US009147156B2

a2z United States Patent (10) Patent No.: US 9,147,156 B2
Izhikevich et al. 45) Date of Patent: Sep. 29, 2015
(54) APPARATUS AND METHODS FOR SYNAPTIC 5,638,359 A 6/1997 Peltola
UPDATE IN A PULSE-CODED NETWORK SeTAeT A A gléggzryg
5980096 A 11/1999 Thalhammer-R;
(75) Inventors: Eugene M. Izhikevich, San Diego, CA 6009418 A 12/1999 Coil)per crheyero
(US); Filip Piekniewski, San Diego, CA Continued
(US); Jayram Moorkanikara (Continued)
Nageswaran, San Diego, CA (US);
Jeffrey Alexander Levin, San Diego, FOREIGN PATENT DOCUMENTS
CA (US); Venkat Rangan, San Diego, CN 102226740 A 10/2011
CA (US); Erik Christopher Malone, Jp 4087423 3/1992
San Diego, CA (US) (Continued)
(73) Assignee: QUALCOMM TECHNOLOGIES OTHER PUBLICATIONS
INC., San Diego, CA (US) Eugene M. Izhikevich, Simple Model of Spiking Neurons, IEEE
(*) Notice: Subject to any disclaimer, the term of this Transactlon: on Neural Networks, vol. 14, No. 6, Nov. 2003, pp.
patent is extended or adjusted under 35 1569-1572.)
U.S.C. 154(b) by 461 days. (Continued)
(21) Appl. No.: 13/239,255 Primary Examiner — Jeftrey A Gaffin
290 Filed: Sen. 21. 2011 Assistant Examiner — Qla Olude Afolabi
(22) Filed: p- <4 (74) Attorney, Agent, or Firm — Seyfarth Shaw LLP
(65) Prior Publication Data (57) ABSTRACT
US 2013/0073491 Al Mar. 21, 2013 Apparatus and methods for efficient synaptic update in a
network such as a spiking neural network. In one embodi-
(1) Int. C1. ment, the post-synaptic updates, in response to generation of
GO6F 1/16 (2006.01) ; . ’ e .
GOGN 3/04 (2006.01) apost-synaptic pulse by a post-synaptic unit, are delayed until
' a subsequent pre-synaptic pulse is received by the unit. Pre-
(52) US.CL synaptic updates are performed first following by the post-
C.PC e GO6N 3/049 (2013.01) synaptic update, thus ensuring synaptic connection status is
(58) Field of Classification Search up-to-date. The delay update mechanism is used in conjunc-
CPC ittt GOO6N 3/049 tion with system “flush” events in order to ensure accurate
USPC s . 706/23, 27 network operation, and prevent loss of information under a
See application file for complete search history. variety of pre-synaptic and post-synaptic unit firing rates. A
. large network partition mechanism is used in one variant with
(56) References Cited

U.S. PATENT DOCUMENTS

5,063,603 A 11/1991 Burt
5,355,435 A 10/1994 DeYong
402
40

/\/ 448

network processing apparatus in order to enable processing of
network signals in a limited functionality embedded hard-
ware environment.

34 Claims, 27 Drawing Sheets

442

[\/ . |P/404 e

US 9,147,156 B2
Page 2

(56)

6,014,653

6,458,157

6,545,705

6,545,708

6,546,291

6,581,046

7,536,374

7,849,030

8,015,130

8,103,602

8,315,305

8,467,623

8,712,939

8,712,941

8,719,199

8,725,658
2002/0038294
2003/0050903
2004/0193670
2005/0015351
2005/0036649
2005/0283450
2006/0161218
2006/0224533
2007/0176643
2007/0208678
2009/0043722
2009/0287624
2010/0086171
2010/0166320
2011/0016071
2011/0106741
2011/0119214
2011/0119215
2011/0160741
2012/0011090
2012/0109866
2012/0303091
2012/0308076
2012/0308136
2013/0073484
2013/0073491
2013/0073492
2013/0073495
2013/0073496
2013/0073498
2013/0073499
2013/0073500
2013/0151448
2013/0151450
2013/0218821
2013/0251278
2013/0297539
2013/0297541
2013/0297542
2013/0325768
2013/0325773
2013/0325774
2013/0325775
2013/0325776
2013/0325777
2014/0012788
2014/0032458
2014/0032459
2014/0052679
2014/0064609
2014/0081895
2014/0122397
2014/0122398
2014/0122399
2014/0156574
2014/0219497
2014/0222739
2014/0229411
2014/0244557

References Cited

U.S. PATENT DOCUMENTS

A

Bl
Bl
Bl
B2
Bl
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

*

1/2000
10/2002
4/2003
4/2003
4/2003
6/2003
5/2009
12/2010
9/2011
1/2012
11/2012
6/2013
4/2014
4/2014
5/2014
5/2014
3/2002
3/2003
9/2004
1/2005
2/2005
12/2005
7/2006
10/2006
8/2007
9/2007
2/2009
11/2009
4/2010
7/2010
1/2011
5/2011
5/2011
5/2011
6/2011
1/2012
5/2012
11/2012
12/2012
12/2012
3/2013
3/2013
3/2013
3/2013
3/2013
3/2013
3/2013
3/2013
6/2013
6/2013
8/2013
9/2013
11/2013
11/2013
11/2013
12/2013
12/2013
12/2013
12/2013
12/2013
12/2013
1/2014
1/2014
1/2014
2/2014
3/2014
3/2014
5/2014
5/2014
5/2014
6/2014
8/2014
8/2014
8/2014
8/2014

Thaler

Suaning

Sigel
Tamayama
Merfeld
Ahissar

Au
Ellingsworth
Matsugu
Izhikevich
Petre et al.
Izhikevich et al.
Szatmary et al.
Izhikevich et al.
Izhikevich et al.
Izhikevich et al.
Matsugu

Liaw

Langan

Nugent

Yokono
Matsugu
Danilov

Thaler

Nugent
Matsugu
Nugent

Rouat

Lapstun
Paquier

Guillen
Denneau
Breitwisch
Elmegreen
Asano

Tangetal.
Modhaccooine

Izhikevich

Piekniewski et al.

Izhikevich et al.
Izhikevich
Izhikevich et al.
Izhikevich
Izhikevich et al.
Szatmary
Izhikevich
Izhikevich
Szatmary et al.
Ponulak
Ponulak
Szatmary et al.
Izhikevich
Piekniewski
Piekniewski

Piekniewski et al.

Sinyavskiy et al.
Sinyavskiy
Sinyavskiy
Sinyavskiy et al.
Ponulak et al.
Petre et al.
Piekniewski
Sinyavskiy et al.
Sinyavskiy
Sinyavskiy et al.
Petre et al.
Coenen et al.
Richert et al.
Richert
Szatmary et al.

Piekniewski et al.

Richert
Ponulak
Richert et al.

Piekniewski et al.

........ 706/33
........ 706/28

2014/0250036 Al
2014/0250037 Al
2014/0372355 Al

9/2014 Izhikevich et al.
9/2014 Izhikevich et al.
12/2014 Izhikevich et al.

FOREIGN PATENT DOCUMENTS

RU 2108612 C1 10/1998
RU 2406105 C2 12/2010
RU 2424561 C2 7/2011
™ 201110040 A 3/2011
WO 2008083335 A2 1/2008
WO 2008083335 A2 7/2008
WO 2008132066 11/2008
OTHER PUBLICATIONS

Jan Karbowski and Nancy Kopell, Multispikes and Synchronization
in a Large Neural Network with Temporal Delays, Neural Computa-
tion 12, 1573-1606 (2000).*

Jin, X., Rast, A., F. Galluppi, F., S. Davies., S., and Furber, S. (2010)
“Implementing Spike-Timing-Dependent Plasticity on SpiNNaker
Neuromorphic Hardware”, WCCI 2010, IEEE World Congress on
Computational Intelligence.

Izhikevich, E. (2003), entitled “Simple Model of Spiking Neurons”,
IEEE Transactions on Neural Networks, 14, 1569-1572.

Izhikevich and Desai2003, entitled “Relating STDP to BCM”, Neu-
ral Computation 15, 1511-1523.

Abbott L. F. and Nelson S.B. (2000), “Synaptic plasticity: taming the
beast”, Nature Neuroscience, 3, 1178-1183.

Gluck, Stimulus Generalization and Representation in Adaptive Net-
work Models of Category Learning [online], 1991 [retrieved on Aug.
24, 2013]. Retrieved from the Internet:<URL:http://www.google.
com/url?sa=t&rct=j
&q=Gluck+%22STIMULUS+GENERALIZATION+AND+
REPRESENTATION+IN +ADAPTIVE+NETWORK+MODELS+
OF+CATEGORY+LEARNING%22.

Izhikevich, ‘Polychronization: Computation with Spikes’, Neural
Computation, 25, 2006, 18, 245-282.

Izhikevich, ‘Simple Model of Spiking Neurons’, IEEE Transactions
on Neural Networks, vol. 14, No. 6, Nov. 2003, pp. 1569-1572.
Izhikevich et al., ‘Relating STDP to BCM’, Neural Computation
(2003) 15, 1511-1523.

Karbowski etal., ‘Multispikes and Synchronization in a Large Neural
Network with Temporal Delays’, Neural Computation 12, 1573-1606
(2000).

Laurent, ‘The Neural Network Query Language (NNQL) Reference’
[retrieved on Nov. 12, 2013]. Retrieved from the Internet:
<URL’https://code.google.com/p/nnql/issues/detail?id=1>.
Laurent, *Issue 1—nnql—Refactor Nucleus into its own file—Neural
Network Query Language’ [retrieved on Nov. 12, 2013]. Retrieved
from the Internet: URL:https://code.google.com/p/nnql/issues/
detail?id=1.

Bohte, ‘Spiking Nueral Networks’ Doctorate at the University of
Leiden, Holland, Mar. S, 2003, pp. 1-133 [retrieved on Nov. 14,
2012]. Retrieved from the internet: <URL: http://holnepagcs,
cwi ,nl 1-sbolltedmblica6ond)hdthesislxif>.

Fidjeland et al. ‘Accelerated Simulation of Spiking Neural Networks
Using GPUs” WCCI 2010 IEEE World Congress on Computational
Intelligience, Jul. 18-23, 2010—CCIB, Barcelona, Spain, pp. 536-
543, [retrieved on Nov. 14, 2012]. Retrieved from the Internet:
&It;URL:http://www.doc.ic.ac.ukl-mpsha/IICNN 10b.pdf>.

PCT International Search Report and Written Opinion for Int’l appli-
cation No. PCT/US2012/055933, dated Dec. 4, 2012.

Brette et al., Brian: a simple and flexible simulator for spiking neural
networks, The Neuromorphic Engineer, Jul. 1, 2009, pp. 1-4, doi:
10.2417/1200906.1659.

Goodman et al., Brian: a simulator for spiking neural networks in
Python, Frontiers in Neuroinformatics, Nov. 2008, pp. 1-10, vol. 2,
Article 5.

Djurfeldt, Mikael, The Connection-set Algebra: a formalism for the
representation of connectivity structure in neuronal network models,
implementations in Python and C++, and their use in simulators
BMC Neuroscience Jul. 18, 2011 p. 1 12(Suppl 1):P80.

US 9,147,156 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Gewaltig et al., ‘NEST (Neural Simulation Tool)’, Scholarpedia,
2007, pp. 1-15, 2(4): 1430, doi: 1 0.4249/scholarpedia.1430.
Gleeson et al., NeuroML: A Language for Describing Data Driven
Models of Neurons and Networks with a High Degree of Biological
Detail, PLoS Computational Biology, Jun. 2010, pp. 1-19 vol. 6 Issue
6.

Gorchetchnikov et al., NineML: declarative, mathematically-explicit
descriptions of spiking neuronal networks, Frontiers in
Neuroinformatics, Conference Abstract: 4th INCF Congress of
Neuroinformatics, doi: 1 0.3389/conf.fninf.2011.08.00098.
Davison et al.,, PyYNN: a common interface for neuronal network
simulators, Frontiers in Neuroinformatics, Jan. 2009, pp. 1-10, vol. 2,
Article 11.

Graham, Lyle J., The Surf-Hippo Reference Manual, http://www.
neurophys.biomedicale.univparisS.fr/-graham/surf-hippo-files/
Surf-Hippo%?20Reference%20Manual pdf, Mar. 2002, pp. 1-128.
Fidjeland et al., 'Accelerated Simulation of Spiking Neural Networks
Using GPUs [online],2010 [retrieved on Jun. 15, 2013], Retrieved
from the Internet: URL:http://ieeexplore.iece.org/xpls/abs_ all.
jsp?ammber=5596678&tag=1.

Cuntz et al., ‘One Rule to Grow Them All: A General Theory of
Neuronal Branching and Its Paractical Application’ PLOS Compu-
tational Biology, 6 (8), Published Aug. 5, 2010.

Floreano et al., ‘Neuroevolution: from architectures to learning’
Evol. Intel. Jan. 2008 1:47-62, [retrieved Dec. 30, 2013] [retrieved
online from URL:<http://inforscience.epfl.ch/record/112676/files/
FloreanoDuerrMattiussi2008.pdf>.

Khotanzad, ‘Classification of invariant image representations using a
neural network’ IEEF. Transactions on Acoustics, Speech, and Signal
Processing, vol. 38, No. 6, Jun. 1990, pp. 1028-1038 [online],
[retrieved on Dec. 10, 2013]. Retrieved from the Internet <URL:
http://www-ee.uta.edu/eeweb/IP/Courses/SPR/Reference/
Khotanzad.pdf>.

Nichols, A Re configurable Computing Architecture for Implement-
ing Artificial Neural Networks on FPGA, Master’s Thesis, The Uni-
versity of Guelph, 2003, pp. 1-235.

Pavlidis et al. Spiking neural network training using evolutionary
algorithms. In: Proceedings 2005 IEEE International Joint Confer-
ence on Neural Networkds, 2005. IICNN’05, vol. 4, pp. 2190-2194
Publication Date Jul. 31, 2005 [online] [Retrieved on Dec. 10, 2013]
Retrieved from the Internet <URL: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.5.4346&rep=rep 1 &type=pdf.
Paugam-Moisy et al., Computing with spiking neuron networks” G.
Rozenberg T. Back J. Kok (Eds.) Handbook of Natural Computing
Springer-Verlag (2010) [retrieved Dec. 30, 2013] [retrieved online
from link.springer.com]”.

Schemmel et al., "Implementing synaptic plasticity in a VLSI spiking
neural network model in Proceedings of the 2006 International Joint
Conference on Neural Networks (IJICNN’06), IEEE Press (2006) Jul.
16-21, 2006, pp. 1-6 [online], [retrieved on Dec. 10,2013]. Retrieved
from the Internet <URL:http://www.kip.uni-heidelberg.de/veroef-
fentlichungen/download.egi/4620/ps/1774.pdf>.

Simulink. RTM. model [online], [Retrieved on Dec. 10, 2013]
Retrieved from URL:http://www.mathworks.com/products/
simulink/index html>.

Sinyavskiy et al. ’Reinforcement learning of a spiking neural network
in the task of control of an agent in a virtual discrete environment’
Rus. J. Nonlin. Dyn., 2011, vol. 7, No. 4 (Mobile Robots), pp.
859-875, chapters 1-8 (Russian Article with English Abstract).
Sjostrom et al., *Spike-Timing Dependent Plasticity’ Scholarpedia,
5(2):1362 (2010), pp. 1-18.

Szatmary et al., *Spike-timing Theory of Working Memory” PLoS
Computational Biology, vol. 6, Issue 8, Aug. 19, 2010 [retrieved on
Dec. 30, 2013]. Retrieved from the Internet: <URL:http://www.
ploscompbiol.org/article/info%3Adoi% 2F10.1371 %2Fjournal.
pcbi. 10008 79#>.

PCT International Search Report for PCT/US2013/052127 dated
Dec. 26, 2013.

Froemke et al., "Temporal modulation of spike-timing-dependent
plasticity, Frontiers in Synaptic Neuroscience, vol. 2, Article 19, pp.
1-16 [online] Jun. 2010 [retrieved on Dec. 16, 2013]. Retrieved from
the internet: <frontiersin.org>.

PCT International Search Report for PCT/US2013/055381 dated
Nov. 14, 2013.

PCT International Search Report for PCT/US2013/032546 dated Jul.
11, 2013.

Graham The Surf Hippo User Manual Version 3.0 B“. Unite de
Neurosiences Integratives et Computationnelles Institut Federatif de
Neurobiologie Alfred Fessard CNRS. France. Mar. 2002 [retrieved
Jan. 16, 2014]. [retrieved biomedical.univ-paris5.fr] ”.

Sinyavskiy O.Yu.: ’Obuchenic s podkrepleniem spaikovoy neiroiniy
seti v zadache upravleniya agentom v diskretnoy virtualnoy srede.’
Nelineinaya Dinamika vol. T. 7., No. 24, 2011, pp. 859-875.
Aleksandrov (1968), Stochastic optimization, Engineering Cyber-
netics, 5, 1116.

Baras et al., (2007), Reinforcement learning, spike-time-dependent
plasticity, and the BCM rule, Neural Comput 19, 22452279.
Bartlett et al., (2000), A biologically plausible and locally optimal
learning algorithm for spiking neurons, Retrieved from http://arp.
anu.edu.au/ftp/papers/jon/brains.pdf.gz.

