US009280348B2

a2 United States Patent 10) Patent No.: US 9,280,348 B2
Gschwind (45) Date of Patent: Mar. 8, 2016
(54) DECODE TIME INSTRUCTION 6,298,436 B1* 10/2001 Kahleetal 712/220
6,321,380 B1 11/2001 Derrick et al.
OPTIMIZATION FOR LOAD RESERVE AND 7295528 B2 11/2007 Torahim et al,
STORE CONDITIONAL SEQUENCES 7.555.636 B2 6/2009 Brenner
7,627,723 B1* 12/2009 Bucketal.coc.ee.. 711/155
(75) Inventor: Michael K. Gschwind, Chappaqua, NY 7,689,886 B2 3/2010 Arora et al.
(US) 7,831,815 B2* 11/2010 Greenhalgh et al. 712/227
2006/0010297 Al 1/2006 Brenner
. 2007/0016733 Al 1/2007 Day et al.
(73) Assignee: International Business Machines 2008/0276069 Al 11/2008 Blaa};Zr :t al.
Corporation, Armonk, NY (US) 2011/0208915 Al 82011 Bannon et al.
2011/0264891 Al 10/2011 Parks]
(*) Notice: Subject to any disclaimer, the term of this 2012/0144120 Al 6/2012 Serebrin et al.
patent is extended or adjusted under 35
U.S.C. 154(b) by 1002 days FOREIGN PATENT DOCUMENTS
CN 1122929 A 5/1996
EP 0071028 A2 2/1983
(22) Filed: Mar. 28,2012 WO W09735250 12/1996
(65) Prior Publication Data OTHER PUBLICATIONS
US 2013/0262829 A1l Oct. 3. 2013 European Search Report for International Application No. 13769711.
’ 6-1957/2805516PCT/IB2013051232; Reference No.
(51) Int.CL POU920120042EP; dated Feb. 4, 2015; pp. 1-6.
International Application No. PCT/IB2013/051232, International
gzgﬁ zj;g 888288 Search Report and Written Opinion dated Jul. 18, 2013; 7 pages.
(52) US.CL * cited by examiner
CPC GO6F 9/30196 (2013.01); GO6F 9/3004
(2013.01); GOGF 9/3017 (2013.01); GO6F Primary Examiner — Benjamin Geib
9/30087 (2013.01); GOGF 9/3844 (2013.01) (74) Attorney, Agemt, or Firm — Cantor Colburn LLP;
(58) Field of Classification Search William A. Kinnaman, Jr.
CPC GOGF 9/30145; GOGF 9/30196; GOGF
9/30087; GOGF 9/30043 7 ABSTRACT
See application file for complete search history. A technique is provided for replacing an atomic sequence. A
. processing circuit receives the atomic sequence. The process-
(56) References Cited ing circuit detects the atomic sequence. The processing cir-
U.S. PATENT DOCUMENTS cuit generates an internal atomic operation to replace the
atomic sequence.
5,416,666 A 5/1995 MaGuire, Jr.
6,257,774 Bl 7/2001 Stack 11 Claims, 15 Drawing Sheets

Atomic Sequences

A

retry:
Iwarx r4, 0, r3
addi r4, r4, 1
stwex. 14, 0, r3
bne- retry

605

eretry:
Iwarx r4, 0, r3
addi r4,r4,n
stwex. r4, 0, r3

610 bne- retry

-

600

Internal Atomic Operation

i
f \

Atomic_add r4, 0, r3, 1 \
615

OR

Atomic_increment r4, 0, r3

\

620

Atomic_add r4, 0, 13, n

\

625

US 9,280,348 B2

Sheet 1 of 15

Mar. 8, 2016

U.S. Patent

e — E—— I = ===
Q4N _ 8 <l \] L AV 1
NOLLONMLSNI [3ivadn 9 XN 9XN O XN

) SHOLYIITRD 30 HONVAS " | ¥oloi0d TS 1Hg 1Hg
T I LE Va1 W01

AN ¥OX

[z] DI ONH T

o1 B [E1LH 1 =] 1MW |
H/
\ésﬁm i\ | _ _lJln_

3000 SNOLLINYLIN § 991 (2 X SN gez) (azeruv4) SIMING) 8494 (2 SN 88z))
P JNLVIO0SSY AT SIMINIZENE YALNINON 20SSY ATINd SIMNIZEN
G2 SH0L3S 97T MY SSTAaY 13 O L ECOTREE]
LU (HOM AILHOM (0T | _
s p— gl 914
T S0y N
03 LN v 914 004
< §s3uaay
1S3N0RSH
YLYO QYO TR S

US 9,280,348 B2

Sheet 2 of 15

Mar. 8, 2016

U.S. Patent

dl 9|4
08
@ s o7y eggy T STEASOL 09
o) A\ Tws 1) _
_ N ‘ (Groxos?) | | lovauHLY
nwlload| | st [g w_m_%ﬁ zoﬁmw% mh% PR YOHS
- : : _ : qsil o3 oN [-ESH
L] S 5) 10 W
N Ho¥4 HOY KoY
(Y} ™ TS

3

HOLYeSID HOLOTTAS Y070 ONY NOILO3Y3
~\ SIHE LGN 0L G351 HONVSE

R
gl Woys| Ol

300
i |
300
_ _ 2

|
30000 | (300030} {foie) 30300 NOWLWRMO:M HONVYE}-"~
I] f ’

NOLLY4O4 dNOY9 TR ¥ _m:ozéﬁ
_

~ I
/LTS YL\ /SN LOT13G HONWNE N
R) | I S S

EGP<

US 9,280,348 B2

Sheet 3 of 15

Mar. 8, 2016

U.S. Patent

€ Jisu|

o_.w

¢ 4isy|
|

L Jisu
_

h 4

POl ¢ o160
apoosp
uononJsuj

PGl 2160
uofjeziwndo

q JepooeQg

0G0¢

!

A 4

VO

*-—

pe dOI

901 ¢ 2160
apoosp
uononisul

3G Z 21bo
uoljeziwido

Jjsu
Z¢ auibug sisAjeuy uoneziwndo JIWoLY |e 0 sl
A 4 h 4
qol g 2160 €0}.¢ 9160
apoosp apooep
uononsu| uonRoNJsu|
~[As0¢ _ B r_mmom
© T [avo MEL/e
aGi¢ 21boj BGl ¢ 2160|
uoezjwndo uofeziwindo
P <+

9 19p0ooa

9¢ dOI

g Jepooag

ql 40OI

v Jepooeq

B0 dOI

‘a sJa)sibay uononIsu|

7

00¢

¢ 'Old

R 0S| Jun Buouanbas uononisul o)

US 9,280,348 B2

Sheet 4 of 15

Mar. 8, 2016

U.S. Patent

‘Anal ‘(Aj@yiun) pajie} alojs ayy y) // Anas -auq
"NV 0} >oBq anjeA pajuawaioul 810}s 0) Jdwany // €1 ‘0 ‘f1 "XOM)S
"1 0} Q1 pPY // 81'p1 ‘1 ppe

‘uoljersasal Buioeld ‘i1 oJul NVY Wol) JoBajul peay // €1 ‘0 ‘bl Xuem|

A2l
‘ppe slwoje .

‘Anjal ‘(Ajyiun) pejiej aiojs ayy §| // Aies -euq
"INV 0} YoBqd an|eA pajuswaioul 810)s 0} Jdwany // €1 ‘0 ‘4 'Xomis
‘pJ woly | Joengng j/ |- 'yl ‘p1 Ippe

"uonensasal buioeld ‘pi ojul Ny Wod) Jabajul peay // €1 ‘0 ‘pa XIem|

Aol
JJUBWIAIDAP JlWo)e .

‘Ajal ‘(Ajpyjun) pajiey aiojs ayy j| // Aias -auq
"INVY 0} Yoeq anjeA pajuaswaioui a10)s 0} Jdwany // €10 ‘4 "XOMls
‘$10} L PPY// L ‘P 'pi Ippe

‘uoljeAsasal buoe|d ‘pi ojul Y Woly Jabajul peay /7 €1 ‘0 ‘' XJem|

Anjau
JJuswiadoul Jlwoje .

suolyesado dlWo}e [eulaiul OUI paje|Suel) 8q 0]
[EUOI}IPUOD B10)S PUB SAI9SBI PEO| YIIM BP0 VS| Jomod paloala(]

oom@ € 'Oid

US 9,280,348 B2

Sheet 5 of 15

Mar. 8, 2016

U.S. Patent

‘Ajal ‘(Ajxijun) pajiey aojs aur §1 // Anjes -suq
"INVY 01 Xoeq anjeA Gl a10)s 0} Jdwapy // €4 ‘0 ‘Gl "XOM]S

"uoljensasal buioe|d ‘p1 ojul Ny wouy 1abajul peay // €1 ‘0 ‘v Xiem|

:Anjel
:abueyoxs o1woye .

