US009473346B2

a2 United States Patent

Houghton et al.

US 9,473,346 B2
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

SYSTEM AND METHOD FOR NETWORK
PATH VALIDATION

Applicant: Firebind, Inc., Burlington, MA (US)

Inventors: Jerry A. Houghton, Townsend, MA
(US); David J. Patterson, Bedford,
MA (US)

Assignee: Firebind, Inc., Burlington, MA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 540 days.

Appl. No.: 13/721,295

Filed: Dec. 20, 2012

Prior Publication Data

US 2013/0185428 Al Jul. 18, 2013

Related U.S. Application Data

Provisional application No. 61/579,943, filed on Dec.
23, 2011.

Int. CL.

HO4L 12/24 (2006.01)

HO4L 12/26 (2006.01)

HO4L 29/14 (2006.01)

HO4L 29/06 (2006.01)

U.S. CL

CPC HO4L 41/00 (2013.01); HO4L 43/0811

(2013.01); HO4L 69/162 (2013.01); HO4L
69/40 (2013.01)
Field of Classification Search

CPC ... HOAL 69/40; HOAL 41/00; HO4L 43/0811;
HO4L 69/162
709/203, 223, 224, 225, 239; 710/38;
714/36

See application file for complete search history.

start instruction sent via port 80, 443

(56) References Cited
U.S. PATENT DOCUMENTS
5,751,698 A * 5/1998 Cushman H04Q 11/0478
370/252
6,195,352 B1* 2/2001 Cushman HO4L 43/0811
370/395.6
7,130,305 B2* 10/2006 Kuukankorpi ... HO4L 29/12009
370/392
7,146,642 B1* 12/2006 Magdych HO4L 63/1433
726/22
7,243,148 B2* 7/2007 Keircccoccovenenne GO2B 5/3083
709/224
(Continued)
FOREIGN PATENT DOCUMENTS
Jp 2012053683 A * 3/2012

OTHER PUBLICATIONS

Martin Krzywinski., Port Knocking: An introduction to how trusted
users can manipulate firewall rules to transmit information across
closed ports., from Linux™ Journal., Jun. 2003. http://www.
linuxjournal .com/article/6811?page=0,2.*

(Continued)

Primary Examiner — Kostas Katsikis
(74) Attorney, Agent, or Firm — Duquette Law Group,
LLC

(57) ABSTRACT

In a server device, a method for validating a network path in
a network includes receiving a listing of ports from a client
device, each port in the listing of ports associated with the
server device and receiving a request message from the
client device via a first identified port in the listing of ports.
The method includes, in response to receiving the request
message, opening a subsequent identified port in the listing
of ports for communication with the client device and,
following opening of the subsequent identified port in the
listing of ports, transmitting a response message to the client
device via the first identified port.

23 Claims, 10 Drawing Sheets

port st (N...M) /‘ 114

108

== cllent device results sent via port 80,

or other non-blocked 350
| ctent Device 100 et [317] | open and ston
302
start ackndwledgement echo request data =
(sent via reply on same forpo¢ N pattern open and fisten 374
port as skip instruction) on port N+1,
304 then send echo
vetify data pattern response
payload and record 308 305
result ﬁ;ro;ort N1 echo response echo request for port N+1 %
= for port N
i open and listen
308|321
verify data pattemn = on P°g£l+2, then
payload and record 310 send e ot
result for port N+1 echo response echo request for port M s
m for port N+1 send echo response
312 and record server
L verify data pattern 313 device results :
payload and record 315 314 V
rest;h hé po'rtshtll echo response 107 T)
an en1 rse e for port M s:;"upe:,:e
318 @—" Server Device 104 of events

@]

443 or other non-blacked port

US 9,473,346 B2

Page 2
(56) References Cited 2009/0069018 Al1* 3/2009 Babbar HO041. 67/322
455/445
U.S. PATENT DOCUMENTS 2009/0089868 Al* 42009 Sasaki HO04L 29/12509
726/7
7,519,954 BL* 4/2009 Beddoe ... HO4I. 63/1433 2009/0207726 Al* 82009 Thomson HO04L 12/437
709/224 370/216
7.664.845 B2* 2/2010 KUMZ oo GO02B 5/3083 2010/0070972 Al* 3/2010 Kumagai et al. 718/1
e 705/7.11 2011/0096828 Al* 4/2011 Chen HO4N 21/23106
7,735,140 B2* 6/2010 Datla ...ocoooeenr.eee. HO4L 63/1433 375/240.02
726/22 2012/0210433 Al 8/2012 Kovar et al.
7,904,553 BL* 3/2011 Ham ..cocoocvvcrrenn. HO4I. 41/147 2013/0166595 Al* 6/2013 Meketa et al. 707/783
709/217 2014/0025817 Al* 1/2014 Lauccocvvvvnennne, HO041 49/30
7,912,046 B2* 3/2011 Li oo, HO4L 29/12009 709/225
370/389
3k
8,135,823 B2 3/2012 Cole ...cooovevvnnenn G02B7(5)/93/g§i OTHER PUBLICATIONS
N .
g’gg?’ggg gg* liggig Erlgelman """""""""" G06F7g?gé2 http://www.merriam-webster.com/dictionary/subsequent.®
e 709/220 http://dictionary.reference.com/browse/subsequent?s=t.*
2004/0039938 Al* 2/2004 Katzetal.cooon... 713/201 “Description of the Portqry.exe Command-Line Utility,” Microsoft
2005/0044227 Al* 2/2005 Haughetal 709/226 Support (http://support.microsoft.com/default.aspx?scid=kb;en-
2005/0075842 Al* 4/2005 Ormazabal HO04L 23/21/41133 us;310099), Dec. 3, 2007, Microsoft, USA.
“Configuri MyFi 11 Test,” Visual S 1t (http://www.
2005/0188086 Al* 82005 Mighdoll .ooooooee..... GOGF 8/65 OINgUIINE a ¥y ‘re‘:r’j es o 9‘7“ E’areﬁ “pgi’l h(1p
709/225 m.yconnectlonserver.co support/v9/config_firewall html),
2006/0047824 Al* 3/2006 Bowler HOAL 63/0236 Visualware, USA.
709/229 “Netgauge Testing Methodology,” Ookla (https://support.ookla.
2006/0265506 Al* 11/2006 Merkh HO4L 69/163 com/entries/22992373-NetGauge-Testing-Methodology), Jan. 23,
_ 709/227 2013, Ookla, USA.
2006/0274726 Al* 12/2006 Wikman HO4L 22/7 1()2/222 Kreibich, Christian; Weaver, Nicholas; Nechaev, Boris; and Paxson,
Vern, “Measuring Access Connectivity Characteristics with
2007/0044156 Al* 2/2007 Redmanncc.... 726/25 o .
2007/0180126 Al* 82007 Merkh HO4L, 63/0227 Netalyzr, (https://www.nanog.org/meetings/nanog49/presenta-
"""""""" 709/227 tions/Wednesday/measuring access_ n49.pdf), Jun. 13, 2010, pp.
2008/0140836 Al* 6/2008 Miyawaki A63F 13/12 23, ICSA and UC Berkeley, USA.
709/225
2008/0320152 A1 12/2008 Padmanabhan et al. * cited by examiner

U.S. Patent Oct. 18, 2016 Sheet 1 of 10 US 9,473,346 B2

128

W i

i
Client Device 100 Server Device
- 104
1 _..~ Controller
Controller H / 105
101 !
| 10
L Network /O Network 1/O
Subsystem g p| Subsystem 112
103
T 102 18 106
Data
Storage
T 107
118

1] = FIG.1

U.S. Patent Oct. 18, 2016 Sheet 2 of 10 US 9,473,346 B2

startinsfruction POWJSt(N---M) FIG. 2B

~
201 | 217 203
<
FIG. 2A start acknowledgement
data
echo request pattern data pattern
for pc}KN p7yload payload
220 206
204 |219 =1 =
— \
FIG. 2C echo response for port N
. . FIG. 2D
skip instruction
226 |227 =2
/ skip acknowledgement
port number FIG. 2F
FIG. 2E
result data
229 | 230 [
— —1FIG. 2G

. e
client device result

US 9,473,346 B2

Sheet 3 of 10

Oct. 18, 2016

U.S. Patent

ccl

Sjusno JO

2Ju

anbas

jeijodwa

A\

R R RIS IR RO

0] 29lAeQ JOMS |g—

ozL| <01

(=]

1453
S}insal a0IA9p

JonI9s plodal pue
asuodsai oyod puss

60¢
asuodsai oyoe puss

usy} ‘z+N Hod uo
uajsi| pue uado

ZLE [« 0E

6i¢€

50¢
asuodsal

‘L +N uod uo

(328

&

0G¢

uajsy pue uado

zog
N Hod uo
uajsi| pue uado

pod pa)o0|g-Uou Jayo 1o i
‘08 Hod eIA Juas S)NSal 90IABp JUBID

\

801

¢ 'Old

8le

N Hod 1oy
mw:oawwh oyoa

| €2€

gLe |¥ee|—»

W vod Joj 1sanbai oyoa

L+N Hod lo}
mwcoawm: oyood

018|228 |

A.Illlll

1ze| g0t

M

L+N Hod oy} 3senbai oyos

N 3od .oy
mwcoawm: oyose

oyoe puss uayy [*—1|61¢

0ce

90¢)

