape, and the like
may be modified from the default settings. Upon saving
these selections, the author user is returned to screen 610 of
FIG. 6B.

The avatar’s outfit can be specified by actuation of an
outfits icon 614 in FIG. 6B. In response, a screen 640 in FIG.
6F is displayed. Screen 640 permits modifications to be
made to the selected avatar’s outfit. An avatar’s outfit
includes clothing, shoes, and accessories, such as eye-
glasses, hair accessories, and bag. The avatar’s default outfit
items 642 are displayed along with outfit modification
choices 644. Upon saving any changes, the author user is
returned to screen 610 of FIG. 6B.

Screens 620-640 are repeated one or more times to define
characteristics of all the characters to appear in the script.
Once character definitions are complete, writing the new
story can commence by actuating a new episode icon 616 in
FIG. 6B. Inresponse, a screen 650 is displayed for the author
user to compose the script. Screen 650 includes a script input
section 652 and one or more scripting tools or aids 654, 656
to facilitate composing the script.

5.0 EXAMPLE SCRIPTING LANGUAGE
5.1 Example Scripting Language Format

In an embodiment, the scripts in the system 100 are
written in a particular scripting language. The particular

10

15

20

25

30

35

40

45

50

55

60

o

5

16

scripting language, also referred to as a script language, is
readily understandable and useable by non-technical per-
sons. The scripting language enables writing at least the
dialog and stage actions in natural language syntax or format
familiar in traditional script writing, provides for enable-
ment of user interaction and particular responses to user
interactions during performance of the script (e.g., choose
your own adventure), and expanded uses outside of script-
writing. The scripting language facilitates automatic trans-
formation to computer animation via use of an intermedia-
tion language such as JSON. In some embodiments, the
scripting language may be computer-readable and -execut-
able and use of an intermediation language may be omitted.

The scripting language defines control of visual and/or
audio elements, including dialog and stage actions, in the
performance of a script. The scripting language enables
incorporation of character definitions or characteristics into
an existing animation/texture framework, in which the char-
acter definitions are generated independently and outside of
the script in the scripting language format. In a broad sense,
a script created in the scripting language resembles and
reads like a movie or play script, but has the benefit of
automatic transformation into animation. As discussed in
detail below, the scripting language enables, but is not
limited to, one or more of the following:

Use avatars and backgrounds defined in a graphical user

interface (GUI)

Control visual elements (e.g., backgrounds, characters,
positioning, overlay), animation and movement, dialog,
sounds, music, and if/then logic

Interactive choices

Virtual currency/chapter passes, in which the monetiza-
tion or access decisions can also be controlled by a
script in the scripting language including being respon-
sive to choices and if/then logic

User-generated content is easily distributed to mobile
devices that have the interpreter app installed.

The scripting language includes quasi-traditional cin-
ematic scripting elements, code elements, and expanded-use
elements. Quasi-traditional cinematic scripting elements
comprise, but are not limited to:

Dialog

Background control

Character placement or position

Zoom

Camera position

Character actions (also referred to as character animation)

Sounds and music

Character outfit changes

Simultaneous actions or directions.

The scripting elements above excluding dialog may be
collectively referred to as stage directions, stage actions, or
director commands. The quasi-traditional scripting elements
are also referred to as statements, scripting statements, script
statements, or quasi-traditional scripting elements. Accord-
ingly, dialog may be referred to as a dialog statement, a stage
action may be referred to as a stage action statement, and the
like.

Code elements comprise, but are not limited to:

Choice (if’/then) logic

Branching

Complex branching

Persistent state
Code elements are also referred to as operators, logic, or
logic constructs. For example, the choice logic may be
referred to as a choice operator.

US 9,478,059 B2

17

Lastly, expanded-use elements comprise one or more
commands to facilitate viewing of scripts and/or to expand
use of the scripting language to areas outside of storytelling.
Expanded-use elements include, but are not limited to:

UT or catalog control

Web views

Access control (e.g., counters)

Monetization

The creation of a chapter script in block 404 of FIG. 4
comprises creating the chapter script by combining a plu-
rality of these scripting language elements in any number of
ways to tell a story. An example chapter script of the “Love
Life” story is set forth herein in Appendix A.

An example dialog code from the example chapter script
of the “Love Life” story comprises:

ELLA (talk_happy)

There you are! 1 thought I lost you.

The character name is in all capitalized letters and each line
of dialog starts with a capitalized letter. Each line of dialog
in the dialog code is rendered as a new speech bubble.

Examples of background control code from the example
chapter script of the “Love Life” story comprise:

EXT.HEARTATTACK3-DAY

INT.CLUB-NIGHT
Specitying a background starts with “EXT” or “INT” for
exterior or interior, respectively. Followed by a “.”” and then
a background image name from among available back-
ground images, such as background files in library 254.

During creation of a script, the author user has access to
a plurality of pre-defined character animations, character
behaviors, music, sound, audio, backgrounds, outfits, and
the like to select from for inclusion in the script. The
plurality of pre-defined items is organized as respective files
in the library 254 included in database 104. An example of
a portion of the library items available is shown on the right
side of screen 650 in FIG. 6F.

A plurality of character placement positions is possible in
a scene. There are five default POSITIONS for character
placement or position on the screen: screen left, upscreen
left, screen center, upscreen right, and screen right. To place
a character on screen in a certain position, the character
placement code is formatted as follows:

@CHARACTER stands POSITION
The five POSITIONS can be refined by also specifying a
zone, which is the background divided into a certain number
of zones from left to right, such as zone 1, zone 2, zone 3,
and zone 4. Examples of character placement code from the
example chapter script of the “Love Life” story comprise:

@ELLA stands upscreen left in zone 1

@BIANCA stands screen right in zone 2
Users can further choose specific x- and y-coordinate posi-
tions by use of the following script format:

@CHARACTER spot SCALE XY in zone A at layer Z.
An example use of this format is as follows:

@CHARACTER spot 0.5 50-250 in zone 3 at layer 1.

Characters can also be placed on or off screen by entering
or exiting a scene. The code format to have a character walk
onto the screen comprises:

@CHARACTER enters from SIDE to POSITION
And the code format to have a character walk off the screen
comprises:

@CHARACTER exits SIDE
Examples of character placement code for scene exit/entry
from the example chapter script of the “Love Life” story
comprise:

@TRENCH enters from left to screen left

@BIANCA exits right

10

15

20

25

30

35

40

45

50

55

60

65

18

Characters can also move around the scene. The code
format to have a character move around the scene com-
prises:

@CHARACTER faces SIDE
Or to have a character walk from his/her current position to
a new position:

@CHARACTER walks to POSITION
Examples of character placement code for placement change
from the example chapter script of the “Love Life” story
comprise:

@DANCER3 faces right

@BIANCA walks to screen right

The default camera position is in zone 1. To move the
camera to different zone, the camera can be panned from the
current zone to a new zone using the following format:

@pan to zone X
Alternatively, the camera can be moved instantly to a new
zone using the following format:

@cut to zone X
An example of camera placement code for from the example
chapter script of the “Love Life” story comprises:

@cut to zone 2

A zoom command enables zooming in/out on characters
and to cut and pan between close-ups of characters. Once at
a certain zoom level, the perspective remains unchanged
until the zoom level is changed. The zoom command format
is as follows:

@zoom on CHARACTER to ZOOM % DURATION.
Example uses of the zoom command are provided below:

@zoom on TOO to 200% 1.5

@zoom to 100% in 1.0 (zoom to full screen)

@zoom to 100% in O (cut to full screen)

To cut to a ZOOM % or between characters, the zoom
command is used with a duration of zero. Example of cutting
to 150% zoom level:

@zoom on CHARACTER to 150% 0
Example of cutting between characters at 200% zoom level:

@zoom on CHARACTERI1 to 200% 0

@zoom on CHARACTER?2 to 200% O.

To pan between characters, the zoom command is used to
zoom to the character desired to pan to with the same ZOOM
% as the character currently zoomed in on, with a desired
DURATION:

@zoom on CHARACTERI to 150% 2

@zoom on CHARACTER?2 to 150% 2.

A zoom DURATION of 0.5, 2, and 3 are respectively
considered to be fast, standard, and slow. A ZOOM % of
100%, 150%, and 250% are respectively considered to be
standard, medium, and close-ups.

To have a character perform an action or animation while
he/she delivers a line, specify a character action or behavior
in parenthesis after the character name in the dialog code. An
example is “(talk_happy)” included next to the CHARAC-
TER name above for the dialog code. To have a character
perform an action without dialog, the code format is as
follows:

@CHARACTER is ACTION

@CHARACTER starts ACTION
in which ACTION is selected from among a library of
pre-defined actions or behaviors. Examples of character
action codes without dialog from the example chapter script
of the “Love Life” story comprise:

@DANCERLI is dance3

@BIANCA starts dancel

US 9,478,059 B2

19

Note that ACTION is gender or body type specific, and will
not be performed if there is a mismatch between the
ACTION gender and the corresponding character avatar’s
gender.

Sound codes have the following format:

sound SOUND
in which SOUND is a sound file selected from among a
library of pre-defined sounds.

Music codes have the following format:

music MUSIC

music off
in which MUSIC is a music file selected from among a
library of pre-defined music or noise. Music files continue to
loop until turned off.

Character outfits can be changed by code in the following
format:

@CHARACTER changes into OUTFIT
in which OUTFIT is an outfit file selected from among a
library of pre-defined outfit definitions. An example of
character outfit change code from the example chapter script
of the “Love Life” story comprises:

@BIANCA changes into Mary

An example of comments code in the example chapter
script of the “Love Life” story comprises:

comments text

Stage directions formatted to start with a “@” can be in
compound form by using the AND construct between adja-
cent directions. An example of compound stage direction
code from the example chapter script of the “Love Life”

story comprises:
@DANCER1 is dance3 AND DANCER2 starts
dance rock AND DANCER3 is danceS AND

DANCERA4 is dance3

Code elements of the scripting language enable imple-
mentation of if/then logic, branching, and persistent state
functionalities not available in traditional scriptwriting. Use
of if/then logic and/or branching allows the same user or
different users to have different viewing experiences of the
same version of a given script in different sessions. Use of
if/then logic and/or branching also provides user interactive
features during viewing of a script. This results in customi-
zation of the viewing experience for each user. The same
if/then logic and/or branching are also operable to imple-
ment a client Ul and/or script access/monetization policies
of'the system 100 at the client side. Certain of code elements
facilitate persistency of user interactive actions and selec-
tions in one part of a script to another part of a script, in one
chapter to another chapter of a story, in one story to another
story, and/or from one user to another user. Additional
details of code elements are discussed below.

In alternative embodiments, the scripting language may
have additional commands or elements to facilitate story-
telling and associated functionalities. For example, the
scripting language made define control of visual, audio,
vibrational, tactile, and/or other sensory-receptive elements
in the performance of a script. As another example, rather
than formulating character definitions separate from the
script, character definitions may be defined within the script.

5.2 Example Transformation of Script to Animation

As discussed above in connection with block 406 of FIG.
4, in one embodiment the server 102 automatically trans-
lates, transforms, or converts a script created in scripting
language to a file in meta-language format. In an embodi-
ment, the meta-language format comprises a JSON format.
Each script is transformed to a JSON file comprising a list

10

25

30

40

45

50

55

20

of nodes. Each node within a JSON file is uniquely identi-
fied. The server 102 parses the script to identify and classify
all of the scripting language elements present in the script
based on the particular syntax and format associated with
each of the various scripting language elements. For each
type of the scripting language elements present in the script,
there is a corresponding node type. Once the type of node is
identified for a given scripting element, the discussion below
sets forth the required content of the node, with the content
values specified within the given scripting element.

Each node is delineated from each other by delineator
symbol(s). The sequence of nodes is comma-separated and
each node, in turn, contains attributes within curly brackets.
For each node, there are a number of comma-separated
attributes within the curly brackets. Each of the comma-
separated attributes comprises a name-value pair. The name
of an attribute is a word or a single letter enclosed within
quotation marks separated from the value of the attribute by
a colon, with the value of the attribute also enclosed within
quotation marks.

Types of Nodes

One of the attributes of nodes is “c” which refers to the
type of node. The type of node influences what other
attributes may be present in the node. Types of nodes include
the following:

default node—The default node does not have a “c”
attribute specified but generally involves a character
speaking dialog.

CostumeChangeNode—Used to change the outfit that a
character wears

DirectorNode—Used to specify an action that describes
character/movement animation

ChoiceNode—Used to specify an interactive choice. This
is often used for user experience branching (e.g., a
different dialog or story based on choice).

FlagNode—Used to set a value. This node is often used in
connection with a ChoiceNode to set a value based on
user selection and then later to cause branching based
on the BranchNode.

TimedFlagNode—Used to set a flag that is set for some
time duration and then expires. This allows branching
to change depending on whether the flag has expired.

LoseFlagNode—Used to unset a flag.

