a2 United States Patent

US009270746B2

(10) Patent No.: US 9,270,746 B2

Lyon et al. 45) Date of Patent: Feb. 23, 2016

(54) SCALABLE LOAD BALANCING 704/270.1

2007/0260732 Al* 112007 Koretz HO4L 67/1095

H . : . 709/226

(71) AppllcantS'Norm.an A' Ly0n5 Gatlneau (CA)5 Roger 2009/0187776 Al 3k 7/2009 Baba G06F 1/3203

J. Maitland, Woodlawn (CA) 713/320

2010/0094974 Al* 4/2010 Zuckerman HO4L 67/1008

(72) Inventors: Norman A. Lyon, Gatineau (CA); Roger 709/219
J. Maitland, Woodlawn (CA)

OTHER PUBLICATIONS

(73) Assignee: Alcatel Lucent, Boulogne-Billancourt
(FR)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 520 days.

(21) Appl. No.: 13/803,133

(22) Filed: Mar. 14,2013

(65) Prior Publication Data
US 2014/0280866 Al Sep. 18, 2014

(51) Int.CL
HO4L 29/08 (2006.01)
(52) US.CL
CPC ... HO4L 67/1019 (2013.01); HO4L 67/1008

(2013.01)
(58) Field of Classification Search
CPC ..coovvevvincrcne HO04L 67/1019; HO4L 67/1008
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

Barracuda Networks, Knowledgebase, “How should I configure the
Adaptive Scheduling feature on my Barracuda L.oad Balancer? How
does it work?”, available at https://www.barracudanetworks.com/
support/knowledgebase/50160000000HDYE, retrieved Mar. 8,
2013.

* cited by examiner

Primary Examiner — Philip Chea
Assistant Examiner — Wuji Chen
(74) Attorney, Agent, or Firm — Kramer & Amado, P.C.

(57) ABSTRACT

Various exemplary embodiments relate to a method and
related network node including one or more of the following:
receiving, by a load balancer, a plurality of metric values from
a plurality of servers; calculating an average metric value
based on the plurality of metric values; calculating a first error
value based on the average metric value and a first metric
value of the plurality of metric values; generating a first
integral value by incorporating the first error value into a first
previous integral value; and generating a first preference
value for a first server of the plurality of servers based on the

2006/0150191 Al* 7/2006 Masuda GOGF 11/3409 .
718/105 first integral value.
2006/0236324 Al* 10/2006 Gisselc...... GOG6F 9/5083
718/105
2007/0143116 Al* 6/2007 De Armas GO6F 9/505 42 Claims, 5 Drawing Sheets
100
| e 120
1o 130 —T SERVER
S he A
CLIENT LOAD BALANCER b
S ¢ o W | U 122
" 132 ARk SERVER
 S——, ¥)
CLIENT LOAD BALANCER \\;:
_________________ V- L 124
1 SERVER
Pt Tt
114 134
CLIENT LOAD BALANCER / 126
l SERVER

U.S. Patent Feb. 23,2016 Sheet 1 of 5 US 9,270,746 B2

FIG. 1
100
| 120
130 — - SERVER
1110 f 7T 7T]
CLIENT LOAD BALANCER T
7T Vg s N 1122
132 AT SERVER
S 12 1
| I 4 2 ¥ o A1
CLIENT LOAD BALANCER i\
I, ¥ 124
Lh—1 seRvER
2 VOUUOY 4 TURDNI
) 134
114 7
CLIENT LOAD BALANCER ‘ 126
SERVER

U.S. Patent Feb. 23,2016 Sheet 2 of 5 US 9,270,746 B2
FIG. 2
200
/210 £ 220 ;240
CLIENT SERVER SERVER
INTERFACE SELECTOR INTERFACE
230 /260 [250
SERVER ERROR AVERAGE METRIC
PREFERENCE CALCULATOR CALCULATOR
TABLE
;290 | . 270 /280
PREFERENCE TABLE| FEEDBACK CALL BUCKET
GENERATOR CONTROLLER ERROR CALCULATOR
FIG. 3
300
/310 ;320 /330
CUMULATIVE
SERVER 1D |BASE PREFERENCE| porerorner

5 0 25 25
340 S 1 10 35
350 / 2 15 50
360 f 3 50 100
370 f 4 10 110
380 -5 (CALL BUCKET) 0 110

390/

U.S. Patent

400

Feb. 23, 2016

FIG. 4

Sheet 3 of 5

7 440

4 410

PROPORTIONAL
CONSTANT MODIFIER

ERROR RECEIVER

40

7 420

PREFERENCE
CALCULATOR

INTEGRATOR

500

505

;510

RECEIVE REQUEST
FROM CLIENT

t

515

GENERATE RANDOM
NUMBER BETWEEN
0 AND MAX
PREFERENCE

f

520

SELECT SERVER
FROM PREFERENCE
TABLE USING
RANDOM NUMBER

f

CALL BUCKET?

{sa&cm SERVER 1S
525 YES

NO

£ 530

US 9,270,746 B2

/535

DROP REQUEST

SELECTED SERVER

SEND REQUEST 10

(smor) 0

U.S. Patent Feb. 23, 2016

FIG. 6
600

l\ 605

RECEIVE CPU
METRIC*S, cpu

(610

7 615

CALCULATE
AVERAGE CPU
METRIC, avg
I

Sheet 4 of 5

i
SELECT NEXT V/ 620

SERVER INDEX, i

I
:
CALL BUCKET?

6257 YES| 630 /635
CALCULATE CALCULATE
ERROR VALUE, {! ERROR VALUE,
e = avg- e = avg-

threshold cpuli]

—

7 640

ADD e *Ki TO
INTEGRAL VALUE,
Ii]

i /645
SET PREFERENCE,
P[iE, EQUAL TO
i] + e*Kp
f

1 830

UPDATE MIN AND
MAX CPU

§LAST SERVER? NO
6557 YES |

660

UPDATE SUM OF

CPU RANGE AND
NUMBER OF
SAMPLES

US 9,270,746 B2

FIG. 7
700

{ 705

CALCULATE
AVERAGE RANGE
USING SUM OF
CPU RANGE AND

NUMBER OF

SAMPLES

£ 710

AVERAGE RANGE
> PREVIOUS AVERAGE
RANGE?