¥0¢€

Emkma _yog 1o}

ejep 1ssnbaioyoe

(uononisu diys se pod
awes uo Ajdal eia Juas)
juswabpamQuyoe pejs

ole
1S9)] auijua pue
N Hod 1o} Jnsal
pJo23l pue peojAed
wiaped ejep AjlIoA

[
L+N pod Joj jnsal
pio2ai pue peojAed
uiened ejep AJuaA

L0€
N uod Joj Jnsal
p102al pue peojAed
wiapned ejep Auaa

00} someq jualD

" pod payoojg-uou Jauo 1o
Sy ‘08 HOd BIA JUSS UORONASUI HBYS

SJUSAS JO
aouanbas
[eiodwa |

US 9,473,346 B2

¥ "Old

}+N uod

Sheet 4 of 10

Oct. 18, 2016

— - 80l 1o} asuodsai oyoa
60¥ cly /

Z+N Hod uo _
uajsi| pue uado Oy —»
— <« 80V
101 <. (uonongsui dpys se pod

I+N Hod 10} }sanbai oyoa awies uo Aldai elA Jues)
So¥ Juswabpajmounoe dpjs
uogonsul %0
dnys 0} puodsai (o op E—
J+NHoduo [€
uajsi| pue uado (g /
yod yod paydo|g-uou Iayjo
paoolq piooas (e| 40 €V ‘08 Hod einjues
N Hod 1o} uonongsul diys N Hod Jo}
wwo:n\vo‘_ oyoa
- i X+ LO¥
N Hod uo oy o
Buuaysy toue
_ UOISSIWISUEL}
mo.>mMo _—m AISg 1o uooaUU0D

U.S. Patent

S

Hy

L+N pod Joy
}nsai plooal

10¥
3joA2 anunuoo

pebpamouoe
uaa(sey dnjs

€0¥
Jhoawipy
dAI1909) asuodsal
Jaye uononyjsul
diys anssli

001
2019 JUBIID

US 9,473,346 B2

Sheet 5 of 10

Oct. 18, 2016

U.S. Patent

SJUSAS JO
aouanbas
jelodwa |

&

116

Z+N nod uo
ua)sy| pue uado

201

105
uononAsul

diys o} puodsai (q
uod
pa)o0|q piooal (e

205
L+N Hod uo

uajsi| pue uado

¥0L
201N 19NI9S

L+N Hod
10} asuodsal oyoo

g OId

801

ols
A AN

ZIG—p

L+N Hod 1oj 1sanbal oyos

80§

1S

L+N Hod 10}
}nsal plodal

605
9joAo anuuod

psbpamowjoe
uaaqg sey dpys

«—| 90S]
yod paxoo|g-uou Jou}o
10 ¢¥¥ ‘08 Hod eIA Juss

N Hod 1o} uononisur dpjs

(uonongsui diys se pod
awes uo Aldai el Juas)

R wswabpapouyoe diys
cos[™1 X}
B 105 —
05
. loue

N

uoissiwsuen
1o uonoauuod

N Hod 1o} asuodsal oyosa

N uod 10} 1sonbal oyod

m

G0G
noswiy

aAI9231 asuodsal
laye uonanysul
dpjs anssi

001
90IA2Q JUSND

US 9,473,346 B2

Sheet 6 of 10

Oct. 18, 2016

U.S. Patent

SJUBAD JO
aouanbaes
jeJodwa

A

119
Z+N Hod uo
uajsij pue uado

101

109
uonongsul
dpjs o} puodsai (q
pod
pa)oo|q plooal (e

209
L +N Hod uo
uajsij pue uado

¥0l
=N ETgEYNETS

9 "'Old

}+N Hod
Jo} asuodsal oydd

ziol)l

019

\

}+N Hod Jof 3sanbal oyoa

——

(uononnisul dpys se pod
awles uo A|dal eIa Juss)
Juswabpappouyoe diys

809 >

——— 909
uod vmv_wo_o_-coc Iayjo

10 ¢H¥ ‘08 Hod eIA Juos
N }od 10} uongonnsui diys

N Hod 1o} asuodsal oydsd

/
€09

A.Illlll

1 ©

519| 109

peojAed uiaped eyep

\

peojfed uiened giep

N pod 10j 1sanbal oyos

T

€19

L+N Hod 1o}
}nsai piooal

609
ajoAo anuuo?

pabpamoujoe
uaaq sey dpjs

G609 noawn
9AI908) asuodsal

Jaye uononpsul
dnys anssi
¥09
asuodsal ul
peojAed weqed
ejep pajoadxaun

001
2019 JUalD

US 9,473,346 B2

Sheet 7 of 10

Oct. 18, 2016

U.S. Patent

Sjuans Jo
aousnbas
[ejodwa]

A

90IN0Q J3NISS
01

Gl6
s}insaJ aJIAap

JoMas plodal
pue |\ pod

906
N uod

€06

W ybnouuy
N sHod jje uo
uajsl| pue uado

N Hod loy 1senbai oyoo

__ gol— L 'Old
¢ 16
A bod Jo) asuodsal oyos
S)nNsal S2IA3p U1 \
916 —>
«——— VI6 —
154 19
/ 1+N Hod

1o} mw:O\n_mm_ oyoo

116

-

Sl

606

\

L+N Hod Joj }sonbai oyos

,

N Hod 10} asuodsal oyos

106

—

G06

P

\

N Hod 1o} }sanbai oyos

|

<

(N""N) 181 pod

juswabpamouyoe pels

06

>

206 106

/

uononnsul e)s

v

116
1S9}
alue pue

W uod 1o}
}insal plooal

Zl6
L+N Hod Joj
}nsal piooal

806
N Hod ioj
jjnsal p1oosl

00t
20IAS(] JUBIID

US 9,473,346 B2

Sheet 8 of 10

Oct. 18, 2016

U.S. Patent

SJUSAD JO
aousnbas
jesodwa |

4

P01 9oNe(JonIRG g

L0l

0col

1s1) yod ut spod
(D) 10 198 XBU UO
ua)s|| pue dn uado

pue (1-9+N) Hod

10} asuodsal
0|03 puss usay}

pue (L+D+N) pod

uo j3sonbal jdaooe

1ol
asuodsal puas

(1-0+N) Hod 1o}

}sanbal oyoo

S— 80F, 8 'Old
Gcol
- od 1o
Jod paydojg-uou Jayjo ﬁ%ﬁ%“ oy M
10 ¢H¥ ‘pg vod ela Juas \
S)iNsal AVIAIP JUBID —
¥eol —— |7zo1
ccol
A-Il'l
0L | giol }+N Hod
L101

10} wwp\oawwh oyos

S101 (103

——>»

€201
159 2iud pue
A Hod 1o} ynsal
piooal pue peojied
useed ejep Ajuaa

910l
L+N Hod 1o} }nsal
plodal pue peojAed
uiaped ejep AjLoA

oLol
N Hod 1o} jnsai
plooal pue peojied
wieped ejep AjoA

00l
a01Aa(] JUBYD

usyy “L+N Hod uo (g | ——— IT01
}sonbai 1daooe Lol N Hod Jo} asuodsal oyoa
N _
— od 1oj 1sanbai oyose —
1001 VN HOG 104 4 5007 | 800}
asuodsai —
puas uayj N pyod ¥ 9001 S001
uo 1sanbal ydeooe N Hod 10} juswabpamowoe pels
\] jsonbal /
<001 wianed ejep oyoo 001
N Hod 1e Buipels >
(D) suod sjdninu o
uajsi| pue uado — 1001
00l FAL 100l ~— T
(0)1unoo pod apfs — od paxoojg-uou JaLo
(W"N) 18] pod 1o ¢y ‘08 Hod BIA Juas uoRoNgsSUl LiesS

/3

US 9,473,346 B2

Sheet 9 of 10

Oct. 18, 2016

U.S. Patent

SJUBA? }0
aouanbas
jelodwa |

A

Hod pa)o0jg-uou I8Y10 10 Ch

¥0l ao1na(1oMIag | g

101

9Ll

asuodsal oyos puas
uay} ‘+d pod uo
uais|| pue uado

OLLL

asuodsal oyoa puas
usy ‘p+N pod uo
ua)si| pue uado

9011

‘09 Hod eiA Juss wa_:w@mw 9o .mwlollﬂ m 0_ u_
YA %"
d Hod 1o asuodsal oyod
oz _
8Ll LiLl >
bLL
viil N Hod Joj asuodsai oyos
d Hod 10} «w\mzcm: oyos /
ST biLL
[435% L >
B 601}
8oLl (0d) 1o}
/ juswabpamouoe Uels
N dod Joj 1sanbai oyos
0Ll —

asuodsal oyoa puas
uay} ‘q pod uo

usjsij pue uado ¢ oLt I (uoonysul dys se pod
awes uo Adal) (W °N) 1o}
\ juswabpameinjor pe)s
Z011 (0" d) 181 pod
N piod uo €OLL —p

uajsl| pue uado ¢

]
(W ""N) 18| pod

1011

00tL1

6LL1
d Hod 10} }jnsal

pi02a1 pue
peojAed waped

ejep AJusA

el

N Hod
104)jnsal

plooal pue
peojfed uwiayed
ejep AJUsA

001
201N IO

l./toﬁymv_oo_g-coc Yo

10 ¢¥¥ ‘08 Hod A Juas
uonoNIsul Je)s

S ¥l

US 9,473,346 B2

Sheet 10 of 10

Oct. 18, 2016

U.S. Patent

01 'Old

SIUBA® O | ——— sa1nag JonIag | 80—
sousnbas | YOI A geel
[eiodwa|
_ N Hod 1oy
701 Hod pajyoojg-uou 3# osuodsal oyos
A 18yjo 1o g
: ‘0g Hod eI
ocel juas synsal p7el S
vecel
N Hod io} asuocdsal 20IABp JUBIO zeel beel
puss pue ‘L+N .
Hod uo uals)| pue |
uado ‘N pod uo 6LEL | gl¢lL
L+N Hod 10}
3# 1senbaijdeooe w4 Z# osuodsal 0yoa
a Z Ho ._Ou_. N —‘ﬂ _\
ssuodssl 3%)senbas oyoss SIEl victL
puas usy) "
‘N Hod uo 1senbai |«
puooas jdaooe cle biel L# mﬂ:ﬂo“%ﬁ:em
" i
7051 N uod io} g# 1sanbai oyoo 5051 30c1L
asuodsal puss —>
uayy N Hod uo 90e; | SOEl Juswabpapouoe
}sanbal isiy 1daooe uels
/ N hod Joy 14 \.
wiayed ejep 3ssnbal cuos
gocl ') yocl
N pod uo i
ua)ls)| pue uado |g