CounterSetNode—Allows a counter to be created with a
value that can then be incremented or decremented and
used in logic tests for purposes of branching

CounterArithmeticNode—Allows counter to be increased
or decreased

BranchNode—Used to specify different branches in the
story to take based on values that have been previously
set using the FlagNode

GlobalDictionaryNode—Used to alter which stories are
visible in the catalog/list of stories

CatalogConfigNode—Used to create a list of stories for a
catalog

WebViewNode—Allows script to refer to a web page
which can then provide additional Ul/functionality
(including via Javascript)

Attributes

The names of possible attributes are as follows:

“k”—Key attribute, indicates the unique key or identifier
of the current node. This attribute is included in all
types of nodes.

“e”—Fdge attribute, indicates the unique key or identifier
of the next node for the interpreter app to process. This
attribute is included in all types of nodes.

US 9,478,059 B2

21

Person attribute, indicates the numerical identifier
of the character to which this node relates, which has
been loaded via CSV files, based on the characteristics
defined for the character.

Required attribute for default node and Costu-
meChangeNode
Included in default nodes to identify speaker
Included in CostumeChangeNode to identify character
whose outfit will be changed
If narrator is performing the dialog, then “NARRA-
TOR” is the identifier
“a”—Animation attribute that specifies the animation to
be performed while dialog is spoken
Generally included (but not required if there is no
change/no animation to be performed) in default
node
A plurality of animations is available. Examples
include:
search, dancel, dance3, dance5, dance_rock,
talk_happy, awkward, talk_headache, talk_shrug,
idle, disappointed, chatting, wave, talk_greet,
talk_arms_raised, condescending, smug, nervous,
doubtful, rude, turnedoff2, laughing, talking,
point, giddy, confused, phonecall, talkingon-
phone, talkingonphone2, talkingonphone3, talkin-
gonphone4, excited, coveringmouth, bowing
front, walkrear, tinkering_rear,
talking17_apathetic, talking9_happy2, primping
“d”—Dialog attribute that specifies the dialog spoken by
the character specified with the “p” attribute in default
nodes
Included in all default nodes
In FlagNodes, “d” actually stands for debug and is an
attribute that specifies debugging text.
“outfit"—Attribute specifying the clothing outfit that
character “p” should wear as part of a Costu-
meChangeNode
The clothing is specified by referencing as a value its
identifier that is included in the applicable CSV files
that relate to what was created on the portal.
“b”—Background attributes, indicates the name of the
background image (defined using CSV files) to be used
Only included if there has been a change
Background attributes may be included in default node,
CostumeChangeNode, DirectorNode
“Action” Attribute for DirectorNode
In addition to the “c”, “k”, and “e” attributes above,

DirectorNode includes an “action” attribute. Each “action”

attribute comprises a set of comma-separated values

enclosed in square brackets. Depending on the type of

“action” attribute, there may be different values included:

“Put”—Places a character on screen, takes an unique
identifier of a character and then a location
Location includes “slot” and “spot” name/value pair,
may include a “x” value
“Slot”—One of the four zones that a scene is divided
into
“Spot”—Refers to descriptors of certain default
locations in the scene. Example default locations
include: upscreen_left, screen_right, back_far_
left, back_far_right, back_right, back_left, off-
screen_right, offscreen_left, screen_center

”—Gives the number of pixels (positive or nega-

tive) offset from the default “spot” location that is

given

[Tt

P

oy

10

15

20

25

30

35

40

45

50

55

60

65

22

“Slot” and “spot” pairs also support specification of

[Tat)

y” and “z” coordinate values, similar to use of
e

“Face”—Causes character to face a direction
Takes an identifier of a character and a numbered

direction

Directions: 0 (right), 1 (left)

“Remove”—Takes an identifier of a character and
removes from screen. Generally, this is done once
character has been moved to off screen location.

“Behave”—Runs an animation, takes a unique identifier
of the character and the name of the animation
The animations are those specified by the “a” attribute

(discussed above).

“Walk”—Takes a unique identifier of a character and a
location and walks/moves character to that location

“Follow”

Takes an identifier of a character and a location (slot/
zone/spot—see above under “Put” for description of
location)

Camera follows walking character to location/zone

“Pan”—Camera cuts to zone/location
takes an identifier of a location (slot/zone—see above

under “Put” for description of location)
“Sequence”
This corresponds to the “@CHARACTER is

ACTION” directive in the script.

“Sequence” corresponds to script statements including
a “THEN” operator/construct of the form @thingl
THEN thing2. An example script statement is:
@CHARACTER faces left THEN @CHARACTER
starts talking

With “Sequence,” rendering does not move onto the
next action/node until the action is completed.

By default, “Sequence” action takes another action as
an argument (see the above actions) and then a
default “Wait” action as an argument with a default
time period (e.g., 1.5 seconds) that causes the ren-
dering to wait until action is completed before mov-
ing onto the next node.

Per the examples below, “Sequence” actions may
also contain multiple actions to represent script

patterns such as “@CHARACTER enters from
left to screen right” or “@CHARACTER exits
right”

“Spawn”

This corresponds to the “@CHARACTER is ACTION
AND CHARACTER? is ACTION2” directive in the
script.

With “Spawn,” the actions are processed simultane-
ously. By default, “Spawn” action takes multiple
actions as arguments that should be processed simul-
taneously.

Additional Attributes for Specific Types of Nodes

Certain types of nodes may have additional associated
attributes:

ChoiceNode

In addition to standard “a”, “d”, “k”, “e”, “c”, and “p”
attributes in default node, ChoiceNodes include the
following additional attributes:

“choices”—Lists the interactive choices that user
can select in response to the question/statement
stated in the “d” attribute if applicable

“exprs”—For a ChoiceNode, if these values are true,
then choice will be displayed. If you want all

US 9,478,059 B2

23

choices to be displayed, then set all of these to
true. Otherwise, can use logic to influence which
choices are available.

“es”—FHdges attribute (e.g., plural). For a
ChoiceNode, lists the next node the rendering
should jump to depending on which choice is
selected. This allows for branching based on
whichever choice is selected.

“iaps”—This triggers an In App Purchase (IAP)
purchase based on the IAP options that have been
labeled. The dollar properties and other amounts
would be set in a CSV file for each of the IAP
labels. The logic for the application programming
interface (API) call and verification of the IAP is
handled by the interpreter app itself. It includes a
set of comma-separated IAP options that corre-
spond with the choices.

FlagNode
In addition to standard “k”, “e”, and “c”, attributes in
default node, FlagNodes include the following addi-
tional attributes:

“flag”—Includes a flag or value that will be used
later in the branching if it has been set

Often, based on choices in a ChoiceNode, the pro-
gram is directed to a specific node (based on the
“es” attribute and the choice selected) which is a
FlagNode that sets a value that can be used for
future branching/continuity based on prior choices
selected

For FlagNode, “d” represents debug text and the “p”
is generally “NARK” for narrator.

TimedFlagNode
In addition to standard “k”, “e”, and “c”, attributes in
default node, TimedFlagNodes include the following
additional attributes:

“flag”—Includes a flag or value that will be used
later in the branching if it has been set

“duration”—Number in seconds before flag expires

For TimedFlagNode, “d” represents debug text and
the “p” is generally “NARR” for narrator.

LoseFlagNode
In addition to standard “k”, “e”, and “c”, attributes in
default node, LoseFlagNodes include the following
additional attributes:

“flag”—Includes a flag or value that should be unset

For LoseFlagNode, “d” represents debug text and the
“p” is generally “NARR” for narrator.

BranchNode
In addition to standard “k”, “e”, and “c”, attributes in
default node, BranchNodes include the following
additional attributes:

“exprs”—A list of conditions required for each
branch

“es”—Fdges attribute (e.g., plural). For a Branch-
Node, this contains an array of next nodes that the
program should jump to depending on which of
the corresponding “exprs” evaluate to true.

This allows for branching to continue later in the
story based on flags/values that have been previ-
ously set.

Corresponds to if, elif, else syntax in the script
CounterSetNode
In addition to standard “k”, “e”, and “c”, attributes in
default node, CounterSetNodes include the follow-
ing additional attributes:

30

40

45

50

55

24

“counter”—Value is the name of the counter that can
be referred to and evaluated elsewhere, including
in “expr” attributes of BranchNodes

“value”—Value sets the value of the counter

CounterArithmeticNode
In addition to standard “k”, “e”, and “c”, attributes in
default node, CounterSetNodes include the follow-
ing additional attributes:

“counter”—Value is the name of the counter that is

to be changed

“kind”—Value is the operation to be performed on
counter

add for addition, sub for subtraction

“value”—Value is the amount to be adjusted from
the counter using the operation specified in “kind”
attribute

GlobalDictionaryNode

In addition to standard “k”, “e”, and “c”, attributes in
default node, GlobalDictionaryNodes include the
following additional attributes:

“gd_id”—Includes value of “catalog Visibility”
when it relates to affecting visibility of stories

“gd_key”—Includes the name of the story for which
the visibility will be affected

CatalogConfigNode

In addition to standard “k”, “e”, and “c”, attributes in
default node, CatalogConfigNodes include the fol-
lowing additional attributes:

“catalog_list”—Value has a comma-separated list of
stories to be included in such catalog

“catalog_id”—VWValue includes the name of the cata-
log

WebView Node

In addition to standard “k”, “e”, and “c”, attributes in
default node, WebViewNodes include the following
additional attributes:

“url”—Value includes reference to the Uniform
Resource Locator (URL) of the web page to
access

Examples of various types of nodes generated in accor-
dance with the node constructs specified above are as
follows:

Default Nodes:

*“talk_ shrug”,
>:€10090777,
g

457,

:“Never mind.”

i o

" “NARRATOR”,

41307,

1407,

*:“On Heart Attack three strapping suiters,”

ddrid

7:€1030044”,

1627,

1657,

*:“And I think you’re just the single lady we want this season.”

& d rd

US 9,478,059 B2

25

DirectorNode with “Put” Action:

“action™:[
“Put”,
“6283473501290496”,
{
“slot™:*2”,
“spot”:“back_left”

B
“¢”:“DirectorNode”,
e 177

w167

DirectorNode with “Behave” Action for Single Animation:

“action™:[
“Behave”,
“6116367061221376”,
“dance__rock”

»
“¢”:“DirectorNode”,
“e”:1507,
w1497

DirectorNode with “Follow” Action:

{
“action™:[
“Follow”,
“10090777,
{
“slot: 2",
“spot”:“screen__left”
¥
15
“¢”:“DirectorNode”,
g1
w0
¥

DirectorNode with “Pan” Action:

{
“action™:[
“Pan”,
o
0.0
“¢”:“DirectorNode”,
“e”:158”,
w1577
}

DirectorNode with “Sequence” Action:

“action™:[
“Sequence”,
[
“Behave”,
“6556368341303296”,
“dance3”

10

20

25

30

35

40

45

50

55

60

65

26

-continued

“Wait”,
1.5

I8

“¢”:“DirectorNode”,
Cenrraeq 19
e 117,
w17

DirectorNode with “Sequence” Action that Uses Multiple
Actions to Represent the “@CHARACTER Enters from
Left to Screen Right” in the Script:

{
“action”:[
“Sequence”,
[
“Put”,
“10090777,
{
“spot”:“offscreen_ left”
¥
1
[
“Face”,
“10090777,
0
1
[
“Walk”,
“10090777,
{
“spot”:“screen__right”
¥
]
“¢”:“DirectorNode”,
“g0537,
“ren gy
¥

DirectorNode with “Sequence” Action that Uses Multiple
Actions to Represent the “@CHARACTER Exits Right” in
the Script:

“action”:[
“Sequence”,
[
“Face”,
“10090777,
0

“Walk”,
“1009077”,

{
¥

“spot”:“offscreen_ right”

“Remove”,
“1009077”

]

»
“¢”:“DirectorNode”,
“g?10557”,
w537

US 9,478,059 B2

27
ChoiceNode:
{
“a”“idle”,
“c”:“ChoiceNode”,
“d”:*I’ll have a”,
“exprs”:[
“true”,
“true”,
“rue”
1,
“k: 487,
“choices™:[
“Double vodka soda with salt”,
“Gin and tonic with a splash of diet coke”,
“Tequila and milk”
1,
“p:<10090777,
“es”:[
“557,
“657,
w757
]
¥

ChoiceNode (with “iaps™ Attribute):

“styles™:[
“GREEN”,
“GREEN”,
“GREEN”,

e

“¢”:*“ChoiceNode”,

“d”:*You’ve used up your three free Episodes for today but you
will have three more in [TIME_ COUNTDOWN:DAILY_ FLAG]. Would
you like to purchase 3 Episode Passes instead of waiting?”,

“exprs”:[

“PURCHASES_07,
“PURCHASES__17,
“PURCHASES_MORE”,

“true”
1,
567,
“laps™:[

“IAP_1_PREMIUMCHOICE_ 17,
“IAP_1_PREMIUMCHOICE_ 57,
“IAP_1_ PREMIUMCHOICE_ 107,
1,
“choices™:[
“Buy 3 Episode Passes for IAP_ AMOUNT”,
“Buy 3 Episode Passes for IAP_ AMOUNT”,
“Buy 3 Episode Passes for IAP_ AMOUNT”,
“Tap here when the countdown is over to continue without
purchasing any Passes”

