a2 United States Patent

Nelson et al.

US009430242B2

US 9,430,242 B2
Aug. 30, 2016

(10) Patent No.:
45) Date of Patent:

(54) THROTTLING INSTRUCTION ISSUE RATE
BASED ON UPDATED MOVING AVERAGE
TO AVOID SURGES IN DI/DT

(75) Inventors: Peter Michael Nelson, Houston, TX
(US); Jack Hilaire Choquette, Palo
Alto, CA (US); Olivier Giroux, San
Jose, CA (US)

(73) Assignee: NVIDIA Corporation, Santa Clara, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 822 days.

(21) Appl. No.: 13/437,765

(22) Filed: Apr. 2, 2012

(65) Prior Publication Data
US 2013/0262831 Al Oct. 3, 2013

(51) Imt.CL
GO6F 9/30 (2006.01)
GO6F 9/38 (2006.01)
GO6F 1/32 (2006.01)
GO6T 1/20 (2006.01)
GO6F 126 (2006.01)
GO6F 1/30 (2006.01)

(52) US. CL
CPC ..o GOG6F 9/3836 (2013.01); GOGF 1/26

(2013.01); GOGF 1/305 (2013.01); GOGF
1/3203 (2013.01); GOGF 1/324 (2013.01);
GOGF 1/329 (2013.01); GOGF 9/30 (2013.01);
GOGF 9/30109 (2013.01); GOGF 9/3851
(2013.01); GOGF 9/3887 (2013.01); GO6T 1/20
(2013.01); Y02B 60/144 (2013.01)

(58) Field of Classification Search
CPC ..ocorvvvvnicrcicne GO6F 1/3203; GO6F 9/3836
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,636,976 B1* 10/2003 Grochowski et al. 713/320
2003/0126476 Al* 7/2003 Greene 713/300
2006/0230256 Al* 10/2006 Chrysos 712/200
2008/0133947 Al* 6/2008 Shimada et al. 713/320
2009/0300329 Al* 12/2009 Naffziger et al. 712/205
2011/0125657 Al1* 5/2011 Boss et al. 705/317
2012/0254595 Al* 10/2012 Wuetal. ... 712/208

* cited by examiner

Primary Examiner — Kenneth Kim
(74) Attorney, Agent, or Firm — Artegis Law Group, LLP

(57) ABSTRACT

Systems and methods for throttling GPU execution perfor-
mance to avoid surges in DI/DT. A processor includes one or
more execution units coupled to a scheduling unit config-
ured to select instructions for execution by the one or more
execution units. The execution units may be connected to
one or more decoupling capacitors that store power for the
circuits of the execution units. The scheduling unit is con-
figured to throttle the instruction issue rate of the execution
units based on a moving average issue rate over a large
number of scheduling periods. The number of instructions
issued during the current scheduling period is less than or
equal to a throttling rate maintained by the scheduling unit
that is greater than or equal to a minimum throttling issue
rate. The throttling rate is set equal to the moving average
plus an offset value at the end of each scheduling period.

20 Claims, 14 Drawing Sheets

—O— lIssue
—%— Throttle

—— Avg.

600A

U.S. Patent

CPU

Aug. 30, 2016

System Memory

102

Sheet 1 of 14 US 9,430,242 B2

Computer

104
Device Driver
103
Communication Path
y 113
Memory Parallel Processing
» Bridge Subsystem
105 112
Communication DDS&:!
Path
food \ 110

Add-In Card
120

/

Input Devices
108

/O Bridge
107

A 4

Switch

| Add-In Card

116

y

h 4

Network
Adapter
118

Figure 1

121

U.S. Patent Aug. 30, 2016 Sheet 2 of 14 US 9,430,242 B2

Parallel Processing
Memory Bridge | communication Subsystem
105 Path / 112
A A A/ 113
I PPU 202(0
-] 110 20200
Unit » Host Interface 206
205
Front End 212
Task/Work Unit 207
Processing Cluster Array 230
GPC |6 GPC GPC
208(0) 208(1) | """ | 208(C-1)
Crossbar Unit 210
Memory |Interface 214
Partition| | Partition Partition
Unit Unit |- Unit
215(0) 215(1) 215(D-1)
DRAM DRAM DRAM
220(0) 220(1) | " |220(D-1)
PP Memory 204(0)
PPU PP Memory
] 202(1) - 204(1)
PPU PP Memory
202(U-1) T 204(U-1)