\\\

(3) ajpAo Jad Junoo oyos

zocl| |togy| O0EH

/
(W"N) 181 od

£2¢l)

N Hod
lo} 3# ynsal
pl0d3ai1 pue

peojAed uiaped
ejep Auoa

oIk
N Hod Joj
jnsai puooes
plooal pue
peojAed waped
ejep Ajl1oA

oi€l
N Hod Joj Jnsal
154y plogsi pue
peojAed uiaped
ejep AJuaa

00l
aomaq a0

/Ha pe)20|g-uou 1ayjo

10 ¢ ‘08 Hod eIA Juss
uoponnsul yeys

/ﬂ

US 9,473,346 B2

1
SYSTEM AND METHOD FOR NETWORK
PATH VALIDATION

RELATED APPLICATIONS

This patent application is a continuation U.S. Provisional
Application No. 61/579,943, filed on Dec. 23, 2011, entitled,
“SYSTEM AND METHOD FOR NETWORK PATH VALI-
DATION,” the contents and teachings of which are hereby
incorporated by reference in their entirety.

BACKGROUND

With the rapid growth of the Internet as a public network,
users have found its cost effectiveness appealing and con-
tinue to deploy media intensive applications and organiza-
tional information. The result is a shift from static applica-
tions with sparse media content to rich interactive systems
with intensive use of media transmitted over various path-
ways over both public and private networks. The prolific
growth of media intensive network applications such as
Voice Over IP (VoIP) and video telepresence has driven the
interest in understanding why a network can or cannot
transmit data over a Transmission Control Protocol (TCP) or
User Datagram Protocol (UDP) port and hence the need for
network path verification.

Network access providers and operators continue to
address concerns of security, network management, and
bandwidth control by deploying intervening network
devices such as firewalls, content and bandwidth filters, and
other data restricting devices between end users of these rich
applications. Growth of residential network access devices,
such as broadband routers and media gateways, impose
transmission restrictions using user configurable and default
settings. It is not unusual in today’s business environment to
have blocked transmissions paths over commonly used
protocols and TCP/UDP ports. Utilizing a system for path
verification can reveal transmission restrictions in a network
and give insight into the mechanism and resolution for such
restrictions.

The end user of a path validation system needs to know
where data can be successfully transmitted and where it
cannot. This knowledge is typically obtained on an almost
continuous basis, rather than on a piecemeal approach, as
many rich applications utilize several protocols and ports
together and hence require verification to run in rapid
succession to both emulate actual application data and
exercise the decentralized nature of crossing global net-
works. An automated solution to path validation provides
detection of locations along the transmission path where
various restrictions may exist.

To be effective, a path validation system must utilize as
much network infrastructure as possible along the path
under validation. This approach requires transmission of
data from inside an operator’s own network along a path that
may involve multiple public or private networks to a target
endpoint and then back along the return path. This represents
a complete messaging cycle of send, receive, and reply. Any
failures along this path represent different failure modes and
yield higher understanding of the network path capabilities.

SUMMARY

One of the most common methods used to test whether a
given TCP port is blocked or not is to use the Telnet protocol.
For this approach to have any value, there must be some
application (e.g., layer 4 through 7, such as HTTP, SIP, etc.)

10

35

40

45

2

listening on the port(s) under test. The user initiates a Telnet
connection to the remote host over the chosen TCP port, and
if the connection is immediately refused (i.e. the Telnet
connection terminates immediately), it provides a strong
indication that the connection is blocked or filtered in some
way. If the Telnet connection attempt is successful, then,
depending on the application the user is connecting to, there
may be some identifying text that is returned to the user’s
screen.

Success of the Telnet method is highly dependent on the
listening application. For example, performing a Telnet
connection to a web server on TCP port 80 will generally
create a text based response from the HTTP server with
HTTP related traffic. However, this traffic could also be a
response by an intermediate proxy server type device and
the user could mistakenly believe they have connected all
the way through to their remote host when in fact they only
connected to a proxy server which is blocking their com-
munication with that remote host. Even if there is no
intermediary device blocking or filtering the TCP traffic on
the chosen port, the actual application listening on that port
might not provide any useful feedback to that Telnet con-
nection attempt (e.g. the application might be listening but
upon receiving an unexpected connection attempt from a
Telnet client it might immediately terminate the connection.)

The Telnet approach is therefore useful only in limited
circumstances where the listening application can provide a
clear indication that the user has in fact connected to the
remote host. This approach cannot classify how a given port
might be blocked and in the case of an intermediate proxy
server type device, can actually create a false positive
impression (e.g., where the user connects to the proxy device
but thinks he connected to the remote host.) Finally, the
Telnet method cannot be used with the UDP protocol.

Other port scanning mechanisms, such as MICROSOFT
PortQry, is similar to the Telnet method in that it provides for
a connection and transfer of TCP data. Additionally, PortQry
supports the UDP protocol which is an improvement upon
Telnet for primitive path test utility. However, like Telnet, it
is an origination only tool and cannot accept, listen, or reply
to path verification data sent to it. PortQry does however
provide an abbreviated specification of ports to connect
with.

Existing attempts to verify data transmission over a
network involve laborious and manual instrumentation of
both the origin and endpoint of the network path. For
example, a network administrator could manually install a
machine in a remote location across the network requiring
verification, and then locally install a machine to originate
data transfer from. The administrator would then need to
establish a listener on a particular TCP or UDP port on the
remote server and then send data from the local machine
across the network and then have the remote machine
respond in kind. The setup of such an apparatus requires the
manual plumbing of various generalized components to play
parts of listener, transmitter, receiver, reply function,
reporter, and analyzer. This procedure would be required for
each and every TCP or UDP port to be verified. Additionally,
if port specific payloads are desired then these must be
handcrafted and inserted into the transmission step for each
data transfer. Also, the use of an extrinsic network analyzer
would be required to perform verification and nature of any
failure condition. For example, MICROSOFT PortQry and
netcat can be employed in this capacity. However, both of
these tools require manual installation and configuration.

By contrast to conventional testing mechanisms, embodi-
ments of the innovation relate generally to a system and

US 9,473,346 B2

3

method for network path validation and more specifically to
both a sequenced and automated data transmission over a
network path as defined by a nexus of Internet protocol (IP)
addresses and TCP or UDP port numbers. During operation,
a remote network device can be unreachable for several
reasons, including network discontinuities, intervening,
blocking, or filtering devices or origin-based network defi-
ciencies. These conditions are exercised by embodiments of
the innovation and their corresponding failure or success
conditions recorded for administrative or resolution pur-
poses. For example, during a connection attempt, the client
device may receive notification of a TCP handshake failure
even with prior knowledge of a corresponding listener in
place across the network on the same TCP port. With
embodiments of the innovation, the failure condition can be
narrowed to a smaller set of causes that are within the client
device’s network side, such as a TCP RST message during
connection attempt

In one arrangement, a client device or a server device can
provide origination, acceptance, and transfer of both TCP
and UDP data using a signaling algorithm. The client or
server device can be configured to provide both solicited
verification and mass scale verification across many network
paths concurrently due to data acceptance, or a silent drop of
the sent SYN message or drop of the returning SYN or ACK
messages.

Additionally, embodiments of the innovation provide for
verification of multiple sequenced TCP or UDP network
paths. In one arrangement, this is made possible by the
transmission of a session or port specific payload during the
send operation. This session or port specific payload causes
the as-configured server device to open and listen on the next
port in sequence before replying to the original data trans-
mission. This operation continues iteratively over a specified
set of TCP or UDP ports until either the set has been
exhausted or an unrecoverable error has been encountered.

With such a configuration, the system can provide noti-
fication of the exact nature of any failure condition between
the client device and the server device that may occur at any
step during the operation. The information about the nature
of failures provides detailed knowledge of the underlying
network conditions leading to the failure, which, in turn, can
lead to identification of precise resolutions and remedies by
operators, administrators, or other stakeholders with interest
in the success of path verification. Additionally, the auto-
mated verification of a TCP or UDP network pathway in a
network minimizes or prevents the potential for human-
induced errors.

In one arrangement, a server device is configured to
perform a method for validating a network path in a net-
work. The method includes receiving, by the server device,
a listing of ports from a client device, each port in the listing
of ports associated with the server device. The method
includes receiving, by the server device, a request message
from the client device via a first identified port in the listing
of ports. The method includes, in response to receiving the
request message, opening, by the server device, a subse-
quent identified port in the listing of ports for communica-
tion with the client device. The method includes following
opening of the subsequent identified port in the listing of
ports, transmitting, by the server device, a response message
to the client device via the first identified port.

In one arrangement, a client device is configured to
perform a method for validating a network path in a net-
work. The method includes transmitting, by the client
device, a listing of ports to a server device, each port in the
listing of ports associated with the server device. The

25

40

45

50

55

4

method includes transmitting, by the client device, a request
message to the server device via a first identified port in the
listing of ports. The method includes, in the absence of a
response message from the server device, transmitting, by
the client device, a skip instruction message to the server
device on a non-blocked port associated with the server
device, the skip instruction message configured to cause the
server device to open a subsequent identified port in the
listing of ports for communication with the client device.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
will be apparent from the following description of particular
embodiments of the innovation, as illustrated in the accom-
panying drawings in which like reference characters refer to
the same parts throughout the different views. The drawings
are not necessarily to scale, emphasis instead being placed
upon illustrating the principles of various embodiments of
the innovation.