Baxter et al., (2000), Direct gradient-based reinforcement learning,
in Proceedings of the International Symposium on Circuits and Sys-
tems, (pp. 11I-271-274).

Bohte et al., (2000), SpikeProp: backpropagation for networks of
spiking neurons, In Proceedings of ESANN’2000, (pp. 419-424).
Bohte (2005), A computational theory of spike-timing dependent
plasticity: achieving robust neural responses via conditional entropy
minimization, SEN-E0505.

Bo0ij (2005), A Gradient Descent Rule for Spiking Neurons Emitting
Multiple Spikes, Information Processing Letters n. 6, v.95, 552558.
El-Laithy (2011), A reinforcement learning framework for spiking
networks with dynamic synapses, Comput Intell Neurosci.

Fletcher (1987), Practical methods of optimization, New York, NY:
Wiley-Interscience.

Florian (2005), A reinforcement learning algorithm for spiking neu-
ral networks SYNASC ’05 Proceedings of the Seventh International
Symposium on Symbolic and Numeric Algorithms for Scientific
Computing.

Fu (2008), What You Should Know About Simulation and Deriva-
tives Naval Research Logistics, vol. 55, No. 8 , 723-736.

Gerstner (2002), Spiking neuron models: single neurons populations
plasticity Cambridge U.K.: Cambridge University Press.

Fuetal, (1995), Likelihood ratio gradient estimation for regenerative
stochastic recursion“Advances in Applied Probability 27.4. 1019-
1053 .

Glynn (1995), Likelihood ratio gradient estimation for regenerative
stochastic recursions, Advances in Applied Probability, 27, 4,
10191053.

Izhikevich, *Simple Model of Spiking Neurons’, IEEE Transactions
on Neural Networks, vol. 14, No. 6, Nov. 2003, pp. 1569-1572.
Izhikevich (2007), Solving the distal reward problem through linkage
of STDP and dopamine signaling, Cerebral Cortex, vol. 17, pp.
244352.

Kiefer (1952), Stochastic Estimation of the Maximum of a Regres-
sion Function, Annals of Mathematical Statistics 23, #3, 462466.
Pfister (2003), Optimal Hebbian Learning: A Probabilistic Point of
View, In ICANN Proceedings. Springer.

Larochelle et al., (2009), Exploring Strategies for Training Deep
Neural Networks, J. Of Machine Learning Research, v. 10, pp. 1-40.
Klampfl (2009), Spiking neurons can learn to solve information
bottleneck problems and extract independent components, Neural
Computation, 21(4), pp. 911-59.

Pfister (2006), Optimal Spike-Timing Dependent Plasticity for Pre-
cise Action Potential Firing in Supervised Learning, Neural compu-
tation ISSN 0899-7667, 18 (6).

Reiman et al. (1989). Sensitivity analysis for simulations via likeli-
hood ratios. Oper Res 37, 830844.

Robbins (1951), A Stochastic Approximation Method, Annals of
Mathematical Statistics 22, #3, 400407.

US 9,147,156 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Kleijnen et al., Optimization and sensitivity analysis of computer
simulation models by the score function method* Invited Review
European Journal of Operational Research Mar. 1995 ™.

Rumelhart et al., (1986), Learning representations by back-propagat-
ing errors, Nature 323 (6088), pp. 533536.

Rumelhart (1986), Learning internal representations by error propa-
gation, Parallel distributed processing, vol. 1 (pp. 318-362), Cam-
bridge, MA: MIT Press.

Sinyavskiy, et al. (2010), Generalized Stochatic Spiking Neuron
Model and Extended Spike Response Model in Spatial-Temporal
Impulse Pattern Detection Task™ Optical Memory and Neural Net-
works (Information Optics) 2010 vol. 19 No. 4 pp. 300-309 .
Tishby et al., (1999), The information bottleneck method, In Pro-
ceedings of the 37th Annual Allerton Conference on Communication,
Control and Computing, B Hajek & RS Sreenivas, eds., pp. 368-377,
University of Illinois.

Toyoizumi (2007), Optimality Model of Unsupervised Spike-Timing
Dependent Plasticity: Synaptic Memory and Weight Distribution,
Neural Computation, 19 (3).

Toyoizumi et al., (2005), Generalized Bienenstock-Cooper-Munro
rule for spiking neurons that maximizes information transmission,
Proc. Natl. Acad. Sci. USA, 102, (pp. 5239-5244).

Weber et al., (2009), Goal-Directed Feature Learning, In: Proc, Inter-
national Joint Conference on Neural Networks, 3319 3326.

Weaver (2001), The Optimal Reward Baseline for Gradient-Based
Reinforcement Learning, UAI 01 Proceedings of the 17th Confer-
ence in Uncertainty in Artificial Intelligence (pp. 538-545). Morgan
Kaufman Publishers.

Williams (1992), Simple Statistical Gradient-Following Algorithms
for Connectionist Reinforcement Learning, Machine Learning 8,
229256.

Yi (2009), Stochastic search using the natural gradient, ICML ’09
Proceedings of the 26th Annual International Conference on
Machine Learning. New York, NY, USA.

Rosenstein et al., (2002), Supervised learning combined with an
actor-critic architecture, Technical Report 02-41, Department of
Computer Science, University of Massachusetts, Amherst.

Amari (1998), Why natural gradient?, Acoustics, Speech and Signal
Processing, (pp. 1213-1216). Seattle, WA, USA.

Gluck, Stimulus Generalization and Representation in Adaptive Net-
work Models of Category Learning™ Psychological Science vol. 2
No. Jan. 1, 1991 pp. 50-55 .

Fyfe et al., (2007), Reinforcement Learning Reward Functions for
Unsupervised Learning, ISNN *07 Proceedings of the 4th interna-
tional symposium on Neural Networks: Advances in Neural Net-
works.

Gluck, Stimulus Generalization and Representation in Adaptive Net-
work Models of Category Learning [online], 1991 [retrieved on Aug.
24, 2013]. Retrieved from the Internet<URL:http://www.google.
com/url?sa=t&rct=j
&q=Giuck+%22STIMULUS+Generalization+and+
Representation+In+ Adaptive+ Network+Models+of+Category+
Learning%22+ 1991.

Gewaltig, et al. “Nest by example: an introduction to the neural
simulation tool NEST”, Computational Systems Neurobiology
Springer, Dordrecht, 2012, 27 pages.

Goodman, et al. “The Brian Simulator” Frontiers in Neuroscience,
Focused Review, Sep. 15, 2009, pp. 192-197.

Farabet, et al. “ NeuFlow: A Runtime Reconfigurable Dataflow Pro-
cessor for Vision” http:www.neuflow.org, pp. 109-116.

Neuflow, “ A Data Flow Processor” www.neuflow.org/category/
neuflow-2/, Dec. 2010, 3 pages.

Brette, “Vectorised algorithms for spiking neural network simula-
tion” Oct. 2010, 23 pages.

Goodman, “Code Generation: A Strategy for Neural Network Simu-
lators”, Neuroinform, Springer Science + Business Media, LLC,
Human Press, Sep. 2010, 14 pages.

Brette, “On the design of script languages for neural simulation”,
Laboratoire Psychologie de la Perception, CNRS Universite Paris
Descartes, Paris, France, 7 pages.

Plesser, et al. “Efficient Parallel Simulation of Large-Scale Neuronal
Networks on Clusters of Multiprocessor Computers” Springer-
Verlag Berlin Heidelberg 2007, 10 pages.

Nageswaran, et al. “ Computing Spike-based Convolutions on
GPUs”.

Morrison, et al. *“ Advancing the Boundaries of High-Connectivity
Network Simulation with Distributed Computing” Neural Compua-
tion 17, 2005, pp. 1776-1801.

International Search Report and Written Opinion—PCT/US2012/
056389—ISA/EPO—Dec. 13, 2012.

Pecevski., et al., PCSIM: a parallel simulation environment for neural
circuits fully integrated with Python [online], 2009 [retrieved on Jan.
12, 2015]. Retrieved from the Internet<URL:http://www.ncbi.nlm.
nih.gov/pmc/articles/PMC2698777/pdf/ fninf-03-011.pdf>.

Taiwan Search Report—TW101134775—TIPO—Dec. 16, 2014.

* cited by examiner

U.S. Patent Sep. 29, 2015 Sheet 1 of 27 US 9,147,156 B2

132 n

FIG. 1A

116

102 1

102 m

=

100

US 9,147,156 B2

Sheet 2 of 27

Sep. 29, 2015

U.S. Patent

144!

uozel

T €l

I T€l

I ¢zl

911

w zo]

I 201

101

U.S. Patent Sep. 29, 2015 Sheet 3 of 27 US 9,147,156 B2

122
122

—
= ~
= J
- e et
—
— i
) S
— —

102
102

160
162

US 9,147,156 B2

Sheet 4 of 27

Sep. 29, 2015

U.S. Patent

dr O
zoud 1sod “oud
owm _ Az o¢ﬁ | v/ toatyoud 7
[ouuRYd ba__ _%& P 891 /_ Axonifop
ondeuAs-1sog L

__I

<
«

[ouueyo
ondeuks-o1g

4!

A

mopuim 21d-1s0g

mopuim 150d-014 !

o~

44!

B
>

]
1
1
i
i
]
I
i
i
i

<
W

\/\

8v1

v
I
T
i
i
H
1
i
i
1
T
1
[}
1
_
[}
_

a/
.f
//

US 9,147,156 B2

Sheet 5 of 27

Sep. 29, 2015

U.S. Patent

90¢

v 0

v

VIO

A

L 01T \i\
80¢C

\

0< 7V osind ondeuds

-1sod 9y} Joyje 10
18 paA1909a1 asnd ndug

0> 7V 9sind
(V)M ondeuAs-jsod 03 roud

paAIooax asynd nduy /\/

00¢

US 9,147,156 B2

Sheet 6 of 27

Sep. 29, 2015

U.S. Patent

47 "O1d

0e¢

0< 1V osind ondeuds

-180d o1p3 J0)y® 10
T8 paaradal asind nduj

8odr 01z

(V)3

(444

vee 0> 7V osjnd

ondeuds-isod o1 zoud
PoA291 osind jnduy

ﬂ)

0¢C

U.S. Patent Sep. 29, 2015 Sheet 7 of 27 US 9,147,156 B2

312

306

FIG. 3

nB

302
B
\ 4
310

308

300

US 9,147,156 B2

Sheet 8 of 27

Sep. 29, 2015

U.S. Patent

V€ ‘DI
1 1 1 1T 1 71 17 |
|
! (W11 % |
. I
! _ EISW
i m
$S3008 SI00[q ! |
Juowop-1 W “ Avaﬂﬁ "
“ /\V ore
" | T ol¢
\J! (D811 A\
bR TS -m—re——————————/—/—r—/—/—/—/—/—m—/m/—/ /) //m// /| |
Loty
$S900® 00[q %
JUQUWID[-U w
oBus (w)ozt (©oz1 | (@ozi | (Dozl v/\/
\ /> \ bIE
/ \ T
0z¢

01¢

US 9,147,156 B2

Sheet 9 of 27

Sep. 29, 2015

U.S. Patent

qa¢ "Old

aaeds :u pporg

N~

1)43

ZA®R[op UONOQUUOD 1/ POl

.

yee

TM T WYS1om U010aUu09 g Plotg #/\/

1 7 91qeuea fyonserd ¢ potg

(433

AN

I 1 9]qeueA Aonsed i pfat]

1] 9pou 1o31e} ¢ PlorL]

7\/omm
/\/wmm

[AB[Op UONDOUUO0D 7 POl

7\/©Nm

I A\ 13YS19M UOIOQUU0D (] PIOL]

45
NN

443

0ce

US 9,147,156 B2

Sheet 10 of 27

Sep. 29, 2015

U.S. Patent

ore <<

J¢ "D

aJeds :u pparg

/\/ 0t€

T 19[qeurea Konseld :70[PRI

[¢ 21qeuea Ayonserd 191 PRIJ

G

1”1 2qettea Ayonseld 1007 PRI

Mee

T T WT19M U0109UU0D [y PIOL]

1] 9pou 19318} :¢ P[OL]

N~

(433

[AB[OP UOTOAUUOD 7 PIOL]

I A [IUSIoM UOoaUU0d @] PIold

9Tt

144*

(€43
g¢

N~
N~
2N
!

US 9,147,156 B2

Sheet 11 of 27

Sep. 29, 2015

U.S. Patent

Ak |

1 %é4

o
\O
(e
o

mopurm axd-1s04

01 mopuim isod-o1g vl
8y \/\

(424

(4414

US 9,147,156 B2

Sheet 12 of 27

Sep. 29, 2015

U.S. Patent

Vv "Old

80¢

Iy

oSy viv

axd
Nov\)(a /\)/

US 9,147,156 B2

Sheet 13 of 27

Sep. 29, 2015

U.S. Patent

qa¥y "I1d

3y 1sod \/_

A vy

A L

¢ Cl I _

cty ¢ vliv

1 1sod V/\/
MopuLM et

0 ¥s0d < mopuim 21d-1s04 T 15od-aig R /\/
\/\ o™ \/\ ar

-) (444 8t

) AN

1401% or 80F

US 9,147,156 B2

Sheet 14 of 27

Sep. 29, 2015

U.S. Patent

V&'O

90$

mmlm\/\

A

1
1
i i
1 I
1 I
“ f "
._ _ i
_ | 4 > _ >
¢ 1sod | < 7 > | 7 Hm
1 y Ll
“ \/\ A - - - AT
' 1 1 i 1
I | — N
! i “ i o
! : ! “ T YIS
! 1 1 i mopum
01s0d m « Mopurm;drd-1sog “ _ 1. 180d-a1J wm /\/
] 1 1 -
m l\/\ “ ! \/\ l\/\ ! I ¥iS
i [¢¥S ' ' 016 1T &€ !
axd \ \/\ “ i >
1
1
)
o

70l

z

U.S. Patent Sep. 29, 2015 Sheet 15 of 27 US 9,147,156 B2

<
)
"
o
\O.
ml
-
] |
s 3
&y ml

FIG. 5B

U.S. Patent Sep. 29, 2015 Sheet 16 of 27 US 9,147,156 B2

\O
[}
N 1
\ —
] —
—
() ot 1
(o]
o
O
—
) —
X
[\O
e —
(e r—
S
1 \O \o
N Jomm
<o o =
_—-4}
o —
o0
<
O
s —
et T~ —
Kﬁ'
<O
O
————y \ <
— —
A <+
[N}
O

600
618

U.S. Patent Sep. 29, 2015 Sheet 17 of 27 US 9,147,156 B2

<+
\O
<+
(o]
IS \O\L)/ N
\O
w\ > —»
<
o)
©
———t -
e} — < S
1 i
] — 3
© < — <o <
™~
—h —
— - o (=]
— [—
—_ — < <
o~
g .
: S
—_— —_—l =
— —] <
JE—— R
—_— — < <
— et
— — <o (o]
lg—
— 1
— —_ [—

/\/

624

638
640
642

636

630

US 9,147,156 B2

Sheet 18 of 27

Sep. 29, 2015

U.S. Patent

¥99

/\/

8 "OIA

QIYN=DF JoInoo
JusAy dzZ11eniuy

r arepdn

ondeuAs §s90014

ON

{0< I9uno)
LAy

/\/

99

IoJUnod
JUAAY JUSWIRINA(]

SHA

US 9,147,156 B2

Sheet 19 of 27

Sep. 29, 2015

U.S. Patent

6 "OIA

S

7 7 ...“ m 'y
" I
i |
“ 91L € ShL " it
_ "
¢ 1sod m \I\—) — / w | /\/
|]
i _ _ \/\ - ' —
| AspL \/\ BV
| et btk T 8hL |
1 31sod —/f/ " /\/
I
LT yiL
" 11L !
: "
0 1sod _ < > /\/
" _ \/\ L UhIL
; 0TL 1 ShL |
Q]
aI n/\/ /\/
| \/\
, YeL wL 0L
0=04d IN=0d €-N=0d | ¢-N=0F || 1-N=D3 N=D1 N
0<L
o /7 7 _ _
9 zsl /\/ § el v cel ¢ mm\ z Nm\ I Nm\\ _v(/

ysapL

—
2
8

=

U.S. Patent Sep. 29, 2015 Sheet 20 of 27 US 9,147,156 B2

(=) o ~ Cil
_ N N =
[0} w 42] w) =)
St Q o} Q &
(=N o7 =7 o1
D
a <
=]
= ~
R N S N S
i PO

<
—
v
"'_1 ___ U
A
=
H —
~
i~ -
A | X
1
2 |
e~ '_'|
F\rl S
[:1

71§VX I/\/joz
743 1
/\J;gs_z
< /
/Ang&}
706

Tprel

US 9,147,156 B2

Sheet 21 of 27

Sep. 29, 2015

U.S. Patent

DA

“ “ m _ " n
\ i 1 1 ' } i
e o) “ \ ! ' ;
i /]
] H
mu/ “] “
t i ! i
[! i
€osr, WL | “ “
E . 1 1
d jsod m M ; "
K " "
" 4 "
4= 1 " N 1
| o108 “
I “ !
" i !
f !]
1 ' !
1 ! i
= e Sapeeg— 1 3
d 1s0d ' \n\nlf - o '
B e T e ”
£18L < - " P RS !
! - , - I : _. P
“_H A > £ 08L “ T 0L ! M 1 08. "
<+ ! ' t
e “ " 7™ i “
1 ” “ 7 _ \ Vn “
Jd axd i : o | / | |
o Il t
/«/ ” ~ ¢ 18 CoiTisL »\/
o POl : FEL i : ! 0L Q17
i ¥ i “ ; 1
1 | i
\ 3]

U.S. Patent Sep. 29, 2015 Sheet 22 of 27 US 9,147,156 B2

A

22

A
v
FIG. 12

802
820

800
810

U.S. Patent Sep. 29, 2015 Sheet 23 of 27 US 9,147,156 B2

pre
pos
post 1

FIG. 12A

808\/\ |/\/802

US 9,147,156 B2

Sheet 24 of 27

Sep. 29, 2015

U.S. Patent

...