NO

715 720

REVERSE
DIRECTION

BIRECTION 15 U2
25 VS 730 735

INCREASE Kp || DECREASE Kp

Vi 740

SAVE AVERAGE
RANGE AS
PREVIOUS

AVERAGE RANGE

i I 745

RESET SUM OF

CPU RANGE AND
NUMBER OF
SAMPLES

750

U.S. Patent

Feb. 23, 2016

Sheet 5 of 5

US 9,270,746 B2

821

823

825

827

829

WORK DISTRIBUTION
INSTRUCTIONS

7810

PREFERENCE TABLE
GENERATION
INSTRUCTIONS

PROCESSOR @

~

PROPORTIONAL
CONSTANT
MODIFICATION
INSTRUCTIONS

~

FEEDBACK

), CONTROLLER VALUES

PREFERENCE TABLE

820
—

DATA
STORAGE

U g

4830

/0 INTERFACE @

N

N

US 9,270,746 B2

1
SCALABLE LOAD BALANCING

TECHNICAL FIELD

Various exemplary embodiments disclosed herein relate
generally to load balancing.

BACKGROUND

Many client-server applications, including cloud-based
applications, utilize one or more up-front load balancers to
distribute incoming work requests among multiple applica-
tion servers. The goal of such load balancers is generally to
achieve balanced server utilization while minimizing server
overload. To this end, load balancers generally receive work
requests, select appropriate servers for processing the work
requests according to some selection method, and forward the
work requests to the selected servers.

SUMMARY

A brief summary of various exemplary embodiments is
presented below. Some simplifications and omissions may be
made in the following summary, which is intended to high-
light and introduce some aspects of the various exemplary
embodiments, but not to limit the scope of the invention.
Detailed descriptions of a preferred exemplary embodiment
adequate to allow those of ordinary skill in the art to make and
use the inventive concepts will follow in later sections.

Various exemplary embodiments relate to a method per-
formed by a load balancer for calculating a set of preferences
for a plurality of servers, the method including: receiving, by
aload balancer, a plurality of metric values from a plurality of
servers; calculating an average metric value based on the
plurality of metric values; calculating a first error value based
on the average metric value and a first metric value of the
plurality of metric values; generating a first integral value by
incorporating the first error value into a first previous integral
value; and generating a first preference value for a first server
of the plurality of servers based on the first integral value.

Various exemplary embodiments relate to a load balancer
including: a preference storage; and a processor configured
to: receive a plurality of metric values from a plurality of
servers, calculate an average metric value based on the plu-
rality of metric values, calculate a first error value based on
the average metric value and a first metric value of the plu-
rality of metric values, generate a first integral value by incor-
porating the first error value into a first previous integral
value, generate a first preference value for a first server of the
plurality of servers based on the first integral value, and store
the first preference value in the preference storage.

Various exemplary embodiments relate to a non-transitory
machine-readable medium encoded with instructions for
execution by a load balancer for calculating a set of prefer-
ences for a plurality of servers, the non-transitory machine-
readable medium including: instructions for receiving, by a
load balancer, a plurality of metric values from a plurality of
servers; instructions for calculating an average metric value
based on the plurality of metric values; instructions for cal-
culating a first error value based on the average metric value
and a first metric value of the plurality of metric values;
instructions for instructions for generating a first integral
value by incorporating the first error value into a first previous
integral value; and instructions for generating a first prefer-
ence value for a first server of the plurality of servers based on
the first integral value.

10

15

20

25

30

35

40

45

50

55

60

65

2

Various embodiments additionally include receiving, at the
load balancer, a work request; selecting a selected server of
the plurality of servers according to a non-deterministic
method based on a set of preferences that incorporates the first
preference value; and transmitting the work request to the
selected server.

Various embodiments are described wherein the non-de-
terministic method includes: generating a random number;
identifying a server associated with the random number based
on the set of preferences; and selecting the identified server as
the selected server.

Various embodiments are described wherein the plurality
of metric values includes at least one of: a processor utiliza-
tion value, a queue depth value, and a memory usage value.

Various embodiments are described wherein the plurality
of servers includes at least one of: a user equipment manage-
ment unit, a radio network controller, and a cloud component.

Various embodiments are described wherein the first pref-
erence value is a cumulative value, wherein the first prefer-
ence value is further generated based on at least one other
preference value.

Various embodiments additionally include generating a
proportional value based on the first error and a proportional
constant, wherein generating the first preference value is fur-
ther based on the proportional value.

Various embodiments additionally include periodically
changing a value of the proportional constant.

Various embodiments are described wherein changing a
value of the proportional constant includes: determining a
previous direction of a previous change; determining whether
the previous change resulted in increased performance; based
on the previous change resulting in increased performance,
changing the value of the proportional constant in the same
direction as the previous direction; and based on the previous
change resulting in decreased performance, changing the
value of the proportional constant in the opposite direction
from the previous direction.

Various embodiments additionally include: calculating a
second error value based on the average metric value and a
desired metric threshold; generating a second integral value
by incorporating the second error value into a second previ-
ous integral value; and generating a second preference value
for a call bucket based on the second integral value.

Various embodiments additionally include receiving, at the
load balancer, a work request; selecting the call bucket as a
selected server based on a set of preferences that incorporates
the first preference value and the second preference value;
based on selection of the call bucket, dropping the work
request.

Various embodiments are described wherein generating a
first preference value includes: calculating a preliminary
preference value based on the first integral value; determining
that the preliminary preference value exceeds a threshold; and
based on the preliminary preference value exceeding the
threshold, reducing the preliminary preference value to gen-
erate the first preference value.

Various embodiments are described wherein the threshold
is set based on a known work-processing capability associ-
ated with the first server.

Various embodiments are described wherein the plurality
of metric values is transmitted to the load balancer according
to an assured transfer protocol.

Various embodiments additionally include sharing the first
integral value with at least one other load balancer.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to better understand various exemplary embodi-
ments, reference is made to the accompanying drawings,
wherein:

US 9,270,746 B2

3

FIG. 1 illustrates an exemplary network including a plu-
rality of load balancers;

FIG. 2 illustrates an exemplary load balancer;

FIG. 3 illustrates an exemplary preference table;

FIG. 4 illustrates an exemplary feedback controller;

FIG. 5 illustrates an exemplary method for distributing a
work request;

FIG. 6 illustrates an exemplary method for processing
received metric values and calculating a server preference;

FIG. 7 illustrates an exemplary method for moditying a
proportional constant; and

FIG. 8 illustrates an exemplary component diagram of a
load balancer.