‘Anjal ‘(Aieyijun) pajiey aio)s ayy y| /4 Anas -auq
"INVY 0} 3oeq anjeA pajuawaloul a10}s o0} Jdwany // €1 ‘0 ‘b4 "XoMmis
"1 WOJ) gl Joenqns // el ‘vl ‘4 gns

‘uoljensasal Buioe|d ‘p1 oJul Ny Woly Jebajul pesy /7 €10 ‘vl XIem|

Al

;joeapgns Jlwole .

suoinjesado 2lWo)e [eula)ul Ojul paje|suel) 4 0}
[BUONIPUOD B10}S PUB BAIBSSI PEO| Y)IM 9p0D VS| JamMod pajoale(

00V ¥ 'Old

US 9,280,348 B2

Sheet 6 of 15

Mar. 8, 2016

U.S. Patent

Ajas -auq
S0S €10 ‘1 "Xomis

Sjelpawwli ‘y1 ‘1 1ppe
€1°0 ‘ta xuem|
EY

%

ulened sjdwexs sase|dal pue sl
|

1 41S113

‘N1 => ssaiddns giepoosp ___

.m_Dm_._. => ssaiddns gziapodap

‘INYL => ssaiddns™ |1apooap

:387Tv4 => ssaiddns_QJspoosp
"Qm_nmEE_ltmvoomv _=> dje|pswiw|_QJopodssp
vvm “ojwoje => do_(Jspoosp

“3aNy1 => olwoye (uepoosp _J

(91- = 19810 _£19p0Oap ONV Suq_gIapodap |

ANY Zs4~ Ziapodap == zsi_ 0Jepooap ANV LSI_gJepooep

= |SI QJopoosp NV 1ob1B) | 1opooap == }obie)_giapoosp

n_z< | S1™ | 19podsp == }abie)” |1spoosp NV LSI_}I9pooap

== JobJe} QJopooap ANV Youelq £1apodap (JNV XOM)S glapooap

ANV IPPE |1I9p0oSp ONV XIem| (Japooap) 4| |

~1GlG

~ 01§

auibua uonjeziwndo Aq sisAjeuy

¢

00§ 3VO Joj} spodopnesd
S 'Old

US 9,280,348 B2

Sheet 7 of 15

Mar. 8, 2016

U.S. Patent

| TA°]

\

A

u'gl'o ‘pi ppe oI}y

0¢9

\

€10 ‘4 JUBWSIOUI DILIO)Y
g0

A

GL9
/ | ‘€10 ‘P ppE OlWoly

\)
1

uoneladQ oo}y jeulajuj

m 9 'Old
009

Anal -auq 019
e1°0 ‘71 "Xoms -/
U 'yl 'yl 1ppe
€10 ‘'l xuem|

:A1jolte
G09

Aja) -auq -
€10 ‘P4 "xom)s
|l ‘p1 ‘p1 IppE
€10 ‘P4 xiem|

Anjole

!

seouanbag olwo)yY

US 9,280,348 B2

Sheet 8 of 15

Mar. 8, 2016

U.S. Patent

0cL
/ - Ajas -suq |02
by fm ey - @9 ouq €1°0 ‘1 Xomys | J
u-el 0 ¢l°ppe dlwoly < u 'yl 'yl 1ppe
Aoy €10 ‘pd xiem|
:Anole
G/
/ Ajel1-auq .\c,ﬁm:. -auq S0/
| '€1°0 ‘v PREOIWO)Y S ARl
Ay &1'0 'yl Xiem|
:A1)Sle
J
Y L Y J
uonjesadQ 21WolY [eulaju] seouanbag oIWwoY

@ L'Old
004

US 9,280,348 B2

028 Ndv ul
uonelado |eulajui oiLo)e ajndexy

A

G118 Ndv o}
uoljesado |eulajuil olwole a|buls anss|

Sheet 9 of 15

A

018
uonejado |eulsjul olLIO)e)elausr)

Mar. 8, 2016

h

G0g uoijelado |eulajul olwoje Aq
paoe|dai aq 0) @ouanbas olwoje Ajuap|

U.S. Patent

7

008 8 'Old

US 9,280,348 B2

Sheet 10 of 15

Mar. 8, 2016

U.S. Patent

006

6 'Old

16 2400 0} }|nsas uInjey

ﬁ

016 NVN Ul uonjesado
[euJajul olwoje a|buls ajnoax3

%

G06 (NVN) Hun dlwo}y IseN o)
uoljelsado [eussyul oiwole ajbuls puss

*

S8 Ndv ol
uofelado [eussjul diwole a|buls anss)

*

oL8
uoljesado [eulajul DIWIOIE Sjelauss)

ﬁ

G0Og uonesado jeussiul olwole Aq
paoe|dai aq 0} @ousanbas olwole AJjuapj

US 9,280,348 B2

Sheet 11 of 15

Mar. 8, 2016

U.S. Patent

0€0} Auowsiy

0201 waisAsqns (abeioys) Alowsy

.

ISSN
010l NVYN 0L0L NVYN
4 A A
SUOIJoNJISUl 310)S pue peoT SUOIONIISUI 310)S pue peo
A 4 v
A\ 4 — 4
0 N4V 0¢ N4V
— Gl0l
\ sla)sibay
A ur] e e] u = ez
001 (Ayndud) 8109 001 (Anouo) @109
~ \
GL0L GO0l Jossadoid
sJo)siboy
000} 0l "OId

US 9,280,348 B2

Sheet 12 of 15

Mar. 8, 2016

U.S. Patent

0€01 Aowepy

0201 waysAsqns (abeloys) Alowasy

_

1SeN

suonONLSUl 210)S pue peo

SUOIONJISUI 810}S pue peo]

/

‘ /

02 N4V

_E

I

001 (AynoJ10) a10)

N\
/ A\ 4
0z N4V

[~ [Flela[u}

001 (Aynou) @109

/]

GLol
\whwum_mmm

]
GLol
sia)sibay

00LL

//mooF Jossaoold

L "Old

US 9,280,348 B2

Sheet 13 of 15

Mar. 8, 2016

U.S. Patent

GlZ| 9ouanbes
dlwoje ayj aoejdal 0} uonesado ojwole jeulsjul ue ‘ynoaio Buissasoud ay) Aq ‘ajessuan

oLclL
souanbas olwole ay} ‘Unauid Buissasoud ayy Aq ‘108)eg

soclL
aouanbas ojwoje ay) ‘Ynauio Buissaoold e Aq ‘onieosy

7

00cl (A E

US 9,280,348 B2

Sheet 14 of 15

Mar. 8, 2016

U.S. Patent

09€l
(8po9) suoijeoljddy

0sEl
walsAg bunesadp

0.€1 sadiAeg
indinoandu

ovel 0€elL
Jajidwon apo) 82In0g

0zgl fowsy

olLEL
s10ssa00.d

€l 'Old

<

00€!L

US 9,280,348 B2

Sheet 15 of 15

Mar. 8, 2016

U.S. Patent

¢0v| wnipsy
a|qepeay/sjgesn 1eindwion

¥Ov1 01607
apo) weiboid

=

00¥1 3onpoid
weJsboid Jeindwon

vl 'Old

US 9,280,348 B2

1
DECODE TIME INSTRUCTION
OPTIMIZATION FOR LOAD RESERVE AND
STORE CONDITIONAL SEQUENCES

BACKGROUND

The present invention relates generally to decode time
instruction optimization, and more specifically, to optimiza-
tion for load reserve and store conditional sequences.

In the Power ISA®, the load reserve function is imple-
mented by the L.oad Word and Reserve Indexed (lwarx) and
the store conditional function is implemented by the Store
Double Word Conditional Indexed (stwcx). The stwex and
Iwarx instructions are primitive, or simple, instructions used
to perform a read-modify-write operation to storage. If the
store is performed responsive to a store conditional, the use of
the stwex and Iwarx instructions ensures that no other pro-
cessor or mechanism has modified the target memory loca-
tion between the time the Iwarx instruction is executed and the
time the stwcx instruction completes.

Further information can be found in “Power ISA™ Version
2.06 Revision B” published Jul. 23, 2010 from IBM® herein
incorporated by reference in its entirety. In some implemen-
tations of the Power ISA®, additional load reserve and store
conditional instructions are optionally provided for other data
widths.

Additional information can be found in “64-bit PowerPC
ELF Application Binary Interface Supplement 1.9 (2004)
from IBM® and incorporated by reference herein in its
entirety.