816

413

206 |

206 |

206 |

006

US 9,147,156 B2

Sheet 25 of 27

Sep. 29, 2015

U.S. Patent

VeI "OIA

lllllllllllllllllllllllllllll

e e e ke e e e e M e R N A e e e M e e

~

o

A

o . . e e

-

816

(443

Y

¥co

co

A

TN - e e ke e e e e e ke A e e e e o]

876 AW\

§Co

\ 4

e e o T o ————— e ———— "

US 9,147,156 B2

Sheet 26 of 27

Sep. 29, 2015

U.S. Patent

acl "Dld

816

i e v . — = == - — -]

-~

(443 44 (443}
A A 3
81 /A“/ A 4
¥C6
' 026
Vel
A 4
8¢6 A\/\ > 976
SC6 ti6

e e o e o e v = o e = - . . e o= e e e e e e

US 9,147,156 B2

Sheet 27 of 27

Sep. 29, 2015

U.S. Patent

856

~

D€L "DIA
816
NS(/;
- L2 v h 4 - *k
A}
A
(445 (443 (443
F r'y F
81 /mw\/ v [4%6)
¥C6
0c6

F N

v

US 9,147,156 B2

1
APPARATUS AND METHODS FOR SYNAPTIC
UPDATE IN A PULSE-CODED NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to co-owned U.S. patent appli-
cation Ser. No. 13/239,259 filed contemporaneously herewith
on Sep. 21, 2011 entitled “APPARATUS AND METHODS
FOR PARTIAL EVALUATION OF SYNAPTIC UPDATES
BASED ON SYSTEM EVENTS ”, U.S. patent application
Ser. No. 13/239,123 filed contemporaneously herewith on
Sep. 21, 2011 entitled “ELEMENTARY NETWORK
DESCRIPTION FOR NEUROMORPHIC SYSTEMS”, U.S.
patent application Ser. No. 13/239,148 filed contemporane-
ously herewith on Sep. 21, 2011 entitled “ELEMENTARY
NETWORK DESCRIPTION FOR EFFICIENT LINK
BETWEEN NEURONAL MODELS AND NEUROMOR-
PHIC SYSTEMS”, U.S. patent application Ser. No. 13/239,
155 filed contemporaneously herewith on Sep. 21, 2011
entitled “ELEMENTARY NETWORK DESCRIPTION
FOR EFFICIENT MEMORY MANAGEMENT IN NEU-
ROMORPHIC SYSTEMS”, U.S. patent application Ser. No.
13/239,163 filed contemporaneously herewith on Sep. 21,
2011 entitled “ELEMENTARY NETWORK DESCRIP-
TION FOR EFFICIENT IMPLEMENTATION OF EVENT-
TRIGGERED PLASTICITY RULES IN NEUROMOR-
PHIC SYSTEMS”, each of the foregoing incorporated herein
by reference in its entirety.

COPYRIGHT

A portion of the disclosure of this patent document con-
tains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
files or records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present innovation relates generally to artificial neural
networks, and more particularly in one exemplary aspect to
computer apparatus and methods for efficient operation of
spiking neural networks.

2. Description of Related Art

Artificial spiking neural networks are frequently used to
gain an understanding of biological neural networks, and for
solving artificial intelligence problems. These networks typi-
cally employ a pulse-coded mechanism, which relies on
encoding information using timing of the pulses. Such pulses
(also referred to as “spikes” or ‘impulses’) are short-lasting
(typically on the order of 1-2 ms) discrete temporal events and
are used, inter alia, to encode information. Several exemplary
embodiments of such encoding are described in a commonly
owned and co-pending U.S. patent application Ser. No.
13/152,084 entitled APPARATUS AND METHODS FOR
PULSE-CODE INVARIANT OBJECT RECOGNITION",
and U.S. patent application Ser. No. 13/152,119 entitled
“SENSORY INPUT PROCESSING APPARATUS AND
METHODS”, each incorporated herein by reference in its
entirety.

A typical artificial spiking neural network comprises a
plurality of units (or nodes), which correspond to neurons in
a biological neural network. A single unit may be connected

10

15

20

25

30

35

40

45

50

55

60

65

2

to many other units via connections, also referred to as com-
munications channels, or synaptic connections. Those units
providing inputs to any given unit are commonly referred to
as the pre-synaptic units, while the units receiving the inputs
from the synaptic connections are referred to as the post-
synaptic units.

Each of the unit-to-unit connections is assigned, inter alia,
aconnection strength (also referred to as the synaptic weight).
During operation of the pulse-coded network, synaptic
weights are dynamically adjusted using what is referred to as
the spike-timing dependent plasticity (STDP) in order to
implement, among other things, network learning. Typically,
each unit may receive inputs from a large number (up to
10,000) of pre-synaptic units having associated pre-synaptic
weights, and provides outputs to a similar number of down-
stream units via post-synaptic connections (having associated
post-synaptic weights). Such network topography therefore
comprises several millions of connections (channels), hence
requiring access, modification, and storing of a large number
of synaptic variables for each unit in order to process each of
the incoming and outgoing pulse through the unit.

Various techniques for accessing the synaptic variables
from the synaptic memory exist. The synaptic weights are
typically stored in the synaptic memory using two
approaches: (i) post-synaptically indexed: that is, based on
the identification (ID) of the destination unit, e.g., the post-
synaptic unit; and (ii) pre-synaptically indexed: that is based
on the source unit 1D, e.g., the pre-synaptic unit.

When the synaptic data are stored according to the pre-
synaptic index, then access based on the post-synaptic index
is inefficient. That is, a unit receiving input from m pre-
synaptic units and providing n outputs via n post-synaptic
channels, requires n reads and n writes of a one-weight block
(scattered access) to process the pre-synaptic inputs, and one
read, one write of a m-weight block to process the post-
synaptic outputs. Similarly, the post-synaptic index based
storage scheme results in one read, one write of an m-weight
block to process the pre-synaptic inputs, and n reads and n
writes of a one-weight block to process the post-synaptic
outputs, because one or the other lookup would require a
scattered traverse of non-contiguous areas of synaptic
memory.

One approach to implement efficient memory access of
both pre-synaptic and post-synaptic weights is proposed by
Jin et al. and is referred to as the “pre-synaptic sensitive
scheme with an associated deferred event-driven model”. In
the model of Jin, synaptic variable modification is triggered
during a pre-synaptic spike event (no synaptic variables
access during post-synaptic spike event), and hence the syn-
aptic information is stored based only on the pre-synaptic
index (see Jin, X., Rast, A., F. Galluppi, F., S. Davies., S., and
Furber, S. (2010) “Implementing Spike-Timing-Dependent
Plasticity on SpiNNaker Neuromorphic Hardware”, WCCI
2010, IEEE World Congress on Computational Intelligence),
incorporated herein by reference in its entirety. In addition,
the actual update of synaptic variables is deferred until a
certain time window expires.

However, this approach has several limitations. For a typi-
cal STDP window of 100 ms, the corresponding firing rate of
the pre-synaptic neuron needs to be greater than 10 Hz for the
scheme of Jin et al. (2010) to work properly. Furthermore, the
deferred approach of Jin et al. (2010) does not provide imme-
diate update for the synaptic weights, because the approach
waits for the time window to expire before modifying the
synaptic weight, thereby adversely affecting the accuracy of
post-synaptic pulse generation by the unit.

US 9,147,156 B2

3

Existing synaptic update approaches do not provide syn-
aptic memory access mechanisms that are efficient for a large
category of spiking neural networks. Such approaches also do
not provide up-to-date synaptic variables for different kind of
learning rules, and are limited by the firing rate of the pre-
synaptic and post-synaptic units.

Furthermore, existing synaptic weight update schemes are
not applicable to different plasticity models, such as the near-
est-neighbor, all-to-all etc. See Izhikevich and Desai 2003,
entitled “Relating STDP to BCM”, Neural Computation 15,
1511-1523, incorporated herein by reference in its entirety,
relating to various plasticity rules such as STDP, inverse
STDP, and “bump” STDP. See also Abbott L. F. and Nelson S.
B. (2000), “Synaptic plasticity: taming the beast”, Nature
Neuroscience, 3, 1178-1183, also incorporated herein by ref-
erence in its entirety.

Accordingly, there is a salient need for a more efficient,
timely, and scalable synaptic variable update mechanism that
is applicable to many different types of plasticity models and
different plasticity rules.

SUMMARY OF THE INVENTION

In a first aspect of the invention, a computerized spiking
network apparatus is disclosed. In one embodiment, the appa-
ratus includes a pre-synaptic unit connected to a post-synap-
tic unit by a communication channel.

In a second aspect of the invention, a method of updating a
communication channel is disclosed. In one embodiment, the
update is based on a first and a second triggering pulse being
communicated through the channel, and the method includes:
providing a first update based on a first interval between the
first triggering pulse and an earliest subsequent pulse associ-
ated with the post-synaptic unit; and providing a second
update based on a second interval between the second trig-
gering pulse and a latest pulse associated with the post-syn-
aptic unit.

In one variant, the first update and the second update are
evaluated in response to the second triggering pulse; and the
first update precedes the second update.

In another variant, the method further includes: storing
information related to at least one output pulse of a plurality
of output pulses being generated at a first time by the post-
synaptic unit, prior to the second triggering pulse; and storing
information related to a second input pulse received at a
second time at the post-synaptic unit, prior to the first time.

In yet another variant, the method further includes modi-
fying a state associated with the post-synaptic unit based at
least in part on the updating; the second update is performed
subsequent the first update yet prior to the modifying the
state.

In a third aspect of the invention, a computer implemented
method of operating a communications channel in a comput-
erized spiking neuronal network is disclosed. In one embodi-
ment, the method includes: modifying the channel based on
an interval between a current trigger and a latest preceding
pulse associated with a post-synaptic unit coupled to the
channel; and maintaining the channel substantially unmodi-
fied between the current trigger and an immediately preced-
ing trigger. The immediately preceding and the current trig-
gers are communicated through the channel.

In one variant, the method further includes adjusting, sub-
sequent to the modifying the channel, a state of the post-
synaptic unit based at least in part on the current trigger.
Modifying the channel includes determining an updated
channel weight; and adjusting the state uses the updated chan-
nel weight.

20

35

40

45

4

In a fourth aspect of the invention, a computer imple-
mented method of operating a communications channel
transmitting trigger pulses from a pre-synaptic unit to a post-
synaptic unit in a neuronal network is disclosed. In one
embodiment, the method includes; performing a first update
based on a first interval between a trigger and an earliest
subsequent pulse associated with the post-synaptic unit
coupled to the channel; and subsequent to performing the first
update, performing a second update based on a second inter-
val between a trigger and a latest preceding pulse associated
with the post-synaptic unit.

In one variant, the method further includes adjusting a state
of the post-synaptic unit based at least in part on a current
trigger; the second interval based on the current trigger. Both
the first and the second updates are evaluated in response to
the trigger.

In a fifth aspect of the invention, a method of reducing
memory bus overhead associated with a channel update is
disclosed. In one embodiment, the channel update is for use
with a computerized network apparatus comprising at least
one node coupled to the channel, and the method includes:
updating the channel based on an interval between a current
trigger and a latest preceding pulse associated with the at least
one node; and maintaining the channel substantially unmodi-
fied between the current trigger and an immediately preced-
ing trigger.

In one variant, the current and the latest preceding triggers
are being communicated through the channel; and the updat-
ing is effected via a single transaction of the memory bus, the
single transaction effecting the reducing memory bus over-
head.

In another aspect of the invention, a method of updating
first and second channels coupled to a pre-synaptic unit in a
computerized spiking neuronal network is disclosed. In one
embodiment, the method includes: performing a first update
based on a first interval between a first trigger and a first
earliest subsequent pulse associated with a first post-synaptic
unit coupled to the first channel; performing a second update
based on a second interval between a second triggering pulse
and a first latest preceding pulse associated with the first
post-synaptic unit; performing a third update based on a third
interval between the first trigger and a second earliest subse-
quent pulse associated with a second post-synaptic unit
coupled to the second channel; and performing a fourth
update based on a fourth interval between the second trigger-
ing pulse and a second latest preceding pulse associated with
the second post-synaptic unit.

In yet another aspect of the invention, a computerized
neuronal system is disclosed. In one embodiment, the system
includes a spiking neuronal network, and an apparatus con-
trolled at least in part by the neuronal network.

In a further aspect of the invention, synaptic memory archi-
tecture is disclosed.

In still a further aspect of the invention, a computer read-
able apparatus is disclosed. In one embodiment, the apparatus
includes a storage medium having at least one computer
program stored thereon, the at least one program being con-
figured to, when executed, implement spiking neuronal net-
work operation.

In yet another aspect, a method of conducting synaptic
memory bus transactions useful with, inter alia, a synaptic
update mechanism, is disclosed.

In another aspect of the invention, a method of updating a
first and second channels in a computerized spiking neuronal
network is disclosed. In one embodiment, the method
includes: performing a first update based on a first interval
between a first trigger and a first earliest subsequent pulse

US 9,147,156 B2

5

associated with a first post-synaptic unit coupled to a first
channel, where a pre-synaptic unit is coupled via the first
channel to the first post-synaptic unit; performing a second
update based on a second interval between a second trigger
and a first latest preceding pulse associated with the first
post-synaptic unit; performing a third update based on a third
interval between the first trigger and a second earliest subse-
quent pulse associated with a second post-synaptic unit
coupled to a second channel, where the pre-synaptic unit is
coupled via the second channel to the second post-synaptic
unit; and performing a fourth update based on a fourth inter-
val between the second triggering pulse and a second latest
preceding pulse associated with the second post-synaptic
unit.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a block diagram illustrating one embodiment of
pre-synaptic indexing in an artificial spiking neural network.

FIG. 1B is a block diagram illustrating one embodiment of
post-synaptic indexing in artificial spiking neural network.

FIG. 1C is a block diagram illustrating different embodi-
ments of network units useful within the artificial spiking
neural network of FIGS. 1A-1B.

FIG. 1D is a graphical illustration illustrating one embodi-
ment of a generalized synaptic update mechanism useful with
the network of FIGS. 1A-1B.

FIG. 2A is a plot illustrating one exemplary implementa-
tion of spike-time dependent plasticity rules useful with the
synaptic update mechanism of FIG. 1D.

FIG. 2B is a plot illustrating another exemplary implemen-
tation of spike-time dependent plasticity rules useful with the
synaptic update mechanism of FIG. 1D.

FIG. 3 is a block diagram illustrating one embodiment of
neuro-synaptic network apparatus architecture.

FIG. 3A is a block diagram illustrating one embodiment of
a synaptic memory architecture for use with the network
apparatus of FIG. 3.

FIG. 3B is a block diagram illustrating one embodiment of
a synaptic element structure for use with the network appa-
ratus of FIG. 3.

FIG. 3C is a block diagram illustrating another embodi-
ment of a synaptic element structure for use with the network
apparatus of FIG. 3.

FIG. 41is a graphical illustration depicting one embodiment
of synaptic memory bus transactions useful with the synaptic
update mechanism of FIG. 1D.

FIG. 4A is a graphical illustration depicting structure of
bus transaction packets of FIG. 4.

FIG. 4B is a graphical illustration depicting one embodi-
ment of synaptic memory bus transaction activity generated
for a large number of post-synaptic updates.

FIG. 5A is a graphical illustration depicting one embodi-
ment of alazy synaptic update method according to the inven-
tion.

FIG. 5B is a graphical illustration depicting one embodi-
ment of lazy synaptic update method of the invention for a
large number of post-synaptic pulses.

FIG. 6 is a graphical illustration depicting one embodiment
of pulse buffer useful with the lazy synaptic update mecha-
nism the FIG. 5A. FIG. 6 is a graphical illustration depicting
one embodiment of a buffer overflow system event generation
method of the invention.

FIG. 7 is a graphical illustration depicting one embodiment
of a buffer overflow system event generation method of the
invention.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 8 is a graphical illustration depicting one embodiment
of a flush system event generation method according to the
invention.

FIG. 9 is a graphical illustration depicting one embodiment
of a synaptic memory update access sequence.

FIG. 10 is a graphical illustration depicting one embodi-
ment of a lazy synaptic update method of the invention,
comprising a flush system event.

FIG. 11 is a block diagram illustrating one embodiment of
lazy synaptic update method of the invention comprising
trace variables and a flush system event.

FIG. 12 is a block diagram illustrating one embodiment of
a neuro-synaptic execution network apparatus comprising
shared heap memory according to the invention.