To facilitate understanding, identical reference numerals
have been used to designate elements having substantially the
same or similar structure or substantially the same or similar
function.

DETAILED DESCRIPTION

The description and drawings illustrate the principles of
the invention. It will thus be appreciated that those skilled in
the art will be able to devise various arrangements that,
although not explicitly described or shown herein, embody
the principles of the invention and are included within its
scope. Furthermore, all examples recited herein are princi-
pally intended expressly to be only for pedagogical purposes
to aid the reader in understanding the principles of the inven-
tion and the concepts contributed by the inventor(s) to fur-
thering the art, and are to be construed as being without
limitation to such specifically recited examples and condi-
tions. Additionally, the term, “or,” as used herein, refers to a
non-exclusive or, unless otherwise indicated (e.g., “orelse” or
“or in the alternative”). Also, the various embodiments
described herein are not necessarily mutually exclusive, as
some embodiments can be combined with one or more other
embodiments to form new embodiments.

The goal of load balancers becomes more difficult to
achieve as redundant load balancers are added. Unless rigor-
ous sharing of server selections between load balancers is
employed, many arrangements of multiple load balancers that
employ a deterministic server selection process may select
the same server to process work requests, thereby sending a
disproportionate amount of work and possibly overloading a
single server. For example, open-loop round robin algo-
rithms, while simple, may result in uneven load distribution,
overload, or a reduction in nominal rated capacity in attempt
to avoid overload.

Further complications arise where sessions are long-lived
and have dramatic variation of load on the server. For
example, where wireless data calls are being dispatched
among radio network controllers, the calls can last many
minutes with throughput that may range from zero to multiple
megabits per second over the life of the call. Open-loop
algorithms, because they do not utilize any feedback infor-
mation, quite often send too many such calls to a single server.
Other algorithms, such as the “turn down” algorithm, attempt
to take these call assignments into account by generating a
factor used to reduce server weights. This factor is based on
rapidly changing dynamic information and is therefore diffi-
cult to share among all load balancers.

In view of the foregoing, there is a need for an improved
load balancer and method of work distribution that scales well
to multiple load balancers and meets the goals of a load
balancer, as discussed above, in the presence of work requests
having varying characteristics.

20

25

30

40

45

4

Referring now to the drawings, in which like numerals
refer to like components or steps, there are disclosed broad
aspects of various exemplary embodiments.

FIG. 1 illustrates an exemplary network 100 including a
plurality of load balancers 130, 132, 134. The network 100
may include multiple clients 110, 112, 114 and multiple serv-
ers 120, 122, 124, 126. The clients 110, 112, 114 and servers
120, 122, 124, 126 may include any devices that engage in
client-server relationships for various applications. In one
exemplary embodiment, the clients 110, 112, 114 may each
constitute user equipment (UE) such as mobile devices,
which the servers 120, 122, 124, 126 may constitute UE
management units (UMUs) implemented as part of a radio
network controller (RNC) or other device. In various embodi-
ments, the servers 120, 122, 124, 126 may constitute dedi-
cated devices or may be provisioned within a cloud network.
It will be understood that the clients 110, 112, 114 and servers
120, 122, 124, 126 may constitute any type of network
devices such as, for example, personal computers, servers,
blades, laptops, tablets, e-readers, mobile devices, routers, or
switched. It will also be appreciated that alternative networks
may include greater or fewer clients 110, 112, 114 or servers
120,122,124, 126 and that one or more intermediate devices,
such as routers or switches, may provide connectivity
between the various components of the network.

The clients 110, 112, 114 may periodically send work
requests, such as requests for new data calls, for fulfillment by
one or more of the servers 120, 122, 124, 126. The load
balancers 130, 132, 134 may receive these work requests and
distribute the work requests among the servers to ensure an
even distribution of work and prevent server overload. In
various embodiments, the load balancers 130, 132, 134 may
be provisioned within the cloud and may be provisioned in a
one-to-one correspondence with the client devices 110, 112,
114. It will be understood that various other arrangements
may be used such as a one-to-many, many-to-one, or many-
to-many correspondence.

As will be described in greater detail below, the load bal-
ancers 130, 132, 134 may implement one or more features to
reach goals that are also scalable to larger numbers of load
balancers. For example, the load balancers 130,132, 134 may
implement a stochastic server selection algorithm to reduce
the likelihood that a large number of load balancers select the
same server in the same time period, thereby overloading that
load balancer. Further, the load balancers 130, 132, 134 may
implement a feedback controller, such as a proportional-in-
tegral (PI) controller to inform the stochastic selection pro-
cess. As yet another example, the load balancers 130, 132,
134 may implement a virtual server, or “call bucket,” with a
preference for selection that increases as the system as a
whole becomes overloaded. When the call bucket is selected
for a work request, the load balancers 130, 132, 134 may
simply discard the request, thereby helping to manage the
overall commitment of the group of servers 120, 122, 124,
126. In various embodiments, discarding the request may
involve various follow-on protocol or administrative actions
such as, for example, notifying the requestor or updating a
count.

FIG. 2 illustrates an exemplary load balancer 200. It will be
understood that the various components of the load balancer
200 described herein may be implemented in hardware and/or
software. For example, various components may together
correspond to one or more processors configured to perform
the functions described herein. The load balancer 200 may
correspond to one or more of the load balancers 130, 132, 134
described above in connection with FIG. 1. The load balancer
200 may include a client interface 210, a server selector 220,

US 9,270,746 B2

5

a preference table 230, a server interface 240, an average
metric calculator 250, a server error calculator 260, one or
more feedback controllers 270, a call bucket error calculator
280, and a preference table generator 290.

The client interface 210 may be an interface including
hardware and/or executable instructions encoded on a
machine-readable storage medium configured to communi-
cate with at least one client device, such as client devices 110,
112, 114 in FIG. 1. The client interface 210 may include one
or more physical ports and may communicate according to
one or more protocols, for example, TCP, IP, or Ethernet. In
various embodiments, the client interface 210 may receive
multiple work requests, such as requests for new data calls,
from various client devices.

The server selector 220 may include hardware or execut-
able instructions on a machine-readable storage medium con-
figured to receive a work request via the client interface 210,
select a server to process the work request, and forward the
work request to the selected server via the server interface
240. In various embodiments, the server selector may imple-
ment a stochastic server selection process based on prefer-
ences for each server stored in the preference table 230. For
example, the server selector may generate a random number
and use the preference table to identify a server associated
with the random number. As used herein, the term “random
number” will be understood to carry the meaning known to
those of'skill in the art. For example, the random number may
be generated using an arbitrary seed value and a mathematical
function exhibiting statistical randomness. It will be under-
stood that various alternative stochastic methods may be
employed that take into account the preference table 230.
Further, various deterministic methods, such as weighted
round robin, may be used in conjunction with the preference
table.

