US009099050B1

a2z United States Patent (10) Patent No.: US 9,099,050 B1
Wyatt @45) Date of Patent: Aug. 4, 2015
(54) METHOD AND APPARATUS FOR (56) References Cited

(735)

(73)

")

@
(22)

(60)

(1)

(52)

(58)

DYNAMICALLY MODIFYING THE

GRAPHICS CAPABILITIES OF A MOBILE
DEVICE
Inventor: David Wyatt, San Jose, CA (US)

Assignee: NVIDIA Corporation, Santa Clara, CA

(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 2446 days.

Appl. No.: 11/843,618

Filed: Aug. 22,2007

Related U.S. Application Data

Provisional application No. 60/823,429, filed on Aug.
24, 2006.

Int. Cl1.

GO6F 15/16 (2006.01)

GO6F 1/32 (2006.01)

G09G 5/36 (2006.01)

U.S. CL

CPC G09G 5/363 (2013.01); GO6F 1/3203

(2013.01)
Field of Classification Search
None
See application file for complete search history.

180
N\,

U.S. PATENT DOCUMENTS

2006/0119603 Al*
2008/0034238 Al*

6/2006 Chenetal.c...... 345/502
2/2008 Hendryetal. 713/323

* cited by examiner

Primary Examiner — Tize Ma
(74) Attorney, Agent, or Firm — Artegis Law Group, LLP

57 ABSTRACT

A method and system for dynamically modifying the graph-
ics capabilities of a mobile device is disclosed. One embodi-
ment of the present invention sets forth a method, which
includes the steps of abstracting the handling of a first graph-
ics subsystem and a second graphics subsystem associated
with the mobile device, so that the first graphics subsystem
and the second graphics subsystem appear as a third graphics
subsystem to an operating system for the mobile device,
detecting a configuration change event corresponding to the
first graphics subsystem, masking the configuration change
event to induce the generation of a reset event, and modifying
the graphics capabilities of the mobile device to match the
highest graphics capabilities between the first graphics sub-
system and the second graphics subsystem that are accessible
to the mobile device.

23 Claims, 7 Drawing Sheets

182
Application
184
Interposer 186
Driver 187
___________________ L%
B 188 - 190 N
P \ 1¢t Driver P 2nd Driver / P
Pl 189 Lo * for ¢
o \ 1 GPU P 2 GPY S |

U.S. Patent Aug. 4, 2015 Sheet 1 of 7 US 9,099,050 B1

Internal Display
Panel 108

102
\

] Notebook External
Notebook 1st Graphics] »~ Display Connectors 110
Computer 100 Subsystem
:II— Interconnect
2 Graphics _
Docking Subsystem Dock External Display
Connectors 112
System 104 }

106 /

FIG. 1A

US 9,099,050 B1

Sheet 2 of 7

Aug. 4, 2015

U.S. Patent

III

1)

H i

] 1

<t “

= £ “

| _—

' O = =g 6; '

1 ~ (0] (0 ~— ~ |

' > o =) '

i o > ® L S “

' G QS m 1

] k=] m L O 1

H &N = ,

“ =

1 (&)]

i o "

! — 1

1 I

1 t

' t

b o o o o e e e e A R e e e e o e e e e = e = e e]
R e e P P L P D
[}
] '
5 [}
-~ 1
]
[|||||||||||||||||||] '
; - E .
“ 00 ' ® 2w '
@x ! L0 T » © 5_ !
w > O ! ~— 1 = © :
c © — 1 T < 1 o E I
S 3T . O ! o "

-—— '] (=
=8 & ‘ = ' m
- “ © " 3|
1 ! ~— '
1 “ y “
1 1 < ,
i o ! o '
5 ! ©] 5 “
2 ! 3 _ = “
0N O 1 oD 1 !
ot “ ol “ = .
< _ O ! o “
| 1 1

o] L ! 2, "
: B ' (%7) !