FIG. 12A is a graphical illustration depicting one embodi-
ment of lazy synaptic update method of the invention useful
with the shared heap memory network apparatus of FIG. 11.

FIG. 13 is a block diagram illustrating one embodiment of
multi-partition artificial neuro-synaptic network architecture
according to the invention.

FIG.13Ais a block diagram illustrating a first embodiment
of computerized neuro-synaptic execution apparatus for
implementing the multi-partition network of FIG. 12.

FIG. 13B is a block diagram illustrating a second embodi-
ment of computerized neuro-synaptic execution apparatus for
implementing the multi-partition network of FIG. 12.

FIG. 13C is a block diagram illustrating a third embodi-
ment of computerized neuro-synaptic execution apparatus for
implementing the multi-partition network of FIG. 12.

All Figures disclosed herein are © Copyright 2011 Brain
Corporation. All rights reserved.

DETAILED DESCRIPTION OF THE
EXEMPLARY EMBODIMENTS

Embodiments of the present invention will now be
described in detail with reference to the drawings, which are
provided as illustrative examples so as to enable those skilled
in the art to practice the invention. Notably, the figures and
examples below are not meant to limit the scope of the present
invention to a single embodiment, but other embodiments are
possible by way of interchange of or combination with some
or all of the described or illustrated elements. Wherever con-
venient, the same reference numbers will be used throughout
the drawings to refer to same or like parts.

Where certain elements of these embodiments can be par-
tially or fully implemented using known components, only
those portions of such known components that are necessary
for an understanding of the present invention will be
described, and detailed descriptions of other portions of such
known components will be omitted so as not to obscure the
invention.

In the present specification, an embodiment showing a
singular component should not be considered limiting; rather,
the invention is intended to encompass other embodiments
including a plurality of the same component, and vice-versa,
unless explicitly stated otherwise herein.

Further, the present invention encompasses present and
future known equivalents to the components referred to
herein by way of illustration.

Asused herein, the term “bus” is meant generally to denote
all types of interconnection or communication architecture
that is used to access the synaptic and neuron memory. The
“bus” could be optical, wireless, infrared or another type of
communication medium. The exact topology of the bus could
be for example standard “bus”, hierarchical bus, network-on-
chip, address-event-representation (AER) connection, or

US 9,147,156 B2

7

other type of communication topology used for accessing,
e.g., different memories in pulse-based system.

As used herein, the terms “computer”, “computing
device”, and “computerized device”, include, but are not lim-
ited to, personal computers (PCs) and minicomputers,
whether desktop, laptop, or otherwise, mainframe computers,
workstations, servers, personal digital assistants (PDAs),
handheld computers, embedded computers, programmable
logic device, personal communicators, tablet computers, por-
table navigation aids, J2ME equipped devices, cellular tele-
phones, smart phones, personal integrated communication or
entertainment devices, or literally any other device capable of
executing a set of instructions and processing an incoming
data signal.

As used herein, the term “computer program” or “soft-
ware” is meant to include any sequence or human or machine
cognizable steps which perform a function. Such program
may be rendered in virtually any programming language or
environment including, for example, C/C++, C#, Fortran,
COBOL, MATLAB™, PASCAL, Python, assembly lan-
guage, markup languages (e.g., HTML, SGML, XML,
VoXML), and the like, as well as object-oriented environ-
ments such as the Common Object Request Broker Architec-
ture (CORBA), Java™ (including J2ME, Java Beans, etc.),
Binary Runtime Environment (e.g., BREW), Java Bytecode,
Low-level Virtual Machine (LLVM), and the like.

As used herein, the term “memory” includes any type of
integrated circuit or other storage device adapted for storing
digital data including, without limitation, ROM. PROM,
EEPROM, DRAM, SDRAM, DDR/2 SDRAM, EDO/FPMS,
RLDRAM, SRAM, “flash” memory (e.g., NAND/NOR),
memristor memory, and PSRAM.

As used herein, the terms “microprocessor” and “digital
processor” are meant generally to include all types of digital
processing devices including, without limitation, digital sig-
nal processors (DSPs), reduced instruction set computers
(RISC), general-purpose (CISC) processors, microproces-
sors, gate arrays (e.g., FPGAs), PLDs, reconfigurable com-
puter fabrics (RCFs), array processors, stream processors
(e.g., GPU), secure microprocessors, and application-specific
integrated circuits (ASICs). Such digital processors may be
contained on a single unitary IC die, or distributed across
multiple components.

As used herein, the terms “pulse”, “spike”, “burst of
spikes”, and “pulse train” are meant generally to refer to,
without limitation, any type of a pulsed signal, e.g., a rapid
change in some characteristic of a signal such as amplitude,
intensity, phase or frequency, from a baseline value to a higher
or lower value, followed by a rapid return to the baseline or
other value, and may refer to any of a single spike, a burst of
spikes, an electronic pulse, a pulse in voltage, a pulse in
electrical current, a software representation of a pulse and/or
burst of pulses, a software representation of a latency or
timing of the pulse, and any other pulse or pulse type associ-
ated with a pulsed transmission system or mechanism.

Asused herein, the term “pulse-code” is meant generally to
denote, without limitation, information encoding into a pat-
terns of pulses (or pulse latencies) along a single pulsed
channel or relative pulse latencies along multiple channels.

As used herein, the terms “pulse delivery”, “spike deliv-
ery”, and “pulse application” is meant generally to denote,
without limitation, transfer of connection information related
to the connection (e.g., synaptic channel) to a destination unit
in response to a pulse from a sending unit via the connection.

As used herein, the terms “receiving pulse” and “arrival of
the pulse” are meant generally to denote, without limitation,
areceipt of a physical signal (either voltage, lights, or current)

20

35

40

45

50

55

60

65

8

or a logical trigger (memory value) indicating a trigger event
associated with the transmission of information from one
entity to another.

Asused herein, the term “synaptic channel”, “connection”,
“link”, “transmission channel”, “delay line”, and “communi-
cations channel” are meant generally to denote, without limi-
tation, a link between any two or more entities (whether
physical (wired or wireless), or logical/virtual) which enables
information exchange between the entities, and is character-
ized by a one or more variables affecting the information
exchange.

As used herein, the term “spike-timing dependent plastic-
ity” or STDP is meant generally to denote, without limitation,
an activity-dependent learning rule where the precise timing
of inputs and output activity (spikes) determines the rate of
change of connection weights.

Overview

The present invention provides, in one salient aspect, appa-
ratus and methods for efficient memory access during synap-
tic variable updates in a spiking neural network for imple-
menting synaptic plasticity and learning.

In one embodiment, a computerized network apparatus is
disclosed which comprises multiple pre-synaptic units (or
nodes) connected to post-synaptic units (or nodes) via com-
munications links (synaptic connections), and a storage
device configured to store information related to the connec-
tions. In order to implement synaptic plasticity and learning,
one or more parameters associated with the synaptic connec-
tions are updated based on (i) a pre-synaptic pulse generated
by the pre-synaptic node and received by the post-synaptic
node (a pre-synaptic update), and (ii) a post synaptic pulse
generated by the post-synaptic node subsequent to the pre-
synaptic pulse (a post-synaptic update). In one embodiment,
the post-synaptic updates are delayed until receipt of the next
subsequent pre-synaptic pulse by the post-synaptic node. The
pre-synaptic update is performed first, followed by the post-
synaptic update, thus ensuring that synaptic connection status
is up-to-date.

In another embodiment, the connection updates are only
preformed whenever a pre-synaptic pulse is received, while
leaving the connection state unchanged in between adjacent
pre-synaptic pulses.

The delay update mechanism is used in conjunction with
system “flush” events (i.e., events which are configured to
cause removal (flushing) of a portion of the data related to
some of the post-synaptic pulses) in order to ensure network
accurate operation, and prevent loss of information under a
variety of pre-synaptic and post-synaptic unit firing rates. A
large network partition mechanism is used in one embodi-
ment with network processing apparatus in order to enable
processing of network signals in a limited functionality
embedded hardware environment.

The use of delayed connection updates advantageously
reduces memory access fragmentation and improves memory
bandwidth utilization. These improvements may be traded for
processing of additional pulses (increased pulse rate), addi-
tional nodes (higher network density), or use of simpler and
less costly computerized hardware for operating the network.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Detailed descriptions of the various embodiments and vari-
ants of the apparatus and methods of the invention are now
provided. Embodiments of the invention may be, for
example, deployed in a hardware and/or software implemen-
tation of a computer-vision system, provided in one or more

US 9,147,156 B2

9

of'a prosthetic device, robotic device and a specialized visual
system. In one such implementation, an image processing
system may include a processor embodied in an application
specific integrated circuit (“ASIC”), a central processing unit
(CPU), a graphics processing unit (GPU), a digital signal
processor (DSP) or an application specific processor (ASIP)
or other general purpose multiprocessor, which can be
adapted or configured for use in an embedded application
such as a prosthetic device.

Exemplary Network Architecture

A typical pulse-coded artificial spiking neural network
(such as the network 100 shown in FIG. 1A) comprises a
plurality of units 102, 122, 132 which correspond to neurons
in a biological neural network. A single unit 102 may be
connected to many other units via connections 108, 114 (also
referred to as communications channels, or synaptic connec-
tions).

Each synaptic connection is characterized by one or more
synaptic variables, comprising one or more synaptic (chan-
nel) weight, channel delay, and post-synaptic unit identifica-
tion, i.e. target unit ID. The synaptic weight describes the
strength or amplitude of the connection between two units
(affecting, inter alia, amplitude of pulses transmitted by that
connection), corresponding in biology to the amount of influ-
ence the firing of one neuron has on another neuron. The
synaptic variables (also referred to as the synaptic nodes),
denoted by circles 116 in FIG. 1A, are analogous to synapses
of a nervous system that allow passage of information from
one neuron to another.

The network 100 shown in FIG. 1A is implemented using
a feed-forward architecture, where information propagates
through the network from the left-most units (e.g., 102) to the
right-most units (e.g., 132), as indicated by the connection
arrows 108, 114. In one variant (not shown), separate feed-
back channels may be used to implement feedback mecha-
nisms, such as for example those described in commonly
owned and co-pending U.S. patent application Ser. No.
13/152,105 entitled “APPARATUS AND METHODS FOR
PULSE-CODE TEMPORALLY PROXIMATE OBIJECT
RECOGNITION”, incorporated by reference herein in its
entirety. In another variant, the network comprises a recurrent
network architecture which implements a feedback mecha-
nism provided by a certain set of units within the network. In
this class of recurrent network architecture, connections not
only exits to higher layers, but to units within the current
layer. As will be appreciated by those skilled in the arts, the
exemplary synaptic update mechanism described herein is
applicable to literally any type of pulse-coded spiking neural
network.

Units providing inputs to any given unit (such as the unit
122_3 in FIG. 1A) are referred to as the pre-synaptic or
upstream units (e.g., units 102_1, 102_m located to the left
from the unit 122), while the units (e.g., units 132_1, 132_2,
132_3 located to the right from the unit 122) that receive
outputs from the unit 122_1, are referred to as the post-
synaptic or downstream units. The banks of units 102
{102_1, . . . 102_m}, 122 {122_1, . . . 122 k}, 132
{132_1, ...132_n} form a successive cascade of units, such
that any given unit within one cascade (e.g., the unit 122_3)
comprises the post-synaptic unit for a unit from the preceding
cascade (e.g., the unit 102_1), while, at the same time, the
aforementioned unit 122_3 comprises a pre-synaptic unit for
the unit 132_3 of the subsequent cascade.

Similarly, connections that deliver inputs to a unit are
referred to as the input channel (or pre-synaptic) connections
for that unit (e.g., the channels 108 for the unit 122_3), while
connections that deliver outputs from the unit (such as the

10

15

20

25

30

35

40

45

50

55

60

65

10

channels 114) are referred to as output channel (or post-
synaptic) connections for that unit 122_3. As seen from FIG.
1A, the same connection (for example channel 114) acts as
the output (post-synaptic) connection for the unit 122_3 and
as the input connection for the unit 132_2.

Any given unit (such as for example the unit 122_3) may
receives inputs from a number m of pre-synaptic units, and it
provides outputs to a number n of downstream units. During
operation of the spiking neural network 100, whenever a unit
(for example the unit 122_3) processes a synaptic event (e.g.,
generates an output pulse), synaptic variables of the pre-
synaptic and post-synaptic connections are dynamically
adjusted based, inter alia, on the timing difference between
input and output pulses processed by the unit 122_3 using a
variety of mechanisms described below.

Typically, a given network topography 100 comprises sev-
eral millions or billions of connections, each characterized by
a synaptic variable (e.g., weight). As a result, such pulse-
coded network requires access, modification, and storing of a
large number of synaptic variables (typically many millions
to billions for n, m~1000) in order to implement learning
mechanisms when processing the incoming and outgoing
signals at each unit of the network 100.

The synaptic variables of a spiking network may be stored
and addressed in using a pre-synaptic indexing (as illustrated
by the network embodiment of FIG. 1A), or post-synaptically
indexed, as illustrated by the network embodiment of FIG. 1B
discussed infra. In a pre-synaptically indexed network of FIG.
1A, synaptic variables (denoted by gray circles in FIG. 1A)
corresponding to synaptic connections that deliver outputs
from the same pre-synaptic unit (such as the unit 102_1 in
FIG. 1A) are stored in a single pre-synaptically indexed
memory block (that is based, for example, on the sending unit
ID) as denoted by a dotted-line rectangles 120 in FIG. 1A.

In a post-synaptically indexed network 101 such as that of
FIG. 1B, synaptic variables corresponding to the synaptic
connections providing inputs into a given unit (such as the
unit 132_3 in FIG. 1B) are stored in a single post-synaptically
indexed memory block (that is based, for example, on the
target unit ID), as denoted by dashed-line rectangles 118 in
FIG. 1B.

As described above, the synaptic nodes, denoted by circles
116 in FIG. 1A, are analogous to synapses of a true biological
nervous system. In one embodiment, the synaptic node is
configured as a separate logical entity of the network as
illustrated by the configuration 160 in FIG. 1C. In this
embodiment, the synaptic node 116 is coupled between the
pre-synaptic unit 102 (via the pre-synaptic channel 108) and
the post-synaptic unit 122 (via the pulse delivery pathway
110). The network configuration 160 of FIG. 1C closely
resembles neuron interconnection structure of vertebrate ner-
vous system.

In another embodiment, the node entity 121 comprises the
synaptic node 116 and the post-synaptic unit 122, as illus-
trated by the configuration 162 in FIG. 1C. In one variant,
useful particularly in computerized spiking networks, the
synaptic node comprises a memory location (e.g., register, or
memory cell, etc).

Various concepts associated with spike propagation from a
pre-synaptic unit to a post-synaptic unit are described with
respect to FIG. 1D herein. When a pre-synaptic unit (e.g., the
unit 102 in FIG. 1C) generates (fires) a pulse at time T, g,
145, the generated pulse 144 reaches the synaptic node 116
(or the node entity 121) at time T,,.,, after a finite propagation
delay (T 4.,,) 164. In one variant, the delay 164 comprises a
conduction delay associated with the communication channel
108. In another variant, the delay 164 is a value assigned to the

US 9,147,156 B2

11

communication link 108 for, inter alfa, controlling pulse syn-
chronicity, as described for example in commonly owned and
co-pending U.S. patent application Ser. No. 13/152,084
entitled “APPARATUS AND METHODS FOR PULSE-
CODE INVARIANT OBJECT RECOGNITION”, and incor-
porated by reference, supra.

The pulse arriving at the synaptic node 116 (or the entity
122) at the time 144 is referred to as the pre-synaptic pulse.
After the pre-synaptic pulse reaches the synaptic node 116,
the synaptic variables associated with the synaptic node 116
are loaded (delivered) to the post-synaptic unit 122 at time
T, o1+ T setiver,- In one variant, the delivery is instantaneous
(Tgaver,=0). The post-synaptic unit 122 operates according to
a node dynamical model, such as for example that described
in U.S. patent application Ser. No. 13/152,105 entitled
“APPARATUS AND METHODS FOR PULSE-CODE
TEMPORALLY PROXIMATE OBJECT RECOGNITION”
incorporated supra. Upon receiving the pre-synaptic pulse
144, the unit 121 may generate (subject to the node model
state) a post-synaptic pulse 140 at time T, ,. In one variant,
the post-synaptic pulse generation time T, (also referred to
as the post-synaptic unit pulse history) is stored internally (in
the unit 121) as a unit variable. In another embodiment, the
post-synaptic unit pulse history is stored in a dedicated
memory array external to the unit.