The preference table 230 may be a device that stores asso-
ciations between various preference values and known serv-
ers capable of processing work requests. The preference table
230 may include a machine-readable storage medium such as
read-only memory (ROM), random-access memory (RAM),
magnetic disk storage media, optical storage media, flash-
memory devices, and/or similar storage media. As will be
explained below in connection with FIG. 3, the preference
table may store a listing of servers and associated cumulative
preference values. By storing cumulative preference values in
the preference table 230, the server selection may easily use a
random number to select a server by locating the first cumu-
lative preference value in the list that exceeds the random
number. It will be understood that other tables may alterna-
tively be used, such as a table that stores base, non-cumulative
preference values. As another alternative, the table may not
store any preference values and, instead, store only a list of
servers having a number of duplicate entries for each server
that corresponds to the preference value.

The server interface 240 may be an interface including
hardware and/or executable instructions encoded on a
machine-readable storage medium configured to communi-
cate with at least one server device, such as server devices
120, 122, 124, 126 in FIG. 1. The server interface 240 may
include one or more physical ports and may communicate
according to one or more protocols, for example, TCP, IP, or
Ethernet. In various embodiments, the server interface 240
may transmit multiple work requests, such as requests for new
data calls, to various server devices based on the instruction of
the server selector 220. The server interface 240 may also
receive reports of various performance metrics from the serv-
ers. For example, the server interface 240 may receive peri-
odic reports on CPU usage, memory usage, or work queue

10

15

20

25

30

35

40

45

50

55

60

65

6

depth. For example, the server interface may receive such
reports approximately every second or simply from time-to-
time as the server devices 120, 122, 124, 126 see fit to report
usage. This information may be received according to an
assured transfer protocol, such as TOTEM, thereby ensuring
that all load balancers, including the load balancer 200,
receive the same information. Specifically, when a server
transmits the information according to such an assured trans-
fer protocol, either all load balancers will receive the infor-
mation or none of the load balancers will receive the infor-
mation, thereby ensuring that all load balancers are operating
on the same feedback. In various embodiments, the server
interface 240 may constitute the same device, or part of the
same device, as the client interface 210.

The average metric calculator 250 may include hardware
or executable instructions on a machine-readable storage
medium configured to receive and process metrics reported
by the servers. Specifically, the average metric calculator
may, for each metric type received, calculate an average for
the metric across the servers. For example, upon receiving
one or more values for server CPU utilization, the average
metric calculator 250 may calculate an average CPU utiliza-
tion across the servers. In some embodiments, the average
metric calculator 250 may wait until new values are received
from all servers or a predetermined number of servers or may
proceed to update the average whenever any new metrics are
reported.

In various embodiments, the average metric calculator 250
may exclude some servers from the average calculation. For
example, as will be explained below, the feedback controllers
270 may maintain an integrator for each server. If any inte-
grator exceeds predetermined limits, the integrator may be
declared a “runaway integrator” and its corresponding serv-
er’s metrics be excluded from the calculation of the present
average. By declaring such runaway integrators, the detri-
mental effects of the Byzantine fault problem may be miti-
gated. It will be understood that servers associated with run-
away integrators may still receive work requests and may still
be associated with a preference value, as will be described in
greater detail below.

The server error calculator 260 may include hardware or
executable instructions on a machine-readable storage
medium configured to calculate an error value for each of the
servers to be used by the feedback controllers 270. As will be
understood and explained below, various feedback control-
lers utilize an error signal. For example, the server error
calculator 260 may calculate, for each specific server, the
difference between the average metric calculated by the aver-
age metric calculator 250 and the metric reported by the
specific server. The server error calculator 260 may then
report the error to the appropriate feedback controller 270 for
the server.

The feedback controllers 270 may include hardware or
executable instructions on a machine-readable storage
medium configured to calculate a preference value for a
server based on an error signal. In various embodiments, each
feedback controller 270 may implement a proportional-inte-
gral (PI) controller. It will be understood that various alterna-
tive feedback controllers may be implemented, such as pro-
portional (P) controllers and proportional-integral-derivative
(PID) controllers. An exemplary operation of the feedback
controllers 270 will be described in greater detail below with
respect to FIG. 4. The feedback controllers 270 may output a
non-cumulative preference value for each of the servers to the
preference table generator.

As mentioned above, various embodiments may imple-
ment a “call bucket” for use in disposing of some work

US 9,270,746 B2

7

requests. The call bucket may be associated with one of the
feedback controllers 270. The feedback controller 270 may
utilize a different error signal and thereby exhibit different
behavior in terms of preference adaptation than the other
feedback controllers 270. In various embodiments, it may be
desirable that the preference for the call bucket remain set to
zero until the total commitment of the system reaches a pre-
determined threshold deemed to be the limit. The call bucket
error calculator 280 may include hardware or executable
instructions on a machine-readable storage medium config-
ured to calculate an error value in a different way from the
server error calculator 260 and thereby achieve this different
behavior. For example, the call bucket error calculator may
calculate the difference between the average metric calcu-
lated by the average metric calculator 250 and a predeter-
mined threshold. Thus, in this example, the error signal will
be negative, or capped at zero, until the average metric sur-
passes the predetermined threshold.

The preference table generator 290 may include hardware
or executable instructions on a machine-readable storage
medium configured to generate, from the preferences
reported by the feedback controllers 270, the values stored by
the preference table 230. For example, the preference table
generator 290 may generate cumulative preference values for
storage in association with the various servers. In this manner,
the operation of the server selector 220 may be influenced by
the feedback controllers 270 and the metrics reported by the
servers.

FIG. 3 illustrates an exemplary preference table 300. The
exemplary preference table 300 may correspond to the values
of the preference table 230 discussed above in connection
with FIG. 2. As shown, the preference table 300 may include
a server ID field 310 that stores an indication of the server to
which each record corresponds, a base preference field 320
that stores the preference value calculated for the present
server, and a cumulative preference field 320 that stores a
cumulative preference value corresponding to the server. It
will be understood that the preference table 300 may include
greater or fewer records than those illustrated. Further, in
various embodiments, the base preference field 320 may be
omitted from the table and only the cumulative preference
field 320 may be utilized for server selection.