FIG. 1 is a schematic representation illustrating the path
verification system, according to one arrangement.

FIG. 2A illustrates a start instruction, according to one
arrangement.

FIG. 2B illustrates a start acknowledgement, according to
one arrangement.

FIG. 2C illustrates an echo request, according to one
arrangement.

FIG. 2D illustrates an echo response, according to one
arrangement.

FIG. 2E illustrates a skip instruction, according to one
arrangement.

FIG. 2F illustrates a skip acknowledgement, according to
one arrangement.

FIG. 2G illustrates a device result, according to one
arrangement.

FIG. 3 illustrates a sequence of path verification opera-
tions, according to one arrangement.

FIG. 4 illustrates a sequence of operations corresponding
to the detection and verification of an outbound connection
or transmission error condition, according to one arrange-
ment.

FIG. 5 illustrates a sequence of operations corresponding
to the detection and verification of an inbound connection or
transmission error condition, according to one arrangement

FIG. 6 depicts the operational sequence corresponding to
a payload mismatch error condition, according to one
arrangement.

FIG. 7 is an alternative embodiment main sequence of
path verification operations, according to one arrangement.

FIG. 8 illustrates a sequence of operations corresponding
to performance of a specified number of port echoes before
advancing in port list, according to one arrangement.

FIG. 9 illustrates a sequence of operations corresponding
to the client device performing concurrent port list echo
processing, according to one arrangement.

FIG. 10 illustrates a sequence of operations corresponding
to performance of repeated echoes on the same port before
advancing in port list, according to one arrangement.

DETAILED DESCRIPTION

Embodiments of the innovation are directed to techniques
for analysis of per-port path connectivity across a network.
For example, a system includes a client device and a server
device that communicate via a network. The client device
includes a controller that is configured to perform orches-
trated connectivity analysis upon a set of one or more ports.

US 9,473,346 B2

5

The client device also includes a network I/O subsystem
configured to perform network communications over a con-
nection such as a TCP or UDP connection on behalf of the
client controller. The client device is configured to originate
data transfer to the server device across a network and
perform both transmission and reception of data over the
network to and from the server.

The server device includes a server controller, a network
1/O subsystem and a data storage subsystem. The server
controller is configured to perform orchestrated connectivity
analysis on behalf of a client device and upon reception of
data transmission from a client device. The server network
1/0 system is configured to perform network communica-
tions over a TCP or UDP connection on behalf of the server
controller. The server data storage subsystem is configured
to maintain a historical record of all analysis activity per-
formed by the server device.

FIG. 1 illustrates an arrangement of a network path
validation system 114. The system 114 includes a client
device 100 connected via a network 108 to a server device
104. The network 108 is configured as any arrangement of
a computer network model (e.g., a local area network, the
Internet, a wireless network) and can contain any number of
computerized network communications equipment such as
routers, switches, and firewalls.

The client device 100 includes a controller 101 and a
network /O subsystem 102 (e.g., an Ethernet network
interface card) that are configured to communicate via an
electrically coupled communications bus 103. While the
controller 101 can be configured in a variety of ways, in one
arrangement the controller 101 includes a memory and
processor disposed in electrical communication with each
other. The network 1/O subsystem 102 is configured for
transmission and reception of data over network 108 and
performs these operations on behalf of the controller 101.

The server device 104 includes a controller 105, network
1/0 subsystem 106 and data storage 107 that are all electri-
cally coupled to each other via communications bus 112.
The network I/O subsystem 106 (e.g. an Ethernet network
interface card) performs transmission and reception of data
over network 108 on behalf of controller 105. The data
storage 107 (e.g. a configuration of magnetic disk drives or
random access memory) performs persistent long term stor-
age of data on behalf of controller 105. The controller 105
is configured to open a TCP or UDP socket to listen on any
port or collection of ports utilizing network I/O subsystem
106. Once open, these sockets (on their associated ports) are
configured to listen for connections 109 initiated by a client
device 100 over network 108. Once the client device com-
pletes a connection 109 the client device controller 101 is
configured to send and receive data 110 to the server device
controller 105. The server controller 105 is configured to
open any number of sockets on any TCP or UDP ports and
in any arbitrary sequence required by the client device
controller 101. The server controller 105 may at its discre-
tion maintain a maximum number of simultaneous open
sockets and ports as determined by the practical capabilities
of the network 1/O subsystem 106. In the event that a
previously unopened socket/port combination is required to
be open, then an existing open socket/port combination may
be closed. The determination of which socket or port to close
in this case is determined by a useful algorithm, (e.g. using
a least recently used approach).

The client controller 101 is configured to transmit and
receive data 110 to and from the server controller 105. The
server controller 105 is configured to receive and transmit

25

30

40

45

50

6

data 110 from and to the client controller 101. The trans-
mission and reception of data 110 over network 108 occurs
over a TCP or UDP port 111 that is specified in the protocol
header of the data packet. The client controller 101 is
instrumented to instruct the network I/O subsystem 102 to
establish TCP or UDP connections 109 to the server network
/O subsystem 106 and perform data transmission and
reception on any valid TCP or UDP port (e.g. port numbers
1 through 65535).

In one arrangement, the client controller 101 stores a
client side port verification application that, when executed
by the controller 101, causes the controller 101 to perform
the operations of transmitting and receiving communication,
such as echo request messages, echo response messages, and
skip instruction messages, relative to the server device 104
in the network 108. The client side port verification appli-
cation installs on the client controller 101 from a computer
program product 118. In certain arrangements, the computer
program product 118 is available in a standard off-the-shelf
form such as a shrink wrap package (e.g., CD-ROMs,
diskettes, tapes, or flash drives). In other arrangements, the
computer program product 118 is available in a different
form (e.g., propagated signals, a network installation, or
downloadable online media). In still other arrangements, the
computer program product 118 is part of a storage medium
contained within the client controller 101 as part of a
memory from which such software may be loaded.

In one arrangement, the server controller 105 stores a
server side port verification application that, when executed
by the controller 105, causes the controller 105 to perform
the operations of opening and closing ports listed as part of
a port list received from the client device 100. The server
side port verification application installs on the server con-
troller 105 from a computer program product 128. In certain
arrangements, the computer program product 128 is avail-
able in a standard off-the-shelf form such as a shrink wrap
package (e.g., CD-ROMs, diskettes, tapes, or flash drives).
In other arrangements, the computer program product 128 is
available in a different form (e.g., propagated signals, a
network installation, or downloadable online media). In still
other arrangements, the computer program product 128 is
part of a storage medium contained within the server con-
troller 105 as part of a memory from which such software
may be loaded.

Data 110 is transmitted in both directions between client
network I/O subsystem 102 and server network /O subsys-
tem 106. This data 110 is structured to form one of several
message blocks integral to the operation of the validation
system 114.

The network I/O subsystem 102 on behalf of the client
controller 101 is operable to create TCP connections or UDP
sessions with the network I/O subsystem 106 to initiate
communication with the server controller 105 over any port
available in the TCP or UDP protocol (e.g. a port numbering
1 through 65535).

FIGS. 2A through 2G illustrate several message blocks
passed over network 108 between the client device 100 and
server device 104. Each message is a uniquely arranged data
pattern electrically coupled to the network 108 by a network
1/O subsystem (FIG. 1 references 102 or 106). These data
patterns identify the message as either a start instruction 201
(FIG. 2A), start acknowledgement 203 (FIG. 2B), echo
request 204 (FIG. 2C), echo response 206 (FIG. 2D), skip
instruction 226 (FIG. 2E), skip acknowledgement 228 (FIG.
2F), or client device result 229 (FIG. 2G).

A start instruction 201, as shown in FIG. 2A is a message
containing a port list 217 that includes a list of one or more

US 9,473,346 B2

7

TCP or UDP ports, indicated as starting with port N and
ending in port M (i.e. a range of TCP or UDP ports
numbering N through M). The client device 100 is config-
ured to transmit the start instruction 201 to the server device
104 via the network 108.

A start acknowledgement 203, as shown in FIG. 2B, is a
message indicating the successful receipt of a start instruc-
tion 201. The server device 104 is configured to transmit the
start acknowledgement 203 to the client device 100 via the
network 108.

An echo request 204, as shown in FIG. 2C, is a message
indicative of a solicitation for an echo response. The client
device 100 is configured to transmit an echo request 204 to
the server device 104 via network 108 over a specified TCP
or UDP port number (e.g. 1-65535). The echo request 204
contains an arrangement of bytes that is configured by the
client device 100 controller 101 to represent a specific data
pattern or payload 219. This data pattern payload corre-
sponds either to a byte arrangement unique to the port the
echo request is transmitted over or alternatively, to a byte
arrangement unique to the port list 217 as specified in start
instruction 201.

When the data pattern payload 219 is arranged uniquely
to the port number, the structure of the payload 219 corre-
sponds to a specific network protocol associated with the
port number. This network protocol and port number binding
is specified according to, but not limited by, the Internet
Assigned Numbers Authority (IANA). For example when
dealing with an echo request 204 over TCP port 5060, the
associated data pattern payload 219 is structured to represent
Session Initiation Protocol (SIP) data. When sent over TCP
port 25 the data pattern payload 219 is structured to repre-
sent Simple Mail Transfer Protocol (SMTP) data. When sent
over UDP port 123 the data pattern payload 219 is structured
to represent Network Time Protocol (NTP) data.