FIG. 1B

US 9,099,050 B1

Sheet 3 of 7

Aug. 4, 2015

U.S. Patent

180
AW

s 182

s 184

s 186

Application

OIS

II

Interposer
Driver 187

li
1st Driver

A
1st GPU

FIG. 1C

U.S. Patent

Aug. 4, 2015 Sheet 4 of 7
Notified of Config. s 200
Change Event

A

Mask Configuration s 202
Change Event
Switch Graphics I 204
Capabilities

A

Use Driver Routines
Supported by Newly
Switched Graphics
Subsystem

/ 206

FIG. 2A

US 9,099,050 B1

U.S. Patent

Aug. 4, 2015 Sheet 5 of 7

Signal Device Lost

s 220

A

Respond to Calls
from O/S to Reset

e 222

Respond to Requests
Made to 2rd GPU

s 224

Y

Assert Signals to
Hardware
Components

226
/

FIG. 2B

US 9,099,050 B1

U.S. Patent Aug. 4, 2015 Sheet 6 of 7 US 9,099,050 B1
240 \
242
Application 4
244
O/R) /
3
Bus Driver
254
246
Interposer Filter f
Driver 248 Driver 256
250 Ve 258
1t Driver 2 Driver
A 4 A 260
252 /
1st GPU 2dGPU [

FIG. 2C

U.S. Patent Aug. 4, 2015 Sheet 7 of 7 US 9,099,050 B1

Vs 280 282 / 286
Root | : PEG
Port J DO ; 1 PERST# | (ard

284 i
R/] : PRSNT#
PRSNTH# !

l — Interconnect

From Layer
Software { N
246 Y N
288 290
g AN /
Y Y
Mobile Device Add-on System

FIG. 2D

US 9,099,050 B1

1
METHOD AND APPARATUS FOR
DYNAMICALLY MODIFYING THE
GRAPHICS CAPABILITIES OF A MOBILE
DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 60/823,429, filed on Aug. 24, 2006.

BACKGROUND OF THE INVENTION

1. Field of the Invention

Embodiments of the present invention relate generally to
graphics enhancement techniques and more specifically to a
method and apparatus for dynamically modifying the graph-
ics capabilities of a mobile device.

2. Description of the Related Art

Unless otherwise indicated herein, the approaches
described in this section are not prior art to the claims in this
application and are not admitted to be prior art by inclusion in
this section.

Generally, mobile devices are designed to consume less
power but support less than ideal graphics capabilities. How-
ever, as they offer more and more functions, an increasing
number of users of these mobile devices rely on the devices to
perform tasks traditionally reserved for desktop computers.
For example, a notebook computer user nowadays often plays
games, reads news, or even watches movies on his or her
notebook computer.

To improve the viewing experience for such a user, one
approach is to include a second graphics subsystem with
enhanced graphics capabilities in a docking system or a
graphics enhancement system (collective referred to as an
“add-on system”), which the notebook computer can attach to
either via a wired connection or a wireless connection. So,
instead of relying on the inferior graphics subsystem inside
the notebook computer, after attaching to the add-on system,
the notebook computer can switch over to the second graphics
subsystem to drive its internal display panel. After detaching
from the add-on system, on the other hand, the notebook
computer then switches back to its internal graphics sub-
system.

Conventionally, switching to and away from the second
graphics subsystem requires a lengthy restarting sequence.
The situation is further worsened if the attachment or the
removal of the add-on system is unexpected (also referred to
as a “surprised attachment” or a “surprised removal” event).
To illustrate, suppose an application A currently runs on a
notebook computer X, and the notebook computer X is not
attached to any add-on system. Then the operating system of
the notebook computer X detects a surprised attachment
event. In order for the application A to take advantage of the
superior graphics capabilities of the second graphics sub-
system in the add-on system, the user of the notebook com-
puter X needs to manually close and re-launch the application
A. If instead the operating system of the notebook computer
X detects a surprised removal event indicative the removal of
the add-on system, then the notebook computer X necessarily
needs to go through the sequence of shutting down and reboo-
ting to switch back to its internal graphics subsystem. These
required re-launching and rebooting sequences are cumber-
some and time consuming.

10

15

20

25

30

35

40

45

50

60

65

2

As the foregoing illustrates, what is needed is an improved
way of dynamically and seamlessly modifying the graphics
capabilities of a mobile device and address at least the prob-
lems set forth above.

