a2 United States Patent

Call

US009270647B2

US 9,270,647 B2
*Feb. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

CLIENT/SERVER SECURITY BY AN
INTERMEDIARY RENDERING MODIFIED
IN-MEMORY OBJECTS

Applicant: Shape Security, Inc., Mountain View,

CA (US)
Inventor: Justin Call, Santa Clara, CA (US)
Assignee: Shape Security, Inc., Mountain View,
CA (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 81 days.
This patent is subject to a terminal dis-
claimer.
Appl. No.: 14/099,437
Filed: Dec. 6, 2013
Prior Publication Data
US 2015/0163201 Al Jun. 11, 2015
Int. CL.
HO4L 29/06 (2006.01)
GO6F 21/00 (2013.01)
GO6F 9/455 (2006.01)
(Continued)
U.S. CL
CPC HO04L 63/04 (2013.01); GOGF 9/45529

(2013.01); HO4L 29/06972 (2013.01); HO4L
63/0281 (2013.01); HO4L 63/1466 (2013.01);
HO04L 67/42 (2013.01)
Field of Classification Search
CPC . HO4L 63/04; HOAL 63/1466; HO4L 63/0281;
HO4L 29/06972; GOGF 9/45529
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,003,596 A
5,315,657 A

3/1991 Wood
5/1994 Abadi et al.

(Continued)

FOREIGN PATENT DOCUMENTS

CN
CN

101471818 A
101471818K2

7/2009
5/2011

(Continued)
OTHER PUBLICATIONS

Soroush Sedaghat, Josef Pieprzyk, Ehsan Vossough; “On-the-fly web
content integrity check boosts users’ confidence”; Nov. 2002; Com-
munications of the ACM , vol. 45 Issue 11; Publisher: ACM; pp.
33-37.*

(Continued)

Primary Examiner — Andrew Nalven

Assistant Examiner — Courtney Fields

(74) Attorney, Agent, or Firm — Hickman Palermo Becker
Bingham LLP

(57) ABSTRACT

In an embodiment, a method comprises intercepting, from a
server computer, a first set of instructions that define one or
more objects and one or more operations that are based, at
least in part, on the one or more objects; generating, in
memory, one or more data structures that correspond to the
one or more objects; performing the one or more operations
on the one or more data structures; updating the one or more
data structures, in response to performing the one or more
operations, to produce one or more updated data structures;
rendering a second set of instructions, which when executed
by a remote client computer cause the remote client computer
to generate the updated data structures in memory on the
remote client computer, wherein the second set of instruc-
tions are different than the first set of instructions; sending the
second set of instructions to the remote client computer.

20 Claims, 9 Drawing Sheets

f N\
Browser 100
05 Frantend 05 System
AP Layer Browser Browser Backend 101 AP! Layer
160 Frontend 150
— 120 —
Image
Rendering Trtension 4 e
[Engine ¢4 Execution 108 Protocol b
122 i . 1 Module
116 102
(&3
- -
les) m Parser
Modute DOM 110 DNS
124 ¢ Module L] wodde &b
118
= HTML 104
User — Parser 1
[€>] Interface ¢4 112
126 TavaScript -
- EEx‘ecunon Local S‘:olrage
nvironment Lavaseript —e Module |e]
19 — parser T4 106
114
. /

US 9,270,647 B2
Page 2

(51) Int.CL

GO6F 9/44

GO6F 11/36

(56)

5,987,611
6,006,328
6,170,020
6,401,077
6,938,170
7,103,180
7,117,429
7,180,895
7,464,326
7,500,099
7,580,521
7,707,223
7,895,653
7,940,657
7,961,879
7,975,308
8,020,193
8,077,861
8,086,957
8,170,020
8,225,401
8,266,202
8,266,243
8,332,952
8,347,396
8,392,576
8,516,080
8,527,774
8,533,480
8,548,998
8,584,233
8,601,064
8,627,479
8,762,705
2003/0159063
2004/0101142
2004/0162994
2004/0249938
2006/0015941
2006/0034455
2006/0053295
2006/0195588
2007/0011295
2007/0064617
2007/0074227
2008/0025496
2008/0222736
2008/0229394
2008/0320567
2009/0007243
2009/0193497
2009/0193513
2009/0241174
2009/0254572
2009/0282062
2009/0292984
2010/0083072
2010/0131512
2010/0172494
2010/0186089
2010/0235637
2010/0235910
2010/0262780
2011/0015917
2011/0022846
2011/0047169
2011/0107077
2011/0131416
2011/0154021
2011/0178973

(2006.01)
(2006.01)

References Cited

U.S. PATENT DOCUMENTS

A

A

Bl
Bl
Bl
Bl
B2
B2
B2
Bl
Bl
B2
B2
B2
Bl
Bl
B2
B2
B2
B2
B2
Bl
Bl
B2
B2
Bl
B2
B2
B2
B2
Bl
Bl
B2
B2
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

11/1999
12/1999
1/2001
6/2002
8/2005
9/2006
10/2006
2/2007
12/2008
3/2009
8/2009
4/2010
2/2011
5/2011
6/2011
7/2011
9/2011
12/2011
12/2011
5/2012
7/2012
9/2012
9/2012
12/2012
1/2013
3/2013
8/2013
9/2013
9/2013
10/2013
11/2013
12/2013
1/2014
6/2014
8/2003
5/2004
8/2004
12/2004
1/2006
2/2006
3/2006
8/2006
1/2007
3/2007
3/2007
1/2008
9/2008
9/2008
12/2008
1/2009
7/2009
7/2009
9/2009
10/2009
11/2009
11/2009
4/2010
5/2010
7/2010
7/2010
9/2010
9/2010
10/2010
1/2011
1/2011
2/2011
5/2011
6/2011
6/2011
7/2011

Freund

Drake
Blakeney
Gooden

Kraft
McGregor
Vedullapalli et al.
Smith

Kawai et al.
McElwee et al.
Spies et al.
Zubenko

Calo et al.
Perreault

Spies et al.
Satish et al.
Bhola et al.
Damgaard et al.
Bauchot et al.
Oliver et al.
Sobel et al.
Colton et al.
Carlson et al.
Zhang et al.
Grigsby et al.
Henderson
Chow

Fallows et al.
Pravetz et al.
Plotnik

Yang

Liao
Wittenstein et al.
He

Apfelbaum et al.
Nasypny
Cohen

Bunch
McKenna
Damgaard et al.

Madhusudan et al.

Pennington et al.
Hansen

Reves

Naidu et al.
Smith et al.
Boodaei et al.
Stering et al.
Shulman
Boodaei et al.
Kikuchi
Agarwal et al.
Rajan et al.
Redlich et al.
Husic
Bauchot et al.
Prasad et al.
Ben-Natan
Henson et al.
Fu et al.
Luetal.

Ku et al.
Mahan et al.
Wang et al.
Ginter et al.
Leighton et al.
Henderson et al.
Schneider
McCann et al.
Lopez et al.

2011/0239113 Al 9/2011 Hung et al.
2011/0255689 Al 10/2011 Bolotov et al.
2011/0296391 Al 12/2011 Gassetal.
2012/0011262 Al 1/2012 Cheng et al.
2012/0022942 Al 1/2012 Holloway et al.
2012/0023394 Al 1/2012 Pieczul et al.
2012/0030248 Al 2/2012 Blinnikka
2012/0096116 Al 4/2012 Mislove et al.
2012/0117649 Al 5/2012 Holloway et al.
2012/0124372 Al 5/2012 Dilley et al.
2012/0173699 Al 7/2012 Niemela
2012/0173870 Al 7/2012 Reddy et al.
2012/0174225 Al 7/2012 Shyamsunder
2012/0198528 Al 82012 Baumhof
2012/0255006 Al 10/2012 Aly
2013/0091582 Al 4/2013 Chenet al.
2013/0198607 Al 82013 Mischook et al.
2013/0219256 Al 82013 Lloyd etal.
2013/0227397 Al 82013 Tvorun et al.
2013/0232234 Al 9/2013 Kapur et al.
2013/0263264 Al 10/2013 Klein et al.
2014/0053059 Al 2/2014 Weber et al.
2014/0165197 Al 6/2014 He
2014/0189499 Al 7/2014 Gigliotti
2014/0223290 Al 82014 Hathaway
2014/0281535 Al 9/2014 Kane
2014/0282872 Al 9/2014 Hansen et al.
2015/0039962 Al 2/2015 Fonseka et al.
2015/0067853 Al 3/2015 Amrutakar

FOREIGN PATENT DOCUMENTS

GB 2443093 A 4/2008
GB 2443093 A 4/2008
WO WO09964967 Al 12/1999
WO WO00/72119 A2 11/2000
WO WO002/093369 Al 11/2002
WO WO02088951 Al 11/2002

WO WO02004109532 Al 12/2004
WO WO02008095018 A2 8/2008
WO WO02008095031 Al 8/2008
WO WO2008130946 A2 10/2008
WO WO 2010046314 Al * 4/2010
WO WO02013091709 Al 6/2013

OTHER PUBLICATIONS

Anderson et al., “Measuring the Cost of Cybercrime,” 2012 Work-
shop on the Economics of Information Security (WEIS), [retrieved
on Oct. 15, 2013]. Retrieved from the Internet: <URL: http://web.
archive.org/web/20130623080604/http://weis2012.econinfosec.
org/papers/Anderson_ WEIS2012.pdf>, 31 pages , Jun. 2012.
CodeSealer, “CodeSealer,” codesealer.com [online] 2013 [captured
Aug. 29, 2013]. Retrieved from the Internet: <URL:http://web.
archive.org/web/2013082916503 1/http://codesealer.com/technol-
ogy.html>, 2 pages.

Cova et al., “Detection and Analysis of Drive-by-Download Attacks
and Malicious JavaScript Code,” World Wide Web Conference Com-
mittee, Apr. 26-30, 2010. Retrieved from the Internet: <URL: http://
www.cs.ucsb.edu/~vigna/publications/2010__cova_ kruegel vigna
Wepawet.pdf>, 10 pages.

Egele et al., “Defending Browsers against Drive-by Downloads:
Mitigating Heap-spraying Code Injection Attacks,” Detection of
Intrusions and Malware, and Vulnerability Assessment Lecture Notes
in Computer Science, 5587:88-106. Retrieved from the Internet:
<URL: http://anubis.seclab.tuwien.ac.at/papers/driveby.pdf>, 19
pages, 2009.

Entrust, “Defeating Man-in-the-Browser Malware,” Entrust.com
[online] Sep. 2012 [retrieved Oct. 15, 2013]. Retrieved from the
Internet: <URL: http://download.entrust.com/resources/download.
cfm/24002/>, 18 pages.

Oh, “Recent Java exploitation trends and malware,” Black Hat USA
2012, Retrieved from the Internet: <URL: https://media.blackhat.
com/bh-us-12/Briefings/Oh/BH_US_ 12 Oh_ Recent Java Ex-
ploitation_ Trends_ and Malware WP.pdf>, 27 pages.

US 9,270,647 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Marcus and Sherstobitoff, “Dissecting Operation High Roller,”
McAfee [online] 2012 [retrieved on Oct. 15, 2013]. Retrieved from
the Internet: <URL: http://www.mcafee.com/us/resources/reports/
rp-operation-high-roller.pdf>, 20 pages.

Rutkowska, “Rootkits vs. Stealth by Design Malware,” Black Hat
Europe, 2006. Retrieved from the Internet: <URL:http://www.
blackhat.com/presentations/bh-europe-06/bh-eu-06-Rutkowska.
pdf> 44 pages.

RSA, “RSA Offers Advanced Solutions to Help Combat Man-In-
The-Browser Attacks,” rsa.com [online] May 18, 2010 [captured
Nov. 11, 2011]. Retrieved from the Internet: <URL: http://web.
archive.org/web/20111111123108/http://rsa.com/press_ release.
aspx?id=10943>, 3 pages.

SafeNet, “Prevent Financial Fraud and Man-in-the-Browser
Attacks,” safenet-inc.com [online] [retrieved on Oct. 15, 2013].
Retrieved from the Internet: <URL: http://www.safenet-inc.com/so-
lutions/data-protection/financialservices/financial-fraud-man-in-
the-browser-attacks/>, 5 pages.

Sood and Enbody, “A Browser Malware Taxonomy,” Virus Bulletin,
Jun. 2011. Retrieved from the Internet: <URL:http://www.secniche.
org/released/'VB_ BRW_MAL_TAX AKS_RIE.pdf>, S pages.
Sood and Enbody, “Browser Exploit Packs—Exploitation Tactics,”
Virus Bulletin Conference, Oct. 2011, Retrieved from the Internet:
<URL: http://www.secniche.org/papers/VB_2011_BRW_EXP__
PACKS__AKS_ RIJE pdf>, 9 pages.

Sood et al., “The Art of Stealing Banking Information—Form grab-
bing on Fire,” Virus Bulletin, Nov. 2011, Retrieved from the Internet:
<URL: http://www.virusbtn.com/virusbulletin/archive/2011/11/
vb201111-form-grabbing>, “(pp. 19-23 of 24 pages)”.

Team Cymru, “Cybercrime—an Epidemic,” Queue, 4(9):24-35, Nov.
2006, Retrieved from the Internet: <URL: http:/trygstad.rice.iit.
edu:8000/Articles/Cybercrime%20-%20An%20Epidemic%20-
%20ACM%20Queue.pdf>, 3 pages.

Trusteer, “Trusteer Rapport”, “Endpoint-centric Fraud Prevention”,
from the web http://www.trusteer.com/products/trusteer-rapport, last
accessed on Jan. 9, 2013, 2 pages.