When structured as a byte arrangement unique to the port
list 217 the data pattern payload 219 is represented by a
derivative value of the port list 217. For example it could be
represented by the arithmetic sum of the port numbers in
port list 217 or as a globally unique resource identifier
(GUID) as determined by the server device 104 controller
105.

An echo response 206, as shown in FIG. 2D, is a message
indicative of a reply to a previously transmitted echo request
204. The server device 104 is configured to transmit an echo
response 206 to the client device 100 via network 108 over
a specified TCP or UDP port number (e.g. 1-65535). The
echo response 206 contains an arrangement of bytes struc-
tured as data pattern payload 220 that is configured by the
server device 104 controller 105 to represent either a deri-
vation or transformation of the original data pattern payload
219 contained within the corresponding echo request 204 or
exactly the same data pattern as transmitted in echo request
204 (i.e. an echo of the data pattern).

In one arrangement, when the echo request 204 data
pattern payload 219 is structured to represent a port unique
data pattern (such as a port-specific network protocol for-
mat) the corresponding echo response 206 data pattern
payload 220 is also structured to represent the same port
unique network protocol.

As mentioned, the echo response 206 data pattern payload
220 can also be structured to represent the same value as
transmitted in the data pattern payload 219 of the associated
echo request 204.

Also, as illustrated in FIG. 2E, a skip instruction 226 is a
message indicative of a request to skip the validation pro-
cessing operations associated with a specific single port

10

15

20

25

30

35

40

45

50

55

60

65

8

number 227. For example, the client device 100 is config-
ured to transmit a skip instruction 226 to the server device
104 via network 108. The skip instruction 226 contains a
data pattern indicative of the port number 227 to skip during
echo processing operation.

As shown in FIG. 2F, a skip acknowledgement 228 is a
message indicative of the receipt of a skip instruction 226.
The server device 104 is configured to transmit the skip
acknowledgement 228 to the client device 100 via network
108.

As indicated in FIG. 2G, the client device result 229 is a
message containing the entire results of a completed port list
validation operation. The client device 100 is configured to
transmit the client device result 229 to the server device 104
over network 108. The client device result 229 contains
encoded result data 230 that details information about the
validation operation for each and every port in port list 217.

Server device 104 is configured to service multiple con-
current client devices 100. The server device network I/O
subsystem 106 is configured to establish a plurality of
network connections 109 with a plurality of client devices
100 for purposes of simultaneous communication of path
verification operations.

The servicing of a relatively large number of client
devices 100 by the server device 104 is possible by the
employment of the data packet payload 219 and its subse-
quent configuration on server device 104 to selectively open
and close ports to accommodate practical levels of controller
105 resource utilization.

The data pattern payloads 219, 220 as present in the echo
request 204 and echo response 206, respectively, are utilized
in the iterative sequencing of network path verification
between the client device 100 and server device 104. The
reception of such data pattern payload by the respective
device 104, 100 is configured as such to cause the next path
verification operation to continue in sequence (i.e. reception
of a particular payload causes the provisioning and setup of
the mechanics of the necessary machinery to receive the
next sequenced and expected payload).

The start instruction 201, skip instruction 226, and client
device result 229 are configured to be transmitted over a
well-established and commonly used TCP or UDP port (e.g.
port 80, port 443 or port 8080). These particular ports are
open and passable on most modern networks in use. The
relay of such instructions is representative of the intention to
perform automated network path validation. Any failure in
relay of such instructions renders the path validation opera-
tion ineffective.

FIG. 3 illustrates an example arrangement of a temporally
ordered sequence of events that the client controller 101 and
server controller 105 are configured to execute. These events
include the transmission and reception of specific elements
of'data 110 via network 108 over specific TCP or UDP ports.

Operation begins with the client device 100 sending a
start instruction 301 to server device 104. This start instruc-
tion 301 is a data transmission containing a port list 317
which is a list of one or more TCP or UDP ports associated
with the server device 104, indicated in the figure as starting
with port N and ending in port M (i.e. a range of TCP or
UDRP ports). The server device 104 receives and records in
memory the start instruction 301 and port list 317 as part of
the current session with the client device 100. The start
instruction 301 is sent over a widely utilized TCP or UDP
port that is typically open on even the most restrictive
networks, i.e. port 80/HTTP or 443/HTTPS.

The server device 104 then proceeds to open and listen on
the first identified port in the port list 317 (e.g., opens and

US 9,473,346 B2

9

listens on port N) as indicated by operation 302 in FIG. 3.
After the first port N is open and listening, the server device
104 replies to the start instruction 301 with a start acknowl-
edgement 303. The start acknowledgement 303 is sent from
the server device 104 to the client device 100 over the same
socket that the start instruction 301 was received. Upon
reception of the start acknowledgement 303, the client
device 100 executes a sequence of operations to verify
connectivity to the server device 104 over the set of ports
specified in the port list 317.

The client device 100 sends a request message, such as an
echo request message 304, to the server device 104 for the
first port in the port list 317 (e.g., as represented by port N
in FIG. 3). The echo request 304 is sent over network 108
via port N (either a TCP or UDP port as was represented in
port list 317). In one arrangement, the echo request 304 is
formatted to contain a data pattern 319 that uniquely iden-
tifies either the port being tested N or the entire port list 317
as specified in the start instruction 301.

Upon reception of the request message, such as the echo
request 304 for port N, the server device 104 then proceeds
to open and listen upon a subsequent identified port (e.g., the
next port specified) in the port list 317 (i.e., port N+1) as
indicated in operation 305 illustrated in FIG. 3. After open-
ing and listening on port N+1, the server device 104 is
configured to transmit a response message 306, such as an
echo response 306, over the first identified port in the listing
of ports. For example, the server device 104 transmits the
response message 306 over same socket or port N over
which the echo request 304 was received. Once complete
and successfully transmitted, the set of echo request mes-
sage 304 and response message 306 indicates that commu-
nication over network pathway represented by network 108
and port N is verified. Following transmission of the
response message 306 to the client device 100, the server
device 104 is configured to close the first identified port N
in the listing of ports from communication with the client
device 100.

With such a configuration, upon reception of a request
message 304 from the client device 100, the server device
104 can iteratively open the next-in-line TCP or UDP port
identified in the port list 317 for verification by successive
echo requests and responses. By opening and listening on
only the required ports under verification, the server device
104 can minimize constraining operation of the system 114
as a whole, such as caused by opening and testing multiple
sockets or ports simultaneously.

In one arrangement, following testing of a first port on the
port list 317, the client device 100 and the server device 104
are configured to verify the remaining ports on the port list
317. It should be noted that while port verification can be
performed on sequentially identified ports in the port list 317
(i.e., relative to the first identified port in the listing of ports
317) the port list can sequentially identify the ports in an
arbitrary order, (e.g., a listing of port 20, port 405, port 315)
but still in sequence.

For example, with continued reference to FIG. 3, the
client device 100 can send an echo request message 308 for
the subsequent identified port in the port list (e.g., as
represented by port N+1). This echo request 308 is sent the
over network 108 via port N+1 (e.g., either a TCP or UDP
as was represented in port list 317) which was previously
opened by the server device 104. Upon reception of the echo
request 308 on port N+1, as referenced in operation 309, the
server device 104 the proceeds to open and listen upon the
next subsequent identified port in the listing of ports 317
(i.e., port N+2) for communication with the client device

10

15

20

25

30

35

40

45

50

55

60

65

10

100. After opening and listening on port N+2, in response to
the echo request 308, the server device 104 transmits a
response message or echo response 310 over the same
socket or port that the echo request 308 was received. Once
complete and successfully transmitted, this set of echo
request message 308 and response message 310 indicates
that communication over network pathway represented by
network 108 and port N+1 is verified. Following transmis-
sion of the response message 310 to the client device 100,
the server device 104 is configured to close the subsequent
identified port N+1 in the listing of ports from communica-
tion with the client device 100. This cycle of request/
response continues in succession for each subsequent iden-
tified TCP and UDP ports represented in port list 317, as
indicated by reference 312 in FIG. 3, up to and including the
final port M in port list 317.

The server device 104 is configured to iteratively open the
ports in response to receiving the request message from the
client device 100. For example, reception of an echo request
message with corresponding packet payloads causes the
server device 104 to iteratively open (e.g., in an arbitrary
order, but still in sequence) the next in line TCP or UDP
ports to be further verified by successive echo requests and
responses. By opening and listening on only the required
ports under verification, the server device 104 can minimize
constraining operation of the system 114 as a whole, such as
caused by opening and testing multiple sockets or ports
simultaneously. For example, by utilizing this iterative
approach to opening each subsequent port in sequence
before performing its verification operation allows the server
controller 105 to close any previously listening socket to
avoid approaching such limitation of the system 114.

In one arrangement, the server device 104 and the client
device 100 are configured to generate reports that indicate a
status associated with the transfer of the request message
and the response message between the devices 104, 100. For
example, upon reception of the echo request message 313
the server device 104 is configured to identify the message
313 as being associated with the final port as specified in
port list 317 and record a server validation result 120 of each
port request/response cycle performed during the session in
data storage 107 for later reporting and processing. The
server validation result 120 indicates a status associated with
the receiving of each request message and the transmitting
of each response message during the process.

In another example, following transmission of the echo
request 313, the client device 100 transmits a client valida-
tion report 318 which represents the echo request/response
activity as detected by the client device 100. While the client
validation report 318 can be configured in a variety of ways,
in one arrangement, the client validation report 318 includes
at least one client validation result associated with the
success or failure of the transmission of the request mes-
sages and the reception of the response messages. The client
device 100 can transmit the client validation report 318 to
the server device 104 over the network 108 via a commonly
open TCP or UDP port, such as port 80 or port 443. In one
arrangement, upon receipt the server device 104 can store
the client validation report 318 in data storage 107 for later
reporting and processing. For example, the server device
104 can generate a master validation report 122, which
includes the server validation report 120 and the client
validation report 318, to a user such as a system adminis-
trator. Based upon the master validation report 122, the
system administrator can determine where successful or
unsuccessful port validations occurred in the system 114
from both the client and server sides.