Similarly, at time T .., the unit 122 receives another input,
the pre-synaptic pulse 146, that is processed in a manner that
is similar to the delivery of the pre-synaptic pulse 144,
described supra. The arrival times T,,.,, T,,., of the pre-
synaptic pulses 144, 146, respectively, and the generation
time T, of the post-synaptic pulse 140 are used in updating
(adjusting) synaptic variables or state of node 116 using any
one or more of a variety of spike plasticity mechanisms. An
embodiment of one such mechanism, useful for modeling
learning in a pulse coded network 100, is shown and
described with respect to FIG. 1D herein. The Spike Timing
Dependent Plasticity (STDP) method 150 uses pulse timing
information in order to adjust the synaptic variables (e.g.,
weights) of the unit to unit connections. The STDP method of
FIG. 1D is described for a single synaptic connection 108
(characterized, for example, by the synaptic weight 116 of
FIG. 1A), between the pre-synaptic unit 102_1 and post-
synaptic unit 122_3 of FIG. 1A. A similar mechanism is
applied on every other connection shown in FIG. 1A based on
the timing of'the firing between respective post-synaptic units
(e.g., unit 121) and the pre-synaptic units (e.g. unit 102). The
STDP adjustment of FIG. 1D is performed in one embodi-
ment as follows: (i) when the pre-synaptic pulse 144 is
received by the unit 122_3, the time of arrival T, , is stored;
and (ii) when the unit subsequently generates the post-syn-
aptic pulse 140, the pre-post window (corresponding to the
time interval 148 between T, and T ,,..,) is computed. In the
embodiment of FIG. 1D, the pre-post window 148 is negative,
as AT, ,-T,,.,,and T, >T, . The post-synaptic pulse
140 is output to downstream units 132 via the post synaptic
channels 114 having the associated post-synaptic variables
(such as the variables of the channel group 118 in FIG. 1B.

When the unit subsequently receives another pre-synaptic
pulse 146 (generated by the same unit 102_1), the post-pre
window, corresponding to the time interval 142 between T, ,
and T, , is computed. In the embodiment of FIG. 1D the
post-pre window 142 is positive, as At=T,,,-T,,,, and
1,221, Correspondingly, the plasticity rule that is used
after the receipt of a pre-synaptic pulse (e.g., the pulse 146) is
referred to as the post-pre synaptic STDP rule (or as the
“post-pre rule”), and it uses the post-pre window 142. The
plasticity rule that is used after the generation of the post-

10

15

20

25

30

35

40

45

50

55

60

65

12

synaptic pulse 140, using the time interval 148, and it is
referred to as the pre-post synaptic STDP rule (or as “pre-post
rule”).

In one variant, the pre-post rule potentiates synaptic con-
nections when the pre-synaptic pulse (such as the pulse 144)
is received by the post-synaptic unit before the pulse 140 is
fired. Conversely, post-pre STDP rule depresses synaptic
connections when the pre-synaptic pulse (such as the pulse
146) is received by to the post-synaptic unit after the pulse
140 is generated. Such rules are typically referred to as the
long-term potentiation (LTP) rule and long-term depression
(LTD) rule, respectively. Various potentiating and depression
implementations exist, such as for example, an exponential
rule defined as:

Ar (Eqn. 1)

w(Ar) = Alexp(ﬁ), Ar <0,
Ar Eqn. 2
w(Ar) = —Azexp(—a), Ar<0, (Ean. 2)

where:

A, A, are the maximum adjustment amplitudes of the
pre-synaptic and post-synaptic modifications, respectively;

t,, t, are the time-windows for the pre-synaptic and post-
synaptic modifications, respectively;

A=T, -1, and

T, es Tp0s, are the pre-synaptic and the post-synaptic pulse
time stamps, respectively.

As a result, in a typical realization of the STDP rule, the
following steps are performed a network unit (for example,
the unit 122_3 in FIG. 1A) for adjusting the synaptic vari-
ables—such as the variables of the pre-synaptic connection
group 120 in FIG. 1A—in order to effect learning mecha-
nisms of the spiking neural network 100:

Pre-synaptic Pulse Rule: For every pre-synaptic pulse
received by a group of post-synaptic units (pulse from 102_1
received by 122_1, 122_3, 122_k in FIG. 1A), the synaptic
variables corresponding to the synaptic connections (the con-
nection group 120 in FIG. 1A) are updated based on post-pre
rule. After updating the synaptic variables, the updated syn-
aptic variables (e.g., synaptic weights) are applied (delivered)
to the respective post-synaptic units.

Post-synaptic Pulse Rule: For every post-synaptic pulse
generated by a unit (e.g. 122_3 in FIG. 1A), the synaptic
variables corresponding to the input channel (group 120) are
adjusted based on pre-post rule. The input channel group is
accessed using the post-synaptic index of the pulse generat-
ing unit (e.g. 122_3). The post-synaptic pulse generated by
unit 122_3 (with respect to group 120), becomes the pre-
synaptic pulse for a group of downstream units, the group 118
in FIG. 1B, and units 132_1, 132_2, 132_n).

The above LTP and LTD updates are performed, for
example, according to Eqns. 1-2 above, and are shown in FIG.
2A. The curve 202 in FIG. 2A depicts the change in synaptic
weight w(At) when the input pulse arrives before the post-
synaptic pulse, and the curve 206 depicts the change in weight
if the pulse arrives after the post-synaptic pulse. The adjust-
ment implementation shown in FIG. 2A is characterized by
the maximum adjustment amplitudes A, A, denoted by the
arrows 204, 208, respectively. The adjustment magnitude
w(At) diminishes and approaches zero as the |Atl increases.
The cumulative effect of the curve 202 is long-term potentia-
tion of the synaptic weights (LTP), and the cumulative effect
of the curve 206 is long-term depression of the synaptic
weights (LTD).

US 9,147,156 B2

13

Various other STDP implementations can be used with the
invention, such as, for example, the bump-STDP rule, illus-
trated in FIG. 2B. The bump-STDP pre-post adjustment and
the post-pre adjustment curves 222, 228 are characterized by
maximum potentiating amount (denoted by the arrow 224)
when At=0 and a finite depression value (denoted by the
arrow 228 in FIG. 2B) as |AtI>>0. The arrows 230 232 denote
the maximum potentiation interval Tmax, that is configured
based on, e.g., the temporal constraints specified by the
designer. More types of STDP rules may be used consistent
with the invention, such as for example those described in
Abbott, L. F. and Nelson, S. B. (2000), “Synaptic plasticity:
taming the beast”, Nature Neuroscience, 3, 1178-1183, incor-
porated herein by reference in its entirety.

Exemplary Implementation of Spiking Network Architecture

In one aspect of the invention, and the calculation of spike-
timing dependent plasticity rules is based on the relative time
difference between the pre-synaptic pulse and the post-syn-
aptic pulse. A computerized network apparatus, implement-
ing e.g., the spiking neural network of FIG. 1A, may operate
in a variety of modes to calculate these time differences.

In one embodiment, the computerized network apparatus
comprises a synchronous implementation, where operation
of'the network is controlled by a centralized entity (within the
network apparatus) that provides the time (clock) step, and
facilitates data exchange between units. The arrival time of
pre-synaptic pulses is derived from the synchronized time
step that is available to all units and synapses within the
network. Spike transmission between different units in the
network can be carried out using for example direct point-to-
point connection, shared memory or distributed memory
communication, or yet other communication mechanisms
which will be recognized by those of ordinary skill in the
neurological modeling sciences given the present disclosure.

In another embodiment, the computerized network appa-
ratus is implemented as an asynchronous network of units,
where units are independent from one another and comprise
their own internal clocking mechanism. In one variant of the
asynchronous network, the pre-synaptic pulse timing is
obtained using a time stamp, associated with the receipt of
each pulse. The time stamp is derived from a local clock of the
post-synaptic unit that has received the pre-synaptic pulse. In
another variant of the asynchronous network, the pre-synap-
tic pulse timing is obtained using information related to the
occurrence of the pre-synaptic pulse (such as, for example, a
time stamp of the pre-synaptic unit, the channel delay and the
clock offset) that may be required to obtain the pulse firing
time if it is needed. One useful technique is to include the
reference clock of the sending (pre-synaptic) unit with each
spike. The receiving unit can accordingly adjust the timing
difference based this additional timing information.
Exemplary Update Methods

Referring now to FIGS. 3 through 9C, exemplary embodi-
ments of various approaches for efficient synaptic computa-
tion in a pulse-based learning spiking neural network are
described.

FIG. 3 presents a high-level block diagram of an exemplary
spiking neural network processing architecture 300 useful for
performing synaptic updates within the network 100,
described supra. Synaptic variables (such as the synaptic
weights, delay, and post-synaptic neuron identification ID)
are stored in a dedicated memory, termed the synaptic
memory 310. The contents of the synaptic memory 310 (typi-
cally on the order of hundreds of megabytes (MB) to few
Gigabytes for a 1000 unit-deep network cascade configura-
tion) is retrieved by the synaptic computational block 302
over the synaptic memory bus 308 whenever the synaptic

35

40

45

55

14

variables data are required to apply the post-synaptic update
described above. The bus 308 width nB is typically between
nl and n2 bytes, although other values may be used. While the
synaptic memory can be implemented as a part of the same
integrated circuit (IC) die (on-chip) as the synaptic computa-
tional block 302, it is typically implemented as an oft-chip
memory. The synaptic computation block 302 implements
the computation necessary to update the synaptic variables
(such as 118, 120) using different types of spike-timing
dependent plasticity rules.

The spiking neural network processing architecture further
comprises a neuronal computation block 312 (either on the
same IC as block 302, or on a separate IC) communicating
with the synaptic computation block over a neuronal bus 306.
The neuronal computation block implements various compu-
tations that describe the dynamic behavior the units within the
network 100. Different neuronal dynamic models exist, such
as described, for example, in Izhikevich, E. (2003), entitled
“Simple Model of Spiking Neurons”, IEEFE Transactions on
Neural Networks, 14, 1569-1572, which is incorporated
herein by reference in its entirety. In one variant, the neuronal
computation block 312 comprises a memory for storing the
unit information, such as recent history of firing, and unit
internal states. The unit also stores the firing time of the most
recent pulse. In another embodiment, the neuronal memory
comprising of the neuronal state is a separate memory block
313 interconnected to the neuronal computation block 312.

In order to increase synaptic data access efficiency and to
maximize performance of the pulse-based network, both the
size of the synaptic memory 310 and the bandwidth of the bus
308 should be efficiently utilized. As described above, syn-
aptic variables may be stored in the synaptic memory 310
using two approaches: (i) post-synaptically indexed—that is,
based on the destination unit ID; or (ii) pre-synaptically
indexed—that is, based on the source unit ID. When the data
is stored using one of the above indexing method (e.g., the
post-synaptically indexed), memory access using the other
indexing method (e.g., the pre-synaptically indexed) is inef-
ficient, and vice versa.

FIG. 3A illustrates one embodiment of synaptic weight
storage architecture that uses pre-synaptic indexing. By way
of example, all of the synaptic variables for the channels
delivering outputs from the unit 102_1 in FIG. 1A are stored
in the pre-synaptic memory block 314. The block 314 is
pre-synaptically indexed and, therefore, comprises a single
contiguous memory structure as shown in FIG. 3A. Although
the block 314 is illustrated as a row in FIG. 3A, it may also
comprise a column or a multidimensional indexed storage
block.

The synaptic variables for the channel group 118 in FIG.
1B carrying the outputs from various units, such as, the units
122_2,122_3, 122_k are stored in the memory block 316.
Because the memory 310 is pre-synaptically indexed, each
row within the memory block 316 is indexed based on the
source units (such as the unit 122_2 to 122_k) and not the
destination unit (such as the unit 122_2). Therefore, the indi-
vidual channels within the group 118 belong to different
pre-synaptic units 122_2,122_3,122_k, as illustrated in FI1G.
1B. Accordingly, the synaptic variables corresponding to the
group 118 are distributed within the nxm memory structure,
such that each row (or column) of the block 316 contains a
single element storing synaptic variable from the group 118,
as shown in FIG. 3A.

As a result, in order to implement the pre-synaptic pulse
based synaptic updates of synaptic variables of the group 120
in response to a pre-synaptic pulse generated by the unit

US 9,147,156 B2

15

102_1, the exemplary embodiment of the synaptic computa-
tional block 302 is required to perform the following opera-
tions:

(1) retrieve the synaptic variables of the group 120 from the
memory block 314 (a single read operation of n ele-
ments) from the synaptic memory 310;

(ii) update synaptic variables of the group 120 using the
post-pre STDP rule;

(ii1) store the synaptic variables in the memory block 314 (a
single write operation of m elements) to the synaptic
memory 310; and

(iv) deliver the pre-synaptic pulse to the post-synaptic units
(122_2,122_3, .. ., 122_k) adjusting the pulse ampli-
tude (and or delay) based on the updated synaptic vari-
ables at step (ii).

Similarly, in order to implement the pre-post STDP update
updates of synaptic variables of the group 118 for a post-
synaptic pulse generated by unit 122_3, the exemplary syn-
aptic computational block is required to perform the follow-
ing operations:

(1) retrieve the synaptic variables 118 from the memory
block 316 (m—single element read operations) from the
synaptic memory 310;

(ii) update the synaptic variables 118 using pre-Post STDP
rule; and

(iii) store the synaptic variables in the memory block 316
(m—single-element write operations) to the synaptic
memory 310.

In one embodiment (shown in FIG. 3B), the synaptic vari-
ables for every synaptic connection (such as the connection
108 in FIG. 1A) are used to describe various connection
properties such as one or more connection weights 322, 332,
connection delays 324, 334, target node (unit) identification
326, plasticity variables 328, 330 (such as parameters used by
STDP rules described, for example, with respect to FIG. 2
supra), and spare memory 340 that may be used for compat-
ibility during network revisions. During synaptic computa-
tion for operations like spike delivery or retrieving neural
state information, the neuronal state is accessed using the
post-neuron identification. During a memory transaction on
the neuron bus (such as, for example, the bus 306 of FIG. 3)
several different neuronal variables are accessed or updated.

In another embodiment (shown in FIG. 3C), the synaptic
variables for every synaptic connection (such as the connec-
tion 108 in FIG. 1) are grouped into two categories: perma-
nent 345 and transient 346. In most spike-based learning
system, the connection variables are updated using synaptic
plasticity rules during the learning or training phase. Both the
transient and permanent variables are updated during the
active learning phase. Once the learning phase finishes, the
transient variables are not used for computation. The perma-
nent variables (e.g., the source and the destination unit 1D,
synaptic weights) are accessed or used throughout the life-
time of the synaptic connection; that is, the time span over
which the connection 108 configuration remains unchanged.
In the exemplary embodiment of FIG. 3C, these two types of
fields are stored separately in memory as permanent fields
345 and transient fields 346. Once the learning phase satu-
rates, the transient synaptic variables are no longer updated,
and hence are not retrieved, thereby reducing the bus 308
transaction load. If the transient and permanent fields are not
distinctively separated in memory (FI1G. 3B), unwanted fetch-
ing of transient variables from the synaptic memory when
only permanent variables are necessary for computation
results. If the given network has on average M connections
and each synaptic connection is represented by P permanent

25

35

40

45

55

16

variables and T transient variables, then the approach
described above reduces the total required bandwidth by a
factor of (1+1/P).

One embodiment of pre-synaptically indexed synaptic
memory implementation associated with the pre and post
synaptic updates is illustrated in FIG. 4, which depicts syn-
aptic memory bus 308 activity for a single pre-synaptic chan-
nel 408 and a single post-synaptic channel 414. When the
pre-synaptic pulses 402 (e.g., generated by unit 1021 in FIG.
1A) is received by post-synaptic units (e.g., 122 2,
122_3,...122_k in FIG. 1A) the synaptic variables of the
channel group (e.g., 120 in FIG. 1) are updated, as illustrated
by the bus transaction 406 in FIG. 4. When the post-synaptic
pulse 410 is generated by the unit 122_3, the synaptic vari-
ables of the channel group (pre-synaptic variables connected
to unit 132_2) are updated, as illustrated by the bus 308
transactions 418 in FIG. 2A. The update transaction 418
comprises synaptic variable adjustment computed based on
the time window 448 between the pre-synaptic pulse 402 and
the post-synaptic pulse 410, as described with respect to FI1G.
1D supra.

Similarly, when another pre-synaptic pulse 404 (generated
by unit 102_1) is received by various units, the synaptic
variables of the channel group (such as the group 120 in FIG.
1A) are updated, causing another bus transaction 406_1. The
update transaction 4061 comprises synaptic variable adjust-
ment computed based on the time window 442 between the
pre-synaptic pulse 404 and the post-synaptic pulse 410.

The detailed structure of the pre-synaptic bus transactions
406 and the post-synaptic bus transactions 418 is shown in
FIG. 4A. Because the synaptic memory (e.g., memory 310 in
FIG. 3A) is pre-synaptically indexed, the pre-synaptic data
transactions 406 are advantageously performed in an efficient
manner. That is, for each update, the synaptic processing unit
reads the pre-synaptic variable block (such as the elements
120 of the post-synaptic block 314 in FIG. 3A) in a single read
operation 438 comprising reading a block of m-elements 432,
each element containing synaptic variable data for a specific
pre-synaptic connection. Upon performing required update
computations, the synaptic processing unit (e.g., the unit 302
in FIG. 3) writes the updated pre-synaptic variables ina single
write transaction comprising a single write operation 440 of a
block of m-updated elements 434. Each read/write transfer
438, 440 comprises an overhead portion associated with low
level memory access operations, including, inter alia, open-
ing memory bank, row pre-charge, etc. As a result, the pre-
synaptic update memory transaction 406 comprises two
memory access operations: one read and one write.