Figure 2

US 9,430,242 B2

TMD

U.S. Patent Aug. 30, 2016 Sheet 3 of 14
Tasks From
Front End
212
Task/Work Unit 207
\ 4
Task Scheduler
Management
. Table
Unit 321
300 —
Work
Distribution Task
. Table
Unit 345
340 —
7 Y
\ 4
From To/From
Processing Processing Cluster Array
Cluster Array 230
230

Figure 3A

322

From
Processing
Cluster
Array
230

U.S. Patent Aug. 30,2016

Sheet 4 of 14 US 9,430,242 B2
To/From
Work Distribution Unit
340
A
GPC —
208 Pipeline Manager
305
| - |
Texture
< R Unit To/From
— 315 Memory
SM 1 Interface
310 MMU 214
L] 328 via
< y Crossbar
L1.5 Cache Unit
L 335 210
y
Work Distribution
Crossbar PreROP
330 1 325
A 4
To
Crossbar Unit
210 and
GPCs 208

Figure 3B

U.S. Patent Aug. 30, 2016 Sheet 5 of 14 US 9,430,242 B2

From Pipeline Manager 305
in GPC 208

!

SM 310
Instruction L1 Cache 370 <
Y
Warp Scheduler and Instruction Unit 312
Local Register File 304
\ A
Exec Exec Exec
Unit Unit e Unit
302(0) 302(1) 302(N-1)
v __ v 3
Unified
LSU AN LSU ., BN LSU N Address
303(0) 303(1) T 303(P-1) Mapping Unit
352
A
A
(Memory and Cache Interconnect 380 >
A
Shared Memory 306
L1 Cache 320 <
To/From MMU From
Memory Interface 214 <«—>; 328 < L1.5 Cache 335
via Crossbar Unit 210 R in GPC 208

Figure 3C

U.S. Patent Aug. 30, 2016 Sheet 6 of 14 US 9,430,242 B2

Warp Scheduler and Instruction Unit 312

From
L1 370

Instruction Cache Fetch Unit
412

]
|
|
|
:
|
|
|
:
Scheduler }
420 :
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Decode Unit
450

A
Dispatch Unit
470

_ To
" LRF 304

Figure 4

U.S. Patent Aug. 30, 2016 Sheet 7 of 14 US 9,430,242 B2

SMPS
510

Graphics Card 520

Voltage Regulator

f 530

DC Power
504 PPU 202(0)
C 542
SM 310 K

D T S AU ——

Memory Interface
214

PP Memory 204(0)

C 544

Figure 5A

U.S. Patent Aug. 30, 2016 Sheet 8 of 14 US 9,430,242 B2

From VR
530
SM 310 ToC
552-557
Local Register File 304 C 554
C 551
| |
Exec Unit , |Lsu '
C 552 ||! C 553 !
302(0) —[} [303(0) — !
ll e e e e e A — — — ll
S
Memory and Cache Interconnect
C 557
380
A
Shared Memory 306 C 556
L1 Cache 320 C 555

Figure 5B

US 9,430,242 B2

Sheet 9 of 14

Aug. 30, 2016

U.S. Patent

V9 ainbi4

G¢ ¥¢ €2 ¢

9l GlL ¥l €l
| | 1 |

Bay ——
amoIy) —¥—

anss| —O—

0l
Ll
¢l
42
14"

Gl

US 9,430,242 B2

Sheet 10 of 14

Aug. 30, 2016

U.S. Patent

9009

/(/

g9 ainbi4

S V¢ € ¢c

|] | |

le 0¢ 6l

8l
]

L
I

9l

Sl

vl

€l

cl

l

3

oL

Bay ——
S|oIYL =K

enss| —o—

T

0l

12"

cl

€l

14

St

US 9,430,242 B2

0009

//

09 ainbi4

Sheet 11 of 14

G¢ Ve €¢ ¢
!] !]