“p”:“NARRATOR”,
“es”:[

“617,

“727,

“83”,

«17

FlagNode:

“c”:“FlagNode”,

e85

“d”:*You gained a flag: DOUBLE__ VODKA”,
k607,

10

15

20

25

30

40

45

50

55

60

65

28

-continued

“0"*“NARR”,
“flag”:*“DOUBLE__ VODKA”

“c”:“FlagNode”,

“g”:85”,

“d”:*You gained a flag: DIET_COKE”,
“k”707,

“p”*“NARR”,

“flag”:“DIET__COKE”

“c”:“FlagNode”,

“g”:85”,

“d”:*“You gained a flag: TEQUILA”,
“k”: 807,

“p”*“NARR”,

“flag”“TEQUILA”

TimedFlagNode:

“c”:“TimedFlagNode”,

“e”¢187,

“d”:*You temporarily gained a flag: DAILY_ FLAG 864007,
“k177,

“p”:“NARR”,

“flag”:*“DAILY_ FLAG”,

“duration”:86400

LoseFlagNode:

“c”“LoseFlagNode”,

“e7:4207,

“d”:*You have lost a flag: PURCHASES_ 07,
“k”:197,

“p”“NARR”,

“flag”:“PURCHASES_ 0”

CounterSetNode:

“¢”:“CounterSetNode”,
“counter”:“FREE_ CHAPTERS”,
“e”:19”,

“k:<187,

“value”:“3”

CounterArithmeticNode:

“¢”:“CounterArithmeticNode”,
g3,

29,

“counter”:“FREE_ CHAPTERS”,
“kind”:*sub”,

“value™:“1”

US 9,478,059 B2

29
BranchNode:

“exprs”:[
“DOUBLE_VODKA”,
“DIET_COKE”,
“TEQUILA”,

“else”

“c”:“BranchNode”,
“k”:4217,
“es”:[

“424”,

“429”,

“434”,

“440”

The JSON file corresponding to the example chapter
script of the “Love Life” story in Appendix A is set forth
herein as Appendix B.

Translating the script in block 406 of FIG. 4 also may
include identifying portions of the script, or corresponding
JSON file, that specify items available from the library 254.
The specified items can be, without limitation, identifiers of
specific backgrounds, outfits, sounds, music, audio, charac-
ter animation/behavior, and the like. For example, the
“EXTHEARTATTACK2-DAY” background identifier
specified in the example chapter 1 of the “Love Life” story.
The identified specified items, among other things, populate
a chapter CSV file corresponding to the script/JSON file.
The identified specified items in the chapter CSV file com-
prise a list of identifiers of things (e.g., backgrounds, outfits,
audio, character animation/behaviors) that are further iden-
tified/resolved in other files (e.g., place CSV file, outfit CSV
file, character spot CSV file). In an embodiment, a new
chapter CSV file is created to correspond to a JSON file, the
new chapter CSV file containing only information associ-
ated with the script. In an another embodiment, the specified
items are added to an existing chapter CSV file, the existing
chapter CSV file maintaining a record of all of the scripts (or
all of the story scripts). The existing chapter CSV file may
also be referred to as a composite or master chapter CSV file.

In block 408 of FIG. 4, the character definitions or
characteristics specified by the author user (e.g., using a
separate Ul input process) are translated, transformed, or
converted into a CSV format. The character definitions
populate a character CSV file corresponding to the script/
JSON.

The chapter CSV file comprises a table of one or more
record rows, each record row associated with a particular
chapter script. The table includes a plurality of columns to
specify various data values associated with a particular
chapter script. The columns comprise, without limitation:

Chapter script identifier

InBundle—Defines whether certain files require down-

loading or are already present

Chapter script display name

Script file name

Timestamp

Character identifier—Unique number assigned by server

102 for each user created character.

Outfit identifier—List of outfits referred to in JSON file

and refers to elements in the outfit CSV file.

Places identifier—Name strings used in scripts

Audio identifier—List of outfits referred to in JSON file

and refers to elements in the audio CSV file.

w

10

15

20

25

30

35

40

45

50

55

60

65

30

Character animation identifier—Name strings used in

scripts

Editable—Defines whether a viewing user can modify the

animated script during viewing of the animation.

Writers Mode—Defines whether to show debug tools

available for the author user of the script.

Lowest valid revision number
Examples of data values populating a chapter CSV file are
set forth herein in Appendix C. The chapter CSV file of
Appendix C is a portion of a composite/master chapter CSV
file. The record row corresponding to the example chapter 1
of the “Love Life” story is highlighted. If the chapter CSV
file corresponding to a JSON file is configured to only
contain data about the example chapter 1 of the “Love Life”
story, for example, then the chapter CSV file may just
include the row highlighted in Appendix C.

The chapter CSV file supports the JSON file by providing
data values or translated data values not included in the
JSON file.

In some instances, the chapter CSV file may itself include
data values that require a further look-up. For example, the
places identifier column of the chapter CSV file contains
plain text names of background images and not the under-
lying image file name necessary to retrieve and use the
image file. To find the specific image file name correspond-
ing to a particular background/place name, a place CSV file
is provided. The place CSV file is a file maintained inde-
pendent of the scripts. The place CSV file provides the
specific image file name (e.g., .jpg files) and, where appli-
cable, also the specific overlay image file name (e.g., .png
files), of all the possible background/place names available
for use in a script. Each record row is associated with a
particular background/place. The columns of the table com-
prise, without limitation:

Background/place identifier—Name

scripts

InBundle—Defines whether certain files require down-

loading or are already present

Image file name (e.g., .jpg file)

Title file name—Reserved

Overlay file name (e.g., .png file)—Not all backgrounds/

places have an overlay

Loop speed—Background images typically loop to main-

tain some kind of background in the scene. How fast to
loop is defined by the loop speed.

Scaled height—Defines the scaling of the image on the

screen.

An example place CSV file is set forth herein in Appendix
D. As an example, the Places identifier field of the chapter
CSV file contains “EXT.HEARTATTACK2-DAY” as a
background used in a script. To identify the actual image file
for background “EXT.HEARTATTACK2-DAY,” a look-up
is performed in the place CSV file to find “HA_Splashcreen-
Jpg” is the actual image file name.

Similar to the discussion above for the place CSV file, one
or more other CSV files and/or plists may exist and/or be
generated to support look-up of underlying file names or
items needed to animate the script. For example, the char-
acter identifier in the chapter CSV file refers to an avatar
body and an outfit, each of which is a collection of images
identified in another file. For a given script, at least a
corresponding JSON file and chapter CSV file exist. In
addition, one or more of the other CSV (or equivalent) files
(e.g., supporting files 240) comprise, but are not limited to:
a character CSV file, a place CSV file, an outfit CSV file, a
character spot CSV file, an audio file, and possible other
files. With the exception of the character CSV file, the

strings used in

US 9,478,059 B2

31

remaining one or more of the other CSV (or equivalent) files
may be non-script specific and used across all scripts avail-
able in the story catalog. The place CSV file identifies
underlying image files for respective backgrounds. The
outfit CSV file identifies underlying image files for respec-
tive outfits. The character spot CSV file identifies the pixel
or screen coordinates for respective character placement
positions. The audio file identifies underlying audio files for
respective outfits. In some embodiments, the server 102
generates one or more CSV files in response to a request to
view a particular chapter on a client 106 in addition to and/or
instead of generating them in connection with creation of the
JSON file associated with the chapter requested.

The interpreter app on the client 106 interprets and
renders the animation specified by the chapter script
dynamically and at runtime. The JSON file is interpreted at
runtime, a node at a time, and dynamically reads in or
consumes the CSV files (which contain avatar identification,
clothing information, physical appearances, and the like).
Dynamic look-up of data contained in the CSV file occurs to
find or expose the underlying file names (e.g., exact image
file names in .jpg format) associated with items identified in
the JSON file, as necessary. With the underlying or exact file
names of images and/or audio exposed to the JSON file,
these underlying files are dynamically retrieved and dynami-
cally loaded for dynamic rendering.

Character definitions/characteristics are dynamically con-
structed at runtime without having to reload the other
animation data. They are dynamically loaded for incorpo-
ration into an existing animation-texture framework without
having to know the character characteristics ahead of time.
This is because there is separate configuration of characters
from animation and texture data. The animation is built at
runtime and takes as input, the configuration information
that is loaded dynamically. Thus, among other things, a
limitless number of characters and/or outfits can be intro-
duced without changing anything in the binary and configu-
ration file. The configuration file may also be changed to
allow even more character and/or outfit variations without
changing the binary.

The resulting animation displayed on the client 106
comprises animation with control of background, characters,
positioning, overlays, movement, dialog (shown as speech
bubbles), sounds, music, execution of if/then logic and
branching, and persistency states. In an embodiment, the
displayed animation comprises a type of animation referred
to as paper doll animation. In paper doll animation, animat-
ing a character, for example, is performed using a skeleton
with different parts of the character’s body rendered using
respective different image representation files (e.g., a hand is
a first image file that is different from a body torso that is a
second image file, etc.). As the character moves in adjacent
frames, only those parts of the character’s body that changes
are re-rendered or redrawn while the unchanging body parts
are not re-rendered or redrawn. In contrast, with frame-
based animations, the entire character and/or frame may be
re-rendered or redrawn if the character moves in adjacent
frames. Thus, paper doll animation employed in the system
100 is considerably more memory and/or processor efficient.
In an embodiment, animations are cached to avoid costs of
loading, and the same animations can be used with different
characters (which reduces loading and memory resources).

The file package sent to the client 106 to achieve such
animation does not require any pre-rendering processing at
the server side to decrease processing requirements at the
client side. Nor is the interpreter app on the client 106
performing pre-rendering processing prior to runtime.

25

40

45

55

32

In some embodiments, the image files (also referred to as
image representations) may be in one or more formats that
are converted for use in paper doll animation techniques as
described above.

Updates to a script can be immediately or nearly imme-
diately pushed to update the client 106, or immediately or
nearly immediately provided in response to a user request
for the updated script. This feature enables the author user to
make iterative changes to his/her script on client 1064 (e.g.,
a web-connected laptop or desktop), and preview the
change(s) in animation form in real- or near real-time on
client 1065 (e.g., a mobile device). In the context of reflec-
tion of script updates for non-author users, if a given script
is updated while the given script is displaying on non-author
users’ client devices, assuming that the updated script is
authorized for general access, the update is pushed to each
of those client devices immediately or nearly immediately.
The pushed update comprises a file package including an
updated JSON file, one or more supporting updated CSV
files, and one or more updated underlying item files in
accordance with the update.

Because the scripting language enables display of visual
elements as well as interactive choices, the same scripting
language can also be used to create scripts that render the Ul
and/or implement monetization techniques on the clients
106. In an embodiment, the client UT script 220 (of FIG. 2)
is created similar to the way a chapter script is created.
Except it is created by system development or administra-
tion-type of personnel to serve as the client-side Ul Simi-
larly, the access control script 224 is created to control
access to chapter scripts by users via enforcement of a
certain monetization policy. In this regard, scripts 220 and
224 comprise special scripts. However, because they are still
scripts, they are transformed into respective JSON files and
one or more CSV files, and packaged with necessary con-
tent, as discussed above with respect to “regular” chapter
scripts. The file packages associated with the scripts 220
and/or 224 are downloaded to clients 106 upon the inter-
preter app being opened on respective clients 106. The
download is transparent to the user that opened the inter-
preter app, and does not require selection of the script by the
user. In some embodiments, the file package associated with
script 220 and/or 224 may persist at the client 106 after the
current session ends, for use at the next session. Additional
details regarding scripts 220 and 224 are described below.

5.3 Virtual Stage Action Element Relating to
Backgrounds

Backgrounds (also referred to as background graphical
images) are received and stored in library 254 of database
104. Backgrounds are obtained by system personnel and/or
provided by users.

Each background is divided into zones (also referred to as
background graphical display zones). Each zone is a fixed
width, such as the width of a smartphone screen, with no
overlap between zones. A zone is the portion of the back-
ground viewable on the client screen, and may be referred to
as the viewable area. Although background images can be of
different total widths, most of the background images are of
approximately the same total width. In an embodiment, most
of the backgrounds are divided into four zones—zone 1,
zone 2, zone 3, and zone 4 from left to right. Within each
zone a character can be positioned in any number of loca-
tions as described above. In other embodiments, back-
grounds may be divided into fewer or more than four zones.

US 9,478,059 B2

33

The number or size of zones may be pre-defined or dynamic
based on the screen characteristics of the client 106.

By default, zone 1 of a background is displayed when the
background is specified in a script. Other zones of the given
background can be viewed by moving the camera or a
character to a different zone from the currently displayed
zone. As discussed above, moving the camera using the code
@pan to zone X causes the camera to pan across background
zones, from the current zone to the specified new zone at a
constant rate. Panning across two or more zones of a
background may be considered to be an animated back-
ground.

