US009270553B1

a2 United States Patent 10) Patent No.: US 9,270,553 B1
Higgins 45) Date of Patent: Feb. 23, 2016
(54) DYNAMIC SERVICE DEBUGGING IN A 6,934,937 B1* 82005 Johnsonetal. ... 717/129
VIRTUAL ENVIRONMENT 6,993,585 B1* 12006 Starkovich etal. . .. 709/228
7,992,133 B1* 82011 Therouxetal. 717/124
. . 8,135,572 B2* 3/2012 Crawfordetal. 703/22
(71) Applicant: Amazon Technologies, Inc., Reno, NV 8.680.186 B2* 4/2014 Savuretal. ... 7104
(Us) 2003/0233634 Al* 12/2003 Carrez et al. .. 717/124
2004/0148548 Al* 7/2004 Moyer et al. . 714/25
(72) Inventor: Chris Higgins, Sammamish, WA (US) 2007/0244904 A1* 10/2007 Durskiccooooviiieriinnnn. 707/10
2009/0135731 Al* 5/2009 Secadesetal. ... 370/252
(73) Assignee: éjnsla)lzon Technologies, Inc., Seattle, WA * cited by examiner
(*) Notice: Subject. to any disclaimer,. the term of this Primary Examiner — Michael Y Won
%atserg 1ls SZ)((IEE;IL?? 506r dz(;ljsuswd under 35 (74) Attorney, Agent, or Firm — Klarquist Sparkman, LLP
(21) Appl. No.: 14/226,328 (57) ABSTRACT
(22) Filed: Mar. 26,2014 A service oriented architecture (SOA) provides on-demand
(51) Int.Cl service call debugging and call stack tracing. The service call
gy (e.g., an API) includes a new field and optional signature
GO6F 15/177 (2006.01) S , .
HO4L 1226 (2006.01) value. The field is a ‘debug-requested’ field, and the optional
(52) US.Cl ’ field is a unique call-id signature. The service provider can
CPC : HO4L 43/0823 (2013.01) enable debugging in accordance with the debug-requested
5% Field fCl """ ﬁ """ S h ' field for this service call, and tag all debugged data with the
(58) Field of Classification Searc / unique call-id. If it is necessary to call other services to fulfill
CPC .ot HO04L 43/0823 the request, then the service can pass the ‘debug-requested’
USPC 1 """ ﬁlf """"""" | 709/ 2031’12112,0’ 223,230 field and the ‘unique id” in the call to that service. Using this
See application file for complete search history. mechanism, detailed debugging can be supported across an
. entire stack for only those requests that need it and the per-
(56) References Cited Y d p

U.S. PATENT DOCUMENTS

6,446,221 B1*

6,892,324 B1* 5/2005

9/2002 Jaggaretal.cccoee.... 714/30
Frenchetal. ... 714/38.14

formance/latency impact of having debugging enabled only
applies to the subset of calls which need debugging.

19 Claims, 9 Drawing Sheets

ID
100/—\' —140 o SERVICE
1'5 SERVICE D
—140.9 SERVICE
APIWITH 1D
LT R SERVICE ya
REQUESTED 140
PARAMETER SERVICE
120 SERVICE ¢
ID
€ ENDPOINT K 1407 SERYICE N\ID 140
API
RESPONSE D SERVICE
150 \ 140 ¢ o 0 ®
110 SERVICE 140
SERVICE
ID
—140 9 SERVICE
130
¥ SERVICE
D
ERVICE
132\/ —140 f SERVIC

US 9,270,553 B1

Sheet 1 of 9

Feb. 23, 2016

U.S. Patent

J0ING3S

J0ING3S

el
®

3A0ING3TS

J0ING3S

al

al

ai

ovl
ai

,\/NQ

JVING3S

orl
ail

J0ING3S

orl ai
JDING3S

J0ING3S

0clL

0Sl
ISNOJS3

J0ING3S

IdV .
INIOddNS 7

30IAY3S —
0ch

FOINGIS o¥l

Foindas ¥ g

d313INVEVd

a31s3no3ad
-ONgd3da
HLIM IdV

001

/I‘\\\\\ .
| Ol

U.S. Patent Feb. 23,2016 Sheet 2 of 9 US 9,270,553 B1

200 DEBUG-REQUESTED
) PARAMETER ON/OFF
210
END-POINT \
SERVICE 220
LOGGING
COMPONENT \250
LOG ON/OFF
IDENTIFIER

LOGGING LEVE

LOG ON/OFF DEBUGGING
IDENTIFIER ODE 230
LOGGING LEVEL

SERVICE SERVICE

LOGGING LOGGING
COMPONENT COMPONENT

299 LOG ON/OF2F50
LOG ONOFF IDENTIFIER
IDENTIFIER

LOGGING LEVEL LOGGING LEVEL

242

\ \

SERVICE SERVICE

LOGGING LOGGING
COMPONENT COMPONENT

\250 \250

U.S. Patent Feb. 23,2016 Sheet 3 of 9 US 9,270,553 B1

FIG. 3

300 ’\

310 \ 320\ 330 \
IDENTIFIER _I
DEBUG-
AP REQUESTED PASSED
REQUEST PARAMETER BETWEEN
SERVICES
e e
e LEVEL 0 — ERRORS ONLY

0-OFF AND/

1-ON OR LEVEL 1 — STACK TRACE

LEVEL 2 - LOG ALL

US 9,270,553 B1

Sheet 4 of 9

Feb. 23, 2016

U.S. Patent

d3LNdNOD HINL3TS ~ ™ 0¥

1INNOJIVY d3INOLSND

ININOJWOD INFWAOTHIA A

1ININOJWOOD LINFWIOVYNVYIN

1ININOJWOD ONITVYOS OLNV

183Nd3d ©Ng3ad
OL ISNOdS3d NI 43141LN3dl
ONILVYHINIO FOINGTS

f

0¥ ¥HOMLAN
\l’