Exemplary records 340, 350, 360, 370, 380, 390 corre-
spond to servers 0, 1, 2, 3, 4, and 5 (the call bucket) respec-
tively. As shown in exemplary record 330, server ID “0” is
associated with both a base and cumulative preference value
of “25.” As such, a server selector such as the server selector
220 of FIG. 2 may select server 0 for processing a work
request if the server selector generates a random number that
is less than 25. Exemplary record 340 shows that server ID
“1” is associated with a base preference value of “10” and
cumulative preference value of “35,” which is the sum of 10
and the cumulative preference value of the preceding record,
record 340. As such, the server selector may select server 1 for
processing a work request if the server selector generates a
random number that is less than 35 but greater than or equal to
25. In this manner, exemplary conditions for the selection of
servers 2, 3, and 4 will be apparent.

As shown in exemplary record 390, server ID “5” may be
associated with the call bucket. As such, if a server selector
were to select server 5 to process a work request, the work
request may simply be dropped. As used herein, the term
“dropping” will be understood to encompass actions such as
rejecting the request by sending a rejection message to the
requestor or simply ignoring the request without any notifi-
cation to the requestor. As shown, the call bucket is associated
with a base preference value of “0” and a cumulative prefer-

20

25

35

40

45

50

55

60

65

8

ence value of “110,” which is the same cumulative preference
value that is associated with the previous server, server 4. As
such, a server selector may not select the call bucket for any
random number because the server selector would select a
lower server before selecting the call bucket for any random
number that would otherwise be less than the call bucket’s
cumulative preference. For example, if the server selector
generates the random number “109.” the server selector
would select server 4 before having a chance to evaluate the
call bucket. This scenario may indicate that the servers, on
average, are currently operating below the call bucket thresh-
old and, as such, no work requests are to be discarded.

FIG. 4 illustrates an exemplary feedback controller 400.
The feedback controller 400 may correspond to one or more
ofthe feedback controllers 270 described above in connection
with FIG. 2. The feedback controller 400 may include an error
receiver 410, an integrator 420, a preference calculator 430,
and a proportional constant modifier 440.

The error receiver 410 may include hardware or executable
instructions on a machine-readable storage medium config-
ured to receive an error value used to drive the feedback
controller 400. As described above, the error value may be
calculated according to one of many methods. For example, if
the feedback controller 400 is associated with a server, then
the error value may be calculated according to the method
described above with respect to the server error calculator
260. If the feedback controller 400 is associated with the call
bucket, then the error value may be calculated according to
the method described above with respect to the call bucket
error calculator 280.

The integrator 420 may include hardware or executable
instructions on a machine-readable storage medium config-
ured to calculate an integral value based on the sequence of
error values received by the error receiver 410. For example,
in various embodiments, the integrator may store a running
sum of error values. In some such embodiments, the integra-
tor may add the product of the error value and an integral
constant to the running sum. In various embodiments, mul-
tiple load balancers may be supported by sharing the integral
value between the integrators 420 of the various load balanc-
ers. In such embodiments, the integrator 420 may be further
configured to periodically transmit the integral value stored
therein to at least one other load balancer or to receive an
integral value from another load balancer and to use the
received integral value going forward. For example, the inte-
grator 420 may replace the stored integral value with the
received integral value. In various embodiments, the integral
value may be transmitted every few minutes.

The preference calculator 430 may include hardware or
executable instructions on a machine-readable storage
medium configured to calculate a preference value based on
the integral maintained by the integrator 420 and the error
value received by the error receiver 410. In various embodi-
ments, the preference calculator 430 may implement the cen-
tral function of a PI controller. For example, the preference
calculator 430 may calculate a preliminary preference value
by multiplying the error by a proportional constant adding the
products to the current integral value. In various embodi-
ments, the preference calculator 430 may proceed to perform
further operations on this preliminary preference value. For
example, if the preliminary preference value is a negative
number, the preference calculator 430 may set, or “cap,” the
value to zero. As another example, if the preliminary prefer-
ence value exceeds some preset threshold, the preference
calculator 430 may cap the value at the threshold or another
value. In various embodiments, this threshold may be deter-
mined on a server-by-server basis and may be set based on the

US 9,270,746 B2

9

known capabilities of that server. By capping the maximum
preference value, the Byzantine fault problem may be further
mitigated. For example, because the preference for a server is
not allowed to rise past the threshold, the eftects of a server
erroneously reporting excess capacity will be reduced. After
generating a preference value, the preference calculator 430
may pass the preference value to another component, such as
the preference table generator 290 of FIG. 2.

In various embodiments, it may be desirable to dynami-
cally tune the proportional, integral, or other constants used
by the feedback controller 400 rather than setting the con-
stants to static values. For example, in the illustrated example,
the feedback controller 400 may include a static integral
constant but may dynamically tune the proportional constant.
The proportional constant modifier 440 may include hard-
ware or executable instructions on a machine-readable stor-
age medium configured to modity the proportional constant
over time. Specifically, the proportional constant modifier
440 may track various performance metrics, such as the range
of metrics reported by the servers, and periodically (e.g.,
every 30 seconds) adjust the proportional constant up or down
based on whether a performance increase was observed based
on the previous adjustment. An exemplary method for chang-
ing the proportional constant will be discussed in greater
detail below with respect to FIG. 7.

FIG. 5 illustrates an exemplary method 500 for distributing
a work request. The method 500 may be implemented by one
or more components of a load balancer 200 such as, for
example, the server selector 220. Method 500 may begin in
step 505 and proceed to step 510 where the load balancer 200
may receive a work request from a client device. Next, in step
515, the load balancer 200 may generate a random number
between 0 and the maximum value stored in the preference
table. Instep 520, the load balancer 200 may select a server by
locating an entry in the preference table associated with the
random number. For example, the load balancer 200 may
advance through a cumulative preference table until a cumu-
lative preference value greater than the random number.

The load balancer 200 may then determine whether the
selected server is the call bucket in step 525. If the load
balancer 200 selected the call bucket, the load balancer 200
may simply drop the work request in step 530. Otherwise, the
load balancer 200 may forward the work request to the
selected server in step 535. The method 500 may then proceed
to end in step 540.