Vasco, “Hardened Browser,” vasco.com [online] [retrieved on Oct.
15, 2013]. Retrieved from the Internet: <URL: http://www.vasco.
com/products/client_ products/pki_ digipass/hardened__browser.
aspx>, 2 pages.

Krebs on Security, In-depth security news and investigation, “A
Closer Look at Rapport from Trusteer”, dated Apr. 29, 2010, http://

krebsonsecurity.com/2010/04/a-closer-look-at-rapport-from-
trusteer/, last accessed on Jan. 9, 2014, 16 pages.

European Patent Office, “Search Report”in application No. PCT/
US2014/023635, dated Jan. 21, 2015, 11 pages.

Li et al., “WebShield: Enabling Various Web Defense Techniques
Without Client Side Modifications”, dated Aug. 15, 2009, 18 pages.
European Patent Office in application No. PCT/US2014/068133,
dated Apr. 7, 2015, 14 pages.

Claims in European Application No. PCT/US2014/068133, dated
Apr. 2015, 16 pages.

International Searching Authority, “Search Report” in application
No. PCT/US15,12072, dated Jan. 20, 2015, 14 pages.

IP.com, “Search Results”, Patents and Applications, http://ip/com/
search/results. html, dated May 6, 2014, 2 pages.

Google Search, “Google Patents Search Results” dated May 21,
2014, 2 pages.

Rieck et al., “Cujo: Efficient Detection and Prevention of Drive-by-
Download Attacks”, ACSAC, Dated Dec. 2010, 9 pages.
Pattabiraman et al., “DoDOM: Leveraging DOM Invariants for Web
2.0 Application Robustness Testing” dated 2010, IEEE, 10 pages.
International Searching Authority, “Search Report” in application
No. PCT/US2014/024232, dated Aug. 1, 2014, 52 pages.
International Searching Authority, “Search Report” in application
No. PCT/2014/027805, dated Aug. 18, 2014, 14 pages.
International Searching Authority, “Search Report” in application
No. PCT/2014/023897, dated Jul. 18, 2014, 15 pages.

U.S. Appl. No. 14/290,805, filed May 29,2014, Office Action, Sep. 5,
2014.

U.S. Appl. No. 14/175,923, filed Feb. 7, 2014, Notice of Allowability,
Sep. 11,2014.

International Searching Authority, “Search Report” in application
No. PCT/2014/027805, dated Aug. 14, 2014, 14 pages.

Matsunaka et al., “Detecting and Preventing Drive-By Download
Attack via Participative Monitoriing of the Web”, Information Secu-
rity, dated Jul. 26, 2013, 8th Asia Joint Conference, pp. 48-55.
European Patent Office, “Search Report” in application No. PCT/
US2015/031361, dated Jul. 28, 2015, 13 pages.

U.S. Appl. No. 61/788,250, filed Mar. 15,2013, mailing date Oct. 28,
2015.

U.S. Appl. No. 14/679,596, filed Apr. 6, 2015, Office Action, mailing
date Nov. 4, 2015.

U.S.Appl. No. 14/481,835, filed Sep. 9, 2014, Office Action, mailing
date Oct. 28, 2015.

* cited by examiner

US 9,270,647 B2

Sheet 1 of 9

Feb. 23, 2016

U.S. Patent

J

T }
P! I
1 !
Pl !
Pl I
_ 1! }
PIT i _ m
90T 13sied — b _
$ — duosene 61t I !
A_.V BNPon iduasener UBWILOAIAUG " _ |
i | a8ei03s jeso uoiINIAXg 1. | |
] . 1duogeaer b 9z1 “
“ 711 .TI..- ERLAVEST Av
! e 19580 Qg I 1980 !
— I
TNLH — |
i rot 8TT b M
€3 onpony T °ITPON A veT |
" SNQ ot noa I EELEY A.wv
" L 4 tesied L1 i Aunaoesaiuy |7
! $SO i f
i — — il |
I [40) 911 " _ i
I 3INPON — IUBWILIOHAUT " _ 77T |
__ 10201014 801 uonnoaxy _ suiguy e
i —e¢ 195JEd uolIsuaIxj i JuuspudYy |
H a8ewy | _] |
\ i p ! - |
i i 0zt =
0qt i " _ pusjuol4y f 097
J9heT |y H TOT puayoeg Jasmoig b 19SMOJg | Jskendy
WBSAS S0 b o e e | pusiuoig SO
D01 19smoug
\.
T "Old

US 9,270,647 B2

Sheet 2 of 9

Feb. 23, 2016

U.S. Patent

Z€7 uoneinsyuo) _

o€z

Jainduwion
Aleipauriarug

\}
ove

238e.015
eyeq

\-\lj
e Sy

66T

pmdwo)y JI0ISTA

£ =3
— —
y /
0TZ SSO 067 553
pue qdudsenes “HNIH pue ‘1duosener “TWIH
. \ P3O
00g wWaysds
¢ 'Ol

US 9,270,647 B2

Sheet 3 of 9

Feb. 23, 2016

U.S. Patent

GOT 21NONNSBIU PO |

LR P R E R T T

7€t uoneinsijuo)

7€ WA
MOuOuO.H d

L T L L L L L

33 EE3
puayoeg lojejsuel}
J35MOg piemiod

e OvE

jojejsuesy 24018
3s42A3Y uonesues |

8€E
Jajpuey
|030104d

Qgz Jendwon
Aleipswiialuy

oD CDO ODS WU MUT S99 TORS MR MOT COUT DOOD OO MO MOT D9OT O90T UONT OUS JOOT DO90 TON0 MOT MOT DOOT 9O UUNN MO MOe DR S mem

US 9,270,647 B2

Sheet 4 of 9

Feb. 23, 2016

U.S. Patent

_lllllllllllllllllllll

9€€
Jolejsued]
piemiod

17474
0ju] 91e15
aujdug
yduoseaer

0
UoHRWLIO]

Ayadoug
BYI0

S30UBIDYDY
SS04D

05y NCd

00F sadn1onns e1e(] AIOWIN-U]

i s oo ot et et s, b o e et e s, St N et St e e, el

ey

— vy
a0y N
olHlo a._mm‘_mn_ =
°INPOW CLSEAR JUSWIUOIIAUT
9821035 |B207] UonNIaXg P — 1
- iduoseaer
(A%
 _— Y FELLN I S |
— TNLH =
oy
9 S|NPON G
SINPON SNA oTo NOQ
: Jasied
SS2
oy . 8%
JNPOY P <00 {4 uswuoiaug
j020304d uo1iNIaX3
e OSEd g UoISUIIX3
o8ewy
YEE puayoeg 1asmoig
¥ Oid

US 9,270,647 B2

Sheet 5 of 9

Feb. 23, 2016

U.S. Patent

088 ¥31NdWOD INJINO ILOW3Y IHL OL
SNOILOMNYLSNI 40 138 ANOD3IS ‘03¥3IANTY IHL AN3S

i

G "old

055 S103r90 IHL 40 FYOW HO INC AJIAON

UG SNOILYYIdO ANV SLO3190 3HL 40 JLVLS INTFHAIND
3HL NO G3SVvE SNOILONYLSNI 40 L3S ONODJIS V ¥3AN3Y

!

098 $103rgo d3I4IA0N IHL HLIM d31VIO0SSY
SNOILYHI40 FHOW HO 3INO A4IAOW

!

0%S SFYNLINYLS VLV IHOW HO 3INO
HLIM SNOILYH3IdO FHOW "0 INO JLVIO0SSY

i

0£95103rd0 FHL NO 3LVH3dO
HOIHM SNOILONYHLSNI FHONW HO INO WHO4H3d

!

02S SNOILONYLSNI IHL NO a38ve
AHOWIIN NI SLOAMEG0 FHOW HO INO J1VHaNIO

!

078 ¥3LNdNOD INJITO JLONIY V OL ¥ILNdINOD HIAMIES
¥V NO¥4 SNOILONYLSNI 40 L3S 1S4V Ld3043UNI

US 9,270,647 B2

Sheet 6 of 9

Feb. 23, 2016

U.S. Patent

9 9|4
03 SNOILLONYLSNI
40 138 3HOLS ATSNOIATHd IHL NYHL INIHI4-Ia
T4V LYHL SNOILONMLSNI 40 138 MIN V ILYHINIO
059 .
SNOILONYLSNI 40 OE9 ¢QaldsiLys
SNOILINOD
13S 43HO0LS THL O N0 3N
ON3S ONY TI¥03Y
079 ¥3LNdINOD HIAYIS
e

IHL WOYH4 SNOILONYLSNI 40 138 V Ld30HILNI

ﬂ

019 SNOILONYLSNI 40 £13S ANOJ3IS V¥ FHOLS (o’

US 9,270,647 B2

Sheet 7 of 9

Feb. 23, 2016

U.S. Patent

JADE

097 ¥31LNdN0D
H3IAYIS FHL OL 1S3N0IY AJI4IQONW V AN3S

!

057 ONIddYN IHL
NO Q3Svd SYAIFILNIAI TYNIOIMO IHL HLUIM SH3IHIINAI
Q31410 JHL ONIOVTdIH A8 L1SFN0FH FHL A4IQON

!

077 SY3I4ILNIAI A3I4IQON 3HL HLIM ¥3LNdWOD ¥3AM3S VY
01 ¥31NdWOJ IN3INO ILOWIY V NOYHS LSINDIY V LdIDYAINI

i

082 ¥3LNdINOD LNIITO FLOWIY FHL OL SHIIHILNIAI
Q31410 3HL HLIM SNOILONMLSNI 40 138 ANODJ3S IHL AN3S

i

027 SYy3I4ILNIAI aFI4IGOW IHL ANV SHIIHIINIAI
TYNISIHO FHL NF3MLIE SONIddVIN FHOW JO 3INO 34018

1

0T SNOILONYLSNI 40 L3S TWNIONMO 'd3Ld3OUILNI NV NI
(d3NI430 S103rd0 3O YO INO 0 SHIIHIINIAI AJIJON

US 9,270,647 B2

Sheet 8 of 9

Feb. 23, 2016

U.S. Patent

8 old

098 ¥31NdNOD ¥IAYIS
83M 3HL OL 1S3N03Y A3LYISNYYL FHL AN3S

1

028 AMOWIW

S8 1S3IN0IY Q3LYISNVYL '‘M3N ¥V 30NA0¥d O
ONIddVIN WOQ FHL NO 03Svd 1S3IN0IY FHL JLVISNVHL

NI £03rd0 3HL 40 FLVLS INFHHNO IHL NO d3Svd
SNOILONYLSNI LAIMOSYAVE ONV 'SSO “TWLH M3N H3ANIY

!

G298 ONIddYIN WOQ V STLVYINID
ANV S103rg0 340N 40 INO A4IQOW

1

078 SNOILONYLSNI 1dIMOSYAVF
ANV SSO G3AI303d FHL A A3INI430 SNOILVYEO
FHOW YO 3INO NO d3Sve SFUNLONYLS ViVA 3HL 3Lvadn

i

i

072 WOd a3141A0W 3HL NO a3sv8a ¥3LNdIN0D
IN3FIM0 3HL NOY4 1S3NDIY VY Ld30HILNI

!

S18 SIUNLONYLS VIVA IHL HLIM SNOILONYLSNI LdIMOSYAYT

NV SSO NI d3NI43d SNOILYYHIdO ANV S3LNgIYLLY 31VIO0SSY

GEB WILNANOD INIIMO FLOWIY IHL OL SNOILONYLSNI
LdIMOSYAVF ANV 'SSO "TWLH M3N ‘GIYIANTY IHL AN3S

1

018 ANIXMOVE H3ISMOYE YV ONISN TWLIH Q3 LdIOHILINI FHL
WNOH4 AHOWIN NI S103fF0 FHONW HO INO FLVHIANIO

i

G0B ¥3ISMOYG 83M YV ONINNNY ¥3LNdWOD
INIITO FLONWIY V OL dLiH ¥3AD HILNdWOD HIAYES
83IM V NOY4 LdI¥OSVAVF ANV 'SSO “TNLH LdIOHILNI

US 9,270,647 B2

Sheet 9 of 9

Feb. 23, 2016

U.S. Patent

026

916
TOHLNOD
dOSHN0

\ i 006 TS
MNIT
an R RITENE JOVAHILNI v06

\ ; NOILYOINNWIWOD H0SSI0Ud
926

206
snd
dsl
LINYIINI @
016 806 306

626 e 30IA3Q AHOWIN

¥16
A0IA30 LNdNI

o

141
AV 1dSId

6 Ol

US 9,270,647 B2

1
CLIENT/SERVER SECURITY BY AN
INTERMEDIARY RENDERING MODIFIED
IN-MEMORY OBJECTS

FIELD OF THE DISCLOSURE

The present disclosure generally relates security tech-
niques applicable to client/server systems, and relates more
specifically to techniques for improving the security of web
applications and data sent and/or received between web serv-
ers hosting the web applications and browser programs and/or
components of browsers.

BACKGROUND

The approaches described in this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceived or pursued. Therefore, unless
otherwise indicated, it should not be assumed that any of the
approaches described in this section qualify as prior art
merely by virtue of their inclusion in this section.

Computer fraud performed by obtaining information in
non-secure communications transmissions between browser
programs and server computers is big business for fraudsters.
Fraud can be perpetrated by obtaining financial or personally
identifying information that end users provide while using a
browser to communicate with an application server computer.
For example, in an exploit commonly termed “Man in the
Browser”, a user’s computer can be provided with malicious
code that collects data from legitimate communications, such
as communications with the user’s bank. After the commu-
nications have been decrypted, for example, by a web browser
on the user’s computer, the malicious code may gather data
that is displayed in particular fields or sections in the
decrypted web page and provide the data to a malicious user
or computetr.