Sy v3¥V 3AIM OL
did%% A
«—
0L
%%

HHOMLAN
v3Idy 1vO0O1

oSt 0cY
+ " azov
S —
HOSIAYIdAH agov
JONVLSNI 00y
muSas_oj H3AIAO¥d
H3INGAS gop JDIAYES
31NdWOD

090%
HALNdWOD JONVYLSNI
OZ0v~rT ¥3IAH3S
90t
azoy ~+ H3LNdWOD JONVLSNI
ISENNSELS
Ve0r ~T 43aLndnoo JONVLSNI
ISENYSES
SY3ILNdNOD
H3IAYIS 40 Y3ALSNTO

v 'Old

US 9,270,553 B1

Sheet 5 of 9

Feb. 23, 2016

U.S. Patent

N 30IAY3S
|

veg P

¢ A0ING3S

3Svavivd

v1vad 907 L ADING3S

(A%

0€s

v1va 907

,«Wm_3|_<> NINLIS ANV SINIWNNDEY-

SANIL dOLS/LHVLS-
(S911vD JDIAMITS 40 VLS ANIL-
a3aTIvo (S)ADIAYIS-

‘AH1INT ©07

Gl8

S30ING3S
d3H10

143

HIDOVYNVYIN 1Od.LINOD
JONVLSNI NOISSINGY
HIOVNVIN
UIFOVINVI /NNm 304dNOS3d
FIVHOLS HHOMLAN

/vmm

00t

0lg

5

32IA3A
AIN3ITO

S —— 905

G Old

US 9,270,553 B1

Sheet 6 of 9

Feb. 23, 2016

U.S. Patent

0€9

1SOH / 1SOH
ISERYSELR LSOH 1SOH

0£9 o0 0
_ 8G9 _ oonysiafl / LSOH 1SOH
O/l YHOM 13N ////////// // 1SOH 1SOH

= z€9

#S9 AHOWIN 1SOH 1SOH

059 IYYMAYVH s /

STHOLIMS SAHOLIMS
s
0.9
INILSAS ONILYHIdO
289 029
IN3INOdWOD SYILNOY
501 089 N
HIAVT IDING3IS ’ H
819
N 1VN
919 H
\
wmm_wuww %E € SY31NOY 019
ISERNE o)
v.1va

U.S. Patent Feb. 23,2016 Sheet 7 of 9 US 9,270,553 B1

FIG. 7

RECEIVE A REQUEST FOR A SERVICE TO BE

PERFORMED
710

DETECT A DEBUG-REQUESTED PARAMETER
CONTROLLING A DEBUGGING MODE 0

PASS THE DEBUGGING MODE BETWEEN
SERVICES OF THE SERVICE PROVIDER N

730

LOG DATA IN ACCORDANCE WITH THE
DEBUGGING MODE 40

U.S. Patent Feb. 23,2016 Sheet 8 of 9 US 9,270,553 B1

FIG. 8

RECEIVE A REQUEST FOR A SERVICE TO BE
PERFORMED 810

|

READ A DEBUG-REQUESTED PARAMETER 820
ASSOCIATED WITH THE REQUEST

|

IN ACCORDANCE WITH THE DEBUG-REQUESTED
PARAMETER, CONTROL A DEBUGGING MODE [gaq
USED BY THE SERVICE PROVIDER

US 9,270,553 B1

Sheet 9 of 9

Feb. 23, 2016

U.S. Patent

SAIOOTONHOIL d391d0S3Ad ONILNINTTdINI 086 FHIVMLAOS

0v6 = g v W=~
JOVYOLS b------- m Pl :
Gc6 0¢6
096

f>N_O_>_m__>_\ f>N_O_>_m__>_k

_
_
.|
_
_
_

T ITURY 4

Buissaooud mo 16 u‘_c3Q

056 (S)301A3A LNdNI oo UISS300)
_10 soiydesb } |eJjuad)

_
_
_
(S)301A3A 1NdLNO _
_
_
_

_
_
_
_
_
_
_
A“v_ 026 (S)NOILOINNOD | — — — — — _ _ 956 |
| NOLLVOINNWWOD | og INIFINNOSIANT ONILLNDWOD

6 Old

US 9,270,553 B1

1
DYNAMIC SERVICE DEBUGGING IN A
VIRTUAL ENVIRONMENT

BACKGROUND

Cloud computing is the use of computing resources (hard-
ware and software) which are available in a remote location
and accessible over a network, such as the Internet. Users are
able to buy these computing resources (including storage and
computing power) as a utility on demand. Cloud computing
entrusts remote services with a user’s data, software and
computation. Use of virtual computing resources can provide
a number of advantages including cost advantages and/or
ability to adapt rapidly to changing computing resource
needs.