FIG. 6 illustrates an exemplary method 600 for processing
received metric values and calculating a server preference.
The method 600 may be implemented by one or more com-
ponents of a load balancer 200 such as, for example, one or
more feedback controller 270. Exemplary method 600 is
described as utilizing a CPU utilization value as a metric.
Various modifications to support additional or alternative
metrics will be apparent.

The method may begin in step 605 and proceed to step 610
where the load balancer 200 may receive one or more CPU
utilization values, cpu, from the servers. It will be apparent
that previous CPU utilization values may be used where one
or more servers did not report new CPU utilization values.
Next, in step 615, the load balancer 200 may calculate an
average CPU utilization value, avg, from the CPU utilization
values.

The load balancer 200 may begin iterating through the
servers in step 620 by selecting a sever index, i, to process.
Then, in step 625, the load balancer may determine whether
the currently selected server, server i, corresponds to the call
bucket. If so, the load balancer 200 may calculate the error, e,
in step 630 by subtracting the preset threshold from the aver-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

age CPU utilization value, avg. Otherwise, the load balancer
200 may calculate an error value, e, for server 1 in step 645 by
subtracting the CPU utilization of server i, cpu[i], from the
average CPU utilization value, avg. Next, in step 650, the load
balancer 200 may update the running integral value by adding
to the previous integral value for server i, I[i], the product of
the error value, e, and an integral constant, Ki. The load
balancer 200 may then, in step 655, calculate the preference
value for server i, P[i], as the sum of the integral value for
server i, [i], and the product of the error, e, and a proportional
constant, Kp.

The load balancer 200 may log various performance sta-
tistics in step 660 by, for example, updating values for a
minimum and maximum CPU value observed. For example,
if the CPU value for server i, cpul[i], is less than the current
minimum CPU seen for this set of CPU values, cpu, the load
balancer 200 may set the minimum CPU value to the value of
cpuli]. Likewise, if the CPU value for server i, cpuli], is
greater than the current maximum CPU seen for this set of
CPU values, cpu, the load balancer 200 may set the maximum
CPU value to the value of cpu[i]. Next, in step 665, the load
balancer 200 may determine whether additional servers
remain to be processed. If server i is not the last server to be
processed, the method 600 may loop back to step 620.

After all servers, including the call bucket, have been
evaluated by the loop of method 600, the method may proceed
from step 665 to step 670, where the load balancer 200 may
finish logging performance data. For example, the load bal-
ancer 200 may update a running sum of CPU utilization
ranges by adding the difference between the maximum CPU
value and minimum CPU value captured in the various execu-
tions of step 660. The load balancer 200 may also increment
a running number of range samples. These values may be
used by a proportional constant modifier, as will be described
in greater detail with respect to FIG. 7. The method may then
proceed to end in step 675.

Itwill be understood that the various proportional, integral,
derivative, or other constants employed in the load balancer
may be instantiated separately for each feedback controller or
may be instantiated only once to be shared by all of the
feedback controllers. In other words, the feedback controllers
may each have unique constants, constants shared with other
feedback controllers, or a combination thereof.

FIG. 7 illustrates an exemplary method 700 for modifying
a proportional constant. The method 700 may be imple-
mented by one or more components of a load balancer 200
such as, for example, one or more feedback controller 270.
Exemplary method 600 is described as utilizing a CPU utili-
zation value as a metric. Various modifications to support
additional or alternative metrics will be apparent. Method 700
may be executed periodically such as, for example, every 30
seconds, to modify a proportional constant used by one or
more feedback controllers.

The method may begin in step 705 and proceed to step 710
where the load balancer 200 may calculate an average CPU
utilization range by, for example, dividing the sum of CPU
ranges by the number of range samples captured in the pre-
vious execution of step 670 of method 600. Next, in step 715,
the load balancer 200 may determine whether a performance
increase was observed since the last time the proportional
constant was modified by determining whether the average
range calculated in step 710 is greater than a previous average
range. It will be understood that various other methods of
measuring system performance may be employed and vari-
ous modifications for using such method will be apparent.

If the average range is greater than the previous average
range, thereby indicating decreased performance, the load

US 9,270,746 B2

11

balancer 200 may, in step 720, reverse the direction of con-
stant modification. Thus, for example, if the proportional
constant was previously increased, the direction will be
changed to “down.” If the average range is less than the
previous average range, thereby indicating increased perfor-
mance, the load balancer 200 may skip ahead to step 725.

In step 725, the load balancer 200 may determine whether
the current modification direction is “up.” If so, the load
balancer 200 may increase the proportional constant, Kp, in
step 730. The proportional constant may be increased in any
known manner such as, for example, incrementing the con-
stant, adding a predetermined value to the constant, doubling
the constant, multiplying the constant by a predetermined
value, or selecting a next highest value in a predetermined
sequence of values. On the other hand, if the current modifi-
cation direction is “down,” the load balancer 200 may
decrease the proportional constant, Kp, in step 735. The pro-
portional constant may be decreased in any known manner
such as, for example, decrementing the constant, subtracting
a predetermined value from the constant, halving the con-
stant, dividing the constant by a predetermined value, or
selecting a next lowest value in a predetermined sequence of
values.

The load balancer 200 may then, in step 740, save the
average range for use in the next execution of method 700 as
the previous average range. The load balancer 200 may also
reset the sum of CPU ranges and sample number to zero in
step 745. The method 700 may then proceed to end in step
750.

FIG. 8 illustrates an exemplary component diagram of a
load balancer 800. The load balancer 800 may correspond to
one or more of load balancers 130, 132, 134 or load balancer
200. The load balancer 800 may include a processor 810, data
storage 820, and an input/output (I/O) interface 830.

The processor 810 may control the operation of the load
balancer 800 and cooperate with the data storage 820 and the
1/0 interface 830, via a system bus. As used herein, the term
“processor” will be understood to encompass a variety of
devices such as microprocessors, field-programmable gate
arrays (FPGAs), application-specific integrated -circuits
(ASICs), and other similar processing devices.

The data storage 820 may store program data such as
various programs useful in implementing the functions
described above. For example, the data storage 820 may store
work distribution instructions 821 for performing method
500 or another method suitable to distribute work requests to
various servers. The data storage 820 may also store prefer-
ence table generation instructions for performing method 600
or another method suitable to generate preference values for
multiple servers. Additionally, the data storage 820 may store
proportional constant modification instructions for perform-
ing method 700 or another method suitable for tuning a pro-
portional constant or other constants.