To move the camera instantly to a new zone, the @cut to
zone X code is used. Moving or placing a character in a
different zone is achieved using: @CHARACTER stands
POSITION in zone X. A character walking off screen and
into a different zone is achieved by using: @CHARACTER
walks to POSITION in zone X. A character walking to a
different zone can be followed with the camera by using:
@follow CHARACTER to POSITION in zone X. More
than one character can walk together to a different zone
using the AND construct in the following form: @follow
CHARACTER to POSITION in zone X AND CHARAC-
TER2 walks to POSITION in zone X.

In summary, commands related to moving the camera or
character, which results in a change to the viewing area of
the background, are as follows:

Placing characters at the start of a scene

@CHARACTER stands POSITION

@CHARACTER stands POSITION in zone X
Entering and exiting the scene

@CHARACTER enters from SIDE to POSITION

@CHARACTER exits SIDE
Moving a character

@CHARACTER faces DIRECTION

@CHARACTER walks to POSITION

@CHARACTER walks to POSITION in zone X

@follow CHARACTER to POSITION in zone X
Moving the camera

@pan to zone X

@cut to zone X
Compound or simultaneous movement actions using AND
between the moving actions above.

The movement actions described above relate to affecting
movement in the x- and/or y-directions (up-down, left-
right). Movement is also possible in the z-direction, which
is into or out of the stage or screen. Affecting movement in
the z-direction, or more accurately in a 2-dimensional
screen, changing stage depth may be achieved using the
position commands with a position of non-standard depth
(e.g., @CHARACTER walks to back left).

More than one background can be displayed simultane-
ously on a client screen. A first background can be overlaid
over a second background with a certain transparency to
affect simultaneous background display. In an embodiment,
certain backgrounds are pre-defined as each comprising two
or more backgrounds overlaid over each other in a certain
order relative to each other (e.g., z-ordering), at a certain
z-direction spacing relative to each other (e.g., Z-spacing or
z-offset), and certain x- and y-positions of the respective
backgrounds relative to each other in the overlay set. The
script code to use an overlay background set is the same as
for a single background. The place CSV file specifies which
background is an overlay set as well as the image file names
of the plurality of backgrounds in the set. In other embodi-

10

15

20

25

30

35

40

45

50

55

60

65

34

ments, specific script code may be configured to allow more
control to select and assemble a plurality of single back-
grounds as an overlay set.

Backgrounds available from the library 254 are static
graphical images or dynamic graphical images. A dynamic
image comprises an image having at least an area with one
or more moving or animated elements and the remaining
areas that are static or non-moving. Dynamic image back-
grounds are consider to be animated backgrounds. For
instance, a background of a room with a fireplace may
include moving fire in the fireplace.

In an embodiment, a background is maintained in a scene
at all times. If a background named in a script is smaller in
total width than the standard four zones discussed above, for
example, such that there is no or only a partial zone 4 for this
background, then background looping is enabled to ensure
that when zone 4 is called on to be displayed, some of the
background will be displayed. Background looping may
comprise cycling through or repeating the sequential (avail-
able) zones of the background, for example, when the
background is scrolling behind a character to affect a walk-
ing character. In the example above, zone 1 of the back-
ground is the next section of the background displayed after
whatever available portion of zone 4 is displayed pursuant to
the background looping policy. As another example, if two
or more backgrounds are displayed sequentially, then the
first background, followed by the second background, loop-
ing back to the first background, and so forth can occur.

5.4 Use of Scripts for User Interactive
Functionalities

Code elements of the scripting language comprise com-
mands to include in the script to make animation corre-
sponding to the script interactive.

Choice Operator

A choice operator or code element causes display of a list
of text choices as respective button icons on the client
device. The text in each of the button icons is specified by
the author user in the choice operator construct. Each text
choice is associated with a particular branch (delineated by
a pair of curly brackets) in the choice operator construct.
When the user selects one of the button icons corresponding
to a text choice, the particular branch corresponding to the
selected text choice is rendered on the client device. The user
only sees the part of the script associated with the user-
selected choice, and the non-selected choice is not rendered.
After the selected choice branch, the separate branches
merge back together and the script is the same regardless of
the text choice selection. An example portion of a script
showing use of the choice operator construct is as follows:

TYLER
What is your favorite color?
choice
“Pink” {
YOU
I like pink. It is super cute.
Like bunnies!
TYLER
How predictable.
} “Green” {
YOU
I like green.

US 9,478,059 B2

35 36
-continued -continued
TYLER YOU
Me too. Gifts huh?
} “Black” { TYLER
You 5 Yeah.
Black. T’ll get you something nice and [fav__color].
Like the cold grip of death.
TYLER
That’s dark. In the example above, the variable is “fav_color” and the
¥ value of this variable will be “Pink,” “Green,” or “Black,”
TYLER 10

T’ll keep that in mind when I’'m buying your gifts!

In the above example, “Pink,” “Green,” and “Black” are
the first, second, and third text choices, respectively; the
content in the first pair of curly brackets is the first branch
corresponding to the first text choice; the content in the
second pair of curly brackets is the second branch corre-
sponding to the second text choice; and the content in the
third pair of curly brackets is the third branch corresponding
to the third text choice. Three choice buttons are displayed
on the client device: a “Pink” button, a “Green” button, and
a “Black” button. Responsive to the button selected by the
user, the corresponding branch content is rendered. Upon
completion of rendering of a branch content, regardless of
which branch it rendered, the next rendering is character
TYLER’s dialog “I’ll keep that in mind when I’'m buying
your gifts!”

The above example is in no way limiting. The branch
content can be dialog or other scripting elements (e.g., a
stage action). The branch content can be one, two, or more
scripting elements of the same or different types relative to
each other. The branch content of one choice need not be the
same length or script type as another choice in the same
choice operator. The choice operator construct can comprise
two or more text choices, as long as each choice is associated
with a branch.

Save Choice Operator

A save choice operator is a more interactive version of the
choice operator discussed above. The save choice operator
has the same format as the choice operator with the addition
of a variable name specified by the author use inside a pair
of parenthesis next to the choice operator. When the user at
the client device selects one of the text choices, the text of
the selected choice is saved as the value of the variable name
in the parenthesis.

TYLER
What is your favorite color?
choice (fav__color)
“Pink” {
YOU
I like pink. It is super cute.
Like bunnies!
TYLER
How predictable.
} “Green” {
YOU
I like green.
TYLER
Me too.
} “Black” {
YOU
Black.
Like the cold grip of death.
TYLER
That’s dark.

TYLER
T’ll keep that in mind when I’'m buying your gifts!

40

45

50

55

60

65

whichever choice is selected by the user viewing at the client
device.

Once the variable value is known and saved, it can be used
elsewhere in the script. In an embodiment, the text of the
selected choice is automatically included in dialog. In dialog
occurring after the choice operation, dialog can be con-
structed to include the variable name in square brackets as
a placeholder for the variable value. When dialog including
the variable name in square brackets is rendered on the client
device, the value of that variable name—which depends on
the user selection of the particular text choice and which is
saved text—is rendered on the client device.

In the example above, the last line of dialog includes the
variable name: “I’ll get you something nice and [fav_
color].” When character TYLER speaks this line, the last
word will be “pink,” “green,” or “black” based on the
selected text choice in the save choice operation.

Branching

Once a user choice is saved (e.g., the variable correspond-
ing to the choice is set), the variable can also be used to
facilitate branching without first presenting choices and
receiving a selection. In the example below, a branching
operator, also referred to as if/then logic or if/then logic
operator, is included in a script as follows:

YOU
Hi Tyler. Is that present for me?
TYLER
Yup. Open it.
if (fav__color is “Pink™) {
YOU
A pair of pink bunny ears!
So soft!
Thanks! I love it.
} elif (fav_color is “Green”) {
YOU
A $20 bill?
TYLER
Yeah, I didn’t know what else to get.
It’s green at least!
}else {
YOU
It’s empty.
TYLER
Black is the absence of light.
Darkness is emptiness . . .

As with the choice and save choice operators, the user at
the client device will only see the branch content corre-
sponding to the favorite color previously selected from
among the choices by the user. If the user selected “pink,”
then the dialog associated with the “green” branch and the
“black” branch will not be animated in this session of the
script animation.

Complex Branching

In addition to the branching operator, more complex
branching is achieved using the goto command in conjunc-
tion with a corresponding label command. The goto com-
mand causes jumping to a different line in the script, with the

US 9,478,059 B2

37

landing point specified by the location of the corresponding
label command in the script. This is a way to merge different
branches back together. Because this is a true jump opera-
tion, any scripting that exists after the goto command and
before the corresponding label command is skipped. Of
course if other commands cause returning to the skipped part
of the script, the skipped part will be animated.

The goto and label commands have the following format:

goto MERGE_THIS_BRANCH

label MERGE_THIS_BRANCH
in which MERGE_THIS_BRANCH is any name specified
by the author user. An example script excerpt using the goto
and label commands is as follows:

ANGIE
Where in the script should I go?
choice
“Far to the future” {
ANGIE
T’ll go far into the future.
goto FAR_ FUTURE
} “Where you are now” {
ANGIE
T’ll just stay right where I am.

ANGIE
See, where I am is really nice.
NARRATOR
Time passes.
label FAR_ FUTURE
ANGIE
Now I am in the future!

Another complex branching command is the gain com-
mand. This command saves where the viewing user has been
in the script (e.g., whether a particular choice was selected
by the user), and this can be used across different chapter
scripts of a story or across different stories. The saved choice
made by the user persists for continued storytelling across a
plurality of scripts. One or more choices made by the user
can be saved, one choice is saved per one gain command.
The variable used to save the choice made in the save choice
operator also persists across chapters of a story and across
different stories.

In an embodiment, the gain command is located virtually
anywhere within a script. For example, if a gain command
is located within one of the choice branches, the gain
command sets a flag if the user selects the choice associated
with the particular branch in which the gain command is
located. The gain command has the following format:

gain FLAG_NAME
where FLAG_NAME is any name specified by the author
user.

In the following script example, the “MET_ROBERT _
FROST” flag is set or gained if the user selects the “The road
less taken” choice. The “MET_ROBERT_FROST” flag is
deemed to be earned by the user:

YOU
A fork in the road . . . where should I go?
choice “The normal road” {
YOU
So familiar and comforting!
} “The road less taken” {
ROBERT FROST
Nice choice!
gain MET__ROBERT__FROST

}

10

15

20

25

30

35

40

45

50

55

60

65

38

Then the existence or absence of the “MET_ROBERT _
FROST” flag can be checked and used elsewhere in the same
or different script (e.g., in the same chapter, in a different
chapter of the same story, or in a different story from the
script that created the flag). An example script excerpt
checking for the existence of the “MET_ROBERT_FROST”
flag to carry out an if/then logic operation is as follows:

HAYES
How was your walk?
YOU
Really good.
if (MET_ROBERT__FROST) {
YOU
I took a different route.
And met a famous poet.
}else {
YOU
I took my usual route.

HAYES
Sounds fun.

Accordingly, interactive features are enabled in scripts
using one or more of the code elements described above. The
interactive features are similarly applicable in other context
outside of animating chapter scripts. In an embodiment, the
same code elements along with other graphical element
display commands (e.g., stage action elements) are used to
present and enable interactive functionalities of a client-side
GUI and/or to control script access/monetization policy, as
described in detail below.

As with the rest of the script, code elements of the
scripting language are transformed into specific types of
JSON nodes. And as with all JSON nodes, nodes corre-
sponding to code elements are dynamically interpreted/read
by the interpreter app included on the viewing user’s client
device; to affect dynamic loading of underlying files, as
necessary; and to dynamically render audiovisual elements
corresponding to the code elements at runtime. The inter-
pretation and rendering operations are the same as discussed
above for scripting elements.

In an embodiment, the user-selected choices are saved
locally on the user’s client device (e.g., client device 1065).
Then at the end of the session (e.g., when the interpreter app
is closed or the viewing of the current chapter is completed
or stopped), the interpreter app packages the user-selected
choices (e.g., variables in save choice operations, flags set in
gain commands, etc.) along with other session data into a
session log file. The log file is sent to the server 102 for
persistent storage. The log component 314 of the server 102
organizes and stores the log file to one or more files in the
database 104. As an example, the session log file may be
persistently stored in the log file 250. The session log file is
associated with at least a user identifier.

5.5 Use of Scripts to Control Client Ul or
Environment

In an embodiment, the interpreter app on the clients 106
lacks some or all of the capability to provide a GUI on its
own. Instead, the client-side GUI, also referred to as the
client U, is supplied by a script, such as the client UI script
220. Thus, a particular script is responsible for generating
the client Ul that presents a (story) catalog of a plurality of
other scripts (e.g., stories or chapters of stories). In an
embodiment, a JSON file corresponding to the client Ul

US 9,478,059 B2

39

script 220 along with supporting files are sent to the client
106 on which the interpreter app was just opened. When the
JSON file is executed on the client 106 by the interpreter
app, a client Ul is provided on the client 106 that controls
and modifies the interpreter app’s Ul and/or environment.