SUMMARY OF THE INVENTION

A method and system for dynamically modifying the
graphics capabilities of a mobile device is disclosed. One
embodiment of the present invention sets forth a method,
which includes the steps of abstracting the handling of a first
graphics subsystem and a second graphics subsystem associ-
ated with the mobile device, so that the first graphics sub-
system and the second graphics subsystem appear as a third
graphics subsystem to an operating system for the mobile
device, detecting a configuration change event corresponding
to the first graphics subsystem, masking the configuration
change event to induce the generation of a reset event, and
modifying the graphics capabilities of the mobile device to
match the highest graphics capabilities between the first
graphics subsystem and the second graphics subsystem that
are accessible to the mobile device.

One advantage of the disclosed method and system is the
seamless switching of graphics capabilities from one graph-
ics subsystem to another in a mobile device without needing
to go through the lengthy restart or reboot sequences.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of
the present invention can be understood in detail, a more
particular description of the invention, briefly summarized
above, may be had by reference to embodiments, some of
which are illustrated in the appended drawings. It is to be
noted, however, that the appended drawings illustrate only
typical embodiments of this invention and are therefore not to
be considered limiting of its scope, for the invention may
admit to other equally effective embodiments.

FIG. 1A is a simplified system diagram illustrating a
mobile device with a first graphics subsystem and a docking
system with a second graphics subsystem;

FIG. 1B is a simplified block diagram of some components
in the notebook computer and the docking system of FIG. 1A
that enable dynamic switching from one graphics subsystem
to another, according to one embodiment of the present inven-
tion;

FIG. 1C is a software stack configured to support the
dynamic modification of graphics capabilities of a mobile
device, according to one embodiment of the present inven-
tion;

FIG. 2A is a flow chart illustrating one process for a soft-
ware layer to dynamically modify the graphics capabilities of
amobile device, according to one embodiment of the present
invention;

FIG. 2B is a flow chart illustrating the method steps for
masking the aforementioned configuration change event,
according to one embodiment of the present invention;

FIG. 2C is a software stack configured to handle multiple
aspects of a configuration change event, according to another
embodiment of the present invention; and

FIG. 2D is a simplified block diagram illustrating how a
software layer in a mobile device manipulates signals for a
PEG card residing in an add-on system, according to one
embodiment of the present invention.

DETAILED DESCRIPTION

FIG. 1A is a simplified system diagram illustrating a
mobile device, such as a notebook computer 100, with a first

US 9,099,050 B1

3

graphics subsystem 102 and a docking system 104 with a
second graphics subsystem 106. The notebook computer 100
has its own internal display panel 108 and also notebook
external display connectors 110 to attach to an external dis-
play device. Similarly, the docking system 104 also has its
own dock external display connectors 112. Here, the note-
book computer 100 is shown to connect to the docking system
104 in a wired interconnect. Some examples of the wired
interconnect include, without limitation, Peripheral Compo-
nent Interconnect (“PCI”) Express Graphics (“PEG”) port
and Mobile PCI Express Module (“MXM”) 2.0. Alterna-
tively, this interconnect can be wireless, as long as it supports
sufficient bandwidth. According one aspect of the present
invention, after the attachment of the docking system 104 to
the notebook computer 100, without needing to restart any
application currently operating on the notebook computer
100, the notebook computer 100 dynamically switches to the
second graphics subsystem 106 and enables any such appli-
cation to take advantage of the capabilities supported by the
second graphics subsystem 106. According to another aspect
of the present invention, after the removal of the docking
system 104 from the notebook computer 100, without need-
ing to reboot the notebook computer 100, the notebook com-
puter 100 dynamically and seamlessly switches back to the
first graphics subsystem 102.

FIG. 1B is a simplified block diagram of some components
in the notebook computer 100 and the docking system 104 of
FIG. 1A that enable dynamic switching from one graphics
subsystem to another, according to one embodiment of the
present invention. As shown, the notebook computer 100
includes a processor 150, host components 152, system
memory 154, and a shared frame buffer 156. The host com-
ponents 152 further includes a graphics and memory control-
ler hub (“GMCH”) 158 and a first graphics processing unit
(“GPU”) 160 residing in the first graphics subsystem 102 of
FIG. 1A. The docking system 104 includes its local memory
162, a local frame buffer 164, and a second GPU 166 that
resides in the second graphics subsystem 106 of FIG. 1A.