Contrast the transaction 406 with the post-synaptic update
transactions 418, 428 shown in FIG. 4A. Because the memory
(such as the synaptic memory array 310 in FIG. 3A) is pre-
synaptically indexed, access to the post-synaptic variables
(such post-synaptic block 316 in FIG. 3A) occurs in one
row-at-a time manner. That is, each of the array 316 elements
is accessed in a sequential manner (one at a time), resulting in
m-read accesses 444 and n-write accesses 450 as shown in
FIG. 4A. As a result, the post-synaptic update memory trans-
action 418 comprises 2xn memory access operations: n-read
and n-write. Although read/write operations may be inter-
leaved as shown in the memory transaction 418 in FIG. 4A, or
block-oriented, as shown by m read operations are followed
by m write operations of the memory transaction 428, given
that each read/write access comprises an overhead portion
436 (which may take longer than memory access time 432,
434 for each element) the post synaptic update is a scattered

US 9,147,156 B2

17

traverse of discontiguous areas of the post-synaptic memory
block 316 which is very inefficient, and results in a substantial
waste of memory bandwidth.

Such fragmented access of the post-synaptic memory
block becomes even less efficient when multiple post-synap-
tic pulses are generated by different post-synaptic units (such
as, for example, the units 122_1,122_2,122_k in FIG. 1) as
illustrated in FIG. 4B. Each post-synaptic pulse 410, 412_1,
412_2 (on the channels 414_1, 414_k) causes post-synaptic
update transactions 418, 418_1,418_2.

Typically, the memory bus (308 in FIG. 3) supports effi-
cient transfer of large-chunk of data (called burst of memory
access). A memory bus can be a wide bus (e.g. 512-bit wide)
and can concurrently transfer a large amount of sequential
data. If the memory bus is used to transfer one 64-bit data
element, the remaining bits in the memory bus are invalid
(unused), and effective data-transfer is only 64/512 of the
maximum bandwidth.

Memory access during post-synaptic updates described
with respect to FIG. 4A comprises many small-sized accesses
(one memory access for each synapses), the overhead asso-
ciated with each memory access results in a large portion of
the memory bus bandwidth being wasted on non-productive
activity, thereby reducing bus 308 throughput. Such frag-
mented access of the synaptic memory further reduces bus
use efficiency as the number of post-synaptic pulses increases
(as illustrated by the pulses 412 in FIG. 4B). Multiple frag-
mented memory accesses (caused by the post-synaptic pulse
updates) reduce bus availability and may cause a bus collision
condition (indicated by the circle 421 in FIG. 4B), when bus
data transfer request 419 in response to a post-synaptic pulse
416 is generated while the bus transaction 418_2 due to a
prior pulse 412_2 is still in progress.

One embodiment of memory access architecture according
to the invention, referred to as the “lazy synaptic update”, for
use in pulse coded artificial spiking neural networks, is illus-
trated in FIG. 5A. Similar to the memory access scheme
described with respect to FIG. 4 supra, when a pre-synaptic
pulse 502 in FIG. 5A is received by a unit (e.g., theunit 122_3
in FIG. 1A), the synaptic variables are updated, as illustrated
by the bus 308 transaction 506_1 in FIG. 5A. However, the
post-synaptic update is not executed immediately upon gen-
eration of the post-synaptic pulse 510 on channel 514_1, but
is delayed until the next pre-synaptic pulse 504 is received by
the post-synaptic unit (e.g., the unit 122_3 in FIG. 1A), as
indicated by absence of the bus 308 transaction activity cor-
responding to the pulse 510 in FIG. 5A. Similarly, synaptic
updates corresponding to the post synaptic pulses on channels
514_3, 514_n are delayed until the receipt of the next pre-
synaptic pulse 504 by the unit, at which time the pre-post and
the post-pre synaptic updates are performed.

At the time the first pre-synaptic-based update transaction
506_1 is executed, the post-synaptic timing information for
the pulses 510, 512, 516 in FIG. 5A is not available. Hence,
the second synaptic update transaction 506_2 is required to
perform two updates for each preceding post-synaptic pulses
generated within the time window 528: (i) the pre-post
updates, and (ii) the post pre updates. The pre-synaptic vari-
able update is structured as follows: for every pre-synaptic
pulse (e.g., 504), the pre-post update rule (i.e., using the time
window 548_1 in FIG. 5A and Eqn. 1) is evaluated first,
followed by the post-pre update rule (i.e., using the time
window 542_1 in FIG. 5A and Eqn. 2).

In order to enable delayed post-synaptic update, generation
time for all post-synaptic pulses is recorded. In one variant,
the exact timing of every post-synaptic pulse is stored in a
memory buffer of the respective post-synaptic unit (e.g., the

10

40

45

18
unit 122_3 of FIG. 1A stores the timing of the pulses 512_1
through 512_k of FIG. 5A). This timing information is pro-
vided to the synaptic processor (for example, the processor
302 in FIG. 3) when the subsequent pre-synaptic pulse 504
arrives at the unit 122_3.

In one variant, the unit firing timing information is stored
using the absolute time for each of the pulses. In another
variant, the timing information is stored using an offset rela-
tive to a reference event in order to reduce memory required
to store the pulse firing timing information. In yet another
variant (particularly useful with a synchronous iterative net-
work processing implementation), a circular bit-vector is
used to store the recent firing history, where each bit corre-
sponds to a processing iteration of network computations (a
step), and the bit value indicates the unit firing status (‘0’ unit
did not fire, and ‘1’ unit fired).

Memory access of pre-synaptic transaction 506 is struc-
tured similarly to the bus transaction 406, described in detail
with respect to FIG. 4A, supra. The pre-synaptic indexing of
synaptic memory (such as the memory 310 in FIG. 3A) and
the order of synaptic updates of the method of FIG. 5A
described above, allow the update transaction 506 to be
executed using a single read and a single write memory opera-
tion (e.g., the operations 438, 440 in FIG. 4A). That is, syn-
aptic variables are updated for all post-synaptic pulses within
the time window 528 between the two successive pre-synap-
tic pulses 502 and 504 in a single block read/write, thus
advantageously incurring only small overhead for the entire
transactions. As a result, synaptic variable method illustrated
in FIG. 5A requires only a single read/write memory opera-
tion (from external memory to local memory) of synaptic
variables per each window 528 and it advantageously reduces
memory access fragmentation as all memory transactions 506
are performed using contiguous blocks 438, 440, thereby
reducing the amount of overhead associated with multiple
memory accesses.

Comparing the bus transaction 308 activity shown in FIG.
5A and FIG. 4B, advantages of the spiking neural networks
update approach of embodiment of FIG. 5A is further evident
when a large number of post-synaptic pulses is generated. The
update embodiment of FIG. 5A advantageously: (i) consoli-
dates all intermediate post-synaptic update transactions 418
in FIG. 4B into a single transaction 506 in FIG. 5A; and (ii)
uses a single block access 438, 440 when performing the
update transaction. Such single block access is enabled by the
pre-synaptic indexing architecture of the synaptic memory
block 310. Overall, the update approach illustrated in FIG. 5A
reduces the number of synaptic memory bus transactions and,
hence, the total transaction overhead. By way of example,
when S is the number of bus cycles for transferring variables
from one synapses (without overhead), M is the number of
synapses within one group, and BO is the number of addi-
tional bus overhead cycles (BO) for each transfer, the total
number of bus 308 cycles (NC) required for performing syn-
aptic updates for each pre-synaptic pulse is approximately
equal to NC=(SxM+BO), when using the approach illus-
trated in FIG. SA. Contrast this with the total number of bus
cycles (NC0) when performing synaptic updates using meth-
odologies of (such as, for example, approach illustrated in
408) is NCO=(S+O)xM. The overall improvement of bus
utilization (BU) using the synaptic update approach accord-
ing to the embodiment of the invention illustrated in FIG. 5A,
when compared to the fragmented or un-coalesced memory
transactions of the prior art, is given by:

I=(S+O0)xM/(SxM+0). (Eqn. 3)

US 9,147,156 B2

19

For S=10 cycles, BO=10 cycles, and M=100 nodes, the
improvement is on the order of two. Such substantial
improvement advantageously allows for processing of addi-
tional pulses, additional connections for with the same hard-
ware when compared to prior art. Alternatively, the bus usage
improvement of the present allows the use of less complex
(and less costly) hardware to implement the same function-
ality as the solutions of prior art.

Anunderlying reason which allows the delayed implemen-
tation of the post-synaptic updates as illustrated in FIG. 5A is
the asymmetric nature of information propagation through
the spiking neural networks from a pre-synaptic unit to a
post-synaptic unit. Synaptic weight changes due to both pre-
pulse and post-pulse based on the relative timings. For every
pre-pulse, along with the weight change, the synaptic weight
needs to be delivered to the post-synaptic unit. In contrast, for
the given post-synaptic pulse, the synaptic weight need to be
changed based on the pulse-timing, but need not delivered to
any other unit. Because the information flow through the
network happens from pre-synaptic unit to the post-synaptic
unit, it is required for correct network operation that all of the
channel pre-synaptic updates are executed immediately upon
arrival of each pre-synaptic pulse, as the pre-synaptic chan-
nels are continuously providing inputs to the unit (e.g., unit
122_3) and an un-timely update of the pre-synaptic channel
variables adversely affects the accuracy of updates due to
subsequent inputs (for example, the pre-synaptic pulse 504 in
FIG. 5A). On the other hand, the post-synaptic variable
update (for example, due to the pulse 510) can be postponed
until it is needed by the unit (that is, the time of the next
pre-synaptic pulse that delivers the updated variables) with-
out incurring any degradation in accuracy of network data
propagation.

While the postponement of post-synaptic updates accord-
ing to the exemplary embodiment of the invention requires
additional memory for storing the post-synaptic pulse gen-
eration times, the amount of additional storage is determined
by the maximum number of expected post synaptic pulses and
can be easily accommodated by the neuronal memory block
which stores the remaining neuronal state variables. The post-
ponement of post-synaptic updates advantageously obviates
synaptic memory bus transaction (associated with the post-
synaptic pulse generation) as the unit no longer requires read-
ing and writing of the synaptic variables.

In another embodiment, shown in FIG. 5B, the synaptic
memory block access is further optimized by using a tech-
nique referred to as the “nearest neighbor update”. Specifi-
cally, the pre-post synaptic update rule (such as the update
148 in FIG. 1D) is only applied to the first post-synaptic pulse
522_1, as indicated by the arrow 568 in FIG. 5B. Similarly,
the post-pre update (such as the update 142 in FIG. 1D) is only
performed for the last post-synaptic pulse 522_k, as indicated
by the arrow 562 in FIG. 5B.

Synaptic Update Methods Based on System Event

The previous embodiments of memory access during syn-
aptic updates described with respect to FIGS. 5A-5B require
that each post-synaptic unit maintain a finite history of the
post-synaptic activity timing within the time window 528
between the two consecutive pre-synaptic pulses (such as, for
example, the pulses 502, 504). The post synaptic history is
maintained by each unit (e.g., the unit 122_3 in FIG. 1A), and
updated after every firing operation. Given that a typical
network 100 of FIG. 1A comprises many millions of units, it
is desirable to implement each unit using the smallest practi-
cal memory buffer size Nbuf, for example, between 10 and
1000 bits. A situation, when the pre-synaptic activity is much
slower comparing to the post-synaptic unit activity may pro-

10

15

20

25

30

35

40

45

50

55

60

65

20

duce an overflow of the pulse history buffer when the number
of post-synaptic pulses (e.g., the pulses 512 in FIG. 5A)
becomes larger than the maximum allowed by the buffer size
Nbuf. This, in turn, causes an erroneous update of the synaptic
variables by the unit 122 when the next pre-synaptic pulse
arrives at the unit.

In one such implementation of the unit, the post-synaptic
pulse history is stored locally at each unit using a circular
buffer of size 606, as illustrated in FIG. 6. The buffer 600
comprises a set of elements 604, each of which stores the
generation time of consecutive post-synaptic pulses 608.
When the buffer is filled up (as indicated by the plate 620 in
FIG. 6) by a series of post-synaptic pulses 622, the next
post-synaptic pulse 626 overwrites the memory location cor-
responding to one of the prior post-synaptic pulses, as
depicted by the arrow 628 in FIG. 6. Hence, a portion of the
post-synaptic pulse history is lost.

Referring now to FIGS. 7-8, various embodiments of a
method configured to enable spiking neural network opera-
tion when the pre-synaptic and post-synaptic pulse rates are
substantially different from each other, are shown and
described. The method generally utilizes system events, con-
figured to ensure that timely synaptic updates are effected and
to prevent post-synaptic pulse history loss due to history
buffer overflow. The system events are triggered due to a
variety of conditions that depend upon specific implementa-
tions, as described below.

FIG. 7 illustrates one embodiment of a method which
utilizes buffer overflow system events. The method 630 com-
prises, at step 636 monitoring a counter which stores the
position of the last used buffer element 632 (corresponding to
the number of post-synaptic pulses generated by the unit
since the last synaptic update. In one variant, the last synaptic
update is effected by the receipt of the pre-synaptic pulse as
described in detail with respect to FIG. 5A, supra. In another
variant, the last synaptic update is effected by a previous
system event, such as the system event 634 described below.
At step 638, when the counter equals the buffer size 606
(indicating that the end of the buffer 633 is reached) a system
event (depicted by the arrow 634) is generated. Responsive to
the system event 634, at step 640 synaptic update is per-
formed, and the counter is reset to the beginning of the buffer.

The standard plasticity rule shown in FIG. 2A, has a finite
time window 214, 212, and pre-post pulse pair that fall within
this window changes the synaptic variables based on time
difference between the two pulses (At). If the post-pulses are
generated such that At is greater than the time window, then
no synaptic variable update need to be performed until the
occurrence of the next pre-synaptic pulse.

In certain applications, it is required that a synaptic update
is performed for every post-synaptic pulse. Such mechanism
is particularly useful for synaptic plasticity rules that continue
to adapt synaptic variables even for long plasticity time
scales, such as the bump-STDP rule shown in FIG. 2B, supra.
The bump-STDP update magnitude converges to a non-zero
value even for large values of At, as illustrated in FIG. 2B. As
aresult, every post-synaptic spike causes either an increase or
decrease of the synaptic weight (FIG. 2B shows only the
decrease part of the synaptic weight), and is referred to as the
“long-tail plasticity rule”. When using lazy-update scheme
with long-tail plasticity rules (such as FIG. 2B), periodic
forced synaptic weight updates are required in order to take
into account all the post-synaptic pulses until the next pre-
synaptic pulse.

US 9,147,156 B2

21

FIG. 8 illustrates one embodiment of a network operation
method 650 that utilizes system flush events in order to force
synaptic variable update when the given unit has not fired for
Ny, time steps.

At step 652 of the method 650, the unit determines if it has
fired or not. If the unit has fired, then a pre-synaptic pulse is
generated by the unit and the method 650 proceeds via the
pathway 654 and causes the pre-spike to invoke the necessary
post-pre STDP update rule 656. In one variant, the synaptic
memory update comprises synaptic bus transaction 506,
described with respect to FIG. 5A, supra. The unit then
updates the internal state that happens after firing a spike
(termed “reset rule”). Next, at step 658 of the method 650, a
pulse counter is initialized to value N, corresponding to the
maximum allowable number of time step after which the
post-synaptic updates will be invoked (otherwise the timing
information stored in the post-synaptic side will be lost due to
overflow).

If the check step 652 determines that no pulse has been
generated by the unit, then the method 650 decrements the
event counter at step 660. At step 662, a check is performed in
order to determine if the event counter is greater than zero. If
it is, then the unit operation continues to the step 652. If the
pulse counter is equal to zero (indicating that the N, time-
steps has elapsed since the last update), then the flush system
event 664 is generated and unit/network operation continues
to the step 656, as shown in FIG. 7. The flush system event
triggers a synaptic update computation, and ensures that all
timing information of the post-synaptic neuron is accounted
before being removed from the buffer history. Upon receiving
the flush system event, only the pre-post STDP update rules
are executed corresponding to all the post-synaptic pulses that
occurred in the time interval Ty, ,~T,,., (see FIG. 9, dis-
cussed below). The post-pre STDP update rule need not be
applied, because the pre-synaptic pulse has not yet been gen-
erated.

As described with respect to FIG. 5A supra, in order to
maintain accurate lazy updates, the post-synaptic pulse gen-
eration (firing) time history should not be lost between suc-
cessive pre-synaptic pulses. In order to prevent firing history
loss, aflush system event is generated by the pre-synaptic unit
if the pre-synaptic neuron has not fired for N _ steps.

FIG. 9 illustrates one embodiment of synaptic memory
update access sequence performed by a unit of the pulse-
coded network 100 that uses system events, described with
respect to FIGS. 6 and 7. Upon the receipt of the pre-synaptic
pulse 702 via the pre-synaptic channel 708, the unit (e.g., the
unit 1223) executes the update transaction 706 on the bus 308,
and initializes the pulse counter 730 to an initial value N, as
depicted by the block 732_1 in FIG. 9. In one variant, such as
used with the embodiment of the buffer overflow system
event of FIG. 6, the initial value N equals the buffer length
606. Other implementations are compatible with the inven-
tion, such as a counter value corresponding to a predeter-
mined time period, etc.

When subsequent post-synaptic pulses 710, 712-1, 712-%,
716 are generated by one or more units 122_2, ... 122_k, no
synaptic updates are performed (as indicated by the absence
of activity on the bus 308). Instead, the post-synaptic pulse
times are recorded in the pulse buffer (such as the buffer 618
of FIG. 6) and the pulse counter 730 is decremented as indi-
cated by the blocks 732_2 through 732_5 in FIG. 9. When the
pulse counter reaches zero (in response to the post-synaptic
pulse 711) as indicated by the block 732-6, system event 724
is generated, and the synaptic update transaction 726 is per-
formed. In one variant, the system event 724 comprises the
buffer overflow event 634, while, in another variant, the sys-

20

40

45

55

22

tem event 724 comprises the system flush event 664,
described with respect to FIGS. 6-7, supra.