US 9,473,346 B2

11

During the transfer of request messages and response
messages in the system 114, errors can occur. Errors during
the transmission of echo request messages by the client
device 100 can be represented either by a connection failure
or by a lack of reception of the request by server device 104.
Connection failures are directly observable by the network
1/0 subsystem 102 and reported to controller 101 during
operation. For example, an intervening device on network
108 such as a firewall may immediately respond with a TCP
RST signal during a TCP connection attempt to cause such
a failure.

Errors occurring due to a mismatch of the transmitted data
pattern payload 319, 321 or 323 as compared to received
data pattern payload 320, 322 or 324 are indicative of an
intervening content filtering or proxy server type device
inside network 108. The client device 100 performs active
comparison of the transmitted data pattern to the received
data pattern to detect a mismatch condition. This content
filter may mutate or otherwise change the contents of a
transmitted data packet and hence will be visible by the
sending client device 100 as a mismatch of what was
originally sent in the echo request message.

To address errors generated during the exchange of mes-
sages between the client device 100 and the server device
104, the client device 100 is configured to generate and
transmit a skip instruction message to the server device 100.
Aspects of the skip instruction message are described in
detail with respect to FIGS. 4 and 5 below.

FIG. 4 illustrates an example of connection or transmis-
sion error 402 created during an echo request operation.
Connection errors can occur for a variety of reasons. In one
arrangement, a connection error can occur when the client
device 100 is unable to establish a TCP connection or UDP
session with the server device 104. For example, the error
can be manifested as a TCP RST, unanswered TCP connect
handshake, unsendable UDP datagrams, or other local TCP
or UDP socket failure. In another arrangement, transmission
errors can occur due to intervening network devices con-
tained in network 108 or unreliable network structures
contained in network 108. These conditions can introduce
partial or total data loss during transmission of the echo
request or echo response messages which cause the server
device 104 to never receive a sent echo request.

For example, with reference to FIG. 4, the client device
100 transmits an echo request message 401 intended for the
server device 104 via port N. However, the message 401 is
blocked 402 by network 108 or device contained in network
108 for any arbitrary reason (e.g., firewall, content filter,
network discontinuity). In such a case, the client device 100
will not receive an expected response message from the
server device 104 via the port N.

Accordingly, in response to the client device 100 failing
to receive a response message from the server device 104 via
the port N, the client device 100 is configured to wait a
predetermined amount of time (e.g., controller 101 is con-
figured to self interrupt upon an expiration of a timeout) and
send a skip instruction message 404 to server device 104 on
a non-blocked port associated with the server device 104.
For example, the client device 100 transmits the skip instruc-
tion message 404 to the server device 104 via port 80 or port
443. Upon reception of the skip instruction message 404, the
server device 104 is configured to perform operations 405.
First, the server device 104 records the blocked port N as
part of the server validation report 120 in memory 107. The
server device 104 then opens and listens on the subsequent
identified port N+1 in the listing of ports 117 and sends a
skip acknowledgement message 406 back to client device

10

15

20

25

30

35

40

45

50

55

60

65

12

100 on the non-blocked port. Upon reception of the skip
acknowledgement 406, the client device 100 resumes nor-
mal echo request processing starting at newly adjusted port
N+1 (reference FIGS. 4-407, 408, 409, 410, 411 and 412).

Because of the skip instruction message 404 and the
associated skip acknowledgement message 406 the client
device 100 receives notification regarding the transmission
error during the outbound path operation. Accordingly, the
system 114 provides details at the network subsystem 102
level that can indicate failures during connection or trans-
mission. For example, a TCP RST may be received during
a connection attempt, or alternatively a UDP datagram could
be transmitted in apparent success only to be unanswered by
the server device 104 after a preset timeout period.

In one arrangement, a system operator can receive noti-
fication from the client device 100 about the presence of a
failure condition in the system 114. Appropriate remediation
or resolution action can then be taken to address such failure
conditions due to the level of detail provided by the failure
condition witnessed by client device 100.

For example, several failures conditions can arise and can
be categorized as either connection failure or transmission
failure. A connection failure can occur due to an immediate
error condition on the socket itself or due to a timeout. An
immediate error is evident by a detected error during a
socket send or open operation, e.g., as caused by the
reception of a TCP RST signal or an active denial during
sending a UDP datagram via an appropriately configured
UDP socket. A timeout is detected by the expiration of a
preset time period configured in the client controller 101.
When this timeout condition occurs it is indicative of a
transmission failure to the recipient server controller 105.

The system operator can receive notification of such
verification errors via a user terminal or graphical interface.
The notification, such as a master validation report 122 can
provide critical insight into the nature of the network
obstruction, if present. Upon automated analysis the opera-
tor can perform any number of reconciliatory measures to
address obstruction. For example the operator can contact
the administrator of the network in use, provision a different
port or protocol to achieve intentions, or seek out an
alternative network connection.

FIG. 5 illustrates an example of connection or transmis-
sion error 504 created during an echo response operation.
During operation, the client device 100 performs an echo
request 501 on port N which is answered by the server
device 104 with an echo response 503. In this example, the
network 108 is configured to block the echo response
message 503 from the server device 104 along its path back
to client device 100. In such a case, the client device 100 will
not receive an expected response message from the server
device 104 via the port N.

Under these circumstances, in response to the client
device 100 failing to receive a response message from the
server device 104 via the port N, the client device 100 is
configured to wait a predetermined amount of time (e.g.,
controller 101 is configured to self interrupt upon an expi-
ration of a timeout) and send a skip instruction message 506
to server device 104 on a non-blocked port. Upon reception
of the skip instruction message 506, the server device 104
records the blocked port (port N) as part of the server
validation report 120 in memory 107 and sends a skip
acknowledgement 508 back to client device 100. Upon
reception of the skip acknowledgement 508, the client
device 100 resumes normal echo request processing starting
at newly adjusted port N+1 (reference FIGS. 5. 510, 511,
512, 513 and 514).

US 9,473,346 B2

13

FIG. 6 illustrates an example of a data pattern payload
mismatch error created during an echo request operation. In
one arrangement, during operation, the client device 100
generates an echo request message 601 containing a specific
data pattern payload 615 that it expects to receive in a
corresponding echo response message. For example, the
client device 100 transmits the echo request message 601
having the data pattern payload 615 to the server device 104
over port N using TCP or UDP. In response, the server
device 104 receives the echo request message 601 and
generates an echo response message 603, in part, by copying
the data pattern payload 615 into the data pattern payload
616 of the response message 603. The server device 104
transmits the echo response message 603 to the client device
100 over the same socket connection (TCP or UDP).

Upon reception of the echo response 603, the client device
controller 101 compares the contents of the data pattern
payload 616 with an expected value. If the data pattern
payload does not match the expected value, the verification
of port N is deemed a failure and the client device 100
transmits a skip instruction message 606 to the server device
100 to move to the next port in port list 317.

Data pattern payload mismatch, as detected by the client
controller 101, can be indicative of an unsolicited mutation
of the expected contents of the echo response 616 as sent by
the server controller 105. For example, an intervening
content filter may not allow returning network traffic of the
same type (e.g. protocols such as SMTP or SIP) and may
unilaterally inject a textural or HTML-formatted response
describing a restriction of such protocol. Detection of such
failures indicates the obstruction of transmission and/or
reception over that particular TCP or UDP port.

Major operating systems, conventional servers, and net-
work devices provide for a limited number of simultaneous
open TCP or UDP socket listeners. Although this number
can be configured, employing its maximal value (i.e. 65535
for TCP and UDP) represents an impractical and impossible
use of storage and computational resources. This is due to
practical limitations in processing or storing state for the
large number of data structures required for support of a
relatively large numbers of open listeners. Embodiments of
the innovation, in one arrangement, provide for an ordered
and sequenced of port opening and closing dictated by
verification demand, thereby limiting or avoiding the need
for a large number of simultaneous open ports. In one
arrangement, the server device 104 is configured to open
ports upon request and close other open ports on a least
recently used (LRU) basis. This configured behavior of the
server device provides a relatively large scale of concurrent
port verification capability.

For example, ten client devices may issue start instruc-
tions to successively test all UDP ports in the range of 1
through 65535. The server device 104 can service all ten
client devices at varying levels of progression through the
range of 1-65535. Using LRU discretion, the server device
104 can close ports to accommodate the opening of new
ports while maintaining a fixed number of maximum simul-
taneous ports. A typical sustainable maximum number of
simultaneous open ports can vary by the capabilities and
configuration of the employed network I/O subsystem of the
server device 104 (e.g., the register memory capacity or
processing level).

As indicated above, the server device 104 is configured to
receive a listing of ports 117 from a client device 100 and
iteratively open each port on the listing 117 in a sequential
manner. Such indication is by way of example only. In one
arrangement, the server device 104 is configured to open a

10

15

20

25

30

35

40

45

50

55

60

65

14

plurality of identified ports in the listing of ports 117 for
communication with the client device 100.

FIG. 7 illustrates an example operation of the server
device 104 when opening multiple ports. As illustrated, the
client device 100 issues a start instruction 901 with TCP or
UDP port list N through M 902. Upon reception of the start
instruction 901, the service device 104 configures all ports
in the port list 902 (e.g., opening them if necessary) to
receive echo requests from the client device 100. The server
device 104 answers successive echo requests 905, 909 and
914 with corresponding echo responses 907, 911, and 916.
The remaining operation of the server device 104 is as
described in the above-referenced arrangement. With such a
configuration, the server device 104 opens all ports in the
port list 902 at once, rather than in sequence as described
above.