The system memory 154 in the notebook computer 100
stores programming instructions and data for the processor
150 and the host components 152 to execute and operate on.
In other implementations, the processor 150, the first GPU
160, the GMCH 158, or any combination thereof, may be
integrated into a single processing unit. Further, the function-
ality of the first GPU 160 may be included in the GMCH 158
or in some other type of special purpose processing unit or
co-processor. In such embodiments, software instructions
may reside in other memory systems than the system memory
154 and may be executed by processing units other than the
processor 150. It should also be apparent to a person with
ordinary skills in the art to recognize that the GMCH 158 may
include multiple discrete integrated circuits that work
together to serve different types of I/O agents, such as a
northbridge and a southbridge.

After the notebook computer 100 is coupled to the docking
system 104 and the second GPU 166 is configured to render
objects for the notebook computer 100, in one implementa-
tion, the second GPU 166 renders objects to the local frame
buffer 164 and copies the rendered objects from the local
frame buffer 164 to the shared frame buffer 156 via the
interconnect between the GMCH 158 and the second GPU
166. Then, the first GPU 160 ensures the data in the shared
frame buffer 156 is scanned out to the internal display panel
108 for display. On the other hand, after the notebook com-
puter 100 is detached from the docking system 104 and the
first GPU 160 is configured to render objects for the notebook
computer 100, in one implementation, the first GPU 160

10

15

20

25

30

35

40

45

50

55

60

65

4

renders objects to the shared frame buffer 156 and also scans
out the data in the shared frame buffer 156 to the internal
display panel 108.

FIG. 1C is a software stack 180 configured to support the
dynamic modification of graphics capabilities of a mobile
device, according to one embodiment of the present inven-
tion. As shown, the software stack 180 includes a software
layer 186 disposed between an application 182 and a plurality
of drivers, such as a first driver 188 and a second driver 190.
The application 182 operates on top of an operating system
(O/S) 184. Using the system configurations illustrated in
FIGS. 1A and 1B as an example, the O/S 184 refers to the O/S
for the notebook computer 100. A first driver 188 in one
implementation is a graphics driver adapted for interfacing a
first GPU 189, corresponding to the first GPU 160 of FIG. 1B,
and the second driver 190 is also a graphics driver adapted for
interfacing a second GPU 191, corresponding to the second
GPU 166. The combination of the driver and the GPU is
referred to as a sub-system. Thus, the first driver 188 with the
first GPU 189 is a sub-system 192, and the second driver 190
with the second GPU 191 is a sub-system 194. The software
layer 186 is mainly responsible for wrapping both of these
sub-systems 192 and 194 so that they appear as a single
graphics subsystem 196 to the O/S. In one implementation,
the software layer 186 includes an interposer driver 187,
which is responsible for managing all the graphics function
calls of the sub-systems 192 and 194.

FIG. 2A is a flow chart illustrating one process for the
software layer 186 to dynamically modify the graphics capa-
bilities of a mobile device, according to one embodiment of
the present invention. To avoid unnecessarily obscure the
following discussions, the software stack 180 of FIG. 1C is
assumed to operate on the notebook computer 100 shown in
the system configurations of FIGS. 1A and 1B, and the illus-
trated process of FIG. 2A is described mainly from the per-
spective of the interposer driver 187. However, it should be
apparent to a person with ordinary skills in the art to include
additional drivers in the software layer 186.

Whenever the notebook computer 100 detects a removal
event (e.g., the docking system 104 detaching from the note-
book computer 100) or an attachment event (e.g., the docking
system 104 attaching to the notebook computer 100), an
interrupt is issued to the O/S 184 of the notebook computer
100. In response to the interrupt, the O/S 184 in step 200
notifies the interposer driver 187 of this configuration change
event. The interposer driver 187 then masks this event in step
202 to induce a subsequent reset event. As mentioned above,
the O/S 184 only recognizes the interposer driver 187 inter-
facing with the graphics subsystem 196 and does not know
about the existence of the sub-systems 192 and 194 shown in
FIG. 1C. So, from the perspective of the O/S 184, the reset
event is associated with the resetting of the graphics sub-
system 196. To properly mask the configuration change event
from the O/S 184 and also the various drivers, one implemen-
tation of the software layer 186 not only manages communi-
cations between the O/S 184 and the drivers, but it also
controls signaling for certain hardware components in the
notebook computer 100. Subsequent paragraphs will further
detail the masking mechanisms.