Inthe embodiment of FIG. 9, the timing of the system event
724 corresponds to the T, and it is used as the reference in
computing STDP window, such that all the post-synaptic time
intervals, denoted by the arrows 748 are taken into account for
the pre-post STDP calculation. The time T, , is useful when
the next pre-synaptic pulse is generated by the network (not
shown in FI1G. 9), and the post-synaptic pulses that happened
after T, are taken into account for pre-post STDP calcula-
tions.

In one variant, each unit comprises a fixed-size buffer
configured to store post-synaptic pulse history (firing bits),
thereby enabling individual units to generate system events
independently from one another.

In another embodiment, the synaptic update 726, initiated
by the system event 754 in FIG. 10, is used in conjunction
with the pre-synaptic pulse-based updates 706. In one variant,
the system event 754 is the flush event 664. In another variant,
the system event 754 is the buffer overflow event 634. In yet
another variant (such as shown in FIG. 10), the system event
754 is not generated immediately in response to a post-syn-
aptic pulse, but is instead produced by a variety of applicable
mechanisms, such as, for example, an expiration of a timer.

The timing of the system event 754 in embodiment of FIG.
10 ensures that all the post-synaptic pulses (i.e., the pulses
7101, 712_1, 716_1) that occurred within the time-window
747 (between the pre-synaptic pulse 702 and the flush event
754) are taken into account during the pre-post STDP updates
corresponding to the flush event 754, indicated by the bus
transaction 726. Similarly, when the subsequent synaptic
pulse 704 occurs at the time T,,,,, only the post-synaptic
pulses (i.e., the pulses 710_2, 712_2) that have occurred after
the flush event 754 need to be taken into account for calcu-
lating the pre-post STDP updates indicated by the bus trans-
action 706_2. For atypical implementation of the flush event,
the time difference between Ty, ;, and T,,, is chosen to be
equal to the STDP window 214, so that any post-synaptic
spike that occurs after Ty, falls outside the STDP window
(T,05~T,,>214 of FIG. 2A). Such configuration ensures that
as it will not change the synaptic variable changes due to the
pulses 710_2, 750_2 are negligible (as illustrated in FIG. 2A)
and, therefore, eliminates the need for applying the pre-post
STDP rule to these pulses.

Whenever a flush system event 754 is generated, then the
pre-post synaptic updates (corresponding to the time win-
dows) 748 are applied for all post-synaptic pulses 710, 712,
716 that are generated within the time window 747 (that is
computedas T, ,~T,,.,)in FIG. 10. The post-pre updates for
the post-synaptic pulses 710, 712, 716 depends upon the type
of synaptic plasticity rule that is employed. In case of nearest
neighbor based STDP rule, only the first spike after the pre-
vious pre-pulse and the last spike before the next pre-pulse
need to be accounted.

When the next pre-synaptic pulse 704 is received, synaptic
variables update only needs to account for the post-synaptic
pulses generated within the time window 746 since the last
flush event 754. Hence, the pre-post STDP is evaluated for the
post-spikes 710_2, 712_2 using the time differences 750_1,
750_2 with respect to the pre-pulse 702 occurring at T . The
post-pre STDP rule is applied for the pulses occurring at
710_2, 712_2 using the time differences 742_5, 742_6 with
respect to the current pre-pulse 704 occurring at T,,,,. This
approach is applicable to nearest-neighbor based STDP
update rule. Thus, each post-synaptic pulse (e.g. 710_1,
710_2,712_1,712_2) will not cause any memory transaction
in the synaptic bus for updating the incoming synaptic vari-

US 9,147,156 B2

23

ables. Only the spike history is updated for every post-syn-
aptic pulse as illustrated in the flowchart 8. For other types of
STDP rules, a trace-based mechanism described in the next
parais necessary to account for the post-pre STDP rule due to
the post-synaptic pulses 712_1, 716_1 and the current pre-
pulse 704.

For other kinds of plasticity rules where every post-synap-
tic pulse needs to be accounted for in the STDP calculations,
a post-synaptic trace-based mechanism is used. In spiking
neural networks, each post-synaptic node can contain an
internal trace variable that is updated with each postsynaptic
spike by certain amount, and decays between spikes with a
fixed time constant based on the synaptic plasticity rule. This
internal trace variable stored in the post-synaptic unit can be
used by each synapses to calculate the overall change in the
synaptic variable before actual delivery.

One exemplary embodiment of the trace-based post-syn-
aptic mechanism, which accounts for the post-synaptic pulses
flushed based on a system event, is illustrated in FIG. 11. The
pre-post STDP rule evaluation mechanism being used with
the flush events is described supra. When the next pre-synap-
tic pulse 704 is received at time T,,., in FIG. 11, all of the
post-pre time intervals 781_1, 781_2, 781_3 need to be
accounted for during the post-pre synaptic update that is
based on the post-synaptic pulses 780_1, 780_2, 780_3.
When the pulse 704 occurs before the flush event
(T,e2<T g,,52,), the timing (spiking history) of the pulses (e.g.
the pulse 780_1) is known. However, in the embodiment
illustrated in FIG. 11, the flush event T, causes flushing
(i.e., removal) of the spike timing history associated with
some of the post-synaptic pulses (e.g. the pulses 780_1,
7802). As a result, the plasticity rules corresponding to the
removed pulses (e.g., the rules depicted by the traces denoted
as 782_1, 782_2 in FIG. 11) cannot be evaluated when the
subsequent post-synaptic pulse (e.g., the pulse 704) is
received by the post-synaptic node. In order to obtain accurate
channel update (that utilizes the STDP updates of flushed
pulses 780_1, 780_2), embodiment of FIG. 11 employs an
additional storage in post-synaptic unit (referred to as the
trace) that stores information related to the cumulative effect
of all flushed post-synaptic pulse (e.g., the trace information
denoted by 782_1, 782_2). The stored trace data enables
evaluation of the respective post-pre STDP rules when the
pre-synaptic pulse 704 is received at time T,,,,. By way of
example, the trace variable 782 in FIG. 11 keeps track of the
combined effect of post-pre STDP updates contributed by
each post-synaptic pulse 780_1, 780_2, 780_3, as depicted by
the curves 782_1, 782_2, 782_3, respectively. When the next
pre-synaptic pulse is received at T, ,, the post-synaptic node
reads the trace variable to obtain the cumulative post-pre
STDP adjustment (denoted by the arrow 784 in FIG. 11) due
to previously flushed pulses 780_1, 780_2, 780_3, respec-
tively.

In another embodiment of the system event-based synaptic
update method (not shown), only the time difference
(At=T,,,,~T,,,) between the last pre-synaptic pulse (e.g., the
pulse 702 in FIG. 10) and the next post-synaptic pulse (e.g.,
the pulse 710_1 in FIG. 10) is stored for each synapse (e.g.,
the time 748_1) when the flush system event is triggered. This
approach uses a short read/write pair for storing the time
difference on each synapses, and postpones the actual update
of the synaptic variables until the next pre-synaptic spikes.
This mechanism only works for certain class of synaptic
updates, termed nearest-neighbor STDP rule (see Izhikevich
E. M, and Desai N. S. (2003), incorporated by reference
supra). For example, when the system event Ty, ;, is generated
at 754, the time difference between the pre-pulse 702 and all

20

25

30

40

45

24

post-pulses (710_1, 712_1, 716_1) are stored in the synaptic
memory by a memory transaction smaller than 726. This time
difference is sufficient to update the synaptic variables when
the next pre-pulse 704 is generated.

In another embodiment, successive flush-events are gener-
ated for every N, post-synaptic pulses. Such update mecha-
nism is especially useful with synaptic plasticity rules that
adjust synaptic variables for every post-synaptic pulse. One
specific example of such plasticity rule is shown in FIG. 2B
(the bump-STDP), where the adjustment amplitude 228
remains finite even as At=T,,.-T,,,, grows larger. Because
the ‘long tail’ plasticity rules (such as shown in of FIG. 2B)
cause measurable synaptic weight increase or decrease for
every post-synaptic pulse, any synaptic pulse history loss will
adversely affect spiking network operation. In order to pre-
vent history loss when using the lazy-update methods in
conjunction with the long-tail plasticity rules (such as FIG.
2B), periodic flush system event are generated for every N,
post-synaptic pulses.

In another approach, generation of flush system events is
stopped after a certain number Nstop of post-synaptic pulses,
when additional post synaptic pulses do not significantly
affect data propagation accuracy within the network. For
example, the plasticity rules, such as illustrated in FIG. 2A,
cause infinitesimal synaptic weight adjustments when the
time interval At extends beyond the time windows denoted by
the arrows 214, 214 in FIG. 2A. As a result, the post synaptic
pulses generated outside these windows 212, 214 may not be
accounted for, and the generation of flush system events can
be conveniently stopped. The precise stopping point is depen-
dent upon the exact shape and width of the plasticity curves
202, 206 and unit post-synaptic pulse generation frequency.

In a different approach, the actual mechanism of flush
system event generation is determined at run-time of the
network apparatus (such as the apparatus 300) based on vari-
ous parameters, which are determined by the application by
the application developer. In one variant, these parameters
comprise the width of the plasticity window, and/or network
error tolerance. In another variant, the flush events are gen-
erated using a stochastic model, where some loss of accuracy
of the network performance is traded for simplicity of the
network apparatus. These mechanisms form a category of
techniques that reduces the overall number and frequency of
flush system events without deteriorating the accuracy or
performance of the simulation.

Referring now to FIG. 12, one embodiment of apparatus
configured for storing post-synaptic unit pulse history, com-
prising shared heap memory architecture, is shown and
described in detail. The architecture 800 comprises synaptic
computation block 802 in communication with the synaptic
memory 810 over the synaptic bus 808 and the neuronal
computations block 806 over the neuronal bus 804. A shared
pulse heap memory block 820 is coupled to the synaptic and
the neuronal computations blocks 802, 806 via the buses 822,
824, respectively.

The shared memory block is accessible and shared by a
number of post-synaptic units (such as the units 122 in FIG.
1A), which store their individual histories of the post-synap-
tic pulse generation (firing). This shared-memory mechanism
allows high-firing units (such as the units corresponding to
the channels 814-3, 814-» in FIG. 12A) to share memory
buffer or heap space with low-firing units (such as the units
corresponding to the channels 814_1, 814_2 in FIG. 12A),
thereby reducing generation frequency of system events.

The embodiment of FIG. 12A generates a buffer overflow
event only when the post-synaptic timing data for the pulse
811 cannot be accommodated by the shared buffer 820.

US 9,147,156 B2

25

Whenever the overflow event 824 is generated, the post-
synaptic pulse STDP adjustment is performed by calculating
the new synaptic variables, starting from the oldest un-up-
dated post-synaptic pulse (such as the most recent spike).
Sharing the common heap buffer allows high-firing units to
use memory allocations of low-firing units, thereby reducing
the number (and frequency) of flush events.

Partitioned Network Apparatus

Typically, the following synaptic computations are per-
formed for each post-synaptic unit receiving a pre-synaptic
pulse:

(a) read synaptic variables and connection information
(post neuron ID and delay etc.) for the unit from the
synaptic memory;

(b) read the post-synaptic pulse timing and post-synaptic
neuronal variables (e.g. post-synaptic current) from the
neuronal memory;

(c) update the neuronal variables based on the connection
information;

(d) update the synaptic variables (including synaptic
weights) based on the post synaptic pulse timing; and

(e) store the updated synaptic variables to the synaptic
memory.

The lazy synaptic update mechanism, described supra,
results in efficient access of the synaptic memory block 310,
and improves the steps (a), (d) and (e) above. A network
comprising a large number of units and connections, requires
a large number of post-synaptic neuron updates for every
pre-synaptic pulse (steps (b) and (c) above). The update
approach of the invention described below, advantageously
improves performance of steps (b) and (c) by providing an
efficient access mechanism for the neuronal state information
(post-synaptic neuron timing and post-synaptic neuronal
variables).

FIGS. 13-13A illustrate one embodiment of a partitioned
network architecture 900 and a network apparatus 910 useful
for implementing large spiking neural networks on a hard-
ware platform that has limited on-chip memory (that is, the
memory that is available within the same integrated circuit or
IC die which hosts the synaptic processing block and the
neural processing block). The network 900 of FIG. 13 com-
prises a large number (typically between 10° and 107) of units
(such as the units 102, 122, 132 of FIG. 1A), and even larger
number (typically between 10° and 10'°) of synaptic connec-
tions (such as the connections 108, 114 in FIG. 1A). In order
to enable data processing for such a large number of network
entities by a processing apparatus 910 (units, synaptic con-
nections), the network 900 is partitioned into multiple smaller
network blocks 902, referred to as the network partitions.
Each partition 902 is communicatively coupled to the net-
work processing apparatus 910.

In an exemplary non-partitioned network, every unit stores
a single connectivity table that describes all of the unit con-
nections within the network (e.g., connections 114 in FIG.
1A). In a partitioned network, (such as the network 900 of
FIG. 13) any unit in the network can be connected to multiple
units that are spread across different network partitions 902.
Therefore, the unit connectivity table is split into multiple
sub-tables so that each unit can address the units belong to
every partition separately and, therefore, to perform the syn-
aptic computations for one partition at a time. These compu-
tations comprise the following steps:

(a) load connection information for all units within the

partition;

(b) load the neuronal state (pulse timing and internal state)
for the units within the partition from the global
memory;

5

40

45

55

26

(c) perform synaptic computations for all pre-synaptic
pulses generated by the network and update the neuronal
states of the units; and

(d) store the post-synaptic neuronal states of partition units
back to the global memory, and proceed with the next
partition to step (a).

Thus, at any point of execution, the on-chip memory that
stores the neuronal state information, needs to store only a
small subset (N/P) of the entire network neuronal state, where
Nis the total number of units, and P is the total number of
partitions.

One particular embodiment of the network processing
apparatus 910 is shown and described with respect to FIG.
13A herein. The network apparatus 910 comprises a synaptic
block 920, synaptic memory 918, and neuronal block 914.

The synaptic block comprises multiple synaptic computa-
tions instances 922 that evaluate the synaptic computation for
many synapses in parallel. Although only three instances 922
are shown in FIG. 13 A, it will be appreciated by those skilled
in the arts that the number of instances is determined by the
specific implementation. In one variant, each instance 922 is
implemented as a separate software thread or a process, with
multiple threads executed by the same processing device,
such as an FPGA or a multi-core CPU. In another variant,
each instance 922 is executed by a dedicated processing logic
or unit (such as e.g., gate logic, FPGA, processor, or a pro-
cessor core). In another variant, each instance comprises an
FPGA slice, etc.

The synaptic computation block comprises a partition
memory cache 924 is shared by multiple instances 922 as
shown in FIG. 13A. In one variant, the partition memory
cache 924 comprises the heap buffer 820, described with
respectto FIG. 12 supra. The synaptic connectivity also needs
to be segmented to address each partition separately.

The synaptic computation block is coupled to the synaptic
memory 918 via the synaptic memory bus 912, and to the
neuronal block via the bus 916. The neuronal block 914
comprises a neuronal processing unit 926 and neuronal
memory 928, which stores information related to the units
(within the network 900), such as the spike timing, unit inter-
nal state, etc.

In the embodiment of FIG. 13A, the synaptic block 920 is
implemented on a single chip (IC), as denoted by the broken
line rectangle marked with the arrow 932.

In another embodiment (shown in FIG. 13B), the network
processing apparatus 940 comprises the synaptic block 920
and the neural block 914 implemented on the same dye (IC)
chip, as denoted by the broken line rectangle marked with the
arrow 942 in FIG. 13B.

In a different embodiment shown in FIG. 13C, the network
processing apparatus 950 comprises the synaptic block 920
and the neuronal processing unit 956 which are implemented
on the same dye (IC) chip, as denoted by the broken line
rectangle marked with the arrow 952 in FIG. 13B. The neu-
ronal processing unit 956 is coupled to the partition memory
cache 924 via the bus 954 and is coupled to the off-chip
neuronal memory 958 via the bus 955.

Itwill be appreciated that the embodiments shown in FIGS.
13A-13C serve to illustrate the principles of the invention,
and myriad other network processing apparatus implementa-
tions may be used with the partitioned network 900, such
other implementations being readily identified by those of
ordinary skill in the relevant arts given the present disclosure.

During operation of the exemplary network 900, each par-
tition data (comprising the neuronal data for that partition) is
stored in the shared memory cache 924 directly or by caching
mechanism, and updated one after another. The entire state

US 9,147,156 B2

27

resides in the off-chip global state memory 300. The connec-
tion table is also broken into P connection sub-tables, where
each sub-table stores all the incoming connections for one
particular partition. The network synaptic update computa-
tions are performed one partition at a time in a predetermined
partition sequence. During synaptic update phase, the synap-
tic variables are streamed via the bus 912 to/from the synaptic
memory 918, and various post-synaptic updates are concur-
rently applied to the data within the partition buffer or cache
924. That is, each synaptic computation block 922 reads the
synaptic variables associated with a given pre-synaptic pulse
from the synaptic memory 918, examines the pulse timing of
the post-synaptic neuronal state stored in the local partition
cache 924, calculates new synaptic variables (including the
synaptic weights), updates the post-synaptic neuronal state
using the updated synaptic variables, and stores the modified
synaptic variables (including the synaptic weight) back in the
synaptic memory 918.