FIG. 8 illustrates another example of operation of the
server device 104 when opening multiple ports. In this
example, the server device 104 is configured to perform a
batch of echoes for per port and then progress to the next
port in the port list.

During operation, the client device 100 forwards a start
instruction 1001 to server device 104. The start instruction
1001 includes a port list 317 and a cycle port count 1002.
The port list 317 is a list of one or more TCP or UDP ports,
indicated in FIG. 8 as starting with port N and ending in port
M (e.g., a range of TCP or UDP ports). The cycle port count
1002 is configured as a count representing the number of
ports to open at once during advancement through the port
list 317, indicated in FIG. 8 as reference C.

The server device 104 then proceeds to open and listen on
the number of ports indicated by the cycle port count 1002
from the port list 317 (e.g., the server device 104 open C
ports numbering from N . . . C in range N . . . M), as
referenced by operation 1003 in FIG. 10. After these ports
are open and listening, the server device 104 replies to the
start instruction message 1001 with a start acknowledgement
message 1004. Upon reception of the start acknowledge-
ment message 1004, the client device 100 begins an orches-
trated sequence of operations to classify the communication
capabilities to the server device 104 over the set of ports
specified in port list 317.

For example, the client device 100 sends an echo request
message 1005 for the first port in the port list 317 (i.e., as
represented by port N in FIG. 10). This echo request
message 1005 is sent over network 108 via port N (e.g.,
either a TCP or UDP port as was represented in port list 317).
The client device 100 formats the echo request message
1005 to contain a data pattern 1006 that uniquely identifies
either the port being tested or the entire port list 317, as
specified in the start instruction message 1001. Upon recep-
tion of the echo request 1005 on port N, the server device
104 then proceeds to respond to the echo request message
1005 with an echo response message 1008 over the same
socket that echo request message 1005 was received. Once
complete and successfully transmitted, this set of echo
request and response messages indicate that communication
over network pathway represented by network 108 and port
N is verified.

This sequence of transmission of echo request and echo
response messages continues until the number of ports
processed has reached the cycle port count 1002 (i.e., as
represented by reference C in FIG. 10). Upon processing this
number of echo request and response messages, the server
device 104 proceeds to open and listen upon the next port
specified in the port list 317 (i.e. port N+1) reference
operation 305 in FIG. 3. After opening and listening on port

US 9,473,346 B2

15

N+1 the server device 104 responds to the echo request 304
with an echo response 306 over the same socket that echo
request 304 was received. Once complete and successfully
transmitted, this set of echo request and response messages
verifies communication over network pathway represented
by network 108 and port N.

In one arrangement, the server device 104 is configured to
sequence more than one echo request/echo response of an
echo cycle at any one time (e.g., over multiple ports con-
currently), such as in the case where the server device 104
receives multiple port listings from the client device 100. In
such an arrangement, the server device 104 is configured to
performing concurrent echoes of several port lists.

For example, as illustrated in FIG. 9 the client device 100
transmits start instructions 1100 and 1104 to the server
device 104 where each of the start instructions specify an
independent set of port lists 1101 and 1105, respectively. The
echo request and response processing occurs for both, or a
multitude of these port lists 1101, 1105 a substantially
concurrent manner. In one arrangement, the client device
100 is configured to manage the processing of concurrent
start instructions 1100, 1104, echo requests 1108, 1114, echo
responses 1112, 1118 as well at the repetition of this
sequence as represented by 1120 until all port lists, specified
in the diagram as ranges N ... M and P . . . Q, have been
processed.

Upon completion of processing all port lists 1101, 1105,
the client device 100 is configured to transmit client device
results 1121 to the server device 104. The client device
results 1121 specify the result of each echo request and echo
response operation performed for all port lists 1101, 1105.

In one arrangement, the client device 100 and server
device 104 are configured to perform the network validation
process over a given port range, as provided in a port list,
multiple times. For example, with reference to FIG. 3,
following opening of the last identified port M in the listing
of ports 317, the server device 104 is configured to receive
arequest message 313 from the client device 100 via the port
M and transmit the response message 315 to the client
device 100 via the port M. The client device 100 and server
device 104 then repeat 350 the echo cycle process from the
first port N of the listing of ports 317 to the last identified
port M in the listing of ports for a preset number of
iterations.

Successive iterations through the listing of ports 317 can
be configured to extended timeout values for higher resolu-
tion path validation (i.e., determining if network 108 is more
responsive by waiting longer for connection and transmis-
sion operations). Successive iterations of can also provide
confirmation by retrying previously failed echo operations
between client device 100 and server device 104.

In one arrangement, the client device 100 and server
device 104 are configured to perform the network validation
process multiple iterations over each particular port, as
provided in a port list. Such a sequencing echo processing is
configured by either a specified set of parameters an iteration
sequence associated directly with the port number itself.

For example, FIG. 10 illustrates the client device 100 and
server device 104 exchanging multiple echo request mes-
sages and echo response messages on a per port basis over
the same port. During operation, the client device 100
transmits a start instruction 1300 to the server device 104
where the start instruction includes a port list 1301 as well
as an echo count 1302, referenced in the diagram as value E.

The client device 100 is configured to transmit a number
of'echo request messages and the server device is configured
to provide a number of echo response messages equal to or

10

15

20

25

30

35

40

45

50

55

60

65

16
less than the configured echo count 1302 (value E). For
example, the server device 104 is configured to receive the
request message 1305 from the client device 100 via the first
identified port N in the listing of ports 1301 and transmit the
response message 1309 to the client device 100 via the first
identified port N for a first iteration of a preset number of
iterations. The client device 100 and server device 104 are
further configured to further successively process of echo
requests 1305, 1311, 1318 and echo responses 1309, 1315,
1322 for the first identified port N. Successive repetitions of
echo requests and echo responses are represented by 1324.

Once the echo count 1302 reaches value E, the server
device 104 opens the subsequent identified port N+1 in the
listing of ports 1301 for communication with the client
device 100 and closes the first identified port in the listing of
ports 1301 from communication with the client device 100.
The client device 100 and server device 104 then restart the
process and process multiple echo requests and echo
responses for port N+1 and each subsequent port in the
listing 1301. Upon completion of processing all port lists,
the client device 100 is configured to transmit client device
results 1325 to the server device 104. The client device
results 1325 specify the result of each echo request and echo
response operation performed for all port lists.

While FIG. 10 illustrates a single echo request/response
cycle over each port, it should be noted that the system 114
is capable of multiple echo request/response cycles for each
port.

As indicated above with reference to FIGS. 2C and 2D,
the request message 204 transmitted by the client device 100
and the response message 206 transmitted by the server
device 104 can include data pattern payloads 219, 220,
respectively. In one arrangement, the data pattern payloads
219, 220 can be defined by either a specified set of param-
eters (e.g., a property or XML file) or as a pattern associated
directly with the port number itself. For example, the data
pattern payload 219 of the request message 204 can be
composed of any arrangement of bytes that represent a
specified set of parameters from client device 100, or an
arrangement of bytes associated directly with the port num-
ber and protocol (i.e. TCP or UDP) employed for the echo
request and echo response. Additionally, the data pattern
payloads 220 of the response message 206 can be composed
of any arrangement of bytes that represent a specified set of
parameters from client device 100 determined by the con-
tents of the corresponding request message 204 or an
arrangement of bytes associated directly with the port num-
ber and protocol (i.e. TCP or UDP) employed for the echo
request and echo response.

In one arrangement, the server device 104 is configured to
utilize the data pattern payload 219 of the request message
204 to detect errors in the connection between the client
device 100 and the server device 104 for a given port. For
example, assume the server device 104 is configured to
expect to receive a data pattern 319 representing Simple
Mail Transfer Protocol (SMTP) over TCP port number 25.
If the byte arrangement of this data pattern 319 was not valid
according the definition of SMTP protocol, then the server
device 104, in response, generates a validation error 374, as
indicated in FIG. 3. In another example, the server device
104 can be configured to receive a unique identifier (e.g., a
checksum, hashcode, etc) over UDP port number 5060. If
the byte arrangement of this data pattern 319 did not match
an expected value (e.g. checksum, hashcode, etc) then the
server device 104, in response, generates a validation error
374.

US 9,473,346 B2

17

In one arrangement, the server device 104 is configured to
utilize the data pattern payload 219 of the request message
204 to detect errors, such as formatting errors, interference
by a firewall, or malicious tampering of data bits, in the
connection between the client device 100 and the server
device 104 for a given port. For example, with reference to
FIG. 3, the server device 104 receives the request message
304 having the data pattern or payload 319 from the client
device 100. In response to receiving the request message
304, the server device 104 compares a characteristic 370 of
the payload 319 with a preset characteristic 372. For
example, the server device 104 compares a binary pattern or
value 370 of the payload 319 with a preset binary pattern or
value 372 associated with the server device 104. Assume the
case where the server device 104 detects a mismatch
between the binary pattern or value 370 of the payload 319
and the preset binary pattern or value 372 associated with the
server device 104 (e.g., the data pattern payload 319 was not
what was expected by the server device 104 due to inter-
ference along the network). In such a case, the server device
104 detects a mismatch or verification error in the connec-
tion with the client device 100, such as indicative of an
intervening content filtering device inside network 108
changing the payload 319 of the transmitted request message
204. The server device 104 then generates an error message
374 associated with the mismatch. In one arrangement, the
server device 104 records the error result 374 as part of the
server validation result 120.