Also, information can be found in “Power Architecture®
32-bit Application Binary Interface Supplement 1.0 Linux®”
(Apr. 19,2011) and “Power Architecture® 32-bit Application
Binary Interface Supplement 1.0-Embedded” (Apr. 19,
2011), both of which are incorporated by reference herein in
their entirety.

SUMMARY

Embodiments include a system, and computer program
product for replacing an atomic sequence. The processing
circuit receives the atomic sequence. The processing circuit
detects the atomic sequence. The processing circuit generates
an internal atomic operation to replace the atomic sequence.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with advantages and features,
refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The forgoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIGS. 1A and 1B are a block diagram of a processor core
generally shown according to an embodiment;

FIG. 2 is a block diagram illustrating receiving instruc-
tions, detecting an atomic sequence in the instructions, and
generating an internal atomic operation to replace the
detected atomic sequence according to an embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 is a table illustrating example detected atomic
sequences according to an embodiment;

FIG. 4 is a table illustrating example detected atomic
sequences according to an embodiment;

FIG. 5 is a block diagram illustrating pseudocode for
detecting atomic sequences and generating an internal atomic
operation to replace the detected atomic sequence according
to an embodiment;

FIG. 6 is a block diagram showing atomic sequences trans-
lated to a corresponding internal atomic operation according
to an embodiment;

FIG. 7 is a block diagram also showing atomic sequences
translated to a corresponding internal atomic operation
according to an embodiment;

FIG. 8 is a flow chart of a method for detecting an atomic
sequence, generating an internal atomic operation to replace
the atomic sequence, and executing the internal atomic opera-
tion according to an embodiment;

FIG. 9 is a flow chart of another method for detecting an
atomic sequence, generating an internal atomic operation to
replace the atomic sequence, and executing the internal
atomic operation according to an embodiment;

FIG. 10 is a block diagram of a processor operatively
connected to a memory subsystem according to an embodi-
ment;

FIG. 11 is a block diagram of a processor operatively
connected to a memory subsystem according to an embodi-
ment;

FIG. 12 is a flow chart of a method for replacing an atomic
sequence with a generated internal atomic operation accord-
ing to an embodiment;

FIG. 13 illustrates an example of a computer having capa-
bilities, which can be included in exemplary embodiments;
and

FIG. 14 illustrates a computer program product in accor-
dance with an embodiment.

DETAILED DESCRIPTION

Exemplary embodiments provide decode time instruction
optimization (DTIO) in a processing circuit/core to replace an
atomic sequence with an (single) internal atomic operation.
The technique detects the load reserve and store conditional
instructions in the atomic sequence, and generates the internal
atomic operation to replace the atomic sequence.

Decode time instruction optimization is discussed in U.S.
patent application Ser. No.: 13/251,793 entitled “Linking
Code For An Enhanced Application Binary Interface (ABI)
With Decode Time Instruction Optimization” filed Oct. 3,
2011, whichis herein incorporated by reference in its entirety.
U.S. patent application Ser. No. 13/251,793 discusses an
“embodiment of the present invention is directed to minimiz-
ing the impact of table of contents (TOC) overtlow on perfor-
mance and throughput in a computing system. An embodi-
ment includes a compiler tailored to generate object code to
include specified instruction sequences (e.g., sequences that
have been inserted into the code in order to compensate for
TOC overflow). The instruction sequences are adapted to be
recognized by hardware such that a microprocessor can opti-
mize the sequence for internal execution. Upon locating one
of the specified instruction sequences, the microprocessor
either replaces an instruction(s) in the sequence with an inter-
nal instruction(s) that executes more efficiently, or replaces
instructions in the sequence with a single internal instruction.
This process performed by the microprocessor is referred to
herein as decode time instruction optimization (DTIO). The
DTIO process is a hardware process. The compiler and the

US 9,280,348 B2

3

linker described herein prepare code sequences for optimiza-
tion by the hardware. These code sequences are coded by the
compiler and/or linker in a manner to be detected by DTIO
enabled hardware, such as such as particular instructions
being adjacent to each other, having a suitable displacement
range when the displacement range is limited, having suitable
properties such as being destructive when a processor has
requirements on destructive code forms to enable DTIO, and
being suitably aligned when a processor has requirements on
instruction alignment to enable DTIO, and any other such
properties as may be required by DTIO enabled hardware.
DTIO enabled hardware is further described in U.S. patent
application titled “Scalable Decode-time Instruction
Sequence Optimization of Dependent Instructions”, Ser. No.
13/251,409, filed Oct. 3, 2011 which is incorporated herein
by reference in its entirety.”

In a state of the art processor using decode time instruction
optimization, the state of the art processor needs to repeat
optimization every time instructions are fetched. This is an
overhead in energy, complexity, and possibly latency, and
also limits optimizations which can be done to avoid adding
latency.

Exemplary embodiments provide optimization capabili-
ties which can be added in the decode stage (and/or predecode
stage) of the processor for the load reserve and store condi-
tional instructions, which are used to construct a sequence of
instructions that appear to perform an atomic update opera-
tion on an aligned storage location. FIGS. 1A and 1B illus-
trate a processor core (circuitry) 100 with logic (i.e., hardware
circuits configured to implement logic) for decode time
instruction creation according to an embodiment. Note that
general description of a processor is provided to show an
example ofhow the decode time instruction optimization may
be implemented. The processor core 100 includes, among
other things, prediction hardware, registers, caches, decoders,
an instruction sequencing unit (ISU) 150, and instruction
execution units. In particular, the prediction hardware
includes Local Branch History Table (BHT) 110a, Global
Branch History Table (BHT) 11054, and Global Selector 110c¢.
The prediction hardware is accessed through an Instruction
Fetch Address Register (IFAR) 120, which has the address for
the next instruction fetch. In one embodiment, an instruction
cache 125 fetches a plurality of instructions referred to as a
“fetch group”.

The cache and prediction hardware are accessed at
approximately the same time with the same address. If the
prediction hardware has prediction information available for
an instruction in the fetch group, that prediction is forwarded
to the ISU 150, which, in turn, issues instructions to units for
execution. The prediction may be used to update the IFAR
120 in conjunction with branch target calculation and branch
target prediction hardware (such as a link register prediction
stack and a count register cache). If no prediction information
is available, but the instruction decoders find a branch instruc-
tion in the fetch group, a prediction is created for that fetch
group, stored in the prediction hardware and forwarded to the
ISU 150.

The Branch Execution Unit (BRU) 140 operates in
response to instructions issued to it by the ISU 150. The BRU
140 has read access to the condition register file 160. The
Branch Execution Unit 140 further has access to information
stored by the branch scan logic in the Branch Information
Queue 142, to determine the success of a branch prediction,
and is operatively coupled to the instruction fetch address
register(s) (IFAR) 120 corresponding to the one or more
threads supported by the microprocessor. The BRU 140 is

35

40

45

4

further operatively coupled to cause a predictor update when
the BRU 140 discovers a branch misprediction.

When the instruction is executed, the BRU 140 detects if
the prediction is wrong. If so, the prediction needs to be
updated. For this purpose, the processor in FIG. 1A also
includes predictor update logic 130a. The predictor update
logic 130a is responsive to an update indication from Branch
Execution Unit 140 and configured to update array entries in
one or more of the Local BHT 1104, Global BHT 11054, and
Global Selector 110¢. The predictor hardware 110a, 1105,
and 110¢ may have write ports distinct from the read ports
used by the instruction fetch and prediction operation, or a
single read/write port may be shared. The predictor update
logic 130a may further be operatively coupled to the link
stack 1154 and counter register stack 1154.

Referring now to the condition register file (CRF) 160, the
CRF 160 is read-accessible by the BRU 140 and can be
written by execution units including but not limited to the
Fixed Point Unit (FXU) 1654, Floating Point Unit (FPU) 175
and Vector Multimedia eXtension Unit (VMXU) 180. The
Condition Register Logic Execution unit (CRL execution)
155 (also referred to as the CRU) and SPR handling logic
have read and write access to the Condition Register File
(CRF) 160 (access to CRF 160 from SPR handling logic not
shown in the interest of simplifying illustration). The CRU
155 performs logical operations on the condition registers
stored in the CRF file 160. The FXU 165a is able to perform
write updates to the CRF 160.