I T T]

‘BAY ——
amoiyL —x

anss| -0~

Aug. 30, 2016

¢l

€l

14

Gl

U.S. Patent

US 9,430,242 B2

a9 ainbi4

aoo9

/)

G¢ v¢ € ¢ ¢ 0¢ 6L 8 ZL 91 SL ¥L €L 2L LL O 6 8 L 9 S v € ¢ |
| N N U IO NN NSNS N N U N N S N I RN N N R R S |

Sheet 12 of 14

By
ooyl —%—

anss} —O—

Aug. 30, 2016

ol
L
[4
€l
vi

Sl

U.S. Patent

US 9,430,242 B2

Sheet 13 of 14

Aug. 30, 2016

U.S. Patent

3009

/J

39 ainbi4

§¢ V¥¢ € ¢
<1]]]

g 0C 6l

8l
]

Ll

9l

Sl

Bay —~—
SOyl —%-

anss| —O—

i

vl

€l

Zl

ol

L

cl

€l

145

Sl

U.S. Patent Aug. 30, 2016 Sheet 14 of 14 US 9,430,242 B2

700

G 4

A

Receive one or more instructions for scheduling on an execution unit
710

Issue a number of instructions during the scheduling period, not exceeding a
throttled instruction issue rate
712

Update the moving average based on the number of instructions issued during
the current scheduling period
714

Calculate a difference between the moving average and the instruction issue rate
for the current scheduling period
716

Update the throttled instruction issue rate based on the difference
718

End

Figure 7

US 9,430,242 B2

1

THROTTLING INSTRUCTION ISSUE RATE
BASED ON UPDATED MOVING AVERAGE
TO AVOID SURGES IN DI/DT

BACKGROUND OF THE INVENTION

1. Field of the Invention

The disclosure generally relates to power management,
and more specifically to methods and apparatus to avoid
surges in DI/DT (rate of change of current) by throttling
graphics processing unit (GPU) execution performance.

2. Description of the Related Art

Typically, power supplies for computing devices are
switched-mode power supplies (SMPS) that convert a main
supply alternating current (AC) power to a direct current
(DC) power at one or more voltages using a high frequency
switching mechanism. The voltage output of the SMPS may
then be regulated by altering the duty cycle of the signal that
controls the switching mechanism. The SMPS power sup-
plies typically operate at a frequency between 50 kHz and 1
MHz. A feedback circuit is implemented to control the
selected duty cycle used to generate the regulated output
voltage, but the feedback circuit cannot compensate for load
changes instantaneously. Consequently, varying the load
(i.e., current draw) at the output of the power supply will
cause a corresponding change in the output voltage before
the power supply “reacts” and changes the duty cycle of the
control signal.

The power requirements of the computing device attached
to the power supply change dynamically based on the
operations being performed as well as other factors (such as
special power saving configurations of the various process-
ing units). The more operations being performed, the larger
the current draw on the power supply. A large surge in
current draw causes a corresponding drop in voltage at the
output of the power supply (which is then corrected by
adjusting the duty cycle of the control signal for the switch-
ing mechanism). Conversely, a large drop in current draw
will cause a corresponding spike in voltage at the output of
the power supply. These changes in voltage supplied to the
computing device may have adverse effects on the various
components within the computing device. For example, the
circuits of a processing unit may include various transistors
or memory units (e.g., static RAM or Flip-Flops) that require
a threshold voltage in order to operate reliably. When a large
surge in current draw causes a corresponding drop in the
supply voltage supplied to the circuit, the operation of the
components may become unreliable, thereby producing ran-
dom results. Conversely, a large drop in current draw
corresponding to a voltage spike may cause physical harm to
certain components.

Conventionally, decoupling capacitors located proximate
to the various components of the computing device may
provide local storage for a small amount of power that may
react to fast changes in current draw instead of relying on the
power supply circuit to adjust the duty cycle of the switching
mechanism. However, such techniques have some draw-
backs. First, adding capacitors to the computing device
increases the cost and complexity of the system. These costs
and complexities are exacerbated in highly parallel proces-
sors, such as graphics processing units, because such pro-
cessors may have hundreds or thousands of hardware sub-
units that each requires separate local capacitance. Second,
physical limitations of the chip design may limit the prac-
tical amount of capacitance that may be added to a circuit.
Capacitors require physical space on a chip and, therefore,
increasing the number of capacitors in a design may increase

10

15

20

25

30

35

40

45

50

55

60

65

2

the size of the overall integrated circuit package. The
increased size of the IC package results in a lower yield per
silicon wafer and a corresponding increase in cost per chip.
Finally, adding capacitance to a circuit may change the
electrical characteristics of the circuit, thereby requiring
longer set-up and hold times for reliable operation of the
circuit components. These electrical characteristics may
adversely limit the processing capacity of the processor by
limiting the clock speed at which the processor may be run.