After the occurrence of the reset event, in step 204, the
interposer driver 187 switches the graphics capabilities of the
notebook computer 100 of FIG. 1A and FIG. 1B to match the
ones supported by the preferred graphics subsystem that is
still accessible to the notebook computer 100. So, suppose the
notebook computer 100 is attached to the docking system
104. After the removal event for the docking system 104, the
second GPU 166 of FIG. 1B (corresponding to the second

US 9,099,050 B1

5

GPU 191 of FIG. 1C) is physically detached from the note-
book computer 100. The interposer driver 187 is responsible
for switching the graphics capabilities of the notebook com-
puter 100 to match the ones supported by the first GPU 160 of
FIG. 1B (corresponding to the first GPU 189 of FIG. 1C),
because the first GPU 160 is the only one accessible by the
notebook computer 100 in this example. On the other hand, if
the docking system 104 reattaches to the notebook computer
100, then the interposer driver 187 switches the graphics
capabilities of the notebook computer 100 back to match the
ones supported by the second GPU 166, because the second
GPU 166 ofters more superior graphics capabilities than the
first GPU 160.

Moreover, the interposer driver 187 is also responsible for
routing calls from the application 182 shown in FIG. 1C to use
the driver routines of the newly switched graphics subsystem
instep 206. So, ifthe docking system 104 is detached from the
notebook computer 100, then the interposer driver 187 routes
calls made by the application 182 to the first driver 188, the
internal driver of the notebook computer 100 that interfaces
with the first GPU 189. Conversely, if the docking system 104
is attached to the notebook computer 100, then the interposer
driver 187 routes calls made by the application 182 to the
second driver 190, the driver residing in the docking system
104 that interfaces with the second GPU 191.

FIG. 2B is a flow chart illustrating the method steps for
masking the aforementioned configuration change event,
according to one embodiment of the present invention. Simi-
lar to the discussions above, using the interposer driver 187 of
FIG. 1C as an illustration, when the removal event for the
second GPU 191 occurs, the interposer driver 187 intercepts
the interrupt and signals a device lost event to the O/S 184 in
step 220. This device lost event indicates to the O/S 184 that
the graphics subsystem 196, not the second GPU 191, needs
to be reset. Then in step 222, the interposer driver 187 inter-
cepts the call from the O/S 184 and returns a value indicating
the successful reset of the graphics subsystem 196. In other
words, from the perspective of the O/S 184, the O/S 184 does
not know about the removal of the second GPU 191 but
receives confirmation that a reset event has take place. In one
implementation, the interposer driver 187 resets the param-
eters associated with the second GPU 191. Moreover, the
interposer driver 187 also intercepts requests that are made to
the second GPU 191 in step 224, because the second GPU 191
is no longer accessible. In some instances, the interposer
driver 187 also asserts control signals in step 226 to stop the
generation of certain signals associated with the removal of
the second GPU 191. The steps described above also apply to
the attachment event of the second GPU 191. In other words,
after the interposer driver 187 intercepts the interrupt associ-
ated with the attachment event, one implementation inter-
poser driver 187 still signals to the O/S 184 a device lost event
in step 220 and similarly shields this configuration change
from the O/S 184.