Cloud computing can be formed by a plurality of services.
The details of how services operate is often hidden from
external customers that interface with the services through
Application Program Interfaces (APIs). Trouble shooting
errors can be problematic when multiple services are
involved in generating a response to an API call. For example,
it can be difficult to determine which service caused an error
when hundreds of services are involved in the response.

As a result, many of the services activate full-debug capa-
bility on an ongoing basis. Unfortunately, this slows each
service, which can have a cumulative effect when many ser-
vices are used in generating a single response to an API
request.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an overall system diagram showing a plurality of
services used in responding to an API request, wherein the
API request includes a debug-requested parameter.

FIG. 2 shows further details of the services of FIG. 1,
including logging components used for storing debugging log
data.

FIG. 3 illustrates an example API request that includes a
debug-requested parameter and an identifier to be passed
between services.

FIG. 4 is an example system diagram showing a plurality of
virtual machine instances running in the multi-tenant envi-
ronment.

FIG. 5 shows further details of an example system includ-
ing a plurality of management components associated with a
control plane.

FIG. 6 shows an example of a plurality of host computers,
routers and switches, which are hardware assets used for
running services.

FIG. 7 is a flowchart of a method according to one embodi-
ment used to dynamically control debugging in the multi-
tenant environment.

FIG. 8 is a flowchart of a method according to another
embodiment used to dynamically control debugging in the
multi-tenant environment.

FIG. 9 depicts a generalized example of a suitable comput-
ing environment in which the described innovations may be
implemented.

DETAILED DESCRIPTION

A service-oriented architecture (SOA) provides on-de-
mand service call debugging and call-stack tracing. The ser-
vice call (e.g., an API) includes a new field and optional
signature value. The field is a ‘debug-requested’ field, and the
optional field is a unique call-id signature. The debug-re-
quested field and optional signature value can be API inde-

10

15

20

25

30

35

40

45

50

55

60

65

2

pendent meaning that it can be used with any API to assist
with modifying a debug mode in the service provider as it
processing the API. Upon receipt of the service call, the
service provider checks to see if there is a unique call-id
signature along with the ‘debug-requested’ field. If there is no
unique call-id, then one can be dynamically generated. The
service provider can enable debugging in accordance with the
debug-requested field for this service call, and tag all
debugged data with the unique call-id. If it is necessary to call
other services to fulfill the request, then the service can pass
the ‘debug-requested’ field and the ‘unique id’ in the call to
the other services. If every service in the call stack supports
this mechanism, then detailed debugging can be supported
across the entire stack for just those requests that need it and
the performance/latency impact of having debugging enabled
only applies to the subset of calls which need debugging. One
advantage of accepting the ‘debug-requested’ flag at any entry
point into the call tree is that it allows services to enable
debugging for a single service call only. Other service calls
that do not need debugging can leave debugging switched off.
Alternatively, the debug-requested field can provide a level of
debugging, such as errors only, a stack trace, or a complete
log. Thus, the debug-requested field allows the caller to
dynamically control a debug mode within the service pro-
vider.

The services used in cloud computing are typically Web
services. A web service is a software function provided at a
network address over the web or the cloud. Clients initiate
web service requests to servers and servers process the
requests and return appropriate responses. The client web
service requests are typically initiated using, for example, an
APl request. For purposes of simplicity, web service requests
are generally described below as API requests, but it is under-
stood that other web service requests can be made. An API
request is a programmatic interface to a defined request-
response message system, typically expressed in JSON or
XML, which is exposed via the web—most commonly by
means of an HT'TP-based web server. Thus, in certain imple-
mentations, an API can be defined as a set of Hypertext
Transfer Protocol (HTTP) request messages, along with a
definition of the structure of response messages, which can be
in an Extensible Markup Language (XML) or JavaScript
Object Notation (JSON) format. The API can specity a set of
functions or routines that perform an action, which includes
accomplishing a specific task or allowing interaction with a
software component. When a web service receives the API
request from a client device, the web service can generate a
response to the request and send the response to the endpoint
identified in the request.

FIG. 1 shows a service provider 100 as including a plurality
of'services. Generally, the services can make requests to other
services and receive corresponding responses. For example,
each service can be a Web service and make an API request to
other services. The service provider 100 can include one or
more endpoints, such as service endpoint 110. A request for a
service is shown at 120 and can include a debug-requested
parameter. When the endpoint 110 receives the API request
120, it can be a starting point of a calling chain of services
used in the service provider 100 in responding to the request.
For example, in response to the request 120, the endpoint 110
can generate its own API requests to a first level of services
shown generally at 130. Those services can, in turn, call a
second level of services shown at 132, and so on, until an Nth
level (where N is any integer value) of services 134 are called.
The service endpoint 110 can pass to the services 130 a
unique debug identifier, such as shown at 140. The services
130 can then pass the identifier to the downstream services

US 9,270,553 B1

3

132, and so on. The identifier 140 can be used by the services
as a key in storing debug data (e.g., metadata and log data,
such as errors, times, parameter, etc.) so that log data is stored
across services using the same key associated with the API
request. The unique debug identifier 140 can be generated by
the service endpoint 110 or received with the AIP request 120.
The identifier 140 identifies the request throughout the ser-
vice calling chain so that all requests can be easily logged and
retrieved. The debug-requested parameter can likewise be
passed to each of the services 130, 132, etc., so as to establish
a consistent debugging behavior across services. Still further,
a different parameter associated with the debug-requested
parameter can be passed to each of the services. The param-
eters that are passed are called herein a “debugging mode”
and can include the debug-requested parameter, the identifier
140, a combination of the two, and/or some other
parameter(s) indicating the debugging mode. When each ser-
vice receives the debugging mode, it can correspondingly
adjust its” level of debugging to be consistent with the debug-
ging mode. Not all services need to behave identically. That
is, each service can interpret the debugging mode according
to the functionality of the particular service. Additionally, the
debugging mode can include a graduated level of debugging
and/or a generic on/off flag. Thus, in some cases where there
is sensitivity to confidential information, debugging can be
selected as off so as to achieve maximum speed in the
response while assuring that log data is not maintained or is
otherwise minimized.