Malicious code may also gather data that is entered by a
user before the user’s data is encrypted and sent to the
intended recipient. For example, a user may enter account
information into a web browser that is displaying a web page
from the user’s bank. The web page may be a login page to
access the user’s account information and funds. The mali-
cious code may scan particular fields in the web page for the
user’s account information before the user’s account infor-
mation is encrypted and sent to the user’s bank, and then send
data obtained from those fields to a malicious user or com-
puter. Web browsers were first developed and deployed in the
early 1990’s, and thus there has been a need to improve
browser security, web server security, web-based application
security, and data security at and/or between end points.

SUMMARY

The appended claims may serve as a summary of the inven-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 illustrates functional units of a web browser, in an
example embodiment.

FIG. 2 illustrates a computer system comprising a server
security and re-rendering system, in an example embodiment.

FIG. 3 illustrates an intermediary computer and a web
infrastructure in an example embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 illustrates objects and operations stored in memory
by a browser backend, or headless browser, in an example
embodiment.

FIG. 5 illustrates a process for intercepting instructions for
a server computer, rendering new instructions, and sending
the new instructions to the intended client, in an example
embodiment.

FIG. 6 illustrates a process for storing and refreshing ren-
dered instructions in response receiving the same original
instructions from a web server, in an example embodiment.

FIG. 7 illustrates a process for intercepting and moditying
a request based on one or more stored attribute maps and/or
DOM maps, in an example embodiment.

FIG. 8illustrates a process for intercepting instructions and
requests between a HyperText Transfer Protocol (“HTTP”)
server and an HTTP-based web browser over HTTP, in an
example embodiment.

FIG. 9 illustrates a computer system upon which an
embodiment may be implemented.

While each of the drawing figures illustrates a particular
embodiment for purposes of illustrating a clear example,
other embodiments may omit, add to, reorder, and/or modify
any of the elements shown in the drawing figures.

DETAILED DESCRIPTION

In the following description, for the purposes of explana-
tion, numerous specific details are set forth in order to provide
a thorough understanding of the present invention. It will be
apparent, however, that the present invention may be prac-
ticed without these specific details. In other instances, well-
known structures and devices are shown in block diagram
form in order to avoid unnecessarily obscuring the present
invention.

Embodiments are described herein according to the fol-
lowing outline:

1.0 Terms

2.0 General Overview

3.0 Network Topology

3.1 Visitor Browser
3.1.1 Browser Frontend
3.1.2 Browser Backend
3.2 Web Infrastructure
3.3 Intermediary
3.3.1 Protocol Client
3.3.2 Browser Backend
3.3.3 Forward Translator
3.3.4 Protocol Handler
3.3.5 Transaction Store
3.3.6 Reverse Translator
4.0 Process Overview
4.1 Intercepting Instructions from a Content Server
Computer and Generating New Instructions
4.2 Caching Rendered Instructions
4.3 Intercept a Request from a Client Computer and
Translate the Request into a New Request based on a
Stored Mapping
4.4 Methods for an HTTP-based System
5.0 Implementation Mechanisms—Hardware Overview
6.0 Other Aspects of Disclosure

1.0 TERMS

In certain embodiments:

A “computer” may be one or more physical computers,
virtual computers, and/or computing devices. As an example,
a computer may be one or more server computers, cloud-

US 9,270,647 B2

3

based computers, cloud-based cluster of computers, virtual
machine instances or virtual machine computing elements
such as virtual processors, storage and memory, data centers,
storage devices, desktop computers, laptop computers,
mobile devices, and/or any other special-purpose computing
devices. Any reference to “a computer” herein may mean one
or more computers, unless expressly stated otherwise.

An “object” may be a data structure that can be identified
by an identifier and/or a relationship with another object. For
example, an object may have a unique identifier that is a
string, such as a document, customer number, or username.
Accordingly, the object may be referenced and/or retrieved
using the identifier. Also for example, if a particular object is
the first child object of a parent object, then the particular
object may be referenced and/or retrieved using a pointer to
the parent object and then retrieving a pointer to the first child
object. A method of referencing objects by identifier and/or
relationships is called XPath. An object may be a particular
type of object. For example, one object may be a button,
another object may be an input, or specifically a text field, and
another object may be an image.

An “attribute” may be data that identifies and/or describes
the appearance, behavior, and/or content of an object. For
example, an attribute may be a unique identifier, such as a
name. An attribute may indicate that an object is a type of
input, such as a text field, text area, checkbox, and/or radio
button. An attribute may indicate that an object is a password
text field; accordingly, a client application rendering the text
field object on a monitor need not cause the characters that are
entered into the field object to be displayed. An attribute
associated with the text field object may be updated to include
the value entered in the text field. Other attributes may define
or describe dimension, position, color, visibility, value, and
any other functional or visual aspect of an object.

A “document object model” (“DOM”) may be a cross-
platform and language-independent representation of one or
more objects that are interrelated. For example, a DOM may
represent one or more objects in an object tree and/or hierar-
chy. An object within the hierarchy may be a parent object,
which has one or more child objects. A child object may also
have one or more child objects.

“Creating, updating, and/or removing an object” may
mean creating, updating, and/or removing a data structure in
memory that represents an object, an object’s attributes, and/
or relationships between an object and one or more other
objects; because these processes directly or indirectly involve
changing the state of registers or other structures in electronic
digital memory circuits, the processes necessarily involve
using a computer to transform the state of tangible things.

An “operation” may be any function, method, script, and/
or any other code, which when executed operates on an
object.

“Operating on an object” may mean creating, removing,
and/or updating an object. Additionally, “operating on an
object” may mean performing one or more operations thatuse
an object, attribute, and/or relationship between an object and
one or more other objects as input.

“Instructions” may mean one or more codes that define one
or more objects and/or one or more operations. For example,
instructions may comprise HyperText Markup Language
(“HTML”), eXtensible Markup Language (“XML”), cascad-
ing style sheets (“CSS”), JavaScript, and/or any other stan-
dard or proprietary languages or codes that define objects,
attributes, relationships between objects, and/or operations.

“Performing instructions” or “executing instructions” may
mean creating one or more objects and/or performing one or
more operations defined by the instructions.

25

40

45

50

55

4

“Rendering instructions” may mean generating one or
more instructions based on objects and/or operations stored in
memory, such that when the generated one or more instruc-
tions are executed the same objects and/or same operations
are created in memory.

A first object may be the “same” as a second object if the
first object maintains the same one or more values, attributes,
and/or relationships as the second object. The underlying
representation of the first object in memory need not be the
same as the underlying representation of the second object in
memory. For purposes of illustrating a clear example, assume
that a first program is allocated a first memory segment; a
second program is allocated a second segment; the first pro-
gram maintains a first object in the first memory segment; the
second program maintains a second object in the second
memory segment; the first object comprises a value: six; the
second object comprises a value: six. In this situation, the first
object and the second object may be the same object because
the first object maintains the same value as the second object,
even though the first object and the second object are located
in different memory segments.

If the value stored in the first memory segment is stored as
an 8-bit integer and the value stored in the second memory
segment is stored as an American Standard Code for Infor-
mation Interchange (“ASCII”) string, then the first object and
the second object may be the same object because the first
object maintains the same value as the second object, even
though the underlying representation of the value in the first
memory segment is stored differently than the representation
of the value in the second memory segment.

As another example, assume that the first program is run-
ning on a first computer that comprises a 32-bit processor and
addresses memory using 32-bit addresses; the second pro-
gram is running on a second computer that comprises a 64-bit
processor and addresses memory using 64-bit addresses; the
first object is a parent object and comprises a pointer to a child
object stored in the first memory segment; the second object
is a parent object and comprises a pointer to a child object
stored in the second memory segment. In this situation, the
first object and the second object may be the same object
because the first object maintains the same values and rela-
tionships as the second object, even though the pointer to the
child stored in the first memory segment may be a 32-bit
pointer and the pointer in the second memory segment may be
a 64-bit pointer.

If the first program stores the data that represents the first
object contiguously in the first memory segment and the
second program stores the data that represents the second
object scattered throughout the second memory segment,
then the first object and the second object may be the same
object, even though the underlying data structure that repre-
sents the first object is stored differently than the underlying
data structure that represents the second object.

Or, for example, assume the first program is a first HTTP
browser; the second program is a second, different HTTP
browser; the first object may have an attribute, “id”; the sec-
ond object may have an attribute, “id”; the value for the “id”
attribute is “MyObject” for both the first object and the sec-
ond object is. In this situation, the underlying representation
of the first object in the first browser may be drastically
different than the underlying representation of the second
object in the second browser. However, the operations that
operate on the two objects may be programmatically identi-
cal. For example, the same JavaScript executed by the first
HTTP browser and the second HTTP browser may retrieve

US 9,270,647 B2

5

the first object maintained by the first HT'TP browser and the
second object, respectively: document.getElementByld
(“MyObject™).

Other factors that may result in a different underlying
representation of the same object may include the endianness
of a processor, amount of memory available, different appli-
cations, and/or any other different hardware and/or software
configurations.

“Data” may mean any data and/or instructions in electronic
digital memory.

An “attribute map” may be a map from one attribute name
and/or value to one or more other names and/or values. For
example, assume an object has an attribute, “id”, which
defines a unique identifier: “MyObject”. An attribute map
may associate “MyObject” with a different unique identifier,
such as “tcejbOyM”. Additionally, an attribute map may be
used to map a modified attribute name and/or value to an
original name and/or value. An attribute map may be an
operation, hash map, and/or any other method or associative
data structure.

A “DOM map” may be amap from a first DOM to a second,
different DOM. For example, a DOM map may be a collec-
tion of attribute maps. Each attribute map in the DOM map
may be an attribute map for an attribute of an object in a first
DOM with a medified attribute in a second DOM. Addition-
ally or alternatively, a DOM map may map one hierarchy to
another, different hierarchy, and back again. For example, a
DOM map may modify a relationship between a first object
and a second object, such that a first object is not related to a
second object in a first DOM, and the first object is a parent
object to the second object in the second DOM.

A “browser” may be one or more computer programs or
other software elements stored in electronic digital memory
and running on a computer that receives instructions from a
server computer, performs one or more of the received
instructions, causes to display content, provides a user inter-
face (“UI”) to receive user inputs, and/or receives and
responds to one or more inputs from a user based on or
according to the one or more performed instructions. A
browser and/or components of a browser may be imple-
mented into an application. For example, a browser and/or
components of a browser may be implemented into a mobile
application as part of a web view, and/or web view controller,
to send and/or receive data over HTTP and/or other protocol.
A user may use a browser to send data to a server computer.
The server computer may respond with additional instruc-
tions.

A “headless browser” may be a browser that does not cause
visually displaying or rendering graphical images of objects
that are defined in a set of received instructions according to
the received set of instructions. Additionally or alternatively,
a “headless browser” may be a browser that does not respond
to user inputs according to a set of received instructions.

“Sending and/or receiving data over HT'TP” may mean
sending and/or receiving data and/or instructions using
HyperText Transfer Protocol. Additionally or alternatively,
“sending and/or receiving data over HTTP” may mean send-
ing and/or receiving data and/or instructions using a subset of
the HTTP, such as secure HTTP (HTTPS). Additionally or
alternatively, one or more other protocols may be used, such
as SPDY.

A “web browser” may be a browser that receives instruc-
tions comprising HTML, CSS, and/or JavaScript over HT'TP
or some derivative thereof, such as HTTPS.

A “bot” may mean a computer and/or software executed by
a computer that automates sending and/or receiving data. For
example, a bot may be a web scraper, web crawler, automatic

10

20

30

40

45

55

6

web browser, and/or any other tool designed to submit and/or
receive data from one or more web servers. A bot may com-
prise complex logic designed to respond to datareceived from
one or more web servers.

2.0 GENERAL OVERVIEW

In an embodiment, performing one or more of the methods
discussed herein may prevent, and/or reduce the eftectiveness
of, one or more various attacks, such as a denial of service
(“DOS”) attack, credential stuffing, fake account creation,
ratings or results manipulation, man in the browser attacks,
reserving rival goods or services, scanning for vulnerabilities,
and/or exploitation of vulnerabilities. For example, if an
intermediary computer intercepts an improper request from a
visitor browser, such as a request that does not include one or
more identifiers that match one or more attribute map identi-
fiers, DOM map identifiers, and/or transaction identifiers,
then the intermediary computer need not reverse translate
and/or forward the improper request on to the targeted web
server computer. Thus, the targeted web server computer, or
an application running on the targeted web server computer,
need not be burdened with processing improper and/or mali-
cious requests that are part of an attack.

In an embodiment, after an intermediary computer inter-
cepts arequest with a particular identifier, based on arendered
set of instructions by the intermediary computer, the particu-
lar identifier may no longer be valid. Accordingly, if the same
visitor browser and/or a different visitor browser uses the
same particular identifier in an additional request, the inter-
mediary computer need not reverse translate and/or forward
the improper request to the targeted web server computer.
Thus, the targeted web server computer, or an application
running on the targeted web server computer, need not be
affected by one or more attacks, such as a DOS attack and/or
cross-site request forgery.