The processor core 100 includes an instruction decoder 10
according to an embodiment. Optimization is performed in
the instruction decoder 10 located after the instruction cache
unit 125 at decode time. The instruction decoder 10 can detect
an atomic sequence (having multiple instructions) and
change (translate) the detected atomic sequence into a single
internal atomic operation. One or more atomic function units
(AFU) 20 can execute the optimization (i.e., the singe internal
atomic operation) provided/determined by the instruction
decoder 10 in one embodiment. In another embodiment, a
nest atomic unit (NAU) 1010 shown in FIGS. 10 and 11 can
execute the single internal atomic operation. In addition (and/
orinan alternative) to the instruction decoder 10 detecting the
atomic instruction sequence and generating a new single
internal atomic operation, a predecode optimizer 5 may
include predecode logic for predecode time instruction opti-
mization. The predecode optimizer 5 is configured to detect
the atomic instruction sequence and generate the new single
internal atomic operation prior to caching by the instruction
cache 125, e.g., during cache reload. Accordingly, the single
internal atomic operation detected and determined (by the
predecode optimizer 5) can be executed by the AFU 20 and/or
NAU 1010. Note that any discussion of the functionality of
the instruction decoder 10 for detecting the atomic instruction
sequence and generating the new single internal atomic
operation to replace the atomic instruction sequence analo-
gously applies to the predecode optimizer 5. Additionally, the
LSU 170 (load store unit) may be configured with the func-
tionality of the AFU 20 (without requiring a separate AFU
engine), and the LSU 170 can execute the single internal
atomic operation. Also, a loop buffer 15 may be added to
capture each of the decoded single internal atomic operations
that have been generated by the instruction decoder 10. The
internal atomic operations may be output from the decoder 10
as (internal atomic operation) iop 0a, iop 15, iop 2¢, and/or
iop 3d as shown in FIG. 2.

US 9,280,348 B2

5

Embodiments discussed herein may be combined and
implemented in any manner, and the present disclosure
describing example scenarios and implementations is not
meant to be limited.

Indeed, embodiments provide a mechanism (e.g., decoder
10 and/or predecode optimizer 5) to identify a sequence of
instructions that together implement an atomic operation, and
internally translate those sequence of instructions to an inter-
nal operation that represents the atomic operation as an inter-
nal atomic operation. Thus, today, on a Power ISA™ imple-
menting RISC primitives such as load reserve and store
conditional, a value in memory is atomically updated by
acquiring a data item using load reserve, and updating (via
store condition) occurs if no interference has been recorded
with the reserved data item. “Power ISA™ Version 2.06 Revi-
sion B” published Jul. 23, 2010 from IBM® and incorporated
by reference herein in its entirety teaches an example reduced
instruction set computer (RISC) instruction set architecture
(ISA). The Power ISA™ will be used herein in order to
demonstrate example embodiments. However, the present
disclosure is not limited to Power ISA™ or RISC architec-
tures. Those skilled in the art will readily appreciate use of the
teachings disclosed herein in a variety of architectures. “z/Ar-
chitecture Principles of Operation” SA22-7832-08, Ninth
Edition (August, 2010) from IBM® and incorporated by ref-
erence herein in its entirety teaches an example CISC (com-
plex instruction set computer) instruction set architecture.

Because the atomic operation is performed using a plural-
ity/sequence of instructions, and in common microarchitec-
tures, data can only be held for at most one instruction; the
atomic instruction sequence cannot hold the data item to
avoid interference from other accesses in a computer system,
resulting in a less efficient implementation. Also, because of
the sequence of instructions, latency to the coherence point is
incurred multiple times, as opposed to an internal atomic
operation, where this transfer can be performed only once, for
the entire internal atomic operation.

Now turning to FIG. 2, a block diagram 200 illustrates
further details of the instructions decoder 10 according to an
embodiment. The instruction decoder 10 may include decod-
ers A, B, C, and D and optimization analysis engines 205a,
2055, and 205¢, along with an atomic optimization analysis
engine 220. In one implementation, the functionality of the
atomic optimization analysis engine 220 may be included in
the optimization analysis engines 205a, 2055, and 205¢, and
the atomic optimization analysis engine 220 can be omitted
(if desired). As such, any discussion of the atomic optimiza-
tion analysis engine 220 applies to the optimization analysis
engines 205a, 2055, and 205¢.

In the instruction decoder 10, the optimization analysis
engine (OAE) 2054 is operatively connected to decoders A
and B, the optimization analysis engine 2055 is operatively
connected to decoders B and C, and the optimization analysis
engine 205c¢ is operatively connected to decoders C and D.

The decoder A receives instruction 0 from the instruction
cache 125, the decoder B receives instruction 1 from Icache
125, the decoder C receives instruction 2 from Icache 125,
and the decoder D receives instruction 3 from Icache 125. The
instruction decode logic 210a-210d respectively perform ini-
tial decoding on respective instructions 0, 1, 2, and 3 just
received.

The instruction decode logic 210a provides its decoded
instructions (representing instruction 0) to the atomic optimi-
zation analysis engine 220, to the OAE 2054, to multiplexer
“a” (MUX) (e.g., to be selected when no optimization takes),
and to optimization logic 215a and 2155, along with operand

20

40

45

50

55

6

resource properties, operand specifiers, decoded instruction
type, and decoded instruction properties.

The instruction decode logic 2105 provides its decoded
instructions (representing instruction 1) to the atomic optimi-
zation analysis engine 220, to multiplexer MUX) “b” (e.g., to
be selected when no optimization takes), to the OAE 2054, to
OAE 2055, to optimization logic 2154, to optimization logic
2155, and to optimization logic 215¢, along with operand
resource properties, operand specifiers, decoded instruction
type, and decoded instruction properties.

The instruction decode logic 210¢ provides its decoded
instructions (representing instruction 2) to the atomic optimi-
zation analysis engine 220, to MUX “c” (e.g., to be selected
when no optimization takes), to the OAE 2055, to OAE 205c¢,
to optimization logic 2155, to optimization logic 215¢, and to
optimization logic 2154, along with operand resource prop-
erties, operand specifiers, decoded instruction type, and
decoded instruction properties.

The instruction decode logic 2104 provides its decoded
instructions (representing instruction 3) to the atomic optimi-
zation analysis engine 220, to MUX “d” (e.g., to be selected
when no optimization takes), to the OAE 205¢, and to opti-
mization logic 215¢, and to optimization logic 2154, along
with operand resource properties, operand specifiers,
decoded instruction type, and decoded instruction properties.

The OAE 2054, OAE 2055, and OAE 205¢ are configured
to compare the decoded instructions (including decoded char-
acteristics) respectively received from example decoders A,
B, C, and D to determine whether they correspond to one of
the various atomic instruction sequences (that has a load
reserve and store conditional sequence) that are candidates
for optimization. Additionally, the atomic optimization
analysis engine 220 is configured to compare the decoded
instructions (including decoded characteristics) respectively
received from example decoders A, B, C, and D to determine
whether they correspond to one of the various atomic instruc-
tion sequences (that has a load reserve and store conditional
sequence) that are candidates for optimization.

For any atomic instruction sequence (that has a load
reserve and store conditional sequence), the OAE 2054-205¢
and/or the atomic optimization analysis engine 220 are con-
figured to generate a single internal atomic operation for each
particular decoded instruction (corresponding to each respec-
tive instruction 0, 1, 2, and 3). The atomic optimization analy-
sis engine 220 draws input from the four successive decoders
A, B,C,and D.

When the atomic sequence with a load reserve and store
conditional is detected by at least one OAE 205a-205¢, the
output (i.e., the respective singe internal atomic operation
generated by) from the OAE 2054 is sent to optimization
logic 2154 and 21556 and MUX a and b (as steering logic),
from the OAE 2055 is sent to optimization logic 2155 and
215¢ and MUX b and ¢ (as steering logic), and from the OAE
205¢ is sent to optimization logic 215¢ and 2154 and MUX ¢
and d (as steering logic).

Also, when the atomic sequence with a load reserve and
store conditional is detected by the atomic optimization
analysis engine 220, the output (i.e., the respective singe
internal atomic operation generated by) from the atomic opti-
mization analysis engine 220 is sent to optimization logic
215a, 215b, 215¢, and 215d and MUX a, b, ¢, and d (as
steering logic).