After the API request has been completed, an API response
150 can be returned to the original requester. If the service
endpoint 110 generated the identifier 140, then the API
response can include the identifier so that future queries into
log data can be made using the identifier. Alternatively, the
API response 150 can be returned asynchronously. For
example, a response can be returned indicating the request
120 is being processed. The identifier can be included with the
asynchronous response. A follow-up second response can be
returned when the request is completed or the requestor may
need to send a subsequent request for status.

FIG. 2 shows further details of an example calling chain
200 used in response to receiving an API request including a
debug-requested parameter 210. An end-point service 220
can receive the debug-requested parameter 210 and can gen-
erate a debugging mode 230 in response thereto. The debug-
ging mode can then be passed to the downstream services in
the calling chain 200. The debugging mode can include a flag
indicating that debugging is on/off, a unique identifier that
can be used to store data for this particular request, and/or a
logging level indicating a degree to which logging should be
performed. The debugging mode can include any or all of
these parameters, and others can be used depending on the
particular design. In the particular illustrated embodiment,
the same debugging mode 230 is passed to all services in the
calling chain. For example, a first downstream service 240 is
shown receiving the debugging mode 230 from the end-point
service 220. In processing its’ response, the service 240
makes two API requests to services 242, 244 and passes each
one the same debugging mode 230 which it received. As such,
auniform level of debugging can be implemented across all of
the services that are in the calling chain. Services that are not
in the calling chain need not receive the debugging mode.

Each of the services 200 can include a logging component
250. The logging components 250 can be responsive to the
debugging mode 230 to log data and metadata associated with
processing the API request. For example, the metadata can
include the other services called, time stamp information,
start/stop times, while the log data can include arguments,

20

25

40

45

4

return values, etc. The log data and metadata can be stored
using the identifier as a key so that each logging component
250 stores its data using the same identifier, which is associ-
ated with the original API request. Thus, a uniform logging
system is used across disparate services within the service
provider.

FIG. 3 shows an example API request 300 including mul-
tiple fields, such as the API request itself 310, a debug-re-
quested field 320 and an optional identifier field 330, shown in
dashed lines. The API request 310 can be any desired request
supported by the service provider. Typical service providers
support thousands of requests and the API request 310 can
include multiple subfields. The debug-requested parameter
320 can take a variety of forms and can be a simple one-bit
flag (ON/OFF) or it can include levels of debugging, such as
Level 0 used for errors only, Level 1 used for logging a stack
trace, or Level 2 for logging everything. Thus, depending on
the level, a more detailed level of logging can be achieved.
Still further, the debug-requested parameter 320 can be a
combination of the flag and level or other fields can be used.
The identifier 330 can be any alpha-numeric combination of
characters and should uniquely be associated with the API
request. Additional fields related to a debugging mode can be
added to the API request.

FIG. 4 is a computing system diagram of a network-based
compute service provider 400 that illustrates one environ-
ment in which embodiments described herein can be used. By
way of background, the compute service provider 400 (i.e.,
the cloud provider) is capable of delivery of computing and
storage capacity as a service to a community of end recipi-
ents. In an example embodiment, the compute service pro-
vider can be established for an organization by or on behalf of
the organization. That is, the compute service provider 400
may offer a “private cloud environment.” In another embodi-
ment, the compute service provider 400 supports a multi-
tenant environment, wherein a plurality of customers operate
independently (i.e., a public cloud environment). Generally
speaking, the compute service provider 400 can provide the
following models: Infrastructure as a Service (“laaS”), Plat-
form as a Service (“PaaS”), and/or Software as a Service
(“SaaS”). Other models can be provided. For the IaaS model,
the compute service provider 400 can offer computers as
physical or virtual machines and other resources. The virtual
machines can be run as guests by a hypervisor, as described
further below. The PaaS model delivers a computing platform
that can include an operating system, programming language
execution environment, database, and web server. Applica-
tion developers can develop and run their software solutions
on the compute service provider platform without the cost of
buying and managing the underlying hardware and software.
The SaaS model allows installation and operation of applica-
tion software in the compute service provider. In some
embodiments, end users access the compute service provider
400 using networked client devices, such as desktop comput-
ers, laptops, tablets, smartphones, etc. running web browsers
or other lightweight client applications. Those skilled in the
art will recognize that the compute service provider 400 can
be described as a “cloud” environment.