In an embodiment, each time a web page is requested, such
as an account creation page, order page, voting page, and/or
other page from a web server computer, the intermediary
computer may modify the identifiers in the returned page.
Thus, a bot may receive a different set of instructions after
each request and may not observe the same one or more field
identifiers twice. Without receiving the same one or more
identifiers, the bot may be incapable of determining what data
should be entered in and/or associated with each field to
create a fake account, order and/or reserve one or more goods
or services, vote, inject malicious SQL, and/or submit any
other malicious content.

In an embodiment, the DOM hierarchy, a portion of the
DOM hierarchy, and/or one or more particular identifiers are
modified each time a web page is requested. For example, a
container that stores the definition of a word or phrase may, in
the originally intercepted instructions, be in a particular spot
in the DOM hierarchy and/or include a particular identifier:
“definition”. However, the intermediary computer may
manipulate the DOM hierarchy and/or identifier each time the
page or a similar page is served. Thus, a bot may not be able
to determine which container holds the target content. Fur-
thermore, an automated vulnerability bot may not be able to
determine whether target content was inserted and/or
changed. For example, if a bot submits content designed to
employ SQL, HTML, JavaScript, and/or any other code injec-
tion, the bot may not be able to determine which container is
supposed to contain content generated by a successful attack.

In an embodiment, a bot, such as a website scraper may be
whitelisted. If the bot includes a particular password or other
code, then the intermediary computer may send the original

US 9,270,647 B2

7

instructions and/or a portion of the original instructions to the
bot. Thus, the intermediary computer may allow the autho-
rized bot to perform an automated task on an entire page
and/or a portion of the page. Otherwise, the intermediary
computer may use one or more of the methods discussed
herein.

In an embodiment, a method comprises intercepting, from
a server computet, a first set of instructions that define one or
more objects and one or more operations that are based, at
least in part, on the one or more objects; generating, in
memory, one or more data structures that correspond to the
one or more objects; performing the one or more operations
on the one or more data structures; updating the one or more
data structures, in response to performing the one or more
operations, to produce one or more updated data structures;
rendering a second set of instructions, which when executed
by a remote client computer cause the remote client computer
to generate the one or more updated data structures in
memory on the remote client computer, wherein the second
set of instructions are different than the first set of instruc-
tions; sending the second set of instructions to the remote
client computer.

In an embodiment, wherein each object of the one or more
objects includes an original identifier, the method comprises
generating a data structure, for each object of the one or more
objects, wherein the data structure corresponds to the object
and includes the original identifier included in the object;
updating the original identifier included in the data structure
for each object to produce a modified identifier and a modified
data structure of the one or more updated data structures.

In an embodiment, the method comprises storing a map-
ping between the modified identifier and the original identi-
fier for each object; intercepting, from the remote client com-
puter, arequest that includes one or more modified identifiers;
determining the original identifier for each modified identifier
included in the request; replacing each modified identifier in
the request with the original identifier to produce a modified
request; sending the modified request to the server computer.

In an embodiment, a method comprises intercepting, from
a web server computer, over HTTP, an original HTML docu-
ment, a set of original CSS codes, and a set of original Java-
Script codes that define one or more objects in an original
DOM and one or more operations that are based, at least in
part, on the one or more objects in the original DOM; gener-
ating one or more data structures that correspond with the one
or more objects in the original DOM; processing the set of
original CSS codes and the set of original JavaScript codes on
the one or more data structures; updating the one or more data
structures, in response to processing the set of original CSS
codes and the set of original JavaScript codes, to produce one
or more updated data structures; rendering a modified HTML
document, a set of modified CSS codes, and a set of modified
JavaScript codes, which when processed by a remote client
computer cause the remote client computer to generate the
one or more updated data structures in memory on the remote
client computer; wherein the modified HTML document
defines a modified DOM that is different than the original
DOM; wherein the modified HTML document, the set of
modified CSS codes, and the set of modified JavaScript codes
are different than the original HTML document, the set of
original CSS codes, and the set of original JavaScript codes;
generating a DOM mapping between the modified DOM and
the original DOM; storing the DOM mapping; sending the
modified HTML document, the set of modified CSS codes,
and the set of modified JavaScript codes to the remote client
computer; intercepting, from the remote client computer, a
request based on the modified DOM; translating the request

25

35

40

45

8

based, at least in part, on the DOM mapping to produce a
translated request based on the original DOM; sending the
translated request to the web server computer.

3.0 NETWORK TOPOLOGY

FIG. 1 illustrates functional units of a web browser, in an
example embodiment. FIG. 2 illustrates a system comprising
a server security and a re-rendering system, in an example
embodiment. Referring first to FIG. 2, system 200 includes
web infrastructure 205, visitor computer 299, intermediary
computer 230, and data storage 240, distributed across a
plurality of interconnected networks. While each of the com-
ponents listed above are illustrated as if running on a separate,
remote computer from each other, one or more of the com-
ponents listed above may be part of and/or executed on the
same computer. For example, HTTP intermediary computer
230, data storage 240, and/or web infrastructure 205 may be
executed on the same computer, local area, and/or wide area
network. Additionally or alternatively, intermediary com-
puter 230 is a proxy server for web infrastructure 205. Addi-
tionally or alternatively, intermediary computer 230 may be
in line between a router and web infrastructure 205, such that
all network data sent to, and/or sent from, web infrastructure
205 over one or more protocols may be intercepted by inter-
mediary computer 230.

3.1 Visitor Browser

Visitor browser 295 may be a browser that is executed on
visitor computer 299 and operated by a user using visitor
computer 299. For example, visitor browser 295 may be a
web browser. FIG. 1 illustrates a more detailed view of a web
browser, in an example embodiment. In this context, “visitor”
refers to any user who is using the computer 299 to contact,
communicate with or otherwise conceptually visit the web
infrastructure 205. Furthermore, visitor browser 295 may be
described with reference to browser 100 in FIG. 1, but using
the particular arrangement illustrated in FI1G. 1 is not required
in other embodiments.

Referring now to FIG. 1, browser 100 includes browser
backend 101, browser frontend 120, operating system (“OS”)
system application programming interface (“API”) layer 150,
and OS frontend API layer 160.

3.1.1 Browser Frontend

Browser frontend 120 comprises rendering engine 122,
interactivity module 124, and user interface 126. Each of the
components may cause, through OS frontend API layer 160,
one or more objects to be presented and/or updated visually
and/or audibly to a user using visitor computer 299.

Rendering engine 122 may determine how objects are pre-
sented to a user. For example, rendering engine 122 may
determine the color, shape, orientation, position, and/or any
other visual and/or audio attribute of an image, text field,
button, and/or any other object defined by a set of received
instructions. Furthermore, rendering engine 122 may cause a
button to be displayed on a monitor coupled to visitor com-
puter 299 through OS frontend API layer 160.

User interface 126 may determine what may be presented
to a user. For example, user interface 126 may determine that
a “submit” button should be hidden until data has been
entered in one or more text fields. After data has been entered
in the one or more text fields, user interface 126 may notify
rendering engine 122 to render the “submit™ button accord-
ingly.

Interactivity module 124 may receive one or more inputs
through OS Frontend APIlayer 160. For example, in response
to a user pressing a button on a mouse coupled to visitor
computer 299, the operating system running on visitor com-

US 9,270,647 B2

9

puter 299 may send a message to interactivity module 124,
through OS frontend API layer 160, to indicate that a user
pressed a button on a mouse. Interactivity module 124 may
determine that a user selected a particular button currently
presented on a monitor. Interactively module 124 may notify
user interface 126 and/or rendering engine 122 to update to
update the UT accordingly.

3.1.2 Browser Backend

Browser backend 101 comprises protocol module 102,
domain name server (“DNS”) module 104, local storage
module 106, image parser 108, CSS parser 110, HTML parser
112, JavaScript parser 114, extension execution environment
116, document object model (“DOM”) module 118, and Java-
Script execution environment 119. Other embodiments may
use other protocols, modules, and/or parsers. A browser that
includes a browser backend, but does not include a browser
frontend, may be a headless browser.

Protocol module 102, DNS module 104, and local storage
module 106 may send and/or receive data through OS System
API layer 150. For example, protocol module 102 may send
and/or receive data over any protocol, such as HTTP, to/from
intermediary computer 230 and/or web infrastructure 205
through OS system API layer 150. Data received through
protocol module 102 may reference data sources by one or
more domain names. DNS module 104 may resolve the one or
more domain names referenced by interfacing with one or
more remote domain name servers through OS system API
layer 150. Local storage module may store and/or recall data
from memory through OS system API layer 150.

Image parser 108, CSS Parser 110, HTML parser 112, and
JavaScript parser 114 may parse data received through pro-
tocol module 102. HTML parser 112 may parse HTML data.
CSS parser 110 may parse CSS data. JavaScript parser 114
may parse JavaScript data. Image parser 108 may parse image
data. Each parser may generate and/or update objects in a
DOM maintained by DOM module 118.

Browser backend 101 may comprise one or more program-
mable engines, such as extension execution environment 116
and JavaScript execution environment 119. Extensions may
be written one or more programming languages include Java-
Script, Python, Ruby, and/or any other language. Each pro-
grammable engine may have access to DOM module 118 and
may operate on one or more objects from a DOM maintained
by DOM module 118. For example, JavaScript execution
environment 119 may execute JavaScript parsed by JavaS-
cript parser 114 and in response, create, update, and/or delete
one or more objects managed by DOM module 118.

3.2 Web Infrastructure

Referring again to FIG. 2, web infrastructure 205 may be
one or more server computers that receive requests for data
from users, such as a user using visitor browser 295, through
intermediary computer 230. In response, web infrastructure
205 may send data to visitor browser 295, through interme-
diary computer 230. As illustrated in FIG. 2 the data sent from
web infrastructure 205 may include instructions: HTML,
JavaScript, and CSS 210.

FIG. 3 illustrates a web infrastructure in an example
embodiment. The web infrastructure 205 may be described
with reference to original web server computer 302 and third
party web server computers 306 in FIG. 3, but using the
particular arrangement illustrated in FIG. 3 is not required in
other embodiments.

Original web server computer 302 may be a server com-
puter that receives requests for data and responds with data.
For example, original web server computer 302 may be an
HTTP-based web server that receives HTTP requests and
responds with data comprising HTML, CSS, and/or JavaS-

10

15

20

25

30

35

40

45

50

55

60

65

10

cript instructions. Additionally or alternatively, original web
server computer 302 may respond with data that references
data on other server computers, such as third party web server
computers 306.

Third party web server computers 306 may be one or more
server computers that store additional data referenced by
instructions sent from original web server computer 302. For
example, data from original web server computer 302 may
include a reference to a JavaScript file stored on third party
web server computers 306. Accordingly, a browser backend,
such as a browser backend 101, may request the referenced
JavaScript file from third party web server computers 306.
Also for example, data from original web server computer
302 may include a reference to an image stored on third party
web server computers 306. Accordingly, a browser backend,
such as browser backend 101, may request the referenced
image from third party web server computers 306.

3.3 Intermediary

Returning now to FIG. 2, intermediary computer 230 may
intercept instructions sent from web infrastructure 205, gen-
erate new instructions, and send the new instructions to visitor
browser 295. For example, intermediary computer 230 may
intercept HTML,, JavaScript, and CSS 210, generate HTML,
JavaScript, and CSS 290 (which may be different than
HTML, JavaScript, and CSS 210), and send HTML, JavaS-
cript, and CSS 290 to visitor browser 295. Additionally, inter-
mediary computer 230 may intercept a request from visitor
browser 295, generate a new, modified request, and send the
new, modified request to web infrastructure 205.

In FIG. 2, intermediary computer 230 may be an HTTP
intermediary that intercepts and modifies HTML, JavaScript,
CSS, and HTTP requests for HTTP web browsers. However,
intermediary computer 230 may be an intermediary for any
other standard and/or proprietary protocol. Furthermore, each
of the components discussed, which intermediary computer
230 is comprised of, may be configured to perform any ofthe
processes and/or methods discussed herein for any standard
and/or proprietary protocol.

Intermediary computer 230 may be a server computer that
is located on the same network as web infrastructure 205.
Additionally or alternatively, intermediary computer 230
may be topologically located between a public-facing router
and web infrastructure 205. Accordingly, requests from visi-
tor browser 295 to web infrastructure 205 may be passed
through and/or modified by intermediary computer 230. Fur-
thermore, instructions from web infrastructure 205 to visitor
browser 295 may be passed through and/or modified by inter-
mediary computer 230. Additionally or alternatively, inter-
mediary computer 230 may be a proxy server and/or router.
Additionally or alternatively, intermediary computer 230
and/or components of intermediary computer 230 may be a
software layer, executed on one or more computers in web
infrastructure 205. Additionally or alternatively, intermediary
computer 230 may be a server computer that one or more
domain name servers list as a destination IP address. Accord-
ingly, intermediary computer 230 may receive requests sent
to the one or more domains from visitor browser 295. Based
on the domain name in a request, intermediary computer 230
may forward the request, or a modified request, to a server
computer in web infrastructure 205, such as original web
server computer 302.

FIG. 3 illustrates, among other things, a more detailed view
of intermediary computer 230, in an example embodiment.
The intermediary computer 230 may be described with ref-
erence to several components illustrated in FIG. 3 and dis-
cussed in detail below, but using the particular arrangement
illustrated in FIG. 3 is not required in other embodiments.

US 9,270,647 B2

11

Turning now to FIG. 3, intermediary computer 230 may com-
prise protocol client 332, browser backend 334, forward
translator 336, protocol handler 338, transaction store 340,
and reverse translator 342. In an embodiment, each of the
functional units of intermediary computer 230 may be imple-
mented using any of the techniques further described herein
in connection with FIG. 9; for example, the intermediary
computer may comprise a general-purpose computer config-
ured with one or more stored programs which when executed
cause performing the functions described herein for the inter-
mediary computer, or a special-purpose computer with digital
logic that is configured to execute the functions, or digital
logic that is used in other computing devices.