While various embodiments of the innovation have been
particularly shown and described, it will be understood by
those skilled in the art that various changes in form and
details may be made therein without departing from the
spirit and scope of the innovation as defined by the appended
claims.

For example, during the operation of network path veri-
fication the client device 100 and server device 104 record
the results of any and all results in data storage 107 and
client device controller 101. These results may be displayed
via a user interface to indicate the complete details and
results of any particular path verification operation. The
operator of such interface is then able to take action to
address path failures using the detailed information pre-
sented about such failures. The server device 104 is config-
ured to present details of failure and success conditions as
conducted by itself and its associated network I/O subsystem
106. The client device 100 is configured to present details of
failure and success conditions as conducted by its controller
101 and its network subsystem 102. The sum of the server
device results and client device results may also be com-
bined into an aggregated result for viewing on a user
interface. Such aggregated results can be of particular ben-
efit to a skilled operator as this level of holistic detail can
pinpoint exact locations and methods of failure conditions
that exist along the network path under verification.

What is claimed is:

1. In a server device, a method for validating a network
path in a network, comprising:

receiving, by the server device, a listing of identified ports

from a client device, each identified port in the listing
of identified ports corresponding to a port of the server
device;

receiving, by the server device, a request message from

the client device via using a first port, the first port
corresponding to a first identified port in the listing of
identified ports;

in response to receiving the request message, opening, by

the server device, a subsequent port corresponding to a

10

15

20

25

30

35

40

45

50

60

65

18

subsequent identified port in the listing of identified
ports for communication with the client device, the
subsequent identified port immediately following the
first identified port in the listing of identified ports; and

following opening of the subsequent port corresponding
to the subsequent identified port in the listing of iden-
tified ports, transmitting, by the server device, a
response message to the client device using the first
port.

2. The method of claim 1, comprising, following trans-
mitting the response message to the client device using the
first port, closing, by the server device, the first port from
communication with the client device.

3. The method of claim 1, further comprising recording,
by the server, a server validation result as part of a server
validation report, the server validation result indicating a
status associated with the receiving of the request message
and the transmitting of the response message.

4. The method of claim 3, further comprising:

receiving, by the server device, a client validation report

from the client device, the client validation report
including at least one client validation result associated
with the transmitting of the request message and the
receiving of the response message; and

generating, by the server device, a master validation

report including the server validation report and the
client validation report.

5. The method of claim 1, further comprising:

receiving, by the server device, a skip instruction message

on a non-blocked port associated with the server
device, the skip instruction message received in
response to a failure of the client device to receive the
response message from the server device using the first
port corresponding to the first identified port; and

in response to receiving the skip instruction message,

opening, by the server device, a subsequent port cor-
responding to a subsequent identified port in the listing
of identified ports for communication with the client
device.

6. The method of claim 1, wherein opening the subsequent
port corresponding to the subsequent identified port in the
listing of identified ports for communication with the client
device comprises opening, by the server device, a subse-
quent port corresponding to a sequentially identified port
relative to the first identified port in the listing of identified
ports for communication with the client device.

7. The method of claim 1, wherein opening the subsequent
port corresponding to the subsequent identified port in the
listing of identified ports for communication with the client
device comprises opening, by the server device, a plurality
of subsequent ports corresponding to a plurality of subse-
quent identified ports in the listing of identified ports for
communication with the client device.

8. The method of claim 1, wherein:

receiving the listing of identified ports from the client

device, comprises receiving, by the server device, a
plurality of listings of identified ports from the client
device, each identified port in each of the listing of
identified ports corresponding to a port of the server
device; and

performing, by the server device, the receiving, opening,

and transmitting for each port of the plurality of listings
of identified ports in a substantially concurrent manner.

9. The method of claim 2, comprising repeating, for each
of the subsequent port and a subsequent port immediately
following the subsequent port as identified in the listing of
identified ports, by the server device:

US 9,473,346 B2

19

receiving a request message from the client device using
the subsequent port corresponding to the subsequent
identified port in the listing of identified ports;

in response to receiving the request message, opening the

subsequent port immediately following the subsequent
port corresponding to the subsequent identified port
immediately following the subsequent identified port in
the listing of identified ports for communication with
the client device;

following opening of the subsequent port immediately

following the subsequent port, transmitting the
response message to the client device via the subse-
quent port; and

closing the subsequent port corresponding to the subse-

quent identified port immediately following the subse-
quent identified port from communication with the
client device.

10. The method of claim 9, comprising following opening
of a last port corresponding to a last identified port in the
listing of identified ports, by the server device:

receiving the request message from the client device using

the last port corresponding to the last identified port in
the listing of identified ports;

transmitting the response message to the client device

using the last port corresponding to the last identified
port in the listing of identified ports; and

repeating the process from the first port corresponding to

the first identified port of the listing of identified ports
to the last port corresponding to the last identified port
in the listing of identified ports for a preset number of
iterations.

11. The method of claim 2, comprising, for each identified
port of the listing of identified ports, iteratively repeating:

receiving, by the server device, the request message from

the client device using the first port and transmitting the
response message to the client device using the first
port for a preset number of iterations; and

in response to reaching the preset number of iterations:

opening, by the server device, the subsequent port
corresponding to a subsequent identified port in the
listing of identified ports for communication with the
client device; and

closing, by the server device, the first port correspond-
ing to the first identified port in the listing of iden-
tified ports from communication with the client
device.

12. The method of claim 1, comprising:

in response to receiving the request message from the

client device using the first port corresponding to the
first identified port in the listing of identified ports,
comparing, by the server device, a characteristic of a
payload associated with the request message with a
preset characteristic; and

generating, by the server device, an error message in

response to detecting a mismatch between the charac-
teristic of the payload associated with the request
message and the preset characteristic.

13. A server device, comprising:

a controller having a processor coupled to a memory

configured to:

receive a listing of identified ports from a client device,
each identified port in the listing of identified ports
corresponding to a port of the server device;

receive a request message from the client device using
a first port, the first port corresponding to a first
identified port in the listing of identified ports;

10

15

20

25

30

35

40

45

50

55

60

65

20

in response to receiving the request message, open a
subsequent port corresponding to a subsequent iden-
tified port in the listing of identified ports for com-
munication with the client device, the subsequent
identified port immediately following the first iden-
tified port in the listing of identified ports; and

following opening of the subsequent port correspond-
ing to the subsequent identified port in the listing of
identified ports, transmit a response message to the
client device using the first port.

14. The server of claim 13, wherein following transmit-
ting the response message to the client device using the first
port, the controller is configured to close the first port from
communication with the client device.

15. The server of claim 13, wherein the controller is
further configured to record a server validation result as part
of a server validation report, the server validation result
indicating a status associated with the receiving of the
request message and the transmitting of the response mes-
sage.

16. The server of claim 15, wherein the controller is
configured to:

receive a client validation report from the client device,

the client validation report including at least one client

validation result associated with the transmitting of the
request message and the receiving of the response
message; and

generate a master validation report including the server

validation report and the client validation report.

17. The server of claim 13, wherein the controller is
configured to:

receive a skip instruction message on a non-blocked port

associated with the server device, the skip instruction
message received in response to a failure of the client
device to receive the response message from the server
device using the first port corresponding to the first
identified port; and

in response to receiving the skip instruction message,

open a subsequent port corresponding to a subsequent

identified port in the listing of identified ports for
communication with the client device.

18. The server of claim 13, wherein when opening the
subsequent port corresponding to the subsequent identified
port in the listing of identified ports for communication with
the client device, the controller is configured to open a
subsequent port corresponding to a sequentially identified
port relative to the first identified port in the listing of
identified ports for communication with the client device.

19. The server of claim 13, wherein when opening the
subsequent port corresponding to the subsequent identified
port in the listing of identified ports for communication with
the client device, the controller is configured to open a
plurality of subsequent ports corresponding to a plurality of
subsequent identified ports in the listing of identified ports
for communication with the client device.

20. The server of claim 13, wherein:

when receiving the listing of identified ports from the

client device, controller is configured to receive a

plurality of listings of identified ports from the client

device, each identified port in each of the listing of
identified ports corresponding to a port of the server
device; and

perform the receiving, opening, and transmitting for each

port of the plurality of listings of identified ports in a

substantially concurrent manner.

US 9,473,346 B2

21 22
21. The server of claim 14, wherein the controller is 23. A computer program product having a non-transitory
configured to, for each identified port of the listing of computer-readable medium including computer program
identified ports, iteratively repeat: logic encoded thereon that, when performed on a controller

receiving the request message from the client device using
the first port and transmitting the response message to 5 . o
the client device using the first port for a preset number receive a listing of identified ports from a client device,
of iterations; and each identified port in the listing of identified ports
in response to reaching the preset number of iterations: corresponding to a port of the server device;
open the subsequent port corresponding to a subsequent
identified port in the listing of identified ports for
communication with the client device; and
close the first port corresponding to the first identified
port in the listing of identified ports from commu- in response to receiving the request message, open a
nication with the client device. subsequent port corresponding to a subsequent identi-
22. The server of claim 13, comprising:
in response to receiving the request message from the 13
client device using the first port corresponding to the

of a server device causes the server device to:

receive a request message from the client device using a
10 first port, the first port corresponding to a first identified
port in the listing of identified ports;

fied port in the listing of identified ports for commu-
nication with the client device, the subsequent identi-

first identified port in the listing of identified ports, the fied port immediately following the first identified port
controller is configured to compare a characteristic of a in the listing of identified ports; and
payload associated with the request message with a

following opening of the subsequent port corresponding
to the subsequent identified port in the listing of iden-
tified ports, transmit a response message to the client
device using the first port.

preset characteristic; and 20
generate an error message in response to detecting a
mismatch between the characteristic of the payload
associated with the request message and the preset
characteristic. ¥k k% %