The particular illustrated compute service provider 400
includes a plurality of server computers 402A-402D. While
only four server computers are shown, any number can be
used, and large centers can include thousands of server com-
puters. The server computers 402A-402D can provide com-
puting resources for executing software instances 406A-
406D. In one embodiment, the instances 406A-406D are
virtual machines. As known in the art, a virtual machine is an
instance of a software implementation of a machine (i.e. a

US 9,270,553 B1

5

computer) that executes applications like a physical machine.
In the example of virtual machine, each of the servers 402A-
402D can be configured to execute a hypervisor 408 or
another type of program configured to enable the execution of
multiple instances 406 on a single server. Additionally, each
of'the instances 406 can be configured to execute one or more
applications.

It should be appreciated that although the embodiments
disclosed herein are described primarily in the context of
virtual machines, other types of instances can be utilized with
the concepts and technologies disclosed herein. For instance,
the technologies disclosed herein can be utilized with storage
resources, data communications resources, and with other
types of computing resources. The embodiments disclosed
herein might also execute all or a portion of an application
directly on a computer system without utilizing virtual
machine instances.

One or more server computers 404 can be reserved for
executing software components for managing the operation
of the server computers 402 and the instances 406. For
example, the server computer 404 can execute a management
component 410. A customer can access the management
component 410 to configure various aspects of the operation
of'the instances 406 purchased by the customer. For example,
the customer can purchase, rent or lease instances and make
changes to the configuration of the instances. The customer
can also specify settings regarding how the purchased
instances are to be scaled in response to demand. The man-
agement component can further include a policy document to
implement customer policies. The policy document can
include a level of debugging to be used when the debug-
requested parameter is activated. An auto scaling component
412 can scale the instances 406 based upon rules defined by
the customer. In one embodiment, the auto scaling compo-
nent 412 allows a customer to specify scale-up rules for use in
determining when new instances should be instantiated and
scale-down rules for use in determining when existing
instances should be terminated. The auto scaling component
412 can consist of a number of subcomponents executing on
different server computers 402 or other computing devices.
The auto scaling component 412 can monitor available com-
puting resources over an internal management network and
modify resources available based on need.

A deployment component 414 can be used to assist cus-
tomers in the deployment of new instances 406 of computing
resources. The deployment component can have access to
account information associated with the instances, such as
who is the owner of the account, credit card information,
country of the owner, etc. The deployment component 414
can receive a configuration from a customer that includes data
describing how new instances 406 should be configured. For
example, the configuration can specify one or more applica-
tions to be installed in new instances 406, provide scripts
and/or other types of code to be executed for configuring new
instances 406, provide cache logic specifying how an appli-
cation cache should be prepared, and other types of informa-
tion. The deployment component 414 can utilize the cus-
tomer-provided configuration and cache logic to configure,
prime, and launch new instances 406. The configuration,
cache logic, and other information may be specified by a
customer using the management component 410 or by pro-
viding this information directly to the deployment component
414. The instance manager can be considered part of the
deployment component.

Customer account information 415 can include any desired
information associated with a customer of the multi-tenant
environment. For example, the customer account information

5

10

15

20

25

30

35

40

45

50

55

60

65

6

can include a unique identifier for a customer, a customer
address, billing information, licensing information, customi-
zation parameters for launching instances, scheduling infor-
mation, auto-scaling parameters, previous IP addresses used
to access the account, etc.

A network 430 can be utilized to interconnect the server
computers 402A-402D and the server computer 404. The
network 430 can be a local area network (LAN) and can be
connected to a Wide Area Network (WAN) 440 so that end
users can access the compute service provider 400. It should
be appreciated that the network topology illustrated in FIG. 4
has been simplified and that many more networks and net-
working devices can be utilized to interconnect the various
computing systems disclosed herein.

A service 450 can receive an API request and generate an
identifier in response to a debug-requested parameter within
the API request. Thus, if an identifier is not received with the
request, the service 450 can generate an identifier, which can
be used as a key for storing log data accumulated through
processing the API request. The service 450 can call other
services in order to process the request. Once the response is
generated, the service 450 can return the response to the caller
together with the generated identifier. In this way, the debug-
requested parameter can be transformed into an identifier
used in storing log data.

FIG. 5illustrates in further detail management components
506 that can be used in the multi-tenant environment of the
compute service provider 400. In order to access and utilize
instances (such as instances 406 of FIG. 4), aclient device can
be used. The client device 510 can be any of a variety of
computing devices, mobile or otherwise including a cell
phone, smartphone, handheld computer, Personal Digital
Assistant (PDA), desktop computer, etc. The client device
510 can communicate with the compute service provider 400
through an end point 512, which can be a DNS address
designed to receive and process API requests. In particular,
the end point 512 can be a web server configured to expose an
API. Using the API requests, a client 510 can make requests
to implement any of the functionality described herein. Other
services 515, which can be internal to the compute service
provider 400, can likewise make API requests to the end point
512.

Other general management services that may or may not be
included in the compute service provider 400 include an
admission control 514, e.g., one or more computers operating
together as an admission control web service. The admission
control 514 can authenticate, validate and unpack the API
requests for service or storage of data within the compute
service provider 400. An instance manager 520 controls
launching and termination of instances in the network. When
an instruction is received (such as through an API request) to
launch an instance, the instance manager pulls resources from
a capacity pool and launches the instance on a decided upon
host server computer. Similar to the instance manager are the
storage manager 522 and the network resource manager 524.
The storage manager 522 relates to initiation and termination
of storage volumes, while the network resource manager 524
relates to initiation and termination of routers, switches, sub-
nets, etc.