The data storage 820 may also store various runtime val-
ues. For example, the data storage 820 may store feedback
controller values 827 such as various constant values, inte-
grator values, error values, threshold values, and any other
values used by the feedback controllers. The data storage 820
may also store the preference table 829 used by the work
distribution instructions 821 for selecting a server to process
a work request.

The 1/0 interface 830 may cooperate with the processor
810 to support communications over one or more Communi-
cation channels. For example, the I/O interface 830 may
include a user interface, such as a keyboard and monitor,
and/or a network interface, such as one or more Ethernet
ports.

25

30

40

45

12

In some embodiments, the processor 810 may include
resources such as processors/CPU cores, the I/O interface 830
may include any suitable network interfaces, or the data stor-
age 820 may include memory or storage devices such as
magnetic storage, flash memory, random access memory,
read only memory, or any other suitable memory or storage
device. Moreover the load balancer 800 may be any suitable
physical hardware configuration such as: one or more server
(s), blades consisting of components such as processor,
memory, network interfaces or storage devices. In some of
these embodiments, the load balancer 800 may include cloud
network resources that are remote from each other and may be
implemented as a virtual machine.

According to the foregoing, various embodiments enable
distribution of work requests in a way that easily scales to
multiple load balancers. By employing a stochastic server
selection method driven by feedback controllers, work may
be distributed by multiple load balancers among multiple
servers without unknowingly overloading the server that cur-
rently has the least amount of work. Additional benefits will
be apparent in view of the foregoing.

It should be apparent from the foregoing description that
various exemplary embodiments of the invention may be
implemented in hardware or firmware. Furthermore, various
exemplary embodiments may be implemented as instructions
stored on a machine-readable storage medium, which may be
read and executed by at least one processor to perform the
operations described in detail herein. A machine-readable
storage medium may include any mechanism for storing
information in a form readable by a machine, such as a per-
sonal or laptop computer, a server, or other computing device.
Thus, a tangible and non-transitory machine-readable storage
medium may include read-only memory (ROM), random-
access memory (RAM), magnetic disk storage media, optical
storage media, flash-memory devices, and similar storage
media.

It should be appreciated by those skilled in the art that any
block diagrams herein represent conceptual views of illustra-
tive circuitry embodying the principles of the invention. Simi-
larly, it will be appreciated that any flow charts, flow dia-
grams, state transition diagrams, pseudo code, and the like
represent various processes which may be substantially rep-
resented in machine readable media and so executed by a
computer or processor, whether or not such computer or
processor is explicitly shown.

Although the various exemplary embodiments have been
described in detail with particular reference to certain exem-
plary aspects thereof, it should be understood that the inven-
tion is capable of other embodiments and its details are
capable of modifications in various obvious respects. As is
readily apparent to those skilled in the art, variations and
modifications can be effected while remaining within the
spirit and scope of the invention. Accordingly, the foregoing
disclosure, description, and figures are for illustrative pur-
poses only and do not in any way limit the invention, which is
defined only by the claims.

What is claimed is:

1. A method performed by a load balancer for calculating a
set of preferences for a plurality of servers, the method com-
prising:

receiving, by the load balancer, a plurality of metric values

from a plurality of servers;

calculating an average metric value based on the plurality

of metric values;

calculating a first error value based on the average metric

value and a first metric value of the plurality of metric
values;

US 9,270,746 B2

13

generating a first integral value by incorporating the first
error value into a first previous integral value;

generating a first preference value for a first server of the
plurality of servers based on the first integral value;

calculating a second error value based on the average met-
ric value and a desired metric threshold;

generating a second integral value by incorporating the

second error value into a second previous integral value;
generating a second preference value for a call bucket
based on the second integral value; and

selecting a selected server of the plurality of servers

according to a non-deterministic method based on a set
of preferences that incorporates the first preference
value.

2. The method of claim 1, further comprising:

receiving, at the load balancer, a work request;

transmitting the work request to the selected server.

3. The method of claim 2, wherein the non-deterministic
method comprises:

generating a random number;

identifying a server associated with the random number

based on the set of preferences; and

selecting the identified server as the selected server.

4. The method of claim 1, wherein the plurality of metric
values comprises at least one of: a processor utilization value,
a queue depth value, and a memory usage value.

5. The method of claim 1, wherein the plurality of servers
comprise at least one of: a user equipment management unit,
a radio network controller, and a cloud component.

6. The method of claim 1, wherein the first preference value
is a cumulative value, wherein the first preference value is
further generated based on at least one other preference value.

7. The method of claim 1, further comprising:

generating a proportional value based on the first error and

a proportional constant,

wherein generating the first preference value is further

based on the proportional value.

8. The method of claim 7, further comprising:

periodically changing a value of the proportional constant.

9. The method of claim 8, wherein changing a value of the
proportional constant comprises:

determining a previous direction of a previous change;

determining whether the previous change resulted in

increased performance;

changing, based on the previous change resulting in

increased performance, the value of the proportional
constant in the same direction as the previous direction;
and

changing, based on the previous change resulting in

decreased performance, the value of the proportional
constant in the opposite direction from the previous
direction.

10. The method of claim 1, further comprising:

receiving, at the load balancer, a work request;

selecting the call bucket as a selected server based on a set

of preferences that incorporates the first preference
value and the second preference value; and

dropping the work request based on selection of the call

bucket.

11. The method of claim 1, wherein generating a first
preference value comprises:

calculating a preliminary preference value based on the

first integral value;

determining that the preliminary preference value exceeds

a threshold; and

10

15

20

25

30

35

40

45

50

55

60

65

14

based on the preliminary preference value exceeding the
threshold, reducing the preliminary preference value to
generate the first preference value.

12. The method of claim 11, wherein the threshold is set
based on a known work-processing capability associated with
the first server.

13. The method of claim 1, wherein the plurality of metric
values are transmitted to the load balancer according to an
assured transfer protocol.

14. The method of claim 1, further comprising sharing the
first integral value with at least one other load balancer.

15. A load balancer device comprising:

a preference storage; and

a processor configured to:

receive a plurality of metric values from a plurality of

servers,

calculate an average metric value based on the plurality of

metric values,

calculate a first error value based on the average metric

value and a first metric value of the plurality of metric
values,

generate a first integral value by incorporating the first

error value into a first previous integral value,

generate a first preference value for a first server of the

plurality of servers based on the first integral value,
store the first preference value in the preference storage,
calculate a second error value based on the average metric
value and a desired metric threshold,
generate a second integral value by incorporating the sec-
ond error value into a second previous integral value,
generate a second preference value for a call bucket based
on the second integral value; and

selecting a selected server of the plurality of servers

according to a non-deterministic method based on a set
of preferences that incorporates the first preference
value.