The client UI script 220 includes catalog commands and
in some instances, if/then logic or choice operators. The
catalog commands (also referred to as catalog declarations)
define which stories or chapters are visible in the graphical
depiction of a story catalog, which stories or chapters are
invisible/hidden in the graphical depiction of the story
catalog, which stories or chapters are listed as featured
stories in the graphical depiction of the story catalog, which
stories or chapters are listed as more stories in the graphical
depiction of the story catalog, the story catalog header
labels, story category list labels, to show or hide certain
button icons in the client Ul, and the like. The catalog
commands transform to GlobalDictionaryNode and Cata-
logConfigNode in the corresponding JSON file. The Global-
DictionaryNode is used to affect the visibility of stories or
chapters in the catalog (e.g., whether the names/titles of
certain stories or chapters are to be included in the list of
stories for the catalog). The CatalogConfigNode is used to
create the list of stories or chapters for the catalog based on
the visible stories designation.

An example client Ul script 220 to display a catalog of
stories or chapters available for consumption on a client 106
is reproduced below:
label loop
#unhide stories
catalog show InAPerfectWorld
catalog show TheCaptainsDaughter
catalog show RocknRollRevolution
catalog show Stranded_v4
catalog show HiddenLives
catalog show TeaPoison
catalog show Area_51
#we add back the hide button story
catalog show HideButton
catalog hide ShowButton
put all these unhidden stories in the more stories section,
with the hide story on top
catalog headers Featured StoriesIMore Stories
catalog list Featured Stories |CampusCrushllove.life
catalog list More
Stories|Rich_Witches|InAPerfectWorld|Stranded_v4|Tea-
Poison|TheCaptainsDaughter|Rockn
RollRevolution|HiddenLives|Area_51IHideButton|+Con-
tactl+Legal
jump menu+catalog
goto loop

The corresponding JSON file is reproduced below:
{“nodes”:[{*c”:“GlobalDictionaryNode” “e”:“5” “gd_id™:
“catalogVisibility”,“gd_key”:“InAP erfectWorld”,*“k*:“0”,
“gd_value”:“V” “label”:“loop”,“gd_op™:“set”},{“c™:
“GlobalDictionaryN ode”,“e”:“6”,“gd_id™:
“catalogVisibility”,“gd_key”:“TheCaptainsDaughter”,“k”:
“5” “gd_value”:“V” “gd_op”:“set”},{“c”:
“GlobalDictionaryNode”,“e”:*“7” “gd_id”:
“catalogVisibility”,“gd_k ey”:“RocknRollRevolution”,“k”:
“6”,“gd_value”:“V” “gd_op”:“set”},{“c”:
“GlobalDictionaryN ode”,“e”:“8” “gd_id™:
“catalogVisibility”,“gd_key”:“Stranded_v4”,“k”:*“7”,
“gd_value”:“V” “ad_op”:“set”},{“c™:
“GlobalDictionaryNode”,“e”:*“9” “gd_id”:
“catalogVisibility”,“gd_key”:“Hid denLives”,“k™:“8”,
“gd_value”:“V” “ad_op”:“set”},{“c™:

10

15

20

25

30

35

40

45

50

60

65

40
“GlobalDictionaryNode”,“e”:“10”,“gd_id™:
“catalogVisibility”,“gd_key”:“TeaPoison”,“k”:“9”,
“gd_value”:“V” “ad_op”:“set”},{“c™
“GlobalDictionaryNode”,“e”:“12”,“gd_id™:
“catalogVisibility”,“gd_key”:“Area_51",“k:“10”,
“gd_value”:“V” “ad_op”:“set”},{“c™
“GlobalDictionaryNode”,“e”:“13”,“gd_id™:“catalogVisibi
lity”,“gd_key”:“HideButton”,“k:*“12”,“gd_value”:“V”,
“gd_op”:“set”},{“c”:“GlobalDictionar ~ yNode”,“e”:*“16”,
“gd_id”:“catalogVisibility”,“gd_key”:“ShowButton”,“k”:
“13”,“gd_value”:“H”,“gd_op™:“set”},{“c™:
“CatalogConfigNode”, “catalog_list”:[“Featured Stories”,
“More Stories”],“k”:“16”,“catalog_id”:“default”,
“catalog_op”:“header” “e”:“17°},{“c”:“CatalogConf
igNode”,“catalog_list”:[“CampusCrush”,“love.life”’],“k”:
“17”,“catalog_id”:“Featured Stories”,“catalog_op”:“sec-
tion”,“e”:*18”},{“c”:“CatalogConfigNode” “catalog_list™:
[“Rich_Witches”,“InAPerfectWorld”,“Stranded_v4”,
“TeaPoison”, “TheCaptainsDaughter”,“RocknRo
lIRevolution”,“HiddenLives”,“Area_51”,“HideButton”,*+
Contact”,“+Legal”],“k:“18”,“catalo g_id”:“More Stories”,
“catalog_op”:“section”,“e”:*20”},{“c”:“JumpNode”,“e:
“07,“d”:“menu+catalog”,“me nu’:“catalog”,“k:“20”,“p
“NARR”}{“k”:“end”,“c”:“EndNode”,“d”:“The End”,
“label”:“the_end”}],“version”:“zzz” “chapter_id”:
“ShowButton/1”,“revision”:19}

Because the client Ul script 220 is a script, the server 102
performs translation to convert it into a JSON file. The
server 102 also performs the other operations described
above to send a file package for rendering the client Ul script
220 on the viewing user’s client 106. The client 106 inter-
prets the received JSON file and supporting file(s) at runtime
and dynamically renders animation corresponding to the
client UI script 220, as described above for other file
packages.

FIG. 7 illustrates an example screen 700 showing client
Ul elements displayed on a client 106 driven by an embodi-
ment of the client Ul script 220. Screen 700 includes one or
more button icons: a featured stories “more stories” button
702 (e.g., for users to “read”/view more stories that are
currently designated as featured stories), and a write button
704 (e.g., for users to write their own stories). Screen 700
also includes one or more (main) menu-type icons: a read
icon 706 (e.g., for users to “read”/view more stories, which
may include all available stories that are more expansive
than the featured stories), and a write icon 706 (e.g., for
users to write their own stories). The content of screen 700
is not intended to represent all possible client Ul elements.
Instead, screen 700 illustrates one or more example client Ul
elements that may be presented, which can be arranged in
any number of ways in one or more menus/screens. As an
example, when a user clicks, taps, or otherwise actuates the
“more stories” button 702, another screen is presented on the
client 106 showing a list of the featured stories for selection
by the user.

29,

5.6 Use of Scripts for Web View

In an embodiment, the scripting language includes a web
view command to refer to a Uniform Resource Locator
(URL) associated with a web page within a script. The web
page provides additional functionalities, such as, but not
limited to, provide additional UI elements, change Ul ele-
ments, change the state of the database 104, perform tests
(e.g., timegate test), and/or check certain conditions or states
of the user’s client 106. The web view command may be
included in a chapter script of a story; and hence, the web

US 9,478,059 B2

41

page referenced in the web view command may be associ-
ated with the story. The web view command may alterna-
tively be included in a script that is not part of a story; but
is instead, a script written for non-storytelling purposes. The
web page(s) referred to in scripts may be hosted by the
server 102. The web view script file 222 in FIG. 2 is an
example of a script including at least one web view com-
mand.

The web view command has the following format:

webview URL
where URL is the URL associated with a web page.

An example script is reproduced below, including a web
view command that references a web page “http:/www.ex-
ample.com”:

webview http://www.example.com
INT. BLACK - NIGHT
NARRATOR
Welcome to the timegate test!
This is Episode 1.
You like it?
choice
“Yes, lovely” continue
“No, ugly” continue
NARRATOR
Ok then. Ready for Episode 2?

As with all scripts, server 102 transforms scripts including
a web view command to a corresponding JSON file and also
generates one or more CSV files to support the JSON file.
And as discussed above, the server 102 packages the nec-
essary files and sends the file package to the client 106 on
which the script including a web view command is to be
rendered. The corresponding JSON file for the script above
is provided below:
{“nodes”:[{*url”:“http://www.example.com”,“c”:*“Web-
ViewNode”,“e”:“5” “k”: <07} {“p”“N ARRATOR” “k™:
“57p”“INT. BLACK—NIGHT”,“e”:“6”,“d”:“Welcome
to the timegate test!”} {“p”:*“NARRATOR” “K”:“6”,“e™:
“7”,“d”:“This is Bpisode 1.”},{“c”:“ChoiceNode”,“d”:“You
like it?” “exprs™:[“true”,“true”],"“k:“7”,“choices™:[“Yes,
lovely”, “No, ugly”],“p”:“NARRATOR”,“es”:[“13”,“137]},
{“p”:“NARRATOR” “k:%13” “e”:“end”,“d”:“O k then.
Ready for Episode 2?7},{“k”:“end”,“c”:“EndNode” “d”:
“The End”, “label”: “the_end”}], “version”:
“_glFgjudG7m”, “chapter_id”: “timegate/1” “revision”:3}

The web view command can be located virtually any-
where in a script, including within branches of choice
operations, branching operations, and other interactive
choice operations. The interpreter app at the client-side
executes the JSON node corresponding to the web view
command (WebView Node) by requesting at runtime the
web page specified by the URL via a web browser applica-
tion also included at the client-side. When the web page
loads on the client-side, the web page may take partial or full
control. The interpreter app executes the next node when the
web page indicates that execution may resume.

5.7 Use of Character Characteristics

As discussed above, characters and other elements such as
starting outfits for a given script may be defined using a GUI
environment on the portal hosted by the server 102. When
the author user creates a character (e.g., defines a character
name, avatar, and changes to default avatar characteristics),
the server 102 saves the character with a unique identifier
(e.g., a unique character number) and associates it with one

10

15

20

25

30

35

40

45

50

55

60

65

42

or more particular scripts. An outfit, a particular combination
of clothing and accessories, for the created character is also
saved by the server 102 with a unique identifier (e.g., a
unique outfit number) and is associated with at least the
created character. Additional character characteristics may
also be defined. These actions are repeated for each char-
acter to appear in a chapter script.

Then as the author user composes the chapter script that
includes the created character(s), the portal provides a
library of a plurality of pre-defined outfits (each with a
specific identifier) and a plurality of pre-defined character
animations or behaviors (each with a specific identifier)
from which the author user can select to include in the
chapter script. The portal also provides the list of outfits
created by the author user for the chapter script or story
including the chapter script for selection by the author user.

Hundreds of character animation/behaviors are available.
A few examples are provided below in the specific identi-
fiers assigned by the server 102 and which are displayed to
the author user for selection during script creation:

search, dancel, dance3, dance5, dance_rock, talk_happy,
awkward, talk _headache, talk_shrug, idle, disappointed,
chatting, wave, talk_greet, talk_arms_raised, condescend-
ing, smug, nervous, doubtful, rude, turnedoff2, laughing,
talking, point, giddy, confused, phonecall, talkingonphone,
talkingonphone2, talkingonphone3, talkingonphone4,
excited, coveringmouth, bowing_front, walkrear, tinker-
ing_rear, talking17_apathetic, talking9_happy2, primping.

One or more character animation/behaviors may be ani-
mated simultaneously, using the AND construct/operand
discussed above. The corresponding JSON expression is the
“Spawn” attribute in the DirectorNode, which causes actions
to occur simultaneously. An example JSON node for ren-
dering simultaneous character animation/behaviors is shown
below. Four simultaneous character animation/behaviors—
dance3 for a first character, dance_rock for a second char-
acter, dance5 for a third character, and dance3 for a fourth
character—are specified below.

“action”:[
“Spawn”,
[
“Sequence”,
[
“Behave”,
“6556368341303296”,
“dance3”

“Wait”,
1.5

“Behave”,
“6116367061221376™,
“dance__rock”

“Sequence”,

[
“Behave”,
“6306353865818112”,
“dance5”

“Wait”,
1.5

US 9,478,059 B2

43

-continued

“Sequence”,

[
“Behave”,
“6283473501290496”,
“dance3”

“Wait”,
1.5

]

»
“¢”:“DirectorNode”,
“e”:1617,
w58

Outfits and character animation/behaviors are body type
specific, in an embodiment. For example, a character rep-
resented by an avatar having a female body requires female
outfits and female character animation/behaviors. Similarly,
a character represented by an avatar having a male body
requires male outfits and male character animation/behav-
iors. If there is a mismatch in gender among the avatar,
outfit, and/or character animation/behaviors, then the inter-
preter app may not render the mismatching combination.
More likely, the test component 312 will detect mismatches
during a check/test of the chapter script and require fixing
the error before continuing to the next phase. In alternative
embodiments, the outfits and/or character animation/behav-
iors are not body type specific and/or may be deemed a
permissible combination with each other and/or a character
avatar based on other criteria.

In an embodiment, there are three distinct character-
related characteristics:

a character definition specified by a unique character

number,

an outfit definition specified by a unique outfit number,

and

a character animation/behavior specified by a unique

textual identifier.

Because the interpreter app dynamically renders charac-
teristics of characters into an existing animation-texture
framework, as discussed above, dividing the characteristics
of each character into at least three parts allows only those
characteristics that are newly displaying or changing to be
rendered rather than re-rendering everything about a given
character. Correspondingly, only those image and/or audio
files associated with the particular characteristics to be
rendered are identified via CSV files and dynamically loaded
for display by the interpreter app at runtime. For example, if
a character’s animation/behavior changes while on-screen,
only the image and/or audio file(s) corresponding to the new
character animation/behavior is newly rendered.