The endpoint 512 can be coupled to a service 530, which
can call other services 532, 534, etc. Any number N (where N
is any integer) of services can be called. Assuming that a
debug-requested parameter is activated in the API, the ser-
vices 530, 532, 534 store their respective log data in a log data
database 540. Each log service can use the same identifier in
order to store the data. An example entry is shown as includ-
ing other services called, time stamps associated with the

US 9,270,553 B1

7

calls, start and stop times, arguments and return values, and
log data generally. As the log data database 540 is a single
repository including the identifier, it can be easy searched for
all log data related to the same API call. For example, each
API request can have its own unique identifier so that all log
data associated with the API request can be retrieved.

FIG. 6 illustrates the hardware framework upon which the
services can operate. A plurality of data centers, such as data
center 610, can be coupled together by routers 616. The
routers 616 read address information in a received packet and
determine the packet’s destination. If the router decides that a
different data center contains a host server computer, then the
packet is forwarded to that data center. If the packet is
addressed to a host in the data center 610, then it is passed to
a network address translator (NAT) 618 that converts the
packet’s public IP address to a private IP address. The NAT
also translates private addresses to public addresses that are
bound outside of the datacenter 610. Additional routers 620
can be coupled to the NAT to route packets to one or more
racks of host server computers 630. Each rack 630 caninclude
a switch 632 coupled to multiple host server computers. A
particular host server computer is shown in an expanded view
at 640.

Each host 640 has underlying hardware 650 including one
or more CPUs 652, memory 654, disk /O 656, network /O
658, etc. Running a layer above the hardware 650 is an oper-
ating system 670. The service layer 680 can be an application
including a log component 682 used for logging data associ-
ated with processing an API request. For example, the log
component 682 can obtain access to the hardware 650
through the operating system 670 to record data such as CPU
cycles, memory use of memory 654, Disk 1/O use from Disk
1/O hardware 656 or network 1/O use from network I/O hard-
ware 658. The log component 682 can access the log data
database 540 using the structure of FIGS. 5 and 6.

FIG. 7 is a flowchart of an embodiment for dynamically
controlling a debugging mode in a service provider. In pro-
cess block 710, a request is received for a service to be
performed. For example, the request can be an API request or
other Web service request. In process block 720, a debug-
requested parameter can be detected, which controls a debug-
ging mode. The debug-requested parameter can be a field
within the request. Thus, a simple parsing of the request can
be used to detect the debug-requested parameter. In process
block 730, the debugging mode can be passed between ser-
vices. The debugging mode can be derived directly from the
debug-requested parameter or it can be obtained from a policy
document linked to a customer account. For example, if the
debug-requested parameter is activated, a level of debugging
can be obtained from the customer’s policy document. Alter-
natively, all of the debug mode data can be part of the API. In
any event, the log data is passed to each service needed in
order to generate a response to the API request. In process
block 740, data is logged in accordance with the debugging
mode. The logging of data can include storing parameters
indicating how the service processed the request. Alterna-
tively, parameters can indicate resources (CPU cycles,
memory, etc.) used by one or more server computers in pro-
cessing the request. The logging of data can be performed by
those services that receive the debugging mode. It should be
recognized that the process blocks can be performed in any
desired order and are not necessarily sequential.

In process block 810, a request for a service to be per-
formed can be received. As previously described, the request
can be an API request. Additionally, the request can be from
a customer of the service provider or from a service internal to
the service provider. In process block 820, a debug-requested

10

15

20

25

30

35

40

45

50

55

60

65

8

parameter associated with the request can be read. The debug-
requested parameter can be read from the request itself or
from a policy document, wherein the policy document is a
document stored by the service provider and associated with
a customer of the request. In any event, the debug-requested
parameter can be used to control a debugging mode used in
processing the request. In addition or alternatively, the
request can include an identifier that can be passed between
the services. In process block 830, the debugging mode is
controlled in accordance with the debug-requested param-
eter. Controlling the debugging mode can include passing the
debugging mode between services of the service provider
used to process the request, so as to establish a consistent
debug behavior across all services. Additionally, controlling
the debugging mode can include logging information associ-
ated with the request for each service used to process the
request. The information that can be logged can include meta-
data associated with the request and log data associated with
the request. Examples of controlling the debugging mode can
include turning the debugging mode off, turning the debug-
ging mode on, or adjusting a level of the debugging mode,
wherein the debugging mode includes graduated levels.

It will be recognized that the services of the service pro-
vider can have debugging turned off until dynamic requests
are made requesting debugging while generating a response
to an API. Oncetherequests are processed, the debugging can
be switched back off. In this way, the services can minimize
unwanted debugging data, but can switch debugging on to a
desired level in response to a request to do so.

Additionally, it will be recognized that the identifier can be
used later via internal or external service requests to retrieve
all log data associated with the API request. In a particular
example, the log data and metadata can be retrieved using the
identifier as a key. Various details regarding how the API was
processed can be determined from the log data and metadata,
such as through a visual display. For example, a graphical
presentation can indicate each of the services called in the
request, a total amount of memory used, CPU cycles used,
network /O used, disk [/O used, etc. Each ofthese parameters
can be displayed or otherwise saved for later use. Addition-
ally, timing information can be extracted, such as a total time
to process the API request or a time for each service to process
the request. Other uses of the log data can vary depending on
the design.