3.3.1 Protocol Client

Protocol client 332 may intercept data over any standard or
proprietary protocol. For example, protocol client 332 may
intercept data over HTTP. Accordingly, protocol client 332
may be communicatively coupled with web infrastructure
205, original web server computer 302, and third party web
server computers 306.

3.3.2 Browser Backend

Browser backend 334 may be an HTTP-based headless
browser similar to browser backend 101. Additionally or
alternatively, browser backend 334 may be a headless
browser based on one or more other standard and/or propri-
etary protocols.

Browser backend 334 may perform instructions inter-
cepted by protocol client 332. After performing the instruc-
tions, browser backend 334 may notify forward translator 336
to begin rendering instructions based on the objects created
by browser backend 334 that are currently in memory.
Accordingly, browser backend 334 and forward translator
336 may be communicatively coupled.

Browser backend 334 may make requests for additional
data. For example, if instructions received from Protocol
client 332 reference additional instructions stored on a third
party web server, browser backend 334 may request the addi-
tional instructions through protocol client 332. Accordingly,
browser backend 334 and protocol client 332 are communi-
catively coupled.

3.3.3 Forward Translator

Forward translator 336 may operate on the objects created
by browser backend 334 and generate one or more attribute
maps and/or DOM maps. Additionally or alternatively, for-
ward translator 336 may render a new set of instructions
based on the one or more objects and/or operations in
memory. Forward translator 336 may operate on objects and/
or render instructions based on one or more configurations
specified in configuration 232. Accordingly, forward transla-
tor 336 may be communicatively coupled to configuration
232. Forward translator 336 may send the rendered instruc-
tions to protocol handler 338. Accordingly, forward translator
336 may be communicatively coupled to protocol handler
338.

3.3.4 Protocol Handler

Protocol handler 338 may receive the instructions gener-
ated by forward translator 336 and send the generated instruc-
tions to visitor browser 195. Additionally or alternatively,
protocol handler 338 may intercept requests from visitor
browser 195 and forward the requests to transaction store 340.
Accordingly, protocol handler 338 may be communicatively
coupled to visitor browser 195, forward translator 336, and
transaction store 340.

3.3.5 Transaction Store

Transaction store 340 may receive requests intercepted by
protocol handler 338 from visitor browser 295. Transaction
store 340 may retrieve one or more attribute maps and/or

10

15

20

25

30

35

40

45

50

55

60

65

12

DOM maps, based on data in the request, and forward the
request with the retrieved one or more attribute maps and/or
DOM maps to reverse translator 342. Accordingly, transac-
tion store 340 may be communicatively coupled with reverse
translator 342.

3.3.6 Reverse Translator

Reverse translator 342 may translate requests intercepted
by protocol handler 338, which are based on instructions
generated by forward translator 336, into requests that would
have been generated by visitor browser 195 had visitor
browser 195 received the original instructions sent from
original web server computer 302. Reverse translator 342
may translate requests based on the one or more attribute
maps and/or DOM maps retrieved by transaction store 340.
Reverse translator 342 may send the translated request to
original web server computer 302 through protocol client
332. Accordingly, reverse translator 342 may be communica-
tively coupled with protocol client 332.

4.0 PROCESS OVERVIEW

In an embodiment, a data processing method may be con-
figured to intercept instructions from a server computer and
generate new, different instructions based on the intercepted
instructions. In an embodiment, a data processing method
may be configured for caching new instructions, intercepting
client requests to a server computer, translating the request to
produce a new request, and/or sending the new request to a
server computer. Various embodiments may use HT'TP and/or
specialized web-based instructions, such as HTML, CSS,
and/or JavaScript, and/or standard and/or proprietary proto-
col(s) and/or instructions.

4.1 Intercepting Instructions from a Content Server Com-
puter and Generating New Instructions

FIG. 5 illustrates a process for intercepting instructions for
a server computer, rendering new instructions, and sending
the new instructions to the intended client, in an example
embodiment. For purposes of illustrating a clear example,
FIG. 5 may be described with reference to FIG. 3 and FIG. 4,
but using the particular arrangements illustrated in FIG. 3 or
FIG. 4 are not required in other embodiments.

Turning now to step 510, in FIG. 5, an intermediary com-
puter intercepts a first set of instructions from a remote server
computer. For example, protocol client 332 may receive
instructions from original web server computer 302, in
response to a request from visitor browser 295. The instruc-
tions may comprise HTML, CSS, and/or JavaScript.

In step 520, the intermediary computer generates one or
more objects in memory based on the instructions. For
example, protocol client 332 may send the HTML, CSS,
and/or JavaScript to browser backend 334. Browser backend
334 may generate a DOM in memory containing objects
defined in the instructions. FIG. 4 illustrates objects and
operations stored in memory by browser backend 334, in an
example embodiment. HTML parser 412 may parse the
HTML received by browser backend 334. Based on the
parsed HTML, DOM module 418 may create DOM 450 and
objects in DOM 450: object 452 and object 454. Furthermore,
based on the parsed HTML, DOM module 418 may define
object 452 to be the parent object of object 454 in DOM 450.
Additionally, one or more objects in DOM 450 may comprise
one or more attributes based on the parsed HTML.

In step 530, the intermediary computer performs one or
more instructions which operate on the objects. For purposes
of illustrating a clear example, assume object 452 comprises
an attribute that is a unique identifier. Also assume one or
more CSS instructions identify object 452 by its unique iden-

US 9,270,647 B2

13

tifier and define one or more attributes to assign to, and/or
associate with, object 452. Accordingly, CSS parser 410 may
parse the CSS received by browser backend 334. DOM mod-
ule 418 may create and/or update other property information
430 to include the one or more attributes defined in the CSS
instructions. DOM module 418 may associate other property
information 430, and/or one or more attributes in other prop-
erty information 430, to object 452.

As an example, the JavaScript instructions define one or
more operations, which when performed operate on one or
more objects defined in the HTML instructions. One or more
JavaScript instructions may indicate that the one or more
operations may be performed after the objects defined in the
HTML instructions are loaded in memory and/or after the
CSS instructions have been performed without additional
user input. The JavaScript parser 414 may parse the JavaS-
cript received by browser backend 334. JavaScript execution
environment 419 may execute the one or more operations,
which operate on the one or more the objects, one or more
attributes of objects, and/or relationships between the objects
in DOM 450.

Instructions performed after the objects defined in the
HTML instructions are loaded in memory may drastically
change the DOM and/or the objects in the DOM. For
example, one or more JavaScript operations may change
object 452 to a different type of object. Also for example, one
or more JavaScript operations may create, update, and/or
delete object 452. Additionally or alternatively, one or more
JavaScript operations may create, update, and/or delete data
included and/or associated with object 452. Additionally or
alternatively, one or more JavaScript operations may create,
update, and/or remove associations between objects. For
example, one or more JavaScript operations may associate
object 452 with object 454, such that object 452 may become
aparent object of object 454, as illustrated by the dashed line
between object 452 and object 454.

In step 540, the intermediary computer associates one or
more operations with one or more objects. As an example, the
JavaScript instructions may define an operation, which when
performed, operate on one or more objects defined in DOM
450; the operation references object 454 by an identifier;
object 454 is the second child of object 452; object 454 is a
particular type of object, which is different than the other
objects that are children objects of object 452; and one or
more JavaScript instructions indicate that the operation may
be performed upon some event, such as a user selecting button
and/or entering an input.

JavaScript parser 414 may parse the JavaScript received by
browser backend 334, which defines the operation. JavaScript
parser 414, DOM module 418, and/or JavaScript execution
environment 419 may generate JavaScript engine state info
440 included in in-memory data structures 400. JavaScript
parser 414, DOM module 418, and/or JavaScript execution
environment 419 may generate a representation of the opera-
tion that references object 454 in JavaScript engine state info
440. The representation of the operation in JavaScript engine
state info 440 may include a cross reference to an identifier for
object454. Additionally or alternatively, the representation of
the operation in JavaScript engine state info 440 may include
a cross reference to an identifier for object 454 based on the
topology of object 454 in DOM 450: second child of object
452 and/or first child of object 452 that is the particular type,
which is a different type than the type(s) of other child objects
of object 452. JavaScript engine state info 440 may include
one or more other operations and/or representations of one or
more other operations.

20

25

35

40

45

50

55

60

65

14

In step 550, the intermediary computer modifies one or
more of the objects. For example, forward translator 336 may
create, update, and/or delete identifiers for one or more of the
objects in DOM 450, such as the names of the one or more
objects. Forward translator 336 may implement one or more
methods to modify identifiers, such as generating random
identifiers.

In step 560, the intermediary computer modifies one or
more operations associated with the modified objects. For
example, forward translator 336 may update the references in
JavaScript engine state info 440 to use the new identifiers
from step 550.

In step 570, the intermediary computer renders a second set
of instructions based on the current state of the objects and
operations. As discussed earlier, the originally received
instructions need not be HTML, CSS, and/or JavaScript
instructions. Furthermore, the rendered instructions need not
be HTML, CSS, and/or JavaScript instructions. However, for
purposes of illustrating a clear example, assume that the origi-
nally received instructions in step 510 comprise HTML, CSS,
and JavaScript instructions. Furthermore, assume that for-
ward translator 336 is configured to generate HTML, CSS,
and/or JavaScript instructions. The forward translator 336
may render instructions, which when executed, generate the
same objects and/or operations as currently existing in in-
memory data structures 400. However, the rendered instruc-
tions may comprise different HTML, CSS, and/or JavaScript
codes that the originally receive HTML, CSS, and JavaScript
instructions. For example, the rendered instructions may use
different identifiers for the objects defined in the rendered
instructions than the original instructions.

Additionally or alternatively, the original instructions may
comprise HTML, CSS, and/or JavaScript instructions and the
rendered instructions may have one or more of the object
attributes originally defined in the CSS instructions inte-
grated into the HTML instructions and/or the JavaScript
instructions. Accordingly, in an embodiment, the rendered
instructions may comprise HTML and JavaScript instruc-
tions, but not CSS instructions. However, the new, rendered
HTML and JavaScript instructions, when executed, may gen-
erate objects and/or operations that are the same as the objects
and/or operations in in-memory data structures 400 when the
new HTML and JavaScript instructions were rendered.

Additionally or alternatively, the rendered instructions
may comprise HTML and/or CSS instruction that define
fewer objects than defined in in-memory data structures 400.
However, the rendered JavaScript instructions may define
operations, which when executed generate objects that were
not defined in the rendered HTML and/or CSS instructions.
Therefore, the new, rendered HTML, CSS, and JavaScript
instructions, when executed, may generate objects and/or
operations that are the same as the objects and/or operations
in in-memory data structures 400 when the new instructions
were rendered.

Additionally or alternatively, the rendered instructions
may comprise one or more HTML documents, which com-
prise the original CSS instructions and/or JavaScript instruc-
tions embedded into the one or more HTML documents.
Accordingly, the new, rendered HTML instructions, when
executed, may generate objects and/or operations as currently
existing in in-memory data structures 400 when the new
HTML instructions were rendered.

Additionally or alternatively, the rendered CSS and/or
JavaScript instructions may reference objects by XPath com-
mands instead of by one or more unique identifiers, or vice
versa. XPath commands may be used to identify objects in a
DOM and/or hierarchy by the topology of the DOM and/or

US 9,270,647 B2

15
hierarchy. Accordingly, the new, rendered HTML, CSS, and
JavaScript instructions, when executed, may generate objects
and/or operations that are the same as the objects and/or
operations in in-memory data structures 400 when the new
instructions were rendered.

Additionally or alternatively, the rendered HTML instruc-
tions may define objects in in-memory data structures 400,
but without one or more attributes. However, the rendered
CSS instructions and/or JavaScript instructions may define
operations, which when executed, update the objects to
include the missing attributes. Accordingly, the new, rendered
HTML, CSS, and JavaScript instructions, when executed,
may generate objects and/or operations that are the same as
the objects and/or operations in in-memory data structures
400 when the new instructions were rendered.

Additionally or alternatively, the rendered HTML instruc-
tions may define the objects in in-memory data structures
400, but in a different hierarchy, such as the relationship
between object 452 and object 454 is not defined. However,
the rendered JavaScript instructions may define operations,
which when executed may update and/or re-organize the rela-
tionships between the objects such that object 452 is the
parent object of object 454.

Additionally or alternatively, the rendered instructions
need not comprise the same programming language(s),
scripting language(s), and/or data interchange format(s) as
the original instructions intercepted in step 510. For example,
the rendered instructions may comprise one or more other
standard and/or proprietary languages, formats, and/or codes
that are not included in the originally intercepted instructions:
Dynamic HTML, XML, eXtensible Stylesheet Language,
VBScript, Lua, YAML Ain’t Markup Language (“YAML”),
JavaScript Object Notation (“JSON™), shell script, Java,
Ruby, Python, and/or Lisp.

Additionally or alternatively, the rendered instructions
may reference the IP address and/or domain name of inter-
mediary computer 230. For example, a link defined in the
original instructions may include the IP address of original
web server computer 302. Accordingly, forward translator
may replace the IP address of original web server computer
302, with the address of intermediary computer 230. If a user
selects the link through a user interface (for example through
visitor browser 195), then a request may be sent to the IP
address of intermediary computer 230 instead of the IP
address of original web server computer 302.