Additional details relating to format and use of the
scripting language is set forth herein in Appendix E.

6.0 CLIENT-SIDE SCRIPT EDITS

As discussed above, the use of a variable in the save
choice operator to save a text choice made by a viewing user
and then using the variable to affect some of the dialog in the
same or different script at runtime comprises client-side
editing of dialog. The result is that users at the client-side
can edit the dialog at runtime by selecting a choice, which
causes replacement of the variable included in dialog with
text corresponding to the variable during animation of the

10

15

20

30

35

40

45

55

44

script. The user edited dialog immediately becomes part of
the current animation of that script at his/her client device.
Thus, although a user who did not author a given script does
not have rights to edit the given script per se, the save choice
operator in conjunction with use of variables in dialog
constructs in the given script enables other users to “edit” the
given script. And such “editing” takes place on the client-
side via the interpreter app and are reflected immediately on
the “editing” client device.

In other embodiments, the scripting language enables
real-time or near real-time multi-player functionality. A first
user at a first client 106 can enter (or select) text during
viewing of a script, and the entered/selected text appears in
a script being animated for a second user at a second client
106.

7.0 MONETIZATION USING SCRIPTS

In an embodiment, viewing users’ access to story chapters
at the clients 106 are controlled using counter commands
and/or flag commands included in a non-story script. The
access control script file 224 in FIG. 2 is an example of such
a non-story script. An access control script 224 is generated
for each user that opens the interpreter app at his/her
respective client 106, and is sent to the user’s client 106 from
the server 102. The interpreter app lacks the capability to
provide the gating function and associated Ul on its own.
Instead, the access control script 224 provides the feature.

The access control script 224 includes a current counter
value associated with the particular user interfacing the
client 106. The current counter value is maintained in the
user information file 252. A counter or chapter pass counter
is associated with each uniquely identifiable viewing user
(e.g., by login info on the interpreter app). The current
counter value for a given viewing user represents the num-
ber of passes (also referred to as chapter passes) currently
credited to, and thereby available for use by, the given
viewing user.

One pass is used to access a single chapter from among a
catalog of chapters available to read provided on the inter-
preter app. Alternatively, different pass to chapter redemp-
tion ratios may apply. Access to chapters is contingent on the
viewing user having sufficient number of passes in his/her
“account.” The passes represent virtual currency in the
system 100. Passes can be purchased with real currency by
viewing users and/or passes can be earned or rewarded.
Thus, the access control script 224 controls monetization of
stories and more particularly, chapters of stories. Note that
passes are not needed for an authoring user to access his/her
chapters at least for previewing newly created chapter
scripts. In some embodiments, no passes are also needed for
the authoring user to access his/her chapters in the regular
viewing of those chapter(s).

The access control script 224 includes interactive script-
ing commands (e.g., if/then logic, choice, branching) and
either counter commands or flag commands. The interactive
scripting elements are used to enable interaction with and
presentation of one or more monetization statements to the
viewing user. The counter or flag commands are used to
check the counter value associated with the viewing user and
to change the counter value in accordance with the viewing
user’s choices and actions. The counter used in the access
control script 224 is set with the current counter value
associated with the viewing user. The counter setting com-
mand corresponds to the JSON CounterSetNode described
above. Based on the viewing user’s action(s), the counter is
incremented or decremented. The CounterArithmeticNode

US 9,478,059 B2

45

facilitates the increment or decrement of the counter. Alter-
natively, the counter can be set using flags, in which the flag
command corresponds to the JSON FlagNode described
above. The FlagNode can be used in connection with a
ChoiceNode to set a value based on the viewing user’s
selection and then cause branching using BranchNode.

An example access control script 224 is set forth herein in
Appendix F. In this example, the viewing user is given three
free passes a day. Before the viewing user can “read” a
chapter from the catalog, the script logic checks if the
counter value is greater than zero. If the counter value is
greater than zero, then the viewing user can access a chapter
from the catalog. If counter value is too low (e.g., zero), then
the script includes choices for the viewing user to purchase
passes (e.g., in sets of three passes). If the viewing user
selects the choice to purchases passes, then the script logic
(e.g., branching operator) presents one or more purchasing
choices to the viewing user for selection. In an embodiment,
the passes may be purchased using real or virtual currency
(e.g., IAPs). There may be a separate API call made by the
interpreter app to charge or otherwise complete the purchase
in real currency. Additional details regarding IAPs are
described above.

If passes are purchased, the counter is incremented
accordingly. In the example, the “iaps” attribute of the
ChoiceNode is used to increment the counter or, if flags are
used, to set a flag. Similarly, if the viewing user reads a
chapter, the counter is decremented or, if flags are used, to
set a flag corresponding to a decrement.

The viewing user’s behavior other than a pass purchase
can cause the counter to be incremented (or flag equivalent).
For example, if the viewing user answers a question cor-
rectly, provides feedback about a read chapter or story, the
viewing user’s referral of certain chapters to other users was
successful, and the like. Passes accrued in this manner
causing the counter (or flag equivalent) to change is handled
the same way as counter increment (or flag equivalent) in
response to a pass purchase.

Because the access control script 224 is still a script, the
server 102 performs translation to convert it into a JSON
file. The JSON file corresponding to the script shown in
Appendix F is set forth herein in Appendix G. The server
102 also performs the other operations described above to
send a file package for rendering the access control script
224 on the viewing user’s client 106. The client 106 inter-
prets the received JSON file and supporting file(s) at runtime
and dynamically renders animation corresponding to the
access control script 224, as described above for other file
packages.

Others of the access control script 224 can enable mon-
etization and/or gating functionalities during animation of a
script. FIG. 8 illustrates an example screen 800 displayed on
a client 106 showing an example monetization function
driven by an embodiment of the access control script 224. A
particular access control script 224 includes if/then and/or
branching logic to enable user participation involving mon-
etization during viewing of a story/chapter. Screen 800
includes a “choose your style” button 802 that a viewing
user can actuate to initiate display of style choices for a
character in the story/chapter. Style choices that are dis-
played may be a “hip” style button 804, a “classy” style
button 806, and a “smart” style button 808. The “hip” style
is a free monetization choice while each of the “classy” style
and “smart” style choices has an associated dollar amount
“$4.99” and “$0.99,” respectively. If the viewing user
selects either button 806 or 808, additional selection choices
may be presented and eventually, virtual and/or real cur-

10

20

25

30

40

45

50

55

60

46

rency purchase transaction functionalities (such as discussed
above) are exposed to the viewing user to purchase a
particular “classy” or “smart” style for the character of
interest.

8.0 AUTOMATED FILE PACKAGING

Returning to FIG. 4 and in particular to block 418, the file
package sent by the server 102 and received by the client
106 requesting viewing of a particular chapter script is
automatically packaged by the server 102 in response to the
user request at the client 106 for a particular chapter of a
particular story. In response, the server 102 configures just
the files/data needed to animate the particular chapter script
associated with the particular selected chapter, according to
an embodiment. This means, for example, that not all of the
image files, audio files, and supporting tables or lists in the
database 104 need to be sent to the client 106.

In an embodiment, the server 102 retrieves from database
104 only files/data needed for the particular chapter. In some
instances, the server 102 generates one or more CSV files to
assemble just the data needed for the particular chapter. For
example, if the particular chapter includes four specific
backgrounds, then the server 102 may generate an abbrevi-
ated or new place CSV file containing just the record rows
associated with those four backgrounds from among the
record rows of all the available backgrounds in the place
CSYV file shown in Appendix D. Likewise, the chapter CSV
file in the package contains data for just the particular
chapter rather than several or all of the chapters of the story
or stories as shown in Appendix C. One or more other
supporting CSV files, tables, or lists, if necessary, contain
chapter-relevant data. The underlying image and audio files
are only those files needed to render the particular chapter.
The JSON file associated with the particular chapter; the
chapter-specific chapter CSV file; the chapter-specific char-
acter CSV file; the chapter-specific outfit CSV file; the
chapter-specific place CSV file; chapter-specific character
spot CSV file; one or more other chapter-specific supporting
CSV files, tables, or lists (if needed); and the chapter-
specific underlying image and audio files comprise the file
package assembled by the server 102. A file package com-
prising the just-needed files for a chapter can be configured
when the chapter is at pre-publication stage or for preview
by the author user.

When a user selects a published chapter for “reading”
(e.g., from those chapters available from the story catalog),
the corresponding file package comprises the JSON file
associated with the selected chapter but the rest of the files
contain data associated with all of the available published
stories/chapters in the story catalog (or data for at least more
than just the selected chapter). A catalog-specific/wide chap-
ter CSV file, a catalog-specific/wide character CSV file, a
catalog-specific/wide place CSV file, a catalog-specific/wide
outfit CSV file, a catalog-specific/wide character spot CSV
file, one or more other catalog-specific/wide supporting
CSYV files, tables, or lists (if needed), and catalog-specific/
wide underlying image and audio files may be included in
the file package. Since these files are applicable to (all)
scripts in the catalog, this same set of files can be included
in any file package for any selected published chapter, and
thus, may be pre-generated and stored in database 104.

Generation of one or more files (e.g., CSV files) may
occur prior to, or in response to, a user request for the
particular chapter. The packaging of the files may occur
prior to, or in response to, a user request for the particular
chapter. In other embodiments, if certain of the files are

US 9,478,059 B2

47

already present on the client 106, then those files may be
excluded from the file package. For example, a current place
CSV file may already be stored on the client 106 from
previous viewing of a script.

In an alternative embodiment, whether to generate chap-
ter-specific CSV files or to use a single CSV file for all
stories available in the catalog may depend upon the relative
file sizes. When the single CSV file is negligibly larger in file
size than a chapter-specific version, then the single CSV file
may be used in the file package. Memory constraints,
transmission bandwidth constraints, and/or server resource
constraints may factor into which CSV files to generate or
re-use.

9.0 SPLIT TESTING OF SCRIPTS

The scripting language is robust enough to enable testing
A and B versions of a script in the same script. This type of
testing is referred to as A/B testing or split testing. A/B
testing precludes the need to send A and B versions of a
script to different sets of clients 106. A/B testing facilitates
incremental release of new chapters, stories, or other func-
tionalities to test user interest, usability, and the like.

The different scripts embedded in a single A/B test script
can be different versions of the same script to test incre-
mental changes. The different scripts embedded in the single
A/B test scripts can be two dissimilar scripts with little or no
commonality there between to test two different stories. The
different scripts embedded in the single A/B test scripts can
be two or more different scripts or script portions.

Any of the different uses of scripts to enable monetization,
client Ul or environment, storytelling, interactive features,
etc., any different combinations or versions of these can be
tested using A/B tests. An A/B test script includes if/then
logic to evaluate one or more particular A/B test variables
(e.g., split_test variables) with respect to the user at a client
106. The result of the evaluation(s) determines the rest of the
script portion(s) (or version) exposed to the user. Different
users experience different stories, U, choices, etc. relative to
each other (or relative to one set of users to another set of
users) via CSV files corresponding to the A/B test script.

An example A/B test script is set forth herein in Appendix
H. And the corresponding JSON file is set forth herein in
Appendix I. The particular A/B test variable in this example
script is “SPLIT_TEST_OPTION:promotest is “BLOCK”.

Based on the foregoing, numerous features and capabili-
ties of scripts in a scripting language are described herein. It
is understood that for all scripts, including storytelling
scripts and non-storytelling scripts (e.g., client Ul script 220,
web view script 222, access control script 224, etc.), user
interaction choices, states, conditions, timestamps, and other
tracking of user sessions on the clients 106 are logged at the
client-side and then uploaded to server 102 (e.g., block 428
of FIG. 4). Server 102 uses the log files to improve scripts,
to facilitate continuity and customization of storytelling
across different chapters or stories, to adjust stories available
in the catalog, and other script-related purposes.

10.0 HARDWARE OVERVIEW

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose
computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs) that are persistently pro-

15

20

30

40

45

60

48

grammed to perform the techniques, or may include one or
more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus-
tom hard-wired logic, ASICs, or FPGAs with custom pro-
gramming to accomplish the techniques. The special-pur-
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

For example, FIG. 9 is a block diagram that illustrates a
computer system 900 upon which an embodiment of the
invention may be implemented. Computer system 900
includes a bus 902 or other communication mechanism for
communicating information, and a hardware processor 904
coupled with bus 902 for processing information. Hardware
processor 904 may be, for example, a general purpose
Mmicroprocessor.

Computer system 900 also includes a main memory 906,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 902 for storing information
and instructions to be executed by processor 904. Main
memory 906 also may be used for storing temporary vari-
ables or other intermediate information during execution of
instructions to be executed by processor 904. Such instruc-
tions, when stored in non-transitory storage media acces-
sible to processor 904, render computer system 900 into a
special-purpose machine that is customized to perform the
operations specified in the instructions.