Accordingly, what is needed in the art is a system and
method for throttling computing device performance to
reduce large surges in current draw.

SUMMARY OF THE INVENTION

One example embodiment of the disclosure sets forth a
method for throttling an instruction issue rate of a processor.
The method includes the steps of receiving a plurality
instructions to be issued to one or more execution units
within the processor and dispatching a subset of instructions
included in the plurality instructions to the one or more
execution units within a first number of clock cycles during
a current scheduling period, where the instruction issue rate
during the current scheduling period is less than or equal to
a throttling rate for the current scheduling period. The
instruction issue rate during the current scheduling period is
defined by a number of clock cycles for which at least one
instruction is dispatched during the particular scheduling
period. The method also includes the steps of updating a
moving average based on the instruction issue rate during
the current scheduling period and updating a throttling rate
for a next scheduling period based on the moving average.

Another example embodiment of the disclosure sets forth
a processing unit that includes one or more execution units
and including a scheduling unit configured to perform the
method set forth above. Yet another example embodiment of
the disclosure sets forth a computing device that includes a
memory and a processor that includes one or more execution
units and including a scheduling unit configured to perform
the method set forth above.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of
the present disclosure can be understood in detail, a more
particular description, briefly summarized above, may be
had by reference to example embodiments, some of which
are illustrated in the appended drawings. It is to be noted,
however, that the appended drawings illustrate only typical
embodiments of this disclosure and are therefore not to be
considered limiting of its scope, for the disclosure may
admit to other equally effective embodiments.

FIG. 1 is a block diagram illustrating a computer system
configured to implement one or more aspects of the present
disclosure;

FIG. 2 is a block diagram of a parallel processing sub-
system for the computer system of FIG. 1, according to one
embodiment of the present disclosure;

FIG. 3A is a block diagram of the front end of FIG. 2,
according to one embodiment of the present disclosure;

FIG. 3B is a block diagram of a general processing cluster
within one of the parallel processing units of FIG. 2,
according to one embodiment of the present disclosure;

FIG. 3C is a block diagram of a portion of the streaming
multiprocessor of FIG. 3B, according to one embodiment of
the present disclosure; and

US 9,430,242 B2

3

FIG. 4 is a block diagram of the warp scheduler and
instruction unit of FIG. 3C, according to one example
embodiment of the present disclosure;

FIG. 5A illustrates power distribution within the computer
system, according to one example embodiment of the pres-
ent disclosure;

FIG. 5B illustrates streaming multiprocessor of FIG. 5A,
according to one example embodiment of the present dis-
closure;

FIGS. 6A-6E are graphs that illustrate the number of
instructions issued to the functional execution units per
scheduling period, according to one example embodiment of
the present disclosure; and

FIG. 7 illustrates a method for throttling the instruction
issue rate of a processor to prevent a surge in DI/DT,
according to one example embodiment of the present dis-
closure.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a more thorough understanding of the
present disclosure. However, it will be apparent to one of
skill in the art that the invention may be practiced without
one or more of these specific details.