Further, the OAE 2054-205¢ and/or atomic optimization
analysis engine 220 provides the steering logic to respective
multiplexers a, b, ¢, and d to select one of an unoptimized iop
generated by the initial decode operation, or iop correspond-
ing to an iop in an optimized DTIO sequence which has been

US 9,280,348 B2

7

generated by optimization logic under control of the OAE/
atomic optimization analysis engine control signals. Accord-
ingly, the respective multiplexers a, b, ¢, and d will select the
single internal atomic operation when present to respectively
output iop Oa, iop 15, iop 2¢, and/or i0p 3d to the instruction
fetch address registers 120. Any internal atomic operation
(iop) generated by the atomic optimization analysis engine
220 can be selected by the multiplexers a, b, ¢, and d as the
respective output iop Oa, iop 15, iop 2¢, and/or iop 3d in place
of'the instructions corresponding to atomic sequences respec-
tively detected in the instructions 0, 1, 2, and 3. Also, in at
least one embodiment, the OAEs 2054, 2055, and 205¢ com-
municate to prevent mutually exclusive actions. For example,
an instruction in decoder B may be combined into an opti-
mized sequence in conjunction with an instruction in decoder
A to form an DTI-optimized sequence corresponding to origi-
nal instructions 0 and 1, or may be combined into another
optimized sequence in conjunction with an instruction in
decoder Cto form an DTI-optimized sequence corresponding
to original instructions 1 and 2, but cannot be simultaneously
DTI-optimized to be a part of optimizations occurring in
conjunction with instructions in both decoders A and C. As a
simple example, the sequence “addi r2, r2, 1; addi r2, r2, 1;
addi r2, r2, 1” may be DTI-optimized by combining instruc-
tions 0 and 1 into “addi 12, r2, 2; addi r2, r2, 17, or may be
DTI-optimized by combining instructions 1 and 2 into “addi
r2, r2, 1; addi r2, r2, 2”, but both optimizations performed in
tandem would yield the incorrect sequence; also the sequence
may be DTT-optimized by combining instructions 0 and 1 into
“addir2, r2, 2; addi r2, r2,2”.

FIGS. 3 and 4 show tables 300 and 400 as exemplary
detected atomic sequences having load reserve and store con-
ditional, which may be detected by the predecode optimizer 5
and/or the instruction decoder 10 (e.g., via the OAE 205
and/or atomic optimization analysis engine 220). These
detected atomic sequences are examples from Power ISA™
code, which include examples of atomic increment, atomic
decrement, atomic add, atomic subtract, and atomic
exchange, and each atomic sequence is translated into an
internal atomic operation by the predecode optimizer 5 and/or
the instruction decoder 10. There are numerous atomic
sequences that are detected and replaced by a generated inter-
nal atomic operation (op), and exemplary embodiments are
not meant to be limited. For example, an atomic compare and
swap sequence may be an atomic sequence detected and
replaced by an atomic internal operation. The atomic com-
pare and swap (CAS) is an atomic CPU instruction used in
multithreading to achieve synchronization, and the atomic
compare and swap sequences compares the contents of a
memory location to a given value, and only if they are the
same, modifies the contents of that memory location to a
given new value. The atomicity guarantees that the new value
is calculated based on up-to-date information; if the value had
been updated by another thread in the meantime, the write
would fail. The result of the operation must indicate whether
it performed the substitution.

FIG. 5 illustrates a table 500 with example pseudocode for
OAE 205a-205¢, atomic optimization analysis engine 220,
and/or the predecode optimizer 5 according to an embodi-
ment. The pseudocode may be utilized to detect and replace
example (pattern) atomic sequence 505, and similar
pseudocode may be utilized to detect and replace the atomic
sequences in FIGS. 3 and 4. Block 510 of the pseudocode is
designed to detect the atomic sequence 505 with the load
reserve instruction Iwarx, and with the store conditional
instruction stwex. Once the pseudocode detects/recognizes
the atomic sequence 505, block 515 of the pseudocode is

10

20

25

30

35

40

45

50

55

60

65

8

designed to change/replace the atomic sequence with a single
internal atomic operation (i.e., one instruction that does not
have a load reserve and store conditional sequence). Specifi-
cally, block 510 tests decoded outputs from decoders A to D
(associated with signal names prefixed with decode0_to
decode3_respectively) to ensure that each position in the 4
element decoded sequence corresponds to the respective
instruction in the sequence 505. Block 515 assigns steering
variables to indicate an atomic operation has been detected
(decoder0_atomic) and causes the MUX a (e.g., indecoder A)
to select the generated atomic internal operation to be passed
to the rest of the processor core (e.g., processor core 100). An
internal operation code “atomic_add” is assigned as the op to
be output by decoder A and assigned to decoder0_op and
corresponding to an atomic internal operation performing an
atomic immediate operation in one exemplary embodiment.
The immediate value to be used by the internal atomic opera-
tion is extracted from a signal decodel_immediate corre-
sponding to decoder B, and assigned to a signal
decoder0_immediate to be used by decoder A in conjunction
with the internal atomic operation being generated. In addi-
tion, decoder0_suppress is set to FALSE to indicate that an
operation is present and decoderl_suppress and
decoder2_suppress and decoder3_suppress are set to TRUE
to indicate that no operation is present and no internal opera-
tion should be emitted by decoders B, C and D. This
pseudocode in the table 500 is designed to detect the atomic
sequence 505 and it is understood that additional pseudocode
would detect other atomic sequences.

For example, FIGS. 6 and 7 are respective block diagrams
600 and 700, which illustrate example atomic sequences that
have been respectively detected and changed into a single
internal atomic operation by the OAE 205a-205c¢, the atomic
optimization analysis engine 220, and/or the predecode opti-
mizer 5. For conciseness, various operations and functional-
ity may be discussed with respect to the atomic optimization
analysis engine 220, but the same applies to the OAE 205a-
205¢ and the predecode optimizer 5.

In FIG. 6, the atomic optimization analysis engine 220 is
configured to detect the atomic sequence 605 and translate
(and replace) the entire atomic sequence 605 into a single
internal atomic operation 615 (which is a single command/
instruction) which is Atomic_add r4, 0, r3, 1 in this example.
The internal atomic operation 615 is an atomic add of 1. In
one implementation, the atomic optimization analysis engine
220 is configured to translate atomic sequence 605 into inter-
nal atomic operation 620 which is Atomic_increment r4, 0,
r3. The internal atomic operation 620 is an increment by a
predefined amount (such as 1).

Similarly, the atomic optimization analysis engine 220 is
configured to detect the atomic sequence 610 and translate
(and replace) the entire atomic sequence 610 into a single
internal atomic operation 625 which is Atomic_add r4, 0, 3,
n. The internal atomic operation 625 adds by n amount (which
represents a predefined number).

In FIG. 6, the atomic sequences 605 and 610 both have
looping via the retry instruction, which will continue to loop
until successfully completed. In generating the internal
atomic operations 615, 620, and 625, the atomic optimization
analysis engine 220 is configured such that the internal
atomic operations 615, 620, and 625 respectively subsumes
the looping (i.e., retry) of the atomic sequence 605 and 610.
However, no loops are included in the internal atomic opera-
tions 615, 620, and 625, because the atomic optimization
analysis engine 220 subsumes that the internal atomic opera-
tions 615, 620, and 625 will always complete (without requir-
ing a loop).

US 9,280,348 B2

9

The atomic command (generated as the single internal
atomic operation as discussed herein) is a directive to update
a specific memory location safely within a parallel region.
When using the atomic directive, this ensures that only one
thread is writing to the memory location at a time, avoiding
errors which might occur from simultaneous writes to the
same memory location.

In accordance with an implementation of the atomic
sequence 605, the lwarx instruction reads a 32 bit integer from
memory (e.g., memory 1030 in FIGS. 10 and 11) into a
register r4, placing a reservation. Reservations are “lost”
when another access happens to the memory location for
which a reservation is set. The addi instruction adds the value
1 to the value returned from memory and stored in register r4.
The store conditional instruction stores the updated value
from r4 back to the memory location for which the reservation
was set by lwarx, ifand only ifthe reservation set by Iwarx has
not been lost. If the store was successfully performed, the
reservation has not been lost, indicating that no updates have
been performed since the reservation was placed, and the
store instruction updates condition register cr0 to indicate a
value of EQUAL. Ifthe store was not successfully performed,
the reservation has been lost, indicating that updates have
been performed since the reservation was placed and hence
no atomic update is possible, and the store instruction updates
condition register cr0 to indicate a value of NOT EQUAL.
The bne instruction checks the value of condition register cr0,
and if the status indicates NOT EQUAL, branches to the
beginning of the sequence indicated by the exemplary label
“retry” to reattempt execution of the sequence.

In accordance with an exemplary feature of the execution
of “atomic_add” 615, atomic add is implemented in conjunc-
tion with a processor coherence protocol such as MESI,
MOESI or other protocols known in the art, an execution unit
obtains a data item at the specified address (e.g., register 3
with a zero displacement) for exclusive access. The coher-
ence protocol is updated to not respond to coherence requests
for a data item when the coherence protocol has been obtained
in conjunction with an atomic operation, until execution of
the atomic operation has been completed. The data value
associated with the data item is accessed. The data value is
incremented. The updated value is stored back to the data item
for which exclusive access has been obtained. The instruction
completes in accordance with instruction completion and
coherence rules (for this example implementation). Only
when the instruction completes is the address released from
exclusive access status.