Computer system 900 further includes a read only
memory (ROM) 908 or other static storage device coupled
to bus 902 for storing static information and instructions for
processor 904. A storage device 910, such as a magnetic disk
or optical disk, is provided and coupled to bus 902 for
storing information and instructions.

Computer system 900 may be coupled via bus 902 to a
display 912, such as a cathode ray tube (CRT) or liquid
crystal display (LCD), for displaying information to a com-
puter user. An input device 914, including alphanumeric and
other keys, is coupled to bus 902 for communicating infor-
mation and command selections to processor 904. Another
type of user input device is cursor control 916, such as a
mouse, a trackball, or cursor direction keys for communi-
cating direction information and command selections to
processor 904 and for controlling cursor movement on
display 912. This input device typically has two degrees of
freedom in two axes, a first axis (e.g., X) and a second axis
(e.g., y), that allows the device to specify positions in a
plane.

Computer system 900 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or
programs computer system 900 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 900 in response to
processor 904 executing one or more sequences of one or
more instructions contained in main memory 906. Such
instructions may be read into main memory 906 from
another storage medium, such as storage device 910. Execu-
tion of the sequences of instructions contained in main
memory 906 causes processor 904 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software instructions.

US 9,478,059 B2

49

The term “storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operation in a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical or magnetic disks, such as storage device 910.
Volatile media includes dynamic memory, such as main
memory 906. Common forms of storage media include, for
example, a floppy disk, a flexible disk, hard disk, solid state
drive, magnetic tape, or any other magnetic data storage
medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a
RAM, a PROM, and EPROM, a FLASH-EPROM,
NVRAM, any other memory chip or cartridge.

Storage media is distinct from but may be used in con-
junction with transmission media. Transmission media par-
ticipates in transferring information between storage media.
For example, transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that com-
prise bus 902. Transmission media can also take the form of
acoustic or light waves, such as those generated during
radio-wave and infra-red data communications.

Various forms of media may be involved in carrying one
or more sequences of one or more instructions to processor
904 for execution. For example, the instructions may ini-
tially be carried on a magnetic disk or solid state drive of a
remote computer. The remote computer can load the instruc-
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 900 can receive the data on the telephone line and
use an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried in
the infra-red signal and appropriate circuitry can place the
data on bus 902. Bus 902 carries the data to main memory
906, from which processor 904 retrieves and executes the
instructions. The instructions received by main memory 906
may optionally be stored on storage device 910 either before
or after execution by processor 904.

Computer system 900 also includes a communication
interface 918 coupled to bus 902. Communication interface
918 provides a two-way data communication coupling to a
network link 920 that is connected to a local network 922.
For example, communication interface 918 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
918 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 918 sends and receives
electrical, electromagnetic or optical signals that carry digi-
tal data streams representing various types of information.

Network link 920 typically provides data communication
through one or more networks to other data devices. For
example, network link 920 may provide a connection
through local network 922 to a host computer 924 or to data
equipment operated by an Internet Service Provider (ISP)
926. ISP 926 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 928. Local
network 922 and Internet 928 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 920 and through communication interface 918,
which carry the digital data to and from computer system
900, are example forms of transmission media.

20

25

30

40

45

55

50

Computer system 900 can send messages and receive
data, including program code, through the network(s), net-
work link 920 and communication interface 918. In the
Internet example, a server 930 might transmit a requested
code for an application program through Internet 928, ISP
926, local network 922 and communication interface 918.

The received code may be executed by processor 904 as
it is received, and/or stored in storage device 910, or other
non-volatile storage for later execution.

11.0 OTHER DISCLOSURE

Embodiments also may implement the subject matter of
any one or more of the following numbered clauses:

1. A method of improving operation of computers which
define and display audiovisual programs such as animated
stories, comprising: using an authoring computer, receiving
script data comprising a plurality of natural language stage
direction statements, dialog statements and animation con-
trol statements of a particular chapter of a particular ani-
mated story; using the authoring computer, based upon the
script data, creating and storing a structured interpretation
file comprising a plurality of nodes each having one or more
attributes; transmitting the structured interpretation file to a
second computer; using the second computer, interpreting
the structured interpretation file to execute each of the nodes
using the one or more attributes; based upon the interpreting,
generating and displaying on a display device of the second
computer an audiovisual program on the second computer
that operates according to the script data and comprising one
or more visually animated characters that speaks according
to the dialog statements, moves according to the animation
control statements and is displayed within a graphical setting
that is graphically depicted according to the stage direction
statements.

2. The method of clause 1, wherein the animation control
statements include at least one choice statement comprising
an association of at least two choices, wherein each of the at
least two choices comprises an alternative dialog statement
and an alternative action statement, the method further
comprising: displaying, using the second computer, the at
least two choices; receiving input from the second computer
specifying a selection of one of the at least two choices;
executing a particular alternative action statement that is
associated with the one of the at least two choices that is
indicated in the selection.

3. The method of clause 1, wherein a particular animation
control statement among the animation control statements
comprises a character identifier, an action, and an action
attribute, the method further comprising interpreting the
particular animation control statement by graphically ani-
mating a particular one of the visually animated characters
to perform the action based upon the action attribute.

4. The method of clause 3, wherein the action comprises
any of: changing one character into a second character;
changing virtual garments that are graphically displayed on
the particular character; moving the particular character to a
particular stage location; performing a stationary movement;
dancing; facing in a particular direction.

5. The method of clause 3 wherein the particular anima-
tion control statement comprises two actions connected
using an operator and indicating simultaneous actions.

6. The method of clause 3 wherein the script data specifies
a plurality of actions for a particular character to perform
concurrently.

7. The method of clause 1, wherein the script data
comprises a choice operator, and a plurality of choice

US 9,478,059 B2

51

specifications, wherein each of the choice specifications
comprises an association of a choice text, one or more dialog
statements, and a choice variable name; the method further
comprising: causing displaying all of the choice text; receiv-
ing input specifying a selection of a particular choice text; in
response to the input, causing animated display of a par-
ticular character speaking a particular dialog statement that
is associated in the choice specifications with the particular
choice text.

8. The method of clause 1, wherein the structured inter-
pretation file comprises a plurality of JSON nodes for a
chapter of an animated story; wherein each of the JSON
nodes comprises one or more attributes; wherein one or
more of the attributes comprises a name-value pair.

9. The method of clause 8, wherein the JSON nodes
comprise one or more of: a default node that defines a
character speaking dialog; a costume change node that
specifies a change in a graphical costume of a character; a
director node that specifies an action for animated move-
ment of a character; a choice node that specifies an inter-
active choice; a flag node that specifies setting a value of a
variable; a timed flag node that specifies setting a flag value
having a specified time duration; a counter node that speci-
fies a counter value capable of incrementing or decrement-
ing; a branch node that specifies a particular branch in a
story; a catalog node that specifies aspects of including the
story in a catalog of stories; a web view node that specifies
a web page associated with the story.

10. The method of clause 8, further comprising transform-
ing one or more portions of the plurality of JSON nodes into
one or more files of comma-separated values (CSVs) prior
to transmitting the files to the second computer.

11. The method of clause 1, wherein using the second
computer for the interpreting the structured interpretation
file to execute each of the nodes using the one or more
attributes comprises: using the second computer to perform
animation of the particular chapter of the particular animated
story including controlling one or more of background,
characters, positioning, overlays, movement, dialog, sounds,
music, and execution of if/then logic.

12. The method of clause 1, further comprising: using the
authoring computer, receiving updated script data compris-
ing one or more updates to the plurality of natural language
stage direction statements, dialog statements and animation
control statements; using the authoring computer, based
upon the updated script data, creating and storing an updated
structured interpretation file comprising updated nodes;
immediately push transmitting the updated structured inter-
pretation file to the second computer; using the second
computer, without restarting an interpretation app hosted on
the second computer, interpreting the updated structured
interpretation file to execute each of the updated nodes;
based upon the interpreting, generating and displaying on a
display device of the second computer an updated audiovi-
sual program on the second computer.

13. The method of clause 1, further comprising: receiving
and storing a plurality of background graphical images, each
of the background graphical images having a number of
background graphical display zones that are available in the
second computer; transmitting a copy of at least one of the
plurality of background graphical images to the second
computer; using the second computer, displaying an ani-
mated panning sequence across two or more of the back-
ground graphical display zones of the at least one of the
plurality of background graphical images while displaying
the one or more visually animated characters.

10

15

20

40

45

52

14. The method of clause 13, further comprising: using
the authoring computer, receiving and storing a plurality of
graphical overlays and a Z-value for each of the graphical
overlays; transmitting copies of the graphical overlays to the
second computer; using the second computer, displaying the
graphical overlays graphically over the at least one of the
plurality of background graphical images in an order indi-
cated by the Z-value of each of the graphical overlays.

15. The method of clause 7, further comprising, based
upon the value of the particular choice variable, using the
second computer, modifying an appearance of a graphical
user interface of the second computer.

16. The method of clause 7, further comprising, based
upon the value of the particular choice variable, using the
second computer, modifying an appearance of a graphical
background that is displayed on the second computer.

17. The method of clause 7, wherein the script data
comprises a choice operator, and a plurality of choice
specifications, wherein each of the choice specifications
comprises an association of a choice text, one or more dialog
statements, and a choice variable name; the method further
comprising: causing displaying all of the choice text; receiv-
ing input specifying a selection of a particular choice text; in
response to the input, setting to TRUE a particular choice
variable associated with the choice variable name associated
with the particular choice text; based upon the value of the
particular choice variable, using the second computer, modi-
fying an appearance of: one or more of the graphical
background images, or one or more of the graphical over-
lays.

18. The method of clause 1, wherein the script data
comprises a counter declaration that specifies a chapter pass
counter having a specified value greater than zero, a condi-
tion statement configured to test the chapter pass counter,
and a monetization statement that requires a payment to
progress in the story beyond the monetization statement; the
method further comprising: using the second computer,
during the generating and displaying: in response to inter-
preting the condition statement, testing a then-current value
of'the chapter pass counter, and only when the testing results
in determining that a then-current value of the chapter pass
counter is not zero, decrementing the chapter pass counter
and permitting further generating and displaying the par-
ticular chapter.

19. The method of clause 1, wherein the script data
specifies a chapter pass counter having a specified value
greater than zero; the method further comprising: using the
second computer, testing a then-current value of the chapter
pass counter, and only when the testing results in determin-
ing that a then-current value of the chapter pass counter is
not zero, decrementing the chapter pass counter and permit-
ting further generating and displaying the particular chapter.

20. The method of clause 1, wherein the script data
comprises a plurality of catalog declarations each specifying
showing a particular named story or chapter in a catalog of
stories or chapters; and the method further comprising: using
the authoring computer, receiving and storing script data for
one or more other stories or chapters other than those stories
or chapters that are specified in the plurality of catalog
declarations; using the second computer, based upon the
script data, displaying a catalog of stories or chapters that
includes only those stories or chapters that are specified in
the plurality of catalog declarations.

21. The method of clause 20, wherein the script data
further comprises a header declaration that specifies two or
more header labels, and two or more list declarations each
respectively corresponding to a particular header label

US 9,478,059 B2

53

among the two or more header labels and comprising
corresponding lists of chapters or stories; the method further
comprising: using the second computer, based upon the
script data, displaying the two or more header labels in
header positions of the catalog; displaying, in two or more
lists that are below and associated with the two or more
header labels respectively, the corresponding lists of chap-
ters or stories.

22. The method of clause 1 wherein the second computer
is any of a smartphone, a tablet computer, and a handheld
computer.

23. The method of clause 1, wherein the script data
comprises: a plurality of sections wherein each of the
sections is associated with a particular test among a plurality
of tests; a plurality of condition statements each associated
with a particular testing condition that is also associated with
one particular test among the plurality of tests; a plurality of
test variables each associated with one of the tests and
configured using one of a plurality of values; and the method
further comprising: during the displaying, upon interpreting
a particular section among the plurality of sections, testing
aparticular condition statement within the particular section,
determining whether a test variable specified in the particu-
lar condition statement has a valid value, and continuing
interpreting the particular section only when the test variable
has a valid value, otherwise skipping interpreting the par-
ticular section and continuing interpreting a different par-
ticular section.

12.0 EXTENSIONS AND ALTERNATIVES

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous spe-
cific details that may vary from implementation to imple-
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the
scope of the invention, is the literal and equivalent scope of
the set of claims that issue from this application, in the
specific form in which such claims issue, including any
subsequent correction.