FIG. 9 depicts a generalized example of a suitable comput-
ing environment 900 in which the described innovations may
be implemented. The computing environment 900 is not
intended to suggest any limitation as to scope of use or func-
tionality, as the innovations may be implemented in diverse
general-purpose or special-purpose computing systems. For
example, the computing environment 900 can be any of a
variety of computing devices (e.g., desktop computer, laptop
computer, server computer, tablet computer, etc.)

With reference to FIG. 9, the computing environment 900
includes one or more processing units 910, 915 and memory
920, 925. In FIG. 9, this basic configuration 930 is included
within a dashed line. The processing units 910, 915 execute
computer-executable instructions. A processing unit can be a
general-purpose central processing unit (CPU), processor in
an application-specific integrated circuit (ASIC) or any other
type of processor. In a multi-processing system, multiple
processing units execute computer-executable instructions to
increase processing power. For example, FIG. 9 shows a
central processing unit 910 as well as a graphics processing
unit or co-processing unit 915. The tangible memory 920, 925
may be volatile memory (e.g., registers, cache, RAM), non-
volatile memory (e.g., ROM, EEPROM, flash memory, etc.),

US 9,270,553 B1

9

or some combination of the two, accessible by the processing
unit(s). The memory 920, 925 stores software 980 imple-
menting one or more innovations described herein, in the
form of computer-executable instructions suitable for execu-
tion by the processing unit(s).

A computing system may have additional features. For
example, the computing environment 900 includes storage
940, one or more input devices 950, one or more output
devices 960, and one or more communication connections
970. An interconnection mechanism (not shown) such as a
bus, controller, or network interconnects the components of
the computing environment 900. Typically, operating system
software (not shown) provides an operating environment for
other software executing in the computing environment 900,
and coordinates activities of the components of the comput-
ing environment 900.

The tangible storage 940 may be removable or non-remov-
able, and includes magnetic disks, magnetic tapes or cas-
settes, CD-ROMs, DVDs, or any other medium which can be
used to store information in a non-transitory way and which
can be accessed within the computing environment 900. The
storage 940 stores instructions for the software 980 imple-
menting one or more innovations described herein.

The input device(s) 950 may be a touch input device such
as a keyboard, mouse, pen, or trackball, a voice input device,
a scanning device, or another device that provides input to the
computing environment 900. The output device(s) 960 may
be a display, printer, speaker, CD-writer, or another device
that provides output from the computing environment 900.

The communication connection(s) 970 enable communi-
cation over a communication medium to another computing
entity. The communication medium conveys information
such as computer-executable instructions, audio or video
input or output, or other data in a modulated data signal. A
modulated data signal is a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limi-
tation, communication media can use an electrical, optical,
RF, or other carrier.

Although the operations of some of the disclosed methods
are described in a particular, sequential order for convenient
presentation, it should be understood that this manner of
description encompasses rearrangement, unless a particular
ordering is required by specific language set forth below. For
example, operations described sequentially may in some
cases be rearranged or performed concurrently. Moreover, for
the sake of simplicity, the attached figures may not show the
various ways in which the disclosed methods can be used in
conjunction with other methods.

Any of the disclosed methods can be implemented as com-
puter-executable instructions stored on one or more com-
puter-readable storage media (e.g., one or more optical media
discs, volatile memory components (such as DRAM or
SRAM), or non-volatile memory components (such as flash
memory or hard drives)) and executed on a computer (e.g.,
any commercially available computer, including smart
phones or other mobile devices that include computing hard-
ware). The term computer-readable storage media does not
include communication connections, such as signals and car-
rier waves. Any of the computer-executable instructions for
implementing the disclosed techniques as well as any data
created and used during implementation of the disclosed
embodiments can be stored on one or more computer-read-
able storage media. The computer-executable instructions
can be part of, for example, a dedicated software application
or a software application that is accessed or downloaded via a
web browser or other software application (such as a remote

10

15

20

25

30

35

40

45

50

55

60

10

computing application). Such software can be executed, for
example, on a single local computer (e.g., any suitable com-
mercially available computer) or in a network environment
(e.g., via the Internet, a wide-area network, a local-area net-
work, a client-server network (such as a cloud computing
network), or other such network) using one or more network
computers.

For clarity, only certain selected aspects of the software-
based implementations are described. Other details that are
well known in the art are omitted. For example, it should be
understood that the disclosed technology is not limited to any
specific computer language or program. For instance, the
disclosed technology can be implemented by software writ-
ten in C++, Java, Perl, JavaScript, Adobe Flash, or any other
suitable programming language. Likewise, the disclosed
technology is not limited to any particular computer or type of
hardware. Certain details of suitable computers and hardware
are well known and need not be set forth in detail in this
disclosure.

It should also be well understood that any functionality
described herein can be performed, at least in part, by one or
more hardware logic components, instead of software. For
example, and without limitation, illustrative types of hard-
ware logic components that can be used include Field-pro-
grammable Gate Arrays (FPGAs), Program-specific Inte-
grated Circuits (ASICs), Program-specific Standard Products
(ASSPs), System-on-a-chip systems (SOCs), Complex Pro-
grammable Logic Devices (CPLDs), etc.

Furthermore, any of the software-based embodiments
(comprising, for example, computer-executable instructions
for causing a computer to perform any of the disclosed meth-
ods) can be uploaded, downloaded, or remotely accessed
through a suitable communication means. Such suitable com-
munication means include, for example, the Internet, the
World Wide Web, an intranet, software applications, cable
(including fiber optic cable), magnetic communications, elec-
tromagnetic communications (including RF, microwave, and
infrared communications), electronic communications, or
other such communication means.