Forward translator 336 may use configuration 232 to deter-
mine which method(s) to use to perform step 560 and/or step
570. Accordingly, one or more of the methods discussed
herein, alone or in combination, may be a polymorphic pro-
tocol defined in configuration 232. Additionally or alterna-
tively, configuration 232 may define which objects and/or
types of objects may be modified based on one or more of the
methods discussed herein. Additionally or alternatively, con-
figuration 232 may define which objects and/or or types of
objects need not be modified based on one or more of the
methods discussed herein. Configuration 232 may be a data-
base, a configuration file, and/or any other method of storing
preferences. Configuration 232 may store more than one con-
figuration for one or more web servers in web infrastructure
205. Intermediary computer 230 may select a configuration in
configuration 232 based on any number of factors. For
example, intermediary computer 230 may select a configura-
tion in configuration 232 based on a domain associated with
the server computer that the instructions were intercepted
from. Additionally or alternatively, intermediary computer
230 may select a configuration in configuration 232 based on
a random variable seeded by time. Additionally or alterna-

15

40

45

55

16

tively, intermediary computer 230 may select a configuration
in configuration 232 based on attributes and/or properties of
visitor browser 295. For example, intermediary computer 230
may select a configuration based on what types of instructions
visitor browser 295 is capable of interpreting and/or process-
ing.

In step 580, the intermediary computer sends the rendered,
second set of instructions to the remote client computer. For
example, forward translator 336 sends the rendered instruc-
tions to protocol handler 338. Protocol handler 338 sends the
rendered instructions to visitor browser 295, which was the
originally intended recipient of the data intercepted in step
510.

4.2 Caching Rendered Instructions

Intermediary computer 230 may render different instruc-
tions each time it receives instructions from web infrastruc-
ture 205 and/or original web server computer 302, regardless
of whether the intercepted instructions are the same as a
previous set of instructions. However, rendering instructions
may be processor and/or memory intensive and take a sub-
stantial amount of time. Accordingly, intermediary computer
230 may cache instructions rendered by intermediary com-
puter 230 in data storage 240. In response to receiving the
same instructions from web infrastructure 205 and/or original
web server computer 302, intermediary computer 230 may
send the rendered instructions already cached in data storage
240, instead of re-rendering the intercepted instructions.
While intermediary computer 230 may reduce its processing
load by sending cached, rendered instructions, bots may be
updated based on the cached, rendered instructions. Accord-
ingly, intermediary computer 230 may refresh the cached
instructions periodically and/or in response to one or more
conditions.

FIG. 6 illustrates a process for storing and refreshing ren-
dered instructions in response receiving the same original
instructions from a web server, in an example embodiment.
For purposes of illustrating a clear example, FIG. 6 may be
described with reference to FIG. 2 and FIG. 3, but using the
particular arrangements illustrated in FIG. 2 and/or FIG. 3 is
not required in other embodiments.

Turning now to step 610, in FIG. 6, subsequent to rendering
a set of instructions in response to intercepting an original set
of instructions, the intermediary computer may store the set
of instructions. Additionally, the intermediary computer may
store a timestamp. For example, forward translator 336 may
store a set of rendered instructions and a timestamp in data
storage 240. Additionally, intermediary computer 230, or a
component of therein, may store a key associated with the
stored, rendered set of instructions. The key may be based on
the original set of instructions received. For example, the key
may be based on a hashing algorithm using the original set of
instructions as a parameter. Also for example, the original set
of instructions may include the key.

In step 620, the intermediary computer intercepts a set of
instructions from the server computer and determines that the
cached, rendered set of instructions is based on the newly
intercepted instructions. For example, browser backend 334
may generate a new key based on the newly intercepted
instruction. Browser backend 334 may search the stored keys
for a matching key. For purposes of illustrating a clear
example, assume that browser backend 334 finds a matching
key stored from step 610.

Instep 630, the intermediary computer determines whether
one or more conditions trigger a new set of instructions to be
rendered. For example, the intermediary computer may deter-
mine that the time elapsed since the rendered instructions
were stored is greater than a threshold amount. Browser back-

US 9,270,647 B2

17

end 334 may compare a current timestamp, to the timestamp
stored in data storage 240 in step 610. In response to deter-
mining that the elapsed time is greater than a threshold, con-
trol proceeds to step 640; otherwise, control proceeds to step
650. Additionally or alternatively, the intermediary computer
may determine that a particular subset of the intercepted
instructions changed. In response to determining that the
particular subset of the instructions has changed, control may
proceed to step 640; otherwise, control may proceed to step
650. The conditions under which intermediary computer 230
may render a new, different set of instructions may be stored
in configuration 232.

In step 640, the intermediary computer generates a new set
of instructions that is different than the set of instructions
previously stored. For example, browser backend 334 and/or
forward translator 336 performs step 520 through step 580
and renders a new, different set of instructions. Control then
returns to step 610. For example, forward translator 336 may
store the new set of rendered instructions and a current times-
tamp in data storage 240. Browser backend 334 and/or for-
ward translator 336 may associate the stored key with the new
stored set of rendered instructions. Forward translator 336
may, but need not, generate a new key.

In step 650, the intermediary computer recalls and sends
the stored set of instructions to the intended client computer.
For example, browser backend 334 may instruct forward
translator 336 to send the previously stored set of rendered
instructions to the intended client computer: visitor browser
295.

4.3 Intercept a Request from a Client Computer and Trans-
late the Request into a New Request Based on a Stored Map-
ping

Intermediary computer 230 may intercept and modify
requests from a client computer based on one or more stored
attribute maps and/or DOM maps. FIG. 7 illustrates a process
for intercepting and modifying a request based on one or more
stored attribute maps and/or DOM maps, in an example
embodiment. For purposes of illustrating a clear example,
FIG. 7 may be described with reference to FI1G. 2 and/or FIG.
3, but using the particular arrangements illustrated in FIG. 2
and/or FIG. 3 are not required in other embodiments. Turning
now to step 710, in FI1G. 7, an intermediary computer modifies
identifiers of one or more objects defined in an intercepted,
original set of instructions. For purposes of illustrating a clear
example, assume that intermediary computer 230 intercepted
an original set of instructions from original web server com-
puter 302 to be sent to visitor browser 195; browser backend
334 generated in-memory data structures 400 based on the
original set of instructions; object 452 has an attribute that is
a unique identifier: “452”; and forward translator 336 trans-
lates an identifier of object 452 identifier to “ABC”.

In step 720, the intermediary computer stores one or more
mappings between the original identifiers and the modified
identifiers. Additionally or alternatively, forward translator
336 may store a transaction identifier. Forward translator 336
may associate the transaction identifier with each mapping.
The transaction identifier may be used to recall the mappings
associated with the set of original instructions and/or a ren-
dered set of instructions. The transaction identifier may be a
modified identifier, such as the identifier of a form object in
DOM 450. For purposes of illustrating a clear example,
assume that forward translator 336 stores a mapping between
“452” and “ABC”, in transaction store 340 and/or data stor-
age 240 and that forward translator 336 generates a transac-
tion identifier, “T1”, and associates the transaction identifier
“T1” with the mapping between “452” and “ABC”.

10

15

20

25

30

35

40

45

50

55

60

65

18

Accordingly, forward translator 336 may send the mapping
between “452” and “ABC” and the transaction identifier,
“T17, to transaction store 340. Additionally or alternatively,
forward translator 336 and/or transaction store 340 may store
the mapping and the transaction identifier in data storage 240.

In step 730, the intermediary computer sends the second set
of instructions with the modified identifiers to the remote
client computer. For purposes of illustrating a clear example,
assume forward translator 336 renders a second set of instruc-
tions based on the current state of the data structures and the
operations, using one or more of the methods discussed
herein. Accordingly, forward translator 336 may send the
rendered, second set of instructions to visitor browser 295
through protocol handler 338.

In step 740, the intermediary computer intercepts a request
from a remote client computer to a server computer with the
modified identifiers. For purposes of illustrating a clear
example, assume the following: Visitor browser 295 receives
the rendered, second set of instructions; visitor browser 295
executes the rendered, second set of instructions and gener-
ates the same objects in memory as were stored in in-memory
data structures 400 to render the second set of instructions;
visitor browser 295 generates a user interface based on the
objects in memory; a user using visitor browser 295, enters
data into a field with an identifier, ABC, and selects a “sub-
mit” button, through the user interface generated from the
rendered, second set of instructions; and visitor browser 295
sends a request to original web server computer 302 with the
identifier “ABC”, data associated with “ABC”, and the iden-
tifier “T1”.

Accordingly, intermediary computer 230 may intercept the
request. For example, protocol handler 338 may receive the
request. Protocol handler 338 may send the request to trans-
action store 340.

Additionally or alternatively, if a request is received for
which there is no stored attribute maps and/or DOM maps,
then the intermediary computer 230 may determine that the
request is not an authorized request to be sent to original web
server computer 302. Accordingly, the intermediary com-
puter may not forward the request to original web server
computer 302 for which the request was intended. Addition-
ally or alternatively, intermediary computer 230 may return
an error code, such as HTTP error 500, to the client computer
that made the request. Additionally or alternatively, interme-
diary computer 230 may return a success code, such as HTTP
error 200, to the client computer that made the request.

In step 750, the intermediary computer modifies the
request by replacing the modified identifiers with the original
identifiers based on the mapping. For example, based on the
identifier “T1”, transaction store 340 may recall the mapping
between “452” and “ABC”. Transaction store 340 may send
the request and the mapping between “452” and “ABC” to
reverse translator 342. Reverse translator 342 may modify the
request based on the mapping: reverse translator 342 may
associate the data associated with identifier “ABC” in the
request, with identifier “452” defined in the original set of
instructions. Additionally or alternatively, reverse translator
342 may modity the request causing a response to the modi-
fied request from original web server computer 302 to be sent
to and intercepted by intermediary computer 320, instead of
visitor browser 295.

In step 760, the intermediary computer sends a modified
request to the server computer. For example, reverse transla-
tor 342 may send the modified request to original web server
computer 302 through protocol client 332. Original web
server computer 302 may send a set of instructions in

US 9,270,647 B2

19

response to the received request to visitor browser 295, which
in turn may be intercepted by intermediary computer 230.

4.4 Methods for an HTTP-Based System

The processes and methods discussed herein may be used
for any protocol(s) and/or type(s) of instructions. However, to
illustrate a clear example of one or more of the methods
discussed above, FIG. 8 illustrates a process for intercepting
instructions and requests between an HTTP server and an
HTTP-based web browser over HTTP, in an example embodi-
ment. For purposes ofillustrating a clear example, FIG. 8 may
be described with reference to FIG. 2 and/or FIG. 3, but using
the particular arrangements illustrated in FIG. 2 and/or FI1G. 3
are not required in other embodiments. Turning now to step
805, in FIG. 8, an intermediary computer intercepts HTML,
CSS, and JavaScript from a web server computer over HTTP
to a remote client computer running a web browser. For
purposes of illustrating a clear example, assume the follow-
ing:

Original web server computer 302 hosts a website that
sends and receives content through HTTP.

Visitor computer 299 is a remote client computer that
executes visitor browser 295, which a web browser, that
receives and processes HTML, CSS, and/or JavaScript
instructions, and sends requests, over HTTP.

Visitor browser 295 generates a DOM maintained in
memory on visitor computer 299, based on the received
HTML, CSS, and/or JavaScript instructions.

Visitor browser causes a user interface to be displayed on a
monitor connected to visitor computer 299 based on the
DOM maintained in memory on visitor computer 299.

Intermediary computer 230 is an in-line computer between
original web server computer 302 and visitor computer 299,
such that all data sent and/or received between original web
server computer 302 and visitor computer 299 is sent and/or
received through intermediary computer 230.

Protocol client 332 is an HTTP protocol client.

Protocol handler 338 is an HTTP protocol handler.

Inresponse to a request for data from a user, through visitor
browser 295, original web server computer 302 sends a first
set of instructions comprising HTML, CSS, and JavaScript
instructions.

The HTML instructions comprise the following text:
<form 1d="452"><input type="“text” i1d="454” name=
“4547/></form>.

The CSS instructions comprise the following text:
#452{width: 52px;}.

The JavaScript instructions comprise a first function that
references the object with an identifier attribute of “454” and
sets the value of the object to a key “12345”.

The JavaScript instructions comprise an instruction that
causes the first function to be executed after each of the
objects defined in the HTML have been loaded, regardless of
user interaction.

The JavaScript instructions comprise a second function
that submits the value of the field identified as “454” to
original web server computer 302.

Accordingly, intermediary computer 230, through proto-
col client 332 may receive the HTML, CSS, and JavaScript
instructions intended to be sent to visitor computer 299. Pro-
tocol client 332 may send the HTML, CSS, and JavaScript
instructions to browser backend 334.

In step 810, the intermediary computer generates one or
more objects in memory from the intercepted HTML using a
browser backend. For purposes of illustrating a clear
example, assume browser backend 334 is a headless, HTTP,
web browser backend that process HTML, CSS, and/or Java-
Script instructions and generates objects in memory based on

20

30

35

40

45

55

20

the HTML, CSS, and JavaScript instructions received.
Accordingly, browser backend 334 may generate object 452,
which represents a form with the identifier “452” in DOM 450
stored in in-memory data structures 400, from the received
HTML instructions. Furthermore, browser backend 334 may
generate object 454, which represents an input with the iden-
tifier “454” which is a child of object 452, in DOM 450,
in-memory data structures 400 from the received HTML.