What is claimed is:

1. A computerized method, comprising:

receiving a meta-language file comprising a conversion of

a script file in a natural language format, the script file
including a plurality of natural language statements;
interpreting, by a first computing device, the meta-lan-

guage file for execution of at least a first portion of the
meta-language file;
dynamically generating and displaying, on the first com-
puting device, one or more visually animated graphical
elements in accordance with the execution of the at
least a first portion of the meta-language file;

wherein the one or more visually animated graphical
elements comprise an action element that relates to a
background comprising a plurality of zones, and that
causes displaying a first zone, of the plurality of zones,
of the background;

in response to a user interactive action taken on the one or

more visually animated graphical elements of the at
least a first portion of the meta-language file, by a first
user on the first computing device, setting at least one
parameter based on the user interactive action;
wherein setting the at least one parameter causes a third
meta-language file associated with the script file to
particularly execute for a second user that is different

10

15

20

25

30

35

40

45

50

55

60

65

54

from execution of the third meta-language file for the
second user when the at least one parameter is not set;

wherein setting the at least one parameter causes modi-
fying the action element to cause displaying a second
zone, of the plurality of zones, of the background;

receiving a second meta-language file comprising a con-
version of a second script file in a natural language
format, the second script file including a plurality of
natural language statements, the second script file sepa-
rate and different from the script file;

interpreting the second meta-language file for particular

execution of at least a second portion of the second
meta-language file in accordance with the at least one
parameter, wherein the at least one parameter persists
from the third meta-language file to the second meta-
language file;

dynamically generating and displaying one or more sec-

ond visually animated graphical elements in accor-
dance with the particular execution of the at least a
second portion of the second meta-language file,
including displaying the second zone of the back-
ground;

wherein the at least a second portion of the second

meta-language file executes differently from the par-
ticular execution when the at least one parameter is not
set.

2. The method of claim 1, wherein the plurality of natural
language statements included in the script file comprises one
or more dialog natural language statements, and wherein
dynamically generating and displaying the one or more
visually animated graphical elements comprises dynami-
cally generating and displaying one or more visually ani-
mated characters that speaks according to the one or more
dialog natural language statements.

3. The method of claim 1, wherein the plurality of natural
language statements included in the script file comprises one
or more dialog natural language statements, and wherein
dynamically generating and displaying the one or more
visually animated graphical elements comprises dynami-
cally generating and displaying one or more visually ani-
mated speech bubbles according to the one or more dialog
natural language statements.

4. The method of claim 3, wherein the one or more dialog
natural language statements is associated with a narrator of
a story.

5. The method of claim 1, wherein the plurality of natural
language statements included in the script file comprises one
or more character movement control natural language state-
ments, and wherein dynamically generating and displaying
the one or more visually animated graphical elements com-
prises dynamically generating and displaying one or more
visually animated characters moving according to the one or
more character movement control natural language state-
ments.

6. The method of claim 1, wherein the plurality of natural
language statements included in the script file comprises one
or more stage direction natural language statements, and
wherein dynamically generating and displaying the one or
more visually animated graphical elements comprises
dynamically generating and displaying one or more visually
animated characters located within a graphical setting
according to the one or more stage direction natural lan-
guage statement.

7. The method of claim 1, wherein the plurality of natural
language statements included in the script file comprises one
or more character behavior natural language statements, and
wherein dynamically generating and displaying the one or

US 9,478,059 B2

55

more visually animated graphical elements comprises
dynamically generating and displaying one or more visually
animated characters performing particular behavior actions
according to the one or more character behavior natural
language statement.

8. The method of claim 1, wherein the plurality of natural
language statements included in the script file comprises one
or more background natural language statements, and
wherein dynamically generating and displaying the one or
more visually animated graphical elements comprises
dynamically generating and displaying one or more visually
animated backgrounds according to the one or more back-
ground natural language statement.

9. The method of claim 1, wherein the plurality of natural
language statements included in the script file comprises one
or more character outfit natural language statements, and
wherein dynamically generating and displaying the one or
more visually animated graphical elements comprises
dynamically generating and displaying one or more visually
animated characters wearing one or more respective clothing
and accessories according to the one or more character outfit
natural language statement.

10. The method of claim 1, wherein the plurality of
natural language statements included in the script file com-
prises one or more audio natural language statements, and
further comprising dynamically generating and audibly pre-
senting one or more audio elements according to the one or
more audio natural language statements.

11. One or more non-transitory machine-readable media
storing instructions which, when executed by one or more
processors, cause performance comprising:

receiving a meta-language file comprising a conversion of

a script file in a natural language format, the script file
including a plurality of natural language statements;
interpreting, by a first computing device, the meta-lan-

guage file for execution of at least a first portion of the
meta-language file;
dynamically generating and displaying, on the first com-
puting device, one or more visually animated graphical
elements in accordance with the execution of the at
least a first portion of the meta-language file;

wherein the one or more visually animated graphical
elements comprise an action element that relates to a
background comprising a plurality of zones, and that
causes displaying a first zone, of the plurality of zones,
of the background;
in response to a user interactive action taken on the one or
more visually animated graphical elements of the at
least a first portion of the meta-language file, by a first
user on the first computing device, setting at least one
parameter based on the user interactive action;

wherein setting the at least one parameter causes a third
meta-language file associated with the script file to
particularly execute for a second user that is different
from execution of the third meta-language file for the
second user when the at least one parameter is not set;

wherein setting the at least one parameter causes modi-
fying the action element to cause displaying a second
zone, of the plurality of zones, of the background;

receiving a second meta-language file comprising a con-
version of a second script file in a natural language
format, the second script file including a plurality of
natural language statements, the second script file sepa-
rate and different from the script file;

interpreting the second meta-language file for particular

execution of at least a second portion of the second
meta-language file in accordance with the at least one

10

25

30

40

45

56

parameter, wherein the at least one parameter persists
from the third meta-language file to the second meta-
language file;

dynamically generating and displaying one or more sec-

ond visually animated graphical elements in accor-
dance with the particular execution of the at least a
second portion of the second meta-language file,
including displaying the second zone of the back-
ground;

wherein the at least a second portion of the second

meta-language file executes differently from the par-
ticular execution when the at least one parameter is not
set.
12. The one or more non-transitory machine-readable
media of claim 11, wherein dynamically generating and
displaying comprises dynamically generating and displaying
one or more visually animated avatars representative of
respective one or more characters specified in the script file.
13. The one or more non-transitory machine-readable
media of claim 11, wherein the meta-language file comprises
a JavaScript Object Notation (JSON) file.
14. The one or more non-transitory machine-readable
media of claim 11, wherein the instructions, when executed
by the one or more processors, further cause performance
comprising generating the script file based on user input of
the plurality of natural language statements.
15. The one or more non-transitory machine-readable
media of claim 14, wherein the user input is provided on the
first computing device or a second computing device that is
different from the first computing device.
16. The one or more non-transitory machine-readable
media of claim 11, wherein the instructions, when executed
by the one or more processors, further cause performance
comprising:
receiving one or more supporting files;
wherein interpreting the meta-language file comprises
using the one or more supporting files to identify one or
more graphical representations corresponding to the
one or more visually animated graphical elements;

wherein dynamically generating and displaying com-
prises dynamically rendering at runtime, the one or
more graphical representations in accordance with the
meta-language file to dynamically display the one or
more visually animated graphical elements.

17. The one or more non-transitory machine-readable
media of claim 11, wherein dynamically generating and
displaying the one or more visually animated graphical
elements comprises:

dynamically generating and displaying a character image;

dynamically generating and displaying one or more ani-

mated images of individual moving body parts of the
character without re-generating or re-displaying the
entire character.

18. The one or more non-transitory machine-readable
media of claim 11, wherein the one or more visually
animated graphical elements comprise one or more user
interface (UI) commands associated with presenting one or
more listings of a plurality of available story representations
in a story catalog, each of the plurality of available story
representations corresponding to a respective animated
story.

19. The one or more non-transitory machine-readable
media of claim 11, wherein the plurality of natural language
statements in the script file includes one or more references
to web pages;

wherein interpreting the meta-language file comprises

interpreting the meta-language file to execute a second

US 9,478,059 B2

57

portion of the meta-language file associated with the
one or more references to web pages;

wherein dynamically generating and displaying com-

prises dynamically generating and displaying one or
more web pages in accordance with the execution of
the second portion of the meta-language file.
20. The one or more non-transitory machine-readable
media of claim 11, wherein the plurality of natural language
statements in the script file includes one or more monetiza-
tion commands, and wherein dynamically generating and
displaying comprises dynamically generating and displaying
the one or more visually animated graphical elements to use
virtual or real currency by a user interfacing with the first
computing device.
21. The one or more non-transitory machine-readable
media of claim 20, wherein the one or more monetization
commands includes one or more counter commands to
selectively alter a state value associated with the user to
control access to one or more portions of the script file by the
user.
22. The one or more non-transitory machine-readable
media of claim 11, wherein the plurality of natural language
statements in the script file includes one or more choice
commands, and wherein the instructions, when executed by
the one or more processors, further cause performance
comprising:
receiving, at the first computing device, a user selection of
a choice from among at least a first choice and a second
choice associated with the one or more choice com-
mands, at least the first and second choices presented as
the one or more visually animated graphical elements;

in response to receiving the first choice as the user
selected choice, interpreting the meta-language file
comprising interpreting the meta-language file to
execute the first portion of the meta-language file
corresponding to a first branch associated with the first
choice, and dynamically generating and displaying
comprising dynamically generating and displaying one
or more first visually animated graphical elements in
accordance with the execution of the first portion of the
meta-language file corresponding to the first branch
associated with the first choice;

in response to receiving the second choice as the user

selected choice, interpreting the meta-language file to
execute a second portion of the meta-language file
corresponding to a second branch associated with the
second choice, and dynamically generating and dis-
playing one or more second visually animated graphi-
cal elements in accordance with the execution of the
second portion of the meta-language file corresponding
to the second branch associated with the second choice.

23. The one or more non-transitory machine-readable
media of claim 22, wherein the instructions, when executed
by the one or more processors, further cause performance
comprising saving the user selected choice for use in
dynamically generating and displaying an another portion of
the meta-language file or an another meta-language file
associated with an another script file that is different from
the script file.

24. One or more non-transitory machine-readable media
storing instructions which, when executed by one or more
processors, cause performance comprising:

dynamically generating and displaying, at a first comput-

ing device, one or more visually animated graphical
elements in accordance with script data;

wherein the script data comprises one or more dialog

statements and at least one of one or more character

20

35

40

45

50

55

60

o

5

58

movement control statements, one or more character
animation statements, or one or more stage direction
statements composed in natural language syntax;

wherein the one or more visually animated graphical
elements comprise one or more speech bubbles accord-
ing to the one or more dialog statements;
wherein the one or more visually animated graphical
elements comprise an action element that relates to a
background comprising a plurality of zones, and that
causes displaying a first zone, of the plurality of zones,
of the background;
in response to a user interactive action taken on the one or
more visually animated graphical elements, by a first
user on the first computing device, setting at least one
parameter based on the user interactive action;

wherein setting the at least one parameter causes one or
more visually animated graphical elements associated
with the script data to particularly execute for a second
user that is different from execution for the second user
when the at least one parameter is not set;
wherein setting the at least one parameter causes modi-
fying the action element to cause displaying a second
zone, of the plurality of zones, of the background;

dynamically generating and displaying one or more sec-
ond visually animated graphical elements in accor-
dance with second script data and the at least one
parameter, the second script data separate and different
from the script data, including displaying the second
zone of the background;

wherein the at least one parameter persists from the script

data to the second script data.

25. The one or more non-transitory machine-readable
media of claim 24, wherein the instructions, when executed
by the one or more processors, further cause performance
comprising:

receiving, at the first computing device, the script data or

representation of the script data in response to a selec-
tion of the script data by a user;

responsive to the selection of the script data, dynamically

interpreting, by the first computing device, the script
data or representation of the script data to render at least
a first portion of the script data.

26. The one or more non-transitory machine-readable
media of claim 25, wherein the representation of the script
data comprises a translation of the script data in a computer-
readable format.

27. The one or more non-transitory machine-readable
media of claim 24, wherein the instructions, when executed
by the one or more processors, further cause performance
comprising:

receiving the script data based on user input of the one or

more dialog statements and at least one of the one or
more character movement control statements and the
one or more character animation statements composed
in natural language syntax;

wherein dynamically generating and displaying are pre-

vented until errors identified in an automatic testing of
the script data are resolved in the script data.

28. The one or more non-transitory machine-readable
media of claim 24, wherein the script data comprises at least
one of: (1) one or more user interface (UI) statements
associated with dynamically generating and displaying one
or more listings of a plurality of available story representa-
tions in a story catalog, each of the plurality of available
story representations corresponding to a respective animated
story, (2) one or more references to web pages associated
with dynamically generating and displaying one or more

US 9,478,059 B2

59

web pages in accordance with the one or more references to
the web pages, and (3) one or more choice statements
associated with dynamically generating and displaying one
or more graphical choice elements for interaction with a user
during the dynamically generating and displaying of the one
or more visually animated graphical elements.

29. The one or more non-transitory machine-readable
media of claim 24, wherein the script data comprises one or
more audio natural language statements, and wherein the
instructions, when executed by the one or more processors,
further cause performance comprising:

dynamically generating and audibly presenting one or

more audio elements according to the one or more
audio natural language statements.

30. The one or more non-transitory machine-readable
media of claim 24, wherein dynamically generating and
displaying the one or more visually animated graphical
elements comprises:

dynamically generating and displaying a character image;

dynamically generating and displaying one or more ani-

mated images of individual moving body parts of the
character without re-generating or re-displaying the
entire character.

10

15

20

60