Those skilled in the art will further understand that if values
corresponding to an original atomic sequence, such as regis-
ter r4 or condition register cr0, may be read by other instruc-
tions, and write updates to these registers must be performed
to reflect the semantics of the original instruction sequence,
e.g., by storing the atomically incremented value in register
r4, and indicating successful update by setting condition reg-
ister cr0 to indicate a condition of “EQUAL”.

In FIG. 7 (as one implementation), the atomic optimization
analysis engine 220 does not generate a loop for single inter-
nal atomic operations 715 and 720 but the atomic optimiza-
tion analysis engine 220 is configured to respectively repeat
the internal atomic operations 715 and 720 if the internal
atomic operation fails. The generated internal atomic opera-
tion (715 and/or 720) may fail and indicate repeat because the
branch cannot be subsumed (by the atomic optimization
analysis engine 220 generating the internal atomic operation)
and/or because the designer (out of preference) prefers to
build non-failing internal atomic operations.

10

15

20

25

30

35

40

45

50

55

60

65

10

In accordance with an exemplary feature of the execution
of “atomic_add” 715, atomic add is implemented in conjunc-
tion with a processor coherence protocol such as MESI,
MOESI or other protocols known in the art, an execution unit
obtains a data item at the specified address (e.g., register 3
with a zero displacement) for exclusive access. The coher-
ence protocol is updated to not respond to coherence requests
for a data item when it has been obtained in conjunction with
an atomic operation, until execution of the atomic operation
has been completed. The data value associated with the data
item is accessed. The data value is incremented. The updated
value is stored back to the data item for which exclusive
access has been obtained if possible. The instruction com-
pletes, in accordance with instruction completion and coher-
ence rules in accordance with an implementation. Success is
indicated by setting condition register cr0 to “EQUAL” and
when the instructions completes is the address released from
exclusive access status. In at least one aspect of execution of
atomic add 715, the atomic update is not performed, e.g.,
because an implementation may yield the obtained data item
to a higher priority requestor (such as including, but not
limited to, an I/O request, or a higher priority process, or for
ease of implementation). Failure of the atomic_add update is
indicated by setting condition register cr0 to “NOT EQUAL”
and the instructions completes and the address is released
from exclusive access status. A conditional branch tests suc-
cess of the operation, and reinitiates the execution of the
atomic operation in the case of failure.

In FIG. 7, the atomic optimization analysis engine 220 is
configured to detect the atomic sequence 705 and translate
(and replace) the entire atomic sequence 705 into a single
internal atomic operation 715 (which is a single command/
instruction) which is Retry: Atomic_add. r4, 0, r3, 1 bne-retry.
The internal atomic operation 715 is an atomic add of 1 that
retries if unsuccessful. The atomic optimization analysis
engine 220 is configured to detect the atomic sequence 710
and translate (and replace) the entire atomic sequence 710
into a single internal atomic operation 720 (which is a single
command/instruction) which is Retry: Atomic_add. r4, 0, 3,
n bne-retry. The internal atomic operation 720 is an atomic
add of n amount that retries if unsuccessful.

FIG. 8 is flow chart 800 of a method of identifying an
atomic sequence (having a load reserve (i.e., Iwarx) command
and store conditional (i.e., stwcx) command), and generating
a single internal atomic operation to replace the atomic
sequence according to an embodiment.

The atomic optimization analysis engine 220 is configured
to identify/detect the atomic sequence (which is instructions
from the instruction cache 125) that needs to be replaced by
an internal atomic operation at block 805. The atomic opti-
mization analysis engine 220 is configured to generate an
atomic internal operation to replace the detected atomic
sequence at block 810. The ISU 150 (in response to receiving
the generated atomic internal operation from the instruction
decoder 10) is configured to issue the single atomic internal
operation (in place of the atomic sequence) to the AFU 20 at
block 815. The AFU 20 is configured to execute the single
atomic internal operation (in place of the atomic sequence) at
block 820.

FIG. 9 is flow chart 900 of a method of identifying an
atomic sequence (having a load reserve (i.e., lwarx) instruc-
tion and store conditional (i.e., stwex) instruction), and gen-
erating a single internal atomic operation to replace atomic
sequence according to an embodiment. In FIG. 9, a nest
atomic unit 1010 (in FIG. 10) is used to execute the single
internal atomic operation in place of the AFU 20.

US 9,280,348 B2

11

The atomic optimization analysis engine 220 is configured
to identify/detect the atomic sequence (which are instructions
from the instruction cache 125) that needs to be replaced by
an internal atomic operation at block 805. The atomic opti-
mization analysis engine 220 is configured to generate an
atomic internal operation to replace the detected atomic
sequence at block 810. The ISU 150 (in response to receiving
the generated atomic internal operation from the instruction
decoder 10) is configured to issue the single atomic internal
operation (in place of the atomic sequence) to the AFU 20 at
block 815. The AFU 20 is configured to send the atomic
internal operation to the nest atomic unit (NAU) 1010 at block
905. The NAU 1010 is configured to execute the single atomic
internal operation (in place of the atomic sequence) at block
915 and return the result (e.g., of the calculation) to the
processor core 100 at block 915.

FIG. 10 is a block diagram 1000 that shows two processor
cores 100 (left and right) of a processor 1005 operatively
connected to a memory subsystem 1020 in memory 1030
according to an embodiment. As an example, each of the
processor cores 100 includes its own (identical) AFU 20. The
memory subsystem 1020 is the nest that has two (identical)
nest atomic units 1010. As discussed above in FIG. 9, one
AFU 20 sends the single atomic internal operation to one
NAU 1010 and the other AFU 20 sends its single atomic
internal operation to the other NAU 1010. The memory sub-
system 1020 via the NAU 1010 can perform the update of the
internal atomic operation, because the NAU 1010 is config-
ured to perform simple operations. As such, each NAU 1010
executes the respective single atomic internal operation and
returns the result to its respective processor core 100.

The processor 1005 also shows registers 1015 which are
registers rl through rn (where n is the last register). In addi-
tion to the communications between the AFU 20 and the NAU
1010, load and store instructions as passed between the pro-
cessor cores 100 and the memory (storage) subsystem 1020
as understood by one skilled in the art.

FIG. 11 is a block diagram 1100 which incorporates all of
the elements and operates the same as the block diagram 1000
of FIG. 10, except that the memory subsystem 1020 (only)
includes a single NAU 1010. In this case, the AFU 20 in both
processor cores 100 sends its respective single internal atomic
operation to the NAU 1010. The NAU 1010 is configured to
individually execute each internal atomic operation and send
the results back to the each respective processor core 100.

In one embodiment, atomic creation of the single internal
atomic operation occurs always.

In another embodiment, DTIO cannot occur, e.g., when all
instructions of the atomic sequence are not in one group, and
thus (the instructions) execute separately. In this case, in at
least one embodiment, the instruction decoder 10 needs to
reject one or more of the complex operations such as the Iwarx
and/or stwex to force “cracking” or microcode execution.
Also, the decoder 10 can perform instruction cache marking
of the separate instructions (lwarx and stwex) that are not in
the same group to force the load reserve and store conditional
into the same group (i.e., into the same atomic sequence so
that this atomic sequence can be replaced as discussed
herein). The load reserve and store conditional (instruction)
can be marked initially, or after first being detected. The
decoder 10 can unmark the load reserve and store conditional
(instruction) in the instruction cache (Icache 125) if group
formation of the separate load reserve and store conditional
instructions are not successful repeatedly; then the decoder
10 can mark the separate load reserve and store conditional
instructions to force microcode/cracking, without requiring a
reject. In at least one embodiment, when DTIO does no occur

10

15

20

25

30

35

40

45

50

55

60

65

12

to translate an atomic sequence into an atomic operation for
any given atomic sequence, the atomic sequence is executed
in accordance with the prior art of executing atomic
sequences.

FIG. 12 is a flow chart of a method 1200 for detecting and
replacing an atomic sequence with an internal operation gen-
erated (at runtime and/or predecode time) according to an
embodiment.

The processor core 100 (which is a processing circuit as
understood by one skilled in the art) is configured via the
instruction decoder 10 (this also applies to the predecode
optimizer 5 as discussed herein) to receive the atomic
sequence (which can be in one of the instructions 0, 1, 2,
and/or 3 from the instruction cache 125) at block 1205. The
processor core 100 is configured via the decoder 10 to detect
the atomic sequence (e.g., via one of the OAEs 2054-205¢
and/or the atomic optimization analysis engine 220) at block
1210.