Having smaller partition size (e.g., fewer units within each
partition 902) reduces the on-chip memory 924 requirements
but increases the number of partitions. Furthermore, if the
number of post-synaptic units within a partition small, than
each pre-synaptic pulse will require an update of only a small
subset of the post-synaptic neuronal states for the partition.
As aresult, the amount of data streamed through the memory
bus 912 is reduced when smaller partitions are used, resulting
in a less efficient usage of the memory bus 912 due to
increased overhead associated with the multiple memory
transactions (such as the overhead block 436 in FIG. 4A,
described supra).

Larger partitions, comprising more units, require larger
on-chip memory 924 in order to store the synaptic connection
data for the units. Hence, a trade-off exists between the num-
ber of partitions, efficient usage of the streaming synaptic
memory bandwidth, and the size of the simulated network.

When a pre-synaptic neuron fires, the generated pre-syn-
aptic pulse may affect a large number (depending on a spe-
cific network topology) of post-synaptic neurons. As dis-
cussed above with respect to synaptic variables updates, in a
pre-synaptically indexed memory model, access to post-syn-
aptically indexed units is inefficient. Thus each pre-pulse will
result in multiple accesses of the neuronal memory while
updating the post-synaptic neuronal states. Such fragmented
access results result in an inefficient utilization of memory
bus bandwidth. By way of example, consider one variant of
network processing apparatus (such as the apparatus 910)
which implements neuronal bus 916 having the minimum
transaction size of 16 words. That is, 16 sequential neuron
unit data items (comprising, for example, the unit state, recent
firing time, and firing history) are retrieved/stored from/to a
given memory address range in a single transaction. Consider
that the neuronal updates are applied to memory locations at
<40>, <4000>, <52>, <4010>, <5000>, and so on. By order-
ing (sorted) the memory requests as {<40>, <52> <4000>,
<4010>, <5000>} the total number of memory transactions
on the neuronal bus 916 is reduced, because multiple neu-
ronal states can be simultaneously read or stored within one
transaction. In the above example, the data at addresses <40>
and <52>, <4000> and <4010> are accessed within a single
bus-transaction, thereby reducing the number of bus 916
transactions (and hence the bus overhead) and improving bus
utilization. Note that the above grouping of memory transac-
tions increases bus use efficiency, provided that the adjacent
addresses are within the minimum transaction size address
range (16 words in the above example).

For reordering the memory transaction, the synaptic con-
nections for the given pre-synaptic neuron can be rearranged

25

30

35

40

45

65

28

based on the memory-addresses of the post-synaptic neuronal
address (as indicated, for example, by the target unit ID 326 in
FIG. 3B). Ifthe post-synaptic connections are sorted based on
the memory addresses of the neuronal ID or address, then
multiple neuronal states can potentially be retrieved within a
single memory transaction (such as, the transaction 406_1 in
FIG. 4). This mechanism can potentially reduce the number
of neuronal memory transaction in comparison to random
addressing of the post-synaptic unit ID. This reordering
mechanism improves memory locality of the successive
transactions, and benefits from various caching techniques. It
essentially means that if the memory request on the bus 306 is
cached, than the reordered neuronal memory requests mecha-
nism described above performs better than arbitrary ordered
memory requests.

Exemplary Uses and Applications of Certain Aspects of the
Invention

Apparatus and methods for implementing lazy up-to-date
synaptic update in a pulse-coded network offer mechanisms
that substantially improve synaptic memory access efficiency
compared to the previously used un-coalesced memory trans-
actions. This improved memory access can advantageously
be used to process a larger number of synaptic connections
(for the same bus throughput) or to realize pulse coded net-
works using a less costly memory bus implementations (i.e.,
a lower speed and/or a smaller bus width).

Furthermore, the synaptic memory update mechanism that
is based on the pre-synaptic pulse generation/receipt provides
anup-to-date synaptic connection information and, therefore,
improves network accuracy.

The mechanism described in this invention can be utilized
to implement many different types of synaptic plasticity mod-
els described in literature (see Izhikevich E. M. and Desai N.
S. (2003), incorporated herein supra.

The approach and mechanism described in this invention is
applicable to various hardware platform including Graphics
Processors, Field Programmable Gate Arrays, and dedicated
ASICs.

Moreover, the use of system events further improves time-
liness of synaptic updates and allows for a simpler network
implementation with reduce unit memory size.

As previously noted, methods for efficient synaptic vari-
able update that implement lazy update scheme, described
with respect to FIGS. 5A through 9 herein, advantageously
reduce synaptic bus overhead. In one variant, this improve-
ment allows for processing of larger unit populations for the
same bus bandwidth (such as bus speed and/or width), com-
pared with the existing update techniques. This improvement
allows for simpler network processing apparatus implemen-
tation (such as the apparatus 910 of FIG. 13A) which utilize
a lower bandwidth bus access. Simpler bus architecture (due
to a slower and/or smaller width bus), in turn, reduces net-
work processing apparatus cost and improves reliability.

Advantageously, exemplary embodiments of the present
invention can be built into any type of spiking neural network
model that are useful in a variety of devices including without
limitation prosthetic devices, autonomous and robotic appa-
ratus, and other electromechanical devices requiring objet
recognition functionality. Examples of such robotic devises
are manufacturing robots (e.g., automotive), military, medi-
cal (e.g. processing of microscopy, X-ray, ultrasonography,
tomography). Examples of autonomous vehicles include rov-
ers, unmanned air vehicles, underwater vehicles, smart appli-
ances (e.g. ROOMBA®), etc.

Embodiments of the present invention are further appli-
cable to a wide assortment of applications including com-
puter human interaction (e.g., recognition of gestures, voice,

US 9,147,156 B2

29

posture, face, etc.), controlling processes (e.g., an industrial
robot, autonomous and other vehicles), augmented reality
applications, organization of information (e.g., for indexing
databases of images and image sequences), access control
(e.g., opening a door based on a gesture, opening an access
way based on detection of an authorized person), detecting
events (e.g., for visual surveillance or people or animal count-
ing, tracking), data input, financial transactions (payment
processing based on recognition of a person or a special
payment symbol) and many others.

It will be recognized that while certain aspects of the inven-
tion are described in terms of a specific sequence of steps of
a method, these descriptions are only illustrative of the
broader methods of the invention, and may be modified as
required by the particular application. Certain steps may be
rendered unnecessary or optional under certain circum-
stances. Additionally, certain steps or functionality may be
added to the disclosed embodiments, or the order of perfor-
mance of two or more steps permuted. All such variations are
considered to be encompassed within the invention disclosed
and claimed herein.

While the above detailed description has shown, described,
and pointed out novel features of the invention as applied to
various embodiments, it will be understood that various omis-
sions, substitutions, and changes in the form and details of the
device or process illustrated may be made by those skilled in
the art without departing from the invention. The foregoing
description is of the best mode presently contemplated of
carrying out the invention. This description is in no way
meant to be limiting, but rather should be taken as illustrative
of the general principles of the invention. The scope of the
invention should be determined with reference to the claims.

What is claimed:
1. A method for updating a communication channel, in a
computerized spiking network apparatus, based at least in
part on a first triggering pulse and a second triggering pulse
communicated through the communication channel, the
method comprising:
providing a first update based at least in part on a first
interval between the first triggering pulse and an earliest
subsequent pulse associated with a post-synaptic unit;

providing a second update based at least in part on a second
interval between the second triggering pulse and a latest
pulse associated with the post-synaptic unit; and

storing information related to a plurality of output pulses
generated by the post-synaptic unit, the plurality of out-
put pulses comprising the earliest subsequent pulse;

wherein the communication channel is configured to con-
nect a pre-synaptic unit to the post-synaptic unit.

2. The method of claim 1, wherein:

the first update and the second update are evaluated in

response to the second triggering pulse; and

the first update precedes the second update.

3. The method of claim 2, further comprising:

storing information related to at least one output pulse of

the plurality of output pulses being generated at a first
time by the post-synaptic unit, prior to the second trig-
gering pulse; and

storing information related to a second input pulse received

atasecond time at the post-synaptic unit, prior to the first
time.

4. The method of claim 3, wherein:

the first update is configured based on a first plurality of

intervals between the first triggering pulse and indi-
vidual ones of the plurality of output pulses; and

10

35

40

45

50

55

60

30

the second update is configured based on a second plurality
of intervals between the second triggering pulse and the
plurality of output pulses.

5. The method of claim 1, further comprising:

storing information related to at least one output pulse of

the plurality of output pulses being generated at a first
time by the post-synaptic unit, prior to the second trig-
gering pulse; and

storing information related to a second input pulse received

at asecond time at the post-synaptic unit, prior to the first
time.

6. The method of claim 1, further comprising:

modifying a state associated with the post-synaptic unit

based at least in part on the updating;

wherein the second update is performed subsequent to the

performing the first update yet prior to the modifying the
state.

7. The method of claim 1 wherein:

the information related to the plurality of output pulses is

stored in a first memory device;

storing information related to the communications channel

in a second memory device; and

the second memory device is configured by a first access

time that is greater than a second access time of the first
memory device.

8. The method of claim 1, wherein:

the first update comprises a first plurality of updates con-

figured based on a first plurality of intervals between the
first triggering pulse and individual ones of the plurality
of output pulses; and

the second update comprises a second plurality of updates

configured based on a second plurality of intervals
between the second triggering pulse and the plurality of
output pulses.

9. The method of claim 8, wherein:

the updating the communication channel comprises modi-

fying a parameter associated with the communication
channel;

where individual ones of the first plurality of updates and

second plurality of updates comprise modifications of
the parameter; and

the method further comprises storing the parameter in a

second memory device via a single transaction with the
second memory device.

10. The method of claim 9, wherein the parameter com-
prises a channel weight; and

the single transaction is configured to reduce a bus over-

head of the second memory device.

11. A computer implemented method of operating a com-
munications channel in a computerized spiking neuronal net-
work, the method comprising:

modifying the communications channel based at least in

part on an interval between a current trigger and a latest
preceding pulse associated with a post-synaptic unit
coupled to the communications channel;

maintaining the communications channel substantially

unmodified between the current trigger and an immedi-
ately preceding trigger;

adjusting, subsequent to modifying the communications

channel, a state of the post-synaptic unit based at least in
part on the current trigger, the communications channel
configured to connect a pre-synaptic unit to the post-
synaptic unit; and

subsequent to the modifying the communications channel,

adjusting a state of the post-synaptic unit based at least in
part on the current trigger;

US 9,147,156 B2

31

wherein, individual ones of the immediately preceding
trigger and the current trigger are configured to be com-
municated through the communications channel.

12. The method of claim 11, wherein:

the modifying the communications channel comprises

determining an updated channel weight; and

adjusting the state using the updated channel weight.

13. The method of claim 11, wherein the method further
comprises:

prior to adjusting the state, adapting the communications

channel based on a second interval between the imme-
diately preceding trigger and an earliest subsequent
pulse associated with the post-synaptic unit.

14. The method of claim 13, wherein:

the adapting and the modifying the channel cooperate to

determine an updated channel weight;

and the method further comprises adjusting the state based

at least in part on the updated channel weight, the adapt-
ing the communications channel being delayed until the
adjusting of the state.

15. The method of claim 14, further comprising:

storing in a first memory device the interval between the

immediately preceding trigger and the earliest subse-
quent pulse; and

storing the updated channel weight in a second memory

device via a single memory transaction;

wherein the second memory device is configured by a first

access time that is greater than a second access time of
the first memory device.

16. The method of claim 15, wherein:

the communications channel is configured by a conduction

delay; and

the updated channel weight is stored in the second memory

device based at least in part on the conduction delay.

17. A computer implemented method of operating a com-
munications channel in a computerized spiking neuronal net-
work, the method comprising;

transmitting trigger pulses from a pre-synaptic unit

through the communications channel to a post-synaptic
unit;

performing a first update based at least in part on a first

interval between a trigger pulse of at least one trigger
pulse and an earliest subsequent pulse associated with
the post-synaptic unit coupled to the communications
channel;

subsequent to performing the first update, performing a

second update based at least in part on a second interval
between the trigger pulse and a latest preceding pulse
associated with the post-synaptic unit; and

adjusting a state of the post-synaptic unit based at least in

part on a current trigger, the second interval based at
least in part on the current trigger;

wherein individual ones of the first update and the second

update are evaluated in response to the trigger pulse.

18. The method of claim 17, wherein individual ones of the
first update and the second update are evaluated prior to the
adjusting the state.

19. The method of claim 18, further comprising storing the
first interval in a storage apparatus, the storing being effectu-
ated prior to another trigger pulse, the another trigger pulse
occurring subsequent to the trigger pulse.

20. The method of claim 19, wherein:

the first update and the second update cooperate to deter-

mine an updated channel parameter; and

20

25

30

35

40

45

50

55

60

65

32

the updated channel parameter is stored in a memory
device via a single memory bus transaction, the single
memory bus transaction configured to reduce memory
access overhead.
21. The method of claim 17, wherein the first update and
the second update are evaluated at a time associated with the
current trigger.
22. The method of claim 17, wherein:
the first interval is based on a first trigger and the earliest
subsequent pulse associated with the post-synaptic unit;

the second interval is based on a second trigger and the
latest preceding pulse associated with the post-synaptic
unit; and the first trigger comprises a trigger immedi-
ately preceding the second trigger.

23. The method of claim 22, further comprising storing the
first interval in a storage apparatus, the storing being effectu-
ated prior to a third trigger, the third trigger occurring subse-
quent to the first trigger.

24. The method of claim 23, wherein:

the first update and the second update cooperate to deter-

mine an updated channel parameter; and

the updated channel parameter is stored in a memory

device via a single memory bus transaction, the single
memory bus transaction configured to reduce memory
access overhead.

25. The method of claim 17, wherein the earliest subse-
quent pulse associated with the post-synaptic unit comprises
the latest preceding pulse associated with the post-synaptic
unit.

26. A computerized spiking network apparatus comprising
at least one node coupled to a communications channel in the
computerized spiking network apparatus, the computerized
spiking network apparatus comprising a processor and fur-
ther comprising:

means for updating the communications channel based at

least in part on an interval between a current trigger and
a latest preceding pulse associated with the at least one
node;

means for maintaining the communications channel sub-

stantially unmodified between the current trigger and an
immediately preceding trigger; and

means for communicating the current trigger and the latest

preceding pulse through the communications channel;

wherein:

the means for updating comprises means for effecting an
update with a single transaction of a memory bus, the
single transaction reducing memory bus overhead;
and

the means for updating the communications channel is
based at least in part on a plurality of pulses associated
with the at least one node.

27. The apparatus of claim 26, further comprising:

means for updating one other channel the communications

channel based on one other interval between the current
trigger and one other latest preceding pulse associated
with one other node;

wherein:

individual ones of the communications channel and the
one other channel are configured to communicate the
current trigger; and

the means for updating the communications channel and
means for updating the one other channel are effected
by the single transaction of the memory bus.

28. A method of updating a first and second channels in a
computerized spiking neuronal network, the method com-
prising:

US 9,147,156 B2

33

performing a first update based at least in part on a first
interval between a first trigger and a first earliest subse-
quent pulse associated with a first post-synaptic unit
coupled to a first channel, where a pre-synaptic unit is
coupled via the first channel to the first post-synaptic
unit;

performing a second update based at least in part on a
second interval between a second trigger and a first latest
preceding pulse associated with the first post-synaptic
unit;

performing a third update based at least in part on a third
interval between the first trigger and a second earliest
subsequent pulse associated with a second post-synaptic
unitcoupled to a second channel, where the pre-synaptic
unit is coupled via the second channel to the second
post-synaptic unit; and

performing a fourth update based at least in part on a fourth
interval between the second trigger and a second latest
preceding pulse associated with the second post-synap-
tic unit.

10

15

34

31. The method of claim 30, wherein:

the first update and the second update cooperate to deter-
mine a first updated parameter associated with the first
channel;

the third update and the fourth update cooperate to deter-
mine a second updated parameter associated with the
second channel; and

the method further comprises storing, in a second storage
apparatus, the first updated parameter and the second
updated parameter via a single bus transaction of the
second storage apparatus.

32. The method of claim 31, wherein:

the first updated parameter comprises a first channel
weight and the second updated parameter comprises a
second channel weight; and

the single bus transaction is configured to reduce bus
access overhead of the second storage apparatus.

33. The method of claim 31, wherein the second storage

29. The method of claim 28, wherein, the first and the
second trigger are communicated through individual ones of
the first and the second channels.

30. The method of claim 29, further comprising:

storing in a first storage apparatus information related to a

plurality of output pulses generated by at least one of the
first post-synaptic unit and the second post-synaptic
unit, the plurality of output pulses comprising at least
one of the first earliest subsequent pulse and the second
earliest subsequent pulse. L

20 apparatus is configured by a first access time that is greater
than a second access time of the first storage apparatus.

34. The method of claim 31, wherein:

the first channel and the second channel are configured by
conduction delays; and the first updated parameter and
the second updated parameter are stored in the second
storage apparatus based at least in part on the conduction
delays.