It should be apparent to a person with ordinary skills in the
art to recognize that to fully mask a configuration change
event, other aspects of the event, in addition to what is dis-
closed above, also need to be addressed. FIG. 2C is a software
stack 240 configured to handle multiple aspects of a configu-
ration change event, according to another embodiment of the
present invention. As noted above, a software layer 246 of the
software stack 240 includes more than one driver, such as an
interposer driver 248 and a filter driver 256 shown in FIG. 2C.
Here, the interposer driver 248 behaves in the same manner as
the interposer driver 187 illustrated in FIG. 1C and described
above. Suppose the configuration change event is the removal
of'the second GPU 260. A bus driver 254 is typically config-

20

25

30

40

45

55

6

ured to have direct access to an adapter card containing the
second GPU 260 and handle tasks such as bus enumeration
and Advanced Configuration and Power Interface (“ACPI”).
The bus driver 254 is also generally notified of the removal
event. In one implementation, the filter driver 256 is disposed
between the bus driver 254 and the hardware to intercept the
interrupt caused by the adapter card removal and keep such
information away from the bus driver 254. In addition, the
filter driver 256 also intercepts any request issued from or
through the bus driver 254 to the adapter card containing the
second GPU 260.

In conjunction with the masking process illustrated in FIG.
2B and the software stack 240 of FIG. 2C, suppose the adapter
card containing the second GPU 260 is a PEG card and is
coupled to the PEG port of a GMCH, such as the GMCH 158
shown in FIG. 1B. FIG. 2D is a simplified block diagram
illustrating how the software layer 246 in a mobile device
manipulates signals for a PEG card residing in an add-on
system, according to one embodiment of the present inven-
tion. Here, the mobile system, such as the aforementioned
notebook computer 100, includes a root port 280, a first
selector 282, and a second selector 284. Also, the add-on
system, such as the aforementioned docking system 104,
includes a PEG card 286 that contains the second GPU 260
with superior graphics capabilities. If the PEG card 286 is
removed, as shown in step 226 of FIG. 2B and discussed
above, the interposer driver 248 in the software layer 246
asserts a select signal 290 to overwrite the PRSNT# signal, so
that the root port 280 does not detect the removal. In addition,
the interposer driver 248 also asserts a select signal 288 to
send the appropriate reset signal (i.e., PERST#) to the PEG
card 286.

While the forgoing is directed to embodiments of the
present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof. For example, aspects of the present invention
may be implemented in hardware or software or in a combi-
nation of hardware and software. One embodiment of the
invention may be implemented as a program product for use
with a computer system. The program(s) of the program
product define functions of the embodiments (including the
methods described herein) and can be contained on a variety
of computer-readable storage media. Illustrative computer-
readable storage media include, but are not limited to: (i)
non-writable storage media (e.g., read-only memory devices
within a computer such as CD-ROM disks readable by a
CD-ROM drive, flash memory, ROM chips or any type of
solid-state non-volatile semiconductor memory) on which
information is permanently stored; and (ii) writable storage
media (e.g., floppy disks within a diskette drive or hard-disk
drive or any type of solid-state random-access semiconductor
memory) on which alterable information is stored. Such com-
puter-readable storage media, when carrying computer-read-
able instructions that direct the functions ofthe present inven-
tion, are embodiments of the present invention. Therefore, the
above examples, embodiments, and drawings should not be
deemed to be the only embodiments, and are presented to
illustrate the flexibility and advantages of the present inven-
tion as defined by the following claims.

I claim:

1. A method for dynamically moditying the graphics capa-
bilities of a mobile device, the method comprises:

abstracting the handling of a first graphics subsystem and a

second graphics subsystem associated with the mobile
device, so that the first graphics subsystem and the sec-
ond graphics subsystem appear as a third graphics sub-
system to an operating system for the mobile device;

US 9,099,050 B1

7

detecting a configuration change event corresponding to

the second graphics subsystem;

masking the configuration change event to induce the gen-

eration of a reset event; and

modifying the graphics capabilities of the mobile device to

match the highest graphics capabilities between the first
graphics subsystem and the second graphics subsystem
that are accessible to the mobile device.

2. The method of claim 1, wherein the masking step further
comprising signaling a device lost event to the operating
system.

3. The method of claim 2, further comprising responding to
a call associated with the reset event from the operating sys-
tem.