System Overview

FIG. 1 is a block diagram illustrating a computer system
100 configured to implement one or more aspects of the
present disclosure. Computer system 100 includes a central
processing unit (CPU) 102 and a system memory 104
communicating via an interconnection path that may include
a memory bridge 105. Memory bridge 105, which may be,
e.g., a Northbridge chip, is connected via a bus or other
communication path 106 (e.g., a HyperTransport link) to an
1/O (input/output) bridge 107. /O bridge 107, which may be,
e.g., a Southbridge chip, receives user input from one or
more user input devices 108 (e.g., keyboard, mouse) and
forwards the input to CPU 102 via communication path 106
and memory bridge 105. A parallel processing subsystem
112 is coupled to memory bridge 105 via a bus or second
communication path 113 (e.g., a Peripheral Component
Interconnect Express (PCle), Accelerated Graphics Port, or
HyperTransport link); in one embodiment parallel process-
ing subsystem 112 is a graphics subsystem that delivers
pixels to a display device 110 (e.g., a conventional cathode
ray tube or liquid crystal display based monitor). A system
disk 114 is also connected to /O bridge 107. A switch 116
provides connections between [/O bridge 107 and other
components such as a network adapter 118 and various
add-in cards 120 and 121. Other components (not explicitly
shown), including universal serial bus (USB) or other port
connections, compact disc (CD) drives, digital video disc
(DVD) drives, film recording devices, and the like, may also
be connected to I/O bridge 107. The various communication
paths shown in FIG. 1, including the specifically named
communications paths 106 and 113, may be implemented
using any suitable protocols, such as PCI Express, AGP
(Accelerated Graphics Port), HyperTransport, or any other
bus or point-to-point communication protocol(s), and con-
nections between different devices may use different proto-
cols as is known in the art.

In one embodiment, the parallel processing subsystem
112 incorporates circuitry optimized for graphics and video
processing, including, for example, video output circuitry,
and constitutes a graphics processing unit (GPU). In another

10

15

20

25

30

35

40

45

50

55

60

65

4

embodiment, the parallel processing subsystem 112 incor-
porates circuitry optimized for general purpose processing,
while preserving the underlying computational architecture,
described in greater detail herein. In yet another embodi-
ment, the parallel processing subsystem 112 may be inte-
grated with one or more other system elements in a single
subsystem, such as joining the memory bridge 105, CPU
102, and 1/O bridge 107 to form a system on chip (SoC).

It will be appreciated that the system shown herein is
illustrative and that variations and modifications are pos-
sible. The connection topology, including the number and
arrangement of bridges, the number of CPUs 102, and the
number of parallel processing subsystems 112, may be
modified as desired. For instance, in some embodiments,
system memory 104 is connected to CPU 102 directly rather
than through a bridge, and other devices communicate with
system memory 104 via memory bridge 105 and CPU 102.
In other alternative topologies, parallel processing subsys-
tem 112 is connected to I/O bridge 107 or directly to CPU
102, rather than to memory bridge 105. In still other embodi-
ments, [/O bridge 107 and memory bridge 105 might be
integrated into a single chip instead of existing as one or
more discrete devices. Large embodiments may include two
or more CPUs 102 and two or more parallel processing
systems 112. The particular components shown herein are
optional; for instance, any number of add-in cards or periph-
eral devices might be supported. In some embodiments,
switch 116 is eliminated, and network adapter 118 and
add-in cards 120, 121 connect directly to /O bridge 107.

FIG. 2 illustrates a parallel processing subsystem 112,
according to one embodiment of the present disclosure. As
shown, parallel processing subsystem 112 includes one or
more parallel processing units (PPUs) 202, each of which is
coupled to a local parallel processing (PP) memory 204. In
general, a parallel processing subsystem includes a number
U of PPUs, where Uz1. (Herein, multiple instances of like
objects are denoted with reference numbers identifying the
object and parenthetical numbers identifying the instance
where needed.) PPUs 202 and parallel processing memories
204 may be implemented using one or more integrated
circuit devices, such as programmable processors, applica-
tion specific integrated circuits (ASICs), or memory devices,
or in any other technically feasible fashion.

Referring again to FIG. 1 as well as FIG. 2, in some
embodiments, some or all of PPUs 202 in parallel processing
subsystem 112 are graphics processors with rendering pipe-
lines that can be configured to perform various operations
related to generating pixel data from graphics data supplied
by CPU 102 and/or system memory 104 via memory bridge
105 and the second communication path 113, interacting
with local parallel processing memory 204 (which can be
used as graphics memory including, e.g., a conventional
frame buffer) to store and update pixel data, delivering pixel
data to display device 110, and the like. In some embodi-
ments, parallel processing subsystem 112 may include one
or more PPUs 202 that operate as graphics processors and
one or more other PPUs 202 that are used for general-
purpose computations. The PPUs may be identical or dif-
ferent, and each PPU may have a dedicated parallel pro-
cessing memory device(s) or no dedicated parallel
processing memory device(s). One or more PPUs 202 in
parallel processing subsystem 112 may output data to dis-
play device 110 or each PPU 202 in parallel processing
subsystem 112 may output data to one or more display
devices 110.