16. The load balancer of claim 15, wherein the processor is
further configured to:

receive a work request;

transmit the work request to the selected server.

17. The load balancer of claim 16, wherein the non-deter-
ministic method comprises:

generating a random number;

identifying a server associated with the random number

based on the set of preferences; and

selecting the identified server as the selected server.

18. The load balancer of claim 15, wherein the plurality of
metric values comprises at least one of: a processor utilization
value, a queue depth value, and a memory usage value.

19. The load balancer of claim 15, wherein the plurality of
servers comprise at least one of: a user equipment manage-
ment unit, a radio network controller, and a cloud component.

20. The load balancer of claim 15, wherein the first pref-
erence value is a cumulative value, wherein the first prefer-
ence value is further generated based on at least one other
preference value.

21. The load balancer of claim 15, wherein the processor is
further configured to:

generate a proportional value based on the first error and a

proportional constant,

wherein generating the first preference value is further

based on the proportional value.

22. The load balancer of claim 21, wherein the processor is
further configured to:

periodically change a value of the proportional constant.

US 9,270,746 B2

15

23. The load balancer of claim 22, wherein, in changing a
value ofthe proportional constant, the processor is configured
to:

determine a previous direction of a previous change;

determine whether the previous change resulted in

increased performance;

change, based on the previous change resulting in

increased performance, the value of the proportional
constant in the same direction as the previous direction;
and

change, based on the previous change resulting in

decreased performance, the value of the proportional
constant in the opposite direction from the previous
direction.

24. The load balancer of claim 15, wherein the processor is
further configured to:

receive a work request;

select the call bucket as a selected server based on a set of

preferences that incorporates the first preference value
and the second preference value; and

drop the work request based on selection of the call bucket.

25. The load balancer of claim 15, wherein, in generating a
first preference value, the processor is configured to:

calculate a preliminary preference value based on the first

integral value;

determine that the preliminary preference value exceeds a

threshold; and

based on the preliminary preference value exceeding the

threshold, reduce the preliminary preference value to
generate the first preference value.

26. The load balancer of claim 25, wherein the threshold is
set based on a known work-processing capability associated
with the first server.

27. The load balancer of claim 15, wherein the plurality of
metric values are transmitted to the load balancer according to
an assured transfer protocol.

28. The load balancer of claim 15, wherein the processor is
further configured to share the first integral value with at least
one other load balancer.

29. A non-transitory machine-readable medium encoded
with instructions for execution by a hardware processor for
calculating a set of preferences for a plurality of servers, the
non-transitory machine-readable medium comprising:

instructions for receiving, by a load balancer, a plurality of

metric values from a plurality of servers;

instructions for calculating an average metric value based

on the plurality of metric values;

instructions for calculating a first error value based on the

average metric value and a first metric value of the
plurality of metric values;

instructions for generating a first integral value by incor-

porating the first error value into a first previous integral
value;

instructions for generating a first preference value for a first

server of the plurality of servers based on the first inte-
gral value;
instructions for calculating a second error value based on
the average metric value and a desired metric threshold;

instructions for generating a second integral value by
incorporating the second error value into a second pre-
vious integral value;
instructions for generating a second preference value for a
call bucket based on the second integral value; and

selecting a selected server of the plurality of servers
according to a non-deterministic method based on a set
of preferences that incorporates the first preference
value.

5

10

15

20

25

30

35

40

45

50

55

65

16

30. The non-transitory machine-readable medium of claim
29, further comprising:

instructions for receiving, at the load balancer, a work

request;

instructions for transmitting the work request to the

selected server.

31. The non-transitory machine-readable medium of claim
30, wherein the non-deterministic method comprises:

generating a random number;

identifying a server associated with the random number

based on the set of preferences; and

selecting the identified server as the selected server.

32. The non-transitory machine-readable medium of claim
29, wherein the plurality of metric values comprises at least
one of: a processor utilization value, a queue depth value, and
a memory usage value.

33. The non-transitory machine-readable medium of claim
29, wherein the plurality of servers comprise at least one of:
a user equipment management unit, a radio network control-
ler, and a cloud component.

34. The non-transitory machine-readable medium of claim
29, wherein the first preference value is a cumulative value,
wherein the first preference value is further generated based
on at least one other preference value.

35. The non-transitory machine-readable medium of claim
29, further comprising:

instructions for generating a proportional value based on

the first error and a proportional constant,

wherein generating the first preference value is further

based on the proportional value.

36. The non-transitory machine-readable medium of claim
35, further comprising:

instructions for periodically changing a value of the pro-

portional constant.

37. The non-transitory machine-readable medium of claim
36, wherein changing a value of the proportional constant
comprises:

instructions for determining a previous direction of a pre-

vious change;

instructions for determining whether the previous change

resulted in increased performance;

instructions for changing, based on the previous change

resulting in increased performance, the value of the pro-
portional constant in the same direction as the previous
direction; and

instructions for changing, based on the previous change

resulting in decreased performance, the value of the
proportional constant in the opposite direction from the
previous direction.

38. The non-transitory machine-readable medium of claim
29, further comprising:

instructions for receiving, at the load balancer, a work

request;
instructions for selecting the call bucket as a selected server
based on a set of preferences that incorporates the first
preference value and the second preference value;

instructions for dropping the work request based on selec-
tion of the call bucket.

39. The non-transitory machine-readable medium of claim
29, wherein the instructions for generating a first preference
value comprise:

instructions for calculating a preliminary preference value

based on the first integral value;

instructions for determining that the preliminary prefer-

ence value exceeds a threshold; and

US 9,270,746 B2
17

instructions for, based on the preliminary preference value
exceeding the threshold, reducing the preliminary pref-
erence value to generate the first preference value.

40. The non-transitory machine-readable medium of claim
39, wherein the threshold is set based on a known work- 5
processing capability associated with the first server.

41. The non-transitory machine-readable medium of claim
29, wherein the plurality of metric values are transmitted to
the load balancer according to an assured transfer protocol.

42. The non-transitory machine-readable medium of claim 10
29, further comprising instructions for sharing the first inte-
gral value with at least one other load balancer.

#* #* #* #* #*

18