Although 4 instructions (e.g., instructions 0, 1, 2, and 3)
and 4 decoders (e.g., decoders A, B, C, and D) have been
discussed for explanation purposes, exemplary embodiments
are not meant to be so limited. It is contemplated that there
may be 5, 6, 7 or any desired number of decoders, and an
atomic sequence to be replaced by an atomic internal opera-
tion may consist of 2, 3, 4, 5, 6 or any desired number of
instructions to be replaced by the particular internal atomic
operation.

The processor core 100 is configured via the decoder 10 to
generate (according to the calculation/computation in the
detected atomic sequence) an internal atomic operation to
replace the atomic sequence at block 1215.

Further, the AFU 20 in the processor core 100 and/or the
NAU 1010 in the (nest) memory subsystem 1020 is config-
ured to execute the internal atomic operation in place of the
atomic sequence. The atomic sequence includes a load
reserve instruction and a store conditional instruction. The
decoder 10 of the processor core 100 is configured to recog-
nize the load reserve instruction and the store conditional
instruction to detect the atomic sequence that needs to be
replaced.

The internal atomic operation is a single instruction, while
the atomic sequence is multiple instructions including the
load reserve instruction and the store conditional instruction.
Based on separate instructions of the atomic sequence not
being a same group and based on the separate instructions
(e.g., the load reserve instruction and the store conditional
instruction) being positioned to execute separately, the
instruction decoder 10 is configured to perform instruction
cache marking of the separate instructions that are not in the
same group to force a load reserve instruction and a store
conditional instruction into the same group. As such, the
instruction decoder 10 is configured to initially mark the load
reserve instruction based on the load reserve instruction being
detected first in the separate instructions or initially mark the
store conditional instruction based on the store conditional
instruction being detected first in the separate instructions.
Also, the instruction decoder 10 is configured to complete
formation of the same group by marking the load reserve
instruction based on the load reserve instruction being
detected last in the separate instructions or by marking store
conditional instruction based on the store conditional instruc-
tion being detected last in the separate instructions. Further,
the instruction decoder 10 is configured to translate the sepa-
rate instructions having been grouped into the same group for
the atomic sequence into the single internal atomic operation.

In one embodiment, when an atomic sequence is not cap-
tured in an instruction group, each instruction is executed

US 9,280,348 B2

13

separately in accordance with prior art. In at least one
embodiment, at least one instruction such as a store condi-
tional instruction is rejected when it is found in a decoder
other than a first decoder A (in FIG. 2), unless it can be
combined using DTIO into a single atomic internal operation.

FIG. 13 illustrates an example of a computer 1300 having
capabilities, which may be included in exemplary embodi-
ments. Various methods, procedures, modules, flow dia-
grams, tools, applications, circuits, elements, and techniques
discussed herein may also incorporate and/or utilize the capa-
bilities of the computer 1300. Moreover, capabilities of the
computer 1300 may be utilized to implement features of
exemplary embodiments discussed herein. One or more of the
capabilities of the computer 1300 may be utilized to imple-
ment, to connect to, and/or to support any element discussed
herein (as understood by one skilled in the art) in FIGS. 1-12
and 14. For example, the processor core 100 may be incor-
porated in the processor 1310.

Generally, in terms of hardware architecture, the computer
1300 may include one or more processors 1310, computer
readable storage memory 1320, and one or more input and/or
output (I/O) devices 1370 that are communicatively coupled
via a local interface (not shown). The local interface can be,
for example but not limited to, one or more buses or other
wired or wireless connections, as is known in the art. The
local interface may have additional elements, such as control-
lers, buffers (caches), drivers, repeaters, and receivers, to
enable communications. Further, the local interface may
include address, control, and/or data connections to enable
appropriate communications among the aforementioned
components.

The processor 1310 is a hardware device for executing
software that can be stored in the memory 1320. The proces-
sor 1310 can be virtually any custom made or commercially
available processor, a central processing unit (CPU), a data
signal processor (DSP), or an auxiliary processor among sev-
eral processors associated with the computer 1300, and the
processor 1310 may be a semiconductor based microproces-
sor (in the form of a microchip) or a macroprocessor.

The computer readable memory 1320 can include any one
or combination of volatile memory elements (e.g., random
access memory (RAM), such as dynamic random access
memory (DRAM), static random access memory (SRAM),
etc.) and nonvolatile memory elements (e.g., ROM, erasable
programmable read only memory (EPROM), electronically
erasable programmable read only memory (EEPROM), pro-
grammable read only memory (PROM), tape, compact disc
read only memory (CD-ROM), disk, diskette, cartridge, cas-
sette or the like, etc.). Moreover, the memory 1320 may
incorporate electronic, magnetic, optical, and/or other types
of storage media. Note that the memory 1320 can have a
distributed architecture, where various components are situ-
ated remote from one another, but can be accessed by the
processor 1310.

The software in the computer readable memory 1320 may
include one or more separate programs, each of which com-
prises an ordered listing of executable instructions for imple-
menting logical functions. The software in the memory 1320
includes a suitable operating system (O/S) 1350, compiler
1340, source code 1330, and one or more applications 1360 of
the exemplary embodiments. As illustrated, the application
1360 comprises numerous functional components for imple-
menting the features, processes, methods, functions, and
operations of the exemplary embodiments. The application
1360 of the computer 1300 may represent numerous applica-

10

15

20

25

30

35

40

45

50

55

60

65

14

tions, agents, software components, modules, interfaces, con-
trollers, etc., as discussed herein but the application 1360 is
not meant to be a limitation.

The operating system 1350 may control the execution of
other computer programs, and provides scheduling, input-
output control, file and data management, memory manage-
ment, and communication control and related services.

The application(s) 1360 may employ a service-oriented
architecture, which may be a collection of services that com-
municate with each. Also, the service-oriented architecture
allows two or more services to coordinate and/or perform
activities (e.g., on behalf of one another). Each interaction
between services can be self-contained and loosely coupled,
so that each interaction is independent of any other interac-
tion.

Further, the application 1360 may be a source program,
executable program (object code), script, or any other entity
comprising a set of instructions to be performed. When a
source program, then the program is usually translated via a
compiler (such as the compiler 1340), assembler, interpreter,
or the like, which may or may not be included within the
memory 1320, so as to operate properly in connection with
the O/S 1350.

Furthermore, the application 1360 can be written as (a) an
object oriented programming language, which has classes of
data and methods, or (b) a procedure programming language,
which has routines, subroutines, and/or functions.

The I/0 devices 1370 may include input devices (or periph-
erals) such as, for example but not limited to, a mouse, key-
board, scanner, microphone, camera, etc.

Furthermore, the I/O devices 1370 may also include output
devices (or peripherals), for example but not limited to, a
printer, display, etc. Finally, the [/O devices 1370 may further
include devices that communicate both inputs and outputs,
for instance but not limited to, a NIC or modulator/demodu-
lator (for accessing remote devices, other files, devices, sys-
tems, or a network), a radio frequency (RF) or other trans-
ceiver, a telephonic interface, a bridge, a router, etc. The [/O
devices 1370 also include components for communicating
over various networks, such as the Internet or an intranet. The
1/0O devices 1370 may be connected to and/or communicate
with the processor 1310 utilizing Bluetooth connections and
cables (via, e.g., Universal Serial Bus (USB) ports, serial
ports, parallel ports, FireWire, HDMI (High-Definition Mul-
timedia Interface), etc.).

When the computer 1300 is in operation, the processor
1310 is configured to execute software stored within the
memory 1320, to communicate data to and from the memory
1320, and to generally control operations of the computer
1300 pursuant to the software. The application 1360 and the
O/S 1350 are read, in whole or in part, by the processor 1310,
perhaps buffered within the processor 1310, and then
executed.

When the application 1360 is implemented in software it
should be noted that the application 1360 can be stored on
virtually any computer readable storage medium for use by or
in connection with any computer related system or method. In
the context of this document, a computer readable storage
medium may be an electronic, magnetic, optical, or other
physical device or means that can contain or store a computer
program for use by or in connection with a computer related
system or method.

The application 1360 can be embodied in any computer-
readable medium 1320 for use by or in connection with an
instruction execution system, apparatus, server, or device,
such as a computer-based system, processor-containing sys-
tem, or other system that can fetch the instructions from the

US 9,280,348 B2

15

instruction execution system, apparatus, or device and
execute the instructions. In the context of this document, a
“computer-readable storage medium” can be any means that
can store, read, write, communicate, or transport the program
for use by or in connection with the instruction execution
system, apparatus, or device. The computer readable medium
can be, for example but not limited to, an electronic, mag-
netic, optical, or semiconductor system, apparatus, or device.