In step 815, the intermediary computer associates
attributes and operations defined in CSS and JavaScript
instructions with the data structures. For example, browser
backend 334 may generate other property information 430,
which comprises an attribute named “width”, with a value
“52px”. Browser backend 334 may associate the attribute
named “width” with object 452. Also for example, browser
backend 334 may generate JavaScript engine state info 440
which comprises a representation of the first operation and a
representation of the second operation. Browser backend 334
may associate first operation and the second operation with
object 454.

In step 820, the intermediary computer updates the data
structures based on one or more operations defined by the
received CSS and JavaScript instructions. For example,
browser backend 334 may store the attribute named “width”,
and the attribute’s value, in object 452. Also for example,
browser backend 334 may perform the first operation repre-
sented in JavaScript engine state info 440. Accordingly,
object 454 may include the value “12345”. Since no instruc-
tion indicates that the second operation should be executed
after the objects defined in the HTML are loaded, browser
backend 334 need not perform the second operation.

Since the CSS attribute name “width” has already been
integrated into the associated object, the attribute may be
deleted from other property information 430. Similarly, since
the first operation has already been performed, the represen-
tation of the first operation in JavaScript engine state info may
be deleted. However, for purposes of illustrating a clear
example, assume that attribute named “width” and the first
operation have not been deleted.

In step 825, the intermediary computer modifies one or
more objects and generates a DOM mapping. For example,
forward translator 336 may modify the identifier for object
452 to “ABC” and the identifier for object 454 to “DEF” to
produce a modified DOM. Accordingly, forward translator
336 may generate a mapping from the original DOM to the
modified DOM to produce a DOM mapping, which includes
two attribute mappings: “452” with “ABC”, and “454” with
“DEF”.

Forward translator 336 may select the new identifier,
“ABC”, to be the transaction identifier for the DOM mapping.
Forward translator 336 may select the identifier “ABC”
because it is the identifier of a form; accordingly, forward
translator 336 may associate all mappings of identifiers in the
form with the transaction identifier “ABC”: the mapping of
“452” with “ABC” and/or the mapping of “454” with “DEF”.
Additionally or alternatively, forward translator may generate
atransaction identifier for each form and/or link defined in the
original and/or modified DOM. Each mapping may be asso-
ciated with each transaction identifier. Additionally or alter-
natively, forward translator 336 may select an identifier for
any other reason as the transaction identifier. Additionally or
alternatively, forward translator 336 may generate a transac-
tion identifier that is not based on any identifier. Forward
translator 336 may store the DOM mapping in data storage
240 and/or transaction store 340.

In step 830, the intermediary computer renders new
HTML, CSS, and JavaScript instructions based on the current

US 9,270,647 B2

21

state of the objects in memory. For purposes of illustrating a
clear example, assume the following: The rendered HTML
comprises the following text: <form id="ABC”><input
type="“text” id="DEF” name=“DEF” wvalue="12345"/></
form>; the rendered CSS comprises the following text:
#ABC{width: 52px;}; the rendered JavaScript instructions
comprise an operation that submits the value of the field
identified as “DEF” to original web server computer 302.

In step 835, the intermediary computer sends the rendered,
new HTML, CSS, and JavaScript instructions to the remote
client computer. For example, forward translator 336 may
send visitor browser 295 the new HTML, CSS, and JavaScript
instructions rendered in step 830, through protocol handler
338, over HTTP. Upon executing the new HTML, CSS, and
JavaScript instructions, visitor browser 295 may generate the
same objects and/or operations in memory as existed in in-
memory data structures 400 when the new instructions were
rendered with the modified DOM.

In step 840, the intermediary computer intercepts a request
from the remote client computer based on the modified DOM.
For purposes of illustrating a clear example, assume the fol-
lowing: The user using visitor computer 299 input text into
visitor browser 295, which was associated with object DEF in
visitor computer’s memory; the user using visitor computer
299 selected a submit button, which caused visitor browser to
execute the operation defined by the rendered JavaScript
instructions, which submits a request that includes the value
of the field identified as “DEF”’, associated with the identifier
“DEF”; the submitted request includes that associates the
value of the field identified as “DEF” and/or the identifier
“DEF” with identifier “ABC”.

Accordingly, protocol handler 338 intercepts the request
and sends the request to transaction store 340. Transaction
store 340 may recall the DOM mapping associated with
“ABC” from transaction store 340 and/or data storage 240.
Transaction store 340 may send the DOM mapping and the
request to reverse translator 342.

In step 845, the intermediary computer translates the
request based on the DOM mapping to produce a new, trans-
lated request. For example, reverse translator 342 receives the
request and the DOM mapping. Reverse translator 342 trans-
lates the request into a new request based on the original
DOM, using the DOM mapping. Accordingly, the new
request may include the value from the received request asso-
ciated with the identifier “454”, instead of identifier “DEF”.
Additionally, the new request may include data associating
the value and/or the identifier “454” with the identifier “452”.
The new request may be the request visitor browser 295
would have sent in response to the same user input in step 840
had the original instructions, not the modified instructions,
been sent to visitor browser 295.

In step 850, the intermediary computer sends the translated
request to the web server computer. For example, reverse
translator 342 sends the translated, new request to original
web server computer 302 through protocol client 332.
Accordingly, original web server computer 302 may respond
to the new request and respond with HTML, CSS, and/or
JavaScript instruction, at which point intermediary computer
230 may revisit step 805.

5.0 HARDWARE OVERVIEW

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose com-
puting devices. The special-purpose computing devices may
be hard-wired to perform the techniques, or may include
digital electronic devices such as one or more application-

10

15

20

25

30

35

40

45

50

55

60

65

22

specific integrated circuits (ASICs) or field programmable
gate arrays (FPGAs) that are persistently programmed to
perform the techniques, or may include one or more general
purpose hardware processors programmed to perform the
techniques pursuant to program instructions in firmware,
memory, other storage, or a combination. Such special-pur-
pose computing devices may also combine custom hard-
wired logic, ASICs, or FPGAs with custom programming to
accomplish the techniques. The special-purpose computing
devices may be desktop computer systems, portable com-
puter systems, handheld devices, networking devices or any
other device that incorporates hard-wired and/or program
logic to implement the techniques.

For example, FIG. 9 is a block diagram that illustrates a
computer system 900 upon which an embodiment of the
invention may be implemented. Computer system 900
includes a bus 902 or other communication mechanism for
communicating information, and a hardware processor 904
coupled with bus 902 for processing information. Hardware
processor 904 may be, for example, a general purpose micro-
processor.

Computer system 900 also includes a main memory 906,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 902 for storing information and
instructions to be executed by processor 904. Main memory
906 also may be used for storing temporary variables or other
intermediate information during execution of instructions to
be executed by processor 904. Such instructions, when stored
in non-transitory storage media accessible to processor 904,
render computer system 900 into a special-purpose machine
that is customized to perform the operations specified in the
instructions.

Computer system 900 further includes a read only memory
(ROM) 908 or other static storage device coupled to bus 902
for storing static information and instructions for processor
904. A storage device 910, such as a magnetic disk or optical
disk, is provided and coupled to bus 902 for storing informa-
tion and instructions.

Computer system 900 may be coupled via bus 902 to a
display 912, such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 914, includ-
ing alphanumeric and other keys, is coupled to bus 902 for
communicating information and command selections to pro-
cessor 904. Another type of user input device is cursor control
916, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selec-
tions to processor 904 and for controlling cursor movement
ondisplay 912. This input device typically has two degrees of
freedom in two axes, a first axis (e.g., X) and a second axis
(e.g., y), that allows the device to specify positions in a plane.

Computer system 900 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic which
in combination with the computer system causes or programs
computer system 900 to be a special-purpose machine.
According to one embodiment, the techniques herein are
performed by computer system 900 in response to processor
904 executing one or more sequences of one or more instruc-
tions contained in main memory 906. Such instructions may
be read into main memory 906 from another storage medium,
such as storage device 910. Execution of the sequences of
instructions contained in main memory 906 causes processor
904 to perform the process steps described herein. In alterna-
tive embodiments, hard-wired circuitry may be used in place
of or in combination with software instructions.

The term “storage media” as used herein refers to any
non-transitory media that store data and/or instructions that

US 9,270,647 B2

23

cause a machine to operation in a specific fashion. Such
storage media may comprise non-volatile media and/or vola-
tile media. Non-volatile media includes, for example, optical
or magnetic disks, such as storage device 910. Volatile media
includes dynamic memory, such as main memory 906. Com-
mon forms of storage media include, for example, a floppy
disk, a flexible disk, hard disk, solid state drive, magnetic
tape, or any other magnetic data storage medium, a CD-ROM,
any other optical data storage medium, any physical medium
with patterns of holes, a RAM, a PROM, and EPROM, a
FLASH-EPROM, NVRAM, any other memory chip or car-
tridge.

Storage media is distinct from but may be used in conjunc-
tion with transmission media. Transmission media partici-
pates in transferring information between storage media. For
example, transmission media includes coaxial cables, copper
wire and fiber optics, including the wires that comprise bus
902. Transmission media can also take the form of acoustic or
light waves, such as those generated during radio-wave and
infra-red data communications.

Various forms of media may be involved in carrying one or
more sequences of one or more instructions to processor 904
for execution. For example, the instructions may initially be
carried on a magnetic disk or solid state drive of a remote
computer. The remote computer can load the instructions into
its dynamic memory and send the instructions over a tele-
phone line using a modem. A modem local to computer
system 900 can receive the data on the telephone line and use
an infra-red transmitter to convert the data to an infra-red
signal. Aninfra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data
on bus 902. Bus 902 carries the data to main memory 906,
from which processor 904 retrieves and executes the instruc-
tions. The instructions received by main memory 906 may
optionally be stored on storage device 910 either before or
after execution by processor 904.

Computer system 900 also includes a communication
interface 918 coupled to bus 902. Communication interface
918 provides a two-way data communication coupling to a
network link 920 that is connected to a local network 922. For
example, communication interface 918 may be an integrated
services digital network (ISDN) card, cable modem, satellite
modem, or a modem to provide a data communication con-
nection to a corresponding type of telephone line. As another
example, communication interface 918 may be a local area
network (LAN) card to provide a data communication con-
nection to a compatible LAN. Wireless links may also be
implemented. In any such implementation, communication
interface 918 sends and receives electrical, electromagnetic
or optical signals that carry digital data streams representing
various types of information.

Network link 920 typically provides data communication
through one or more networks to other data devices. For
example, network link 920 may provide a connection through
local network 922 to a host computer 924 or to data equip-
ment operated by an Internet Service Provider (ISP) 926. ISP
926 in turn provides data communication services through the
world wide packet data communication network now com-
monly referred to as the “Internet” 928. Local network 922
and Internet 928 both use electrical, electromagnetic or opti-
cal signals that carry digital data streams. The signals through
the various networks and the signals on network link 920 and
through communication interface 918, which carry the digital
data to and from computer system 900, are example forms of
transmission media.

Computer system 900 can send messages and receive data,
including program code, through the network(s), network

10

15

20

25

30

35

40

45

50

55

60

65

24

link 920 and communication interface 918. In the Internet
example, a server 930 might transmit a requested code for an
application program through Internet 928, ISP 926, local
network 922 and communication interface 918.

The received code may be executed by processor 904 as it
is received, and/or stored in storage device 910, or other
non-volatile storage for later execution.

6.0 OTHER ASPECTS OF DISCLOSURE

Using the networked computer arrangements, intermedi-
ary computer, and/or processing methods described herein,
security in client-server data processing may be significantly
increased. In particular, the use of browser programs becomes
significantly more secure. Forward translating and reverse
translating techniques herein effectively permit obfuscating
data field and/or container identifiers and DOM modification
for data that is financial, personal, or otherwise sensitive so
that attackers cannot determine which fields and/or contain-
ers in a web page include the sensitive data. Consequently,
one or more various attacks, such as a denial of service
(“DOS”) attack, credential stuffing, fake account creation,
ratings or results manipulation, man in the browser attacks,
reserving rival goods or services, scanning for vulnerabilities,
and/or exploitation of vulnerabilities, are frustrated because
all fields and/or containers appear to the attacker to be gib-
berish, or at least cannot be identified as indicating credit card
data, bank account numbers, personally identifying informa-
tion, confidential data, sensitive data, proprietary data, and/or
other data.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous specific
details that may vary from implementation to implementa-
tion. The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. The
sole and exclusive indicator of the scope of the invention, and
what is intended by the applicants to be the scope of the
invention, is the literal and equivalent scope of the set of
claims that issue from this application, in the specific form in
which such claims issue, including any subsequent correc-
tion.

What is claimed is:

1. A method comprising:

intercepting, from a server computer, a first set of instruc-

tions that define one or more objects;

executing, by a headless browser, the first set of instruc-

tions to produce one or more data structures in memory
that correspond to the one or more objects;

updating the one or more data structures based, at least in

part, on a configuration to produce one or more updated
data structures;

rendering a second set of instructions that are configured to

cause a remote client computer, when executed by the
remote client computer, to generate the one or more
updated data structures in memory on the remote client
computer, wherein the second set of instructions are
different than the first set of instructions;

sending the second set of instructions to the remote client

computer,

caching the second set of instructions;

intercepting a third set of instructions;

determining the first set of instructions and the third set of

instructions are equivalent;

in response to determining the first set of instructions and

the third set of instructions are equivalent;

sending the second set of instructions to a second remote

client computer;

US 9,270,647 B2

25

wherein the method is performed by one or more comput-
ing devices.

2. The method of claim 1 comprising:

selecting a particular data structure of the one or more data
structures based, at least in part, on the configuration;

updating the particular data structure.