The disclosed methods, apparatus, and systems should not
be construed as limiting in any way. Instead, the present
disclosure is directed toward all novel and nonobvious fea-
tures and aspects of the various disclosed embodiments, alone
and in various combinations and subcombinations with one
another. The disclosed methods, apparatus, and systems are
not limited to any specific aspect or feature or combination
thereof, nor do the disclosed embodiments require that any
one or more specific advantages be present or problems be
solved.

In view of the many possible embodiments to which the
principles of the disclosed invention may be applied, it should
be recognized that the illustrated embodiments are only pre-
ferred examples of the invention and should not be taken as
limiting the scope of the invention. Rather, the scope of the
invention is defined by the following claims. We therefore
claim as our invention all that comes within the scope of these
claims.

What is claimed is:
1. A method of dynamically controlling a debugging mode
in a service provider, the method comprising:

receiving a request for a service to be performed by the
service provider;

detecting, within the request, a debug-requested parameter
controlling a debugging mode to be used while process-
ing the request;

US 9,270,553 B1

11

while processing the request, passing the debugging mode
between services of the service provider so as to estab-
lish a consistent debugging behavior across services;
and

logging data by services that receive the debugging mode,

the logging data being in accordance with the debugging
mode.

2. The method of claim 1, further including dynamically
generating a unique debug identifier in response to receiving
the request, and passing the unique debug identifier to the
services used in processing the request.

3. The method of claim 1, further including receiving, with
the request, a unique debug identifier and passing the unique
debug identifier to the services used in processing the request.

4. The method of claim 1, wherein passing the debugging
mode between services includes passing the debug-requested
parameter itself and/or a unique debug identifier.

5. The method of claim 1, wherein logging data includes
storing parameters indicating how the service processed the
request.

6. The method of claim 1, wherein the request is an API
request from a customer of the service provider.

7. A computer-readable storage including instructions
thereon for executing a method of dynamically controlling
debugging in a service provider, the method comprising:

receiving a request for a service to be performed by the

service provider;

in response to the request, reading a debug-requested

parameter associated with the request; and

in accordance with the debug-requested parameter, con-

trolling a debugging mode used by the service provider
while processing the request;

wherein the service provider includes a plurality of ser-

vices used for processing the request, and wherein the
controlling of the debugging mode includes passing a
debugging mode between the plurality of services of the
service provider used to process the request so as to
establish a consistent debug behavior across the plural-
ity of services.

8. The computer-readable storage of claim 7, wherein con-
trolling the debugging mode includes, for each service used to
process the request, logging information associated with the
request in accordance with the debugging mode.

9. The computer-readable storage of claim 7, wherein con-
trolling the debugging mode includes one of the following:
turning debugging off, turning debugging on, or adjusting a
level of debugging.

10. The computer-readable storage of claim 7, wherein
receiving the request includes receiving an API request from
a customer of the service provider or from a service within the
service provider.

11. The computer-readable storage of claim 7, wherein the
service provider includes a plurality of services used for
processing the request, and wherein the request includes an
identifier associated with the debug-requested parameter and
the identifier is passed between the plurality of services.

10

15

20

25

30

35

40

45

50

55

12

12. The computer-readable storage of claim 11, wherein
controlling the debugging mode further includes logging
metadata associated with the request and logging log data
associated with processing the request in a log store using an
identifier, and further including retrieving the metadata and
log data using the identifier as a key.

13. The computer-readable storage of claim 7, wherein
reading the debug-requested parameter includes reading a
field within the request itself or reading a field in a document
stored by the service provider, the document associated with
a customer of the request.

14. The computer-readable storage of claim 7, wherein the
debugging mode includes graduated levels of debugging and
controlling the debugging mode includes selecting one of the
graduated levels based on the request.

15. The computer-readable storage of claim 7, wherein the
service provider includes a plurality of services used for
processing the request, and the plurality of services have
debugging switched off prior to receiving the request, and
wherein controlling the debugging mode includes dynami-
cally switching on debugging within the plurality of services
while servicing the request and then switching debugging off
once the request is processed.

16. The computer-readable storage of claim 7, wherein
controlling the debugging mode includes, for each service
used to process the request, logging one or more of the fol-
lowing parameters associated with the request: CPU cycles
needed to service the request, memory used to service the
request, disk /O needed to service the request, or network I/O
needed to service the request.

17. A system for dynamically controlling a debugging
mode in a compute service provider, comprising:

aplurality of host server computers for running services in

the compute service provider;

an endpoint server computer responsive to receiving an

API request including a debug-requested parameter that
controls a debug mode to be used while processing the
API request, the endpoint server computer for generat-
ing an identifier to be passed to a set of the plurality of
host server computers running the services used to
respond to the API request, so as to establish a consistent
debugging behavior across the set of the plurality of host
server computers; and

a log database coupled to the plurality of host server com-

puters, for storing log data in association with the iden-
tifier.

18. The system of claim 17, further including a logging
component associated with the plurality of services for
obtaining at least CPU cycles and memory usage of one ofthe
set of host server computers and storing the CPU cycles and
memory usage in the log database.

19. The system of claim 17, wherein the debug-requested
parameter includes graduated levels of debugging.

#* #* #* #* #*