More specific examples (a nonexhaustive list) of the com-
puter-readable medium 1320 would include the following: an
electrical connection (electronic) having one or more wires, a
portable computer diskette (magnetic or optical), a random
access memory (RAM) (electronic), a read-only memory
(ROM) (electronic), an erasable programmable read-only
memory (EPROM, EEPROM, or Flash memory) (elec-
tronic), an optical fiber (optical), and a portable compact disc
memory (CDROM, CD R/W) (optical).

In exemplary embodiments, where the application 1360 is
implemented in hardware, the application 1360 can be imple-
mented with any one or a combination of the following tech-
nologies, which are each well known in the art: a discrete
logic circuit(s) having logic gates for implementing logic
functions upon data signals, an application specific integrated
circuit (ASIC) having appropriate combinational logic gates,
a programmable gate array(s) (PGA), a field programmable
gate array (FPGA), etc.

It is understood that the computer 1300 includes non-lim-
iting examples of software and hardware components that
may be included in various devices, servers, and systems
discussed herein, and it is understood that additional software
and hardware components may be included in the various
devices and systems discussed in exemplary embodiments.

As described above, embodiments can be embodied in the
form of computer-implemented processes and apparatuses
for practicing those processes. An embodiment may include a
computer program product 1400 as depicted in FIG. 14 on a
computer readable/usable medium 1402 with computer pro-
gram code logic 1404 containing instructions embodied in
tangible media as an article of manufacture. Exemplary
articles of manufacture for computer readable/usable
medium 1402 may include floppy diskettes, CD-ROMs, hard
drives, universal serial bus (USB) flash drives, or any other
computer-readable storage medium, wherein, when the com-
puter program code logic 1404 is loaded into and executed by
a computer, the computer becomes an apparatus for practic-
ing the invention. Embodiments include computer program
code logic 1404, for example, whether stored in a storage
medium, loaded into and/or executed by a computer, or trans-
mitted over some transmission medium, such as over electri-
cal wiring or cabling, through fiber optics, or via electromag-
netic radiation, wherein, when the computer program code
logic 1404 is loaded into and executed by a computer, the
computer becomes an apparatus for practicing the invention.
When implemented on a general-purpose microprocessor, the
computer program code logic 1404 segments configure the
microprocessor to create specific logic circuits.

Technical effects and benefits include reducing processing
time. The code in exemplary detected atomic sequences dis-
cussed herein (e.g., such as the code in FIGS. 3 and 4) may
suffer from delay issues. These delay issues in the code are
that two “roundtrips” to the coherence point may be needed,
i.e., multiple processor cycles will be spent for the Iwarx and
stwcx instructions, respectively, to first load, and the condi-
tionally update a value at the coherence point. In comparison,
a memory-nest-(internal) atomic operation (generated by the
decoder 10) where the operation to be performed is transmit-
ted to the memory nest (i.e., memory subsystem 1020) may

5

10

15

20

25

30

35

40

45

50

55

60

65

16

require only one roundtrip to both send (by the AFU 20) the
request with any parameters, and to receive the result (back at
the processor core 100).

In the state of the art, when memory locations (in memory
1030 or registers 1015) are heavily contended, additional,
complex logic is necessary to prevent livelock and starvation,
where none of the competing processing cores can complete
the synchronization code successfully of the atomic sequence
with the Iwarx and stwex instructions. However, to avoid this,
embodiments offer internal atomic operations, like atomic
exchange, atomic increment, etc, when they can be imple-
mented in a high performance memory subsystem 1020 (e.g.,
for legacy processors). Accordingly, a sequence of instruc-
tions describing a memory synchronization operation using
load reserve and store conditional is transformed to an inter-
nal memory subsystem operation (i.e., internal atomic opera-
tion) using decode time instruction optimization.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access

US 9,280,348 B2

17

memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or schematic dia-
grams of methods, apparatus (systems) and computer pro-
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra-
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com-
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to

20

40

45

55

18

be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

As described above, embodiments can be embodied in the
form of computer-implemented processes and apparatuses
for practicing those processes. In embodiments, the invention
is embodied in computer program code executed by one or
more network elements. Embodiments include a computer
program product on a computer usable medium with com-
puter program code logic containing instructions embodied in
tangible media as an article of manufacture. Exemplary
articles of manufacture for computer usable medium may
include floppy diskettes, CD-ROMs, hard drives, universal
serial bus (USB) flash drives, or any other computer-readable
storage medium, wherein, when the computer program code
logic is loaded into and executed by a computer, the computer
becomes an apparatus for practicing the invention. Embodi-
ments include computer program code logic, for example,
whether stored in a storage medium, loaded into and/or
executed by a computer, or transmitted over some transmis-
sion medium, such as over electrical wiring or cabling,
through fiber optics, or via electromagnetic radiation,
wherein, when the computer program code logic is loaded
into and executed by a computer, the computer becomes an
apparatus for practicing the invention. When implemented on
a general-purpose microprocessor, the computer program
code logic segments configure the microprocessor to create
specific logic circuits.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow-
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

What is claimed is:

1. A computer program product for replacing an atomic
sequence, the computer program product comprising:

a non-transitory storage medium readable by a processing
circuit and storing instructions for execution by the pro-
cessing circuit for performing a method comprising:

receiving, by the processing circuit, the atomic sequence;

detecting, by the processing circuit, the atomic sequence;
and

generating, by the processing circuit, an internal atomic
operation to replace the atomic sequence;

based on separate instructions of the atomic sequence not
being a same group and based on the separate instruc-
tions being positioned to execute separately, configuring
an instruction decoder to perform instruction cache
marking of the separate instructions that are not in the

US 9,280,348 B2

19

same group to force aload reserve instruction and a store
conditional instruction into the same group;

configuring the instruction decoder to initially mark the
load reserve instruction based on the load reserve
instruction being detected first in the separate instruc-
tions or initially mark the store conditional instruction
based on the store conditional instruction being detected
first in the separate instructions;

configuring the instruction decoder to complete formation

of the same group by marking the load reserve instruc-
tion based on the load reserve instruction being detected
last in the separate instructions or by marking the store
conditional instruction based on the store conditional
instruction being detected last in the separate instruc-
tions; and

configuring the instruction decode to translate the separate

instructions having been grouped into the same group
for the atomic sequence into the internal atomic opera-
tion.

2. The computer program product of claim 1, wherein the
method further comprises executing the internal atomic
operation in place of the atomic sequence.

3. The computer program product of claim 1, wherein the
atomic sequence comprises a load reserve instruction and a
store conditional instruction.

4. The computer program product of claim 3, wherein
detecting the atomic sequence comprises recognizing the
load reserve instruction and the store conditional instruction
to detect the atomic sequence that needs to be replaced.

5. The computer program product of claim 1, wherein a
predecode optimizer is configured to detect the atomic
sequence and generate the internal atomic operation prior to
caching by an instruction cache.

6. The computer program product of claim 1, wherein the
internal atomic operation is executed in an atomic function
unit of the processing circuit.

7. The computer program product of claim 1, wherein a
memory subsystem executes the internal atomic operation
and sends results to the processing circuit.

8. A computer system for replacing an atomic sequence,
the system comprising:

aprocessing circuit, and memory operatively connected to

the processing circuit, the system configured to perform
a method comprising:

10

15

20

25

30

35

40

20
receiving, by the processing circuit, the atomic sequence;

detecting, by the processing circuit, the atomic sequence;
and

generating, by the processing circuit, an internal atomic
operation to replace the atomic sequence;

based on separate instructions of the atomic sequence not
being a same group and based on the separate instruc-
tions being positioned to execute separately, configuring
an instruction decoder to perform instruction cache
marking of the separate instructions that are not in the
same group to force a load reserve instruction and a store
conditional instruction into the same group;

configuring the instruction decoder to initially mark the
load reserve instruction based on the load reserve
instruction being detected first in the separate instruc-
tions or initially mark the store conditional instruction
based on the store conditional instruction being detected
first in the separate instructions;

configuring the instruction decoder to complete formation
of the same group by marking the load reserve instruc-
tion based on the load reserve instruction being detected
last in the separate instructions or by marking the store
conditional instruction based on the store conditional
instruction being detected last in the separate instruc-
tions; and

configuring the instruction decode to translate the separate
instructions having been grouped into the same group
for the atomic sequence into the internal atomic opera-
tion.

9. The computer system of claim 8, wherein the method
further comprises executing the internal atomic operation in
place of the atomic sequence.

10. The computer system of claim 8, wherein detecting the
atomic sequence comprises recognizing a load reserve
instruction and a store conditional instruction to detect the
atomic sequence that needs to be replaced.

11. The computer system of claim 8, wherein a predecode
optimizer is configured to detect the atomic sequence and
generate the internal atomic operation prior to caching by an
instruction cache.