3. The method of claim 1 comprising:

selecting a particular data structure of the one or more data
structures based, at least on part, on the configuration;

rendering the second set of instructions, which are config-
ured to cause the remote client computer, when executed
by the remote client computer, to generate the particular
data structure, which is not updated, in memory on the
remote client computer.

4. The method of claim 1 comprising:

determining to use one or more polymorphic operations
that implement a polymorphic protocol based, at least in
part, on the configuration;

performing the one or more polymorphic operations on the
one or more data structures to produce the one or more
updated data structures.

5. The method of claim 1, wherein each object of the one or

more objects includes an original identifier, and the method
comprising:

generating a data structure for each object of the one or
more objects, wherein the data structure corresponds to
the object and includes the original identifier included in
the object;

updating the original identifier included in the data struc-
ture for each object selected by the configuration to
produce a modified identifier and a modified data struc-
ture of the one or more updated data structures.

6. The method of claim 5 comprising:

storing mapping data that maps the modified identifier to
the original identifier for each object;

intercepting, from the remote client computer, a request
that includes one or more modified identifiers;

based on the mapping data, determining the original iden-
tifier for each modified identifier included in the request;

replacing each modified identifier in the request with the
original identifier to produce a modified request;

sending the modified request to the server computer.

7. The method of claim 1 comprising:

generating a data structure that corresponds to an object of
the one or more objects that includes an attribute,
wherein the object is identified in the configuration;

removing the attribute from the data structure to produce a
modified data structure;

generating a new operation, which when performed adds
the attribute to the modified data structure;

rendering one or more instructions that are configured to
cause the remote client computer to generate, when
executed by the remote client computer, the modified
data structure and subsequently performs the new opera-
tion, which adds the attribute to the modified data struc-
ture.

8. The method of claim 1, wherein the one or more updated

data structures define an updated plurality of objects in a first
hierarchy;

intercepting, from the server computer,

wherein rendering the second set of instructions com-
prises:

rendering a first document with instructions, which when
executed by the remote client computer cause the remote
client computer to generate the one or more updated data
structures that define the updated plurality of objects

10

15

20

25

30

35

40

45

50

55

65

26

associated with each other in a second hierarchy,
wherein the second hierarchy is different than the first
hierarchy; and

rendering a second document with instructions that are

configured to cause the remote client computer, when
executed by the remote client computer, to associate the
updated plurality of objects with each other according to
the first hierarchy;

wherein the second set of instructions comprises the first

document and the second document.

9. A method comprising:

intercepting, from a web server computer, over HTTP, an

original HTML document, a set of original Cascading
Style Sheets (CSS) codes, and a set of original JavaS-
cript codes that define one or more objects in an original
Document Object Model (DOM) and one or more opera-
tions that are based, at least in part, on the one or more
objects in the original DOM;

executing the original HTML document, the set of original

CSS codes, and the set of original JavaScript codes by a
headless browser to produce one or more data structures
in memory that correspond to the one or more objects in
the original DOM;

updating the one or more data structures based, at least in

part, on a configuration to produce one or more updated
data structures;
rendering a modified HTML document, a set of modified
CSS codes, and a set of modified JavaScript codes,
which are configured to cause a remote client computer,
when processed by the remote client computer, to gen-
erate the one or more updated data structures in memory
on the remote client computer;
wherein the modified HTML document defines a modified
DOM that is different than the original DOM;

wherein the modified HTML document, the set of modified
CSS codes, and the set of modified JavaScript codes are
different than the original HTML document, the set of
original CSS codes, and the set of original JavaScript
codes;

generating a DOM mapping between the modified DOM

and the original DOM;

storing the DOM mapping;

sending the modified HTML document, the set of modified

CSS codes, and the set of modified JavaScript codes to
the remote client computer;

intercepting, from the remote client computer, a request

based on the modified DOM;

translating the request based, at least in part, on the DOM

mapping to produce a translated request based on the
original DOM;

sending the translated request to the web server computer;

wherein the method is performed by one or more comput-

ing devices.

10. The method of claim 9, wherein the original HTML
document, the set of original CSS codes, and the set of origi-
nal JavaScript codes is generated by the web server computer
in response to receiving a first request, and the method com-
prises:

intercepting, from the web server computer, the original

HTML document, the set of original CSS codes, and the
set of original JavaScript codes in response to a second
request;

executing the original HTML document, the set of original

CSS codes, and the set of original JavaScript codes by
the headless browser to produce one or more new data
structures in memory that correspond to the one or more
objects in the original DOM;

US 9,270,647 B2

27

updating the one or more new data structures based, at least
in part, on the configuration to produce one or more new
updated data structures;

rendering a new modified HTML document, a set of new
modified CSS codes, and a set of new modified JavaS-
cript codes that are configured to cause the remote client
computer that sent the second request, when processed
by that remote client computer, to generate the one or
more new updated data structures in memory on the
remote client computer;

wherein the new modified HTML document defines a new
modified DOM that is different than the modified DOM
and the original DOM;

wherein the new modified HTML document, the set of new
modified CSS codes, and the set of new modified Java-
Script codes are different than the modified HTML
document, the set of modified CSS codes, and the set of
modified JavaScript codes;

wherein the new modified HTML document, the set of new
modified CSS codes, and the set of new modified Java-
Script codes are different than the original HTML docu-
ment, the set of original CSS codes, and the set of origi-
nal JavaScript codes;

generating a new DOM mapping between the new modi-
fied DOM and the original DOM;

storing the new DOM mapping;

sending the new modified HTML document, the set of new
modified CSS codes, and the set of new modified Java-
Script codes to the remote client computer that sent the
second request;

intercepting, from the remote client computer that sent the
second request, a new request based on the new modified
DOM,;

translating the new request based, at least in part, on the
new DOM mapping to produce a new translated request
based on the original DOM.

11. A computer system comprising:

a server computer configured to receive requests from a
browser executed on a remote client computer and to
send data to the browser in response to received requests;

an intermediary computer communicatively coupled the
server computer and comprising:

a memory;

a browser backend module configured to intercept, from
the server computer, a first set of instructions that define
one or more objects and to execute the first set of instruc-
tions to produce one or more data structures in the
memory that correspond to the one or more objects;

a forward translation module configured to update the one
or more data structures based, at least in part, on a
configuration to produce one or more updated data struc-
tures; to render a second set of instructions that are
configured to cause the remote client computer, when
executed by the remote client computer, to generate the
one or more updated data structures in memory on the
remote client computer, wherein the second set of
instructions are different than the first set of instructions;
to send the second set of instructions to the remote client
computer,

wherein the browser backend module is further configured
to: intercept a third set of instructions; to determine the
first set of instructions and the third set of instructions
are a same set of instructions;

wherein the forward translation module is further config-
ured to: cache the second set of instructions; in response
to determining the first set of instructions and the third
set of instructions are the same set of instructions, send-

5

10

15

20

35

40

45

50

55

60

65

28

ing the second set of instructions that is cached to a
second remote client computer.

12. The system of claim 11 wherein the forward translation
module is configured to select a particular data structure of the
one or more data structures based, at least in part, on the
configuration and to update the particular data structure.

13. The system of claim 11 wherein the forward translation
module is configured to select a particular data structure of the
one or more data structures based, at least on part, on the
configuration, and to render the second set of instructions that
are configured to cause the remote client computer, when
executed by the remote client computer, to generate the par-
ticular data structure, which is not updated, in memory on the
remote client computer.

14. The system of claim 11 wherein the forward translation
module is configured to determine to use one or more poly-
morphic operations, which implement a polymorphic proto-
col based, at least in part, on the configuration and to perform
the one or more polymorphic operations on the one or more
data structures to produce the one or more updated data struc-
tures.

15. The system of claim 11, wherein each object of the one
or more objects includes an original identifier;

wherein the browser backend module is configured to gen-

erate a data structure for each object of the one or more
objects, wherein the data structure corresponds to the
object and includes the original identifier included in the
object;

wherein the forward translation module is configured to

update the original identifier included in the data struc-
ture for each object selected by the configuration to
produce a modified identifier and a modified data struc-
ture of the one or more updated data structures.

16. The system of claim 15, comprising a transaction store
and a reverse translation module;

wherein the forward translation module is configured to

store, in the transaction store, a mapping between the
modified identifier and the original identifier for each
object;

wherein the reverse translation module is configured to

intercept, from the remote client computer, a request that
includes one or more modified identifiers; to determine
the original identifier for each modified identifier
included in the request; to replace each modified identi-
fier in the request with the original identifier to produce
a modified request; to send the modified request to the
server computer.

17. The system of claim 11, wherein an object of the one or
more objects includes an attribute;

wherein the browser backend module is configured to gen-

erate a data structure that corresponds to the object that
includes the attribute, wherein the object is identified in
the configuration;

wherein the forward translation module is configured to

remove the attribute from the data structure to produce a
modified data structure; to generate a new operation,
which when performed adds the attribute to the modified
data structure; to render one or more instructions, which
when executed by the remote client computer generates
the modified data structure and subsequently performs
the new operation, which adds the attribute to the modi-
fied data structure.

18. The system of claim 11,

wherein the one or more updated data structures define an

updated plurality of objects in a first hierarchy;
wherein the forward translation module is configured to
render a first document with instructions that are config-

US 9,270,647 B2

29

ured to cause the remote client computer, when executed
by the remote client computer, to generate the one or
more updated data structures that define the updated
plurality of objects associated with each other in a sec-
ond hierarchy, wherein the second hierarchy is different
than a first hierarchy; and to render a second document
with instructions, which when executed by the remote
client computer cause the remote client computer to
associate the updated plurality of objects with each other
according to the first hierarchy;

wherein the second set of instructions comprises the first
document and the second document.

19. A computer system comprising:

aweb server computer configured to receive requests from
a web browser executed on a first remote client com-
puter; to send HTML, Cascading Style Sheets (CSS),
and JavaScript codes over HTTP to the web browser in
response to received requests;

an intermediary computer communicatively coupled the
web server computer and comprising;

amemory;

a browser backend module configured to intercept, from
the web server computer, over HTTP, an original HTML
document, a set of original CSS codes, and a set of
original JavaScript codes that define one or more objects
in an original Document Object Model (DOM) and one
or more operations that are based, at least in part, on the
one or more objects in the original DOM; to execute the
original HTML document, the set of original CSS codes,
and the set of original JavaScript codes by a headless
browser to produce one or more data structures in
memory that correspond to the one or more objects in the
original DOM;

a forward translation module configured to update the one
or more data structures based, at least in part, on a
configuration to produce one or more updated data struc-
tures; to render a modified HTML document, a set of
modified CSS codes, and a set of modified JavaScript
codes, which when processed by a remote client com-
puter cause the remote client computer to generate the
one or more updated data structures in memory on the
remote client computer; to generate a DOM mapping
between a modified DOM and the original DOM; to
send the modified HTML document, the set of modified
CSS codes, and the set of modified JavaScript codes to
the first remote client computer;

wherein the modified HTML document defines the modi-
fied DOM, which is different than the original DOM;

wherein the modified HTML document, the set of modified
CSS codes, and the set of modified JavaScript codes are
different than the original HTML document, the set of
original CSS codes, and the set of original JavaScript
codes;

10

15

20

25

30

35

40

45

50

30

a transaction store configured to store the DOM mapping;

a reverse translation module configured to intercept, from
the remote client computer, a request based on the modi-
fied DOM; to translate the request based, at least in part,
on the DOM mapping to produce a translated request
based on the original DOM; to send the translated
request to the web server computer.

20. The computer system of claim 19, wherein the browser
backend module is configured to intercept, from the web
server computer, the original HTML document, the set of
original CSS codes, and the set of original JavaScript codes in
response to a second request; to execute the original HTML
document, the set of original CSS codes, and the set of origi-
nal JavaScript codes by the headless browser to produce one
or more new data structures in memory that correspond to the
one or more objects in the original DOM;

wherein the forward translation module is configured to

update the one or more new data structures based, at least
in part, on the configuration to produce one or more new
updated data structures; to render a new modified HTML
document, a set of new modified CSS codes, and a set of
new modified JavaScript codes, which when processed
by the remote client computer that sent the second
request cause the remote client computer to generate the
one or more new updated data structures in memory on
the remote client computer; to generate a new DOM
mapping between a new modified DOM and the original
DOM; to store the new DOM mapping in the transaction
store; to send the new modified HTML document, the set
of new modified CSS codes, and the set of new modified
JavaScript codes to the remote client computer that sent
the second request;

wherein the new modified HTML document defines the

new modified DOM as different than the modified DOM
and the original DOM;

wherein the new modified HTML document, the set of new

modified CSS codes, and the set of new modified Java-
Script codes are different than the modified HTML
document, the set of modified CSS codes, and the set of
modified JavaScript codes;

wherein the new modified HTML document, the set of new

modified CSS codes, and the set of new modified Java-
Script codes are different than the original HTML docu-
ment, the set of original CSS codes, and the set of origi-
nal JavaScript codes;

wherein the reverse translation module is configured to

intercept, from the remote client computer that sent the
second request, a new request based on the new modified
DOM; to translate the new request based, at least in part,
on the new DOM mapping to produce a new translated
request based on the original DOM.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,270,647 B2 Page 1of1
APPLICATION NO. : 14/099437

DATED : February 23, 2016

INVENTOR(S) : Justin Call

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the claims:

Claim 8, column 25, line 60, Delete “intercepting, from the server computer,”

Signed and Sealed this
Sixth Day of September, 2016

Dectatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