4. The method of claim 3, further comprising:

intercepting the call from the operating system to reset the

third graphics subsystem; and

indicating to the operating system a successful completion

of the reset event.
5. The method of claim 4, further comprising resetting the
first graphics subsystem.
6. The method of claim 1, wherein the masking step further
comprising intercepting a request destined for the second
graphics subsystem.
7. The method of claim 1, wherein the masking step further
comprising asserting a selection signal to override a status
signal, wherein the status signal can alert the operating sys-
tem of the configuration change event.
8. The method of claim 1, wherein detecting a configura-
tion change event corresponding to the second graphics sub-
system comprises detecting a change in whether the second
graphics subsystem is available to render objects for the first
graphics subsystem to display.
9. A non-transitory computer-readable medium containing
a sequence of instructions for a software layer, which when
executed by a processor in a mobile device, causes the pro-
cessor to:
abstract the handling of a first graphics subsystem and a
second graphics subsystem associated with the mobile
device, so that the first graphics subsystem and the sec-
ond graphics subsystem appear as a third graphics sub-
system to an operating system for the mobile device;

detect a configuration change event corresponding to the
second graphics subsystem;

mask the configuration change event to induce the genera-

tion of a reset event; and

modify the graphics capabilities of the mobile device to

match the highest graphics capabilities between the first
graphics subsystem and the second graphics subsystem
that are accessible to the mobile device.

10. The computer-readable medium of claim 9, further
containing a sequence of instructions for the software layer to
mask the configuration change event, which when executed
by the processor, causes the processor to further signal a
device lost event to the operating system.

11. The computer-readable medium of claim 10, further
containing a sequence of instructions for the software layer,
which when executed by the processor, causes the processor
to respond to a call associated with the reset event from the
operating system.

12. The computer-readable medium of claim 11, further
containing a sequence of instructions for the software layer,
which when executed by the processor, causes the processor
to:

intercept the call from the operating system to reset the

third graphics subsystem; and

10

15

20

25

30

35

40

45

50

55

65

8

indicate to the operating system a successful completion of

the reset event.

13. The computer-readable medium of claim 12, further
containing a sequence of instructions for the software layer,
which when executed by the processor, causes the processor
to reset the first graphics subsystem.

14. The computer-readable medium of claim 9, further
containing a sequence of instructions for the software layer to
mask the configuration change event, which when executed
by the processor, causes the processor to intercept a request
destined for the second graphics subsystem.

15. The computer-readable medium of claim 9, further
containing a sequence of instructions for the software layer to
mask the configuration change event, which when executed
by the processor, causes the assertion of a selection signal that
overrides a status signal, wherein the status signal can alert
the operating system of the configuration change event.

16. The computer-readable medium of claim 9, wherein the
software layer is disposed between the operating system and
aplurality of graphics drivers that are responsible for the first
graphics subsystem and the second graphics subsystem.

17. The computer-readable medium of claim 9, wherein the
software layer is disposed between a device driver and the
first graphics subsystem.

18. The computer-readable medium of claim 9, wherein
detecting a configuration change event corresponding to the
second graphics subsystem comprises detecting a change in
whether the second graphics subsystem is available to render
objects for the first graphics subsystem to display.

19. A mobile device, comprising:

a system memory,

a first graphics subsystem, and

a processor configured to:

abstract the handling of the first graphics subsystem and
a second graphics subsystem in an add-on system to
the mobile device, so that the first graphics subsystem
and the second graphics subsystem appear as a third
graphics subsystem to an operating system for the
mobile device;

detect a configuration change event corresponding to the
second graphics subsystem;

mask the configuration change event to induce the gen-
eration of a reset event; and

dynamically modify the graphics capabilities of the
mobile device to match the highest graphics capabili-
ties between the first graphics subsystem and the sec-
ond graphics subsystem that are accessible to the
mobile device.

20. The mobile device of claim 19, wherein the processor is
further configured to signal a device lost event to the operat-
ing system.

21. The mobile device of claim 20, wherein the processor is
further configured to respond to a call associated with the
reset event from the operating system.

22. The mobile device of claim 19, wherein the processor is
further configured to intercept a request destined for the sec-
ond graphics subsystem.

23. The mobile device of claim 19, wherein:

under a first configuration, the second graphics subsystem

renders objects to a local frame buffer, and the first
graphics subsystem ensures that the objects in the local
frame buffer are displayed; and

under a second configuration, the first graphics subsystem

renders objects to the local frame buffer and ensures that
the objects in the local frame buffer are displayed.

#* #* #* #* #*