In operation, CPU 102 is the master processor of com-
puter system 100, controlling and coordinating operations of

US 9,430,242 B2

5

other system components. In particular, CPU 102 issues
commands that control the operation of PPUs 202. In some
embodiments, CPU 102 writes a stream of commands for
each PPU 202 to a data structure (not explicitly shown in
either FIG. 1 or FIG. 2) that may be located in system
memory 104, parallel processing memory 204, or another
storage location accessible to both CPU 102 and PPU 202.
A pointer to each data structure is written to a pushbuffer to
initiate processing of the stream of commands in the data
structure. The PPU 202 reads command streams from one or
more pushbuffers and then executes commands asynchro-
nously relative to the operation of CPU 102. Execution
priorities may be specified for each pushbuffer by an appli-
cation program via the device driver 103 to control sched-
uling of the different pushbuffers.

Referring back now to FIG. 2 as well as FIG. 1, each PPU
202 includes an I/O (input/output) unit 205 that communi-
cates with the rest of computer system 100 via communi-
cation path 113, which connects to memory bridge 105 (or,
in one alternative embodiment, directly to CPU 102). The
connection of PPU 202 to the rest of computer system 100
may also be varied. In some embodiments, parallel process-
ing subsystem 112 is implemented as an add-in card that can
be inserted into an expansion slot of computer system 100.
In other embodiments, a PPU 202 can be integrated on a
single chip with a bus bridge, such as memory bridge 105 or
1/0 bridge 107. In still other embodiments, some or all
elements of PPU 202 may be integrated on a single chip with
CPU 102.

In one embodiment, communication path 113 is a PCI
Express link, in which dedicated lanes are allocated to each
PPU 202, as is known in the art. Other communication paths
may also be used. An I/O unit 205 generates packets (or
other signals) for transmission on communication path 113
and also receives all incoming packets (or other signals)
from communication path 113, directing the incoming pack-
ets to appropriate components of PPU 202. For example,
commands related to processing tasks may be directed to a
host interface 206, while commands related to memory
operations (e.g., reading from or writing to parallel process-
ing memory 204) may be directed to a memory crossbar unit
210. Host interface 206 reads each pushbuffer and outputs
the command stream stored in the pushbuffer to a front end
212.

Each PPU 202 advantageously implements a highly par-
allel processing architecture. As shown in detail, PPU 202(0)
includes a processing cluster array 230 that includes a
number C of general processing clusters (GPCs) 208, where
Cz1. Each GPC 208 is capable of executing a large number
(e.g., hundreds or thousands) of threads concurrently, where
each thread is an instance of a program. In various appli-
cations, different GPCs 208 may be allocated for processing
different types of programs or for performing different types
of computations. The allocation of GPCs 208 may vary
dependent on the workload arising for each type of program
or computation.

GPCs 208 receive processing tasks to be executed from a
work distribution unit within a task/work unit 207. The work
distribution unit receives pointers to processing tasks that
are encoded as task metadata (TMD) and stored in memory.
The pointers to TMDs are included in the command stream
that is stored as a pushbuffer and received by the front end
unit 212 from the host interface 206. Processing tasks that
may be encoded as TMDs include indices of data to be
processed, as well as state parameters and commands defin-
ing how the data is to be processed (e.g., what program is to
be executed). The task/work unit 207 receives tasks from the

10

15

20

25

30

35

40

45

50

55

60

65

6

front end 212 and ensures that GPCs 208 are configured to
a valid state before the processing specified by each one of
the TMDs is initiated. A priority may be specified for each
TMD that is used to schedule execution of the processing
task. Processing tasks can also be received from the pro-
cessing cluster array 230. Optionally, the TMD can include
a parameter that controls whether the TMD is added to the
head or the tail for a list of processing tasks (or list of
pointers to the processing tasks), thereby providing another
level of control over priority.

Memory interface 214 includes a number D of partition
units 215 that are each directly coupled to a portion of
parallel processing memory 204, where D=1. As shown, the
number of partition units 215 generally equals the number of
dynamic random access memory (DRAM) 220. In other
embodiments, the number of partition units 215 may not
equal the number of memory devices. Persons of ordinary
skill in the art will appreciate that DRAM 220 may be
replaced with other suitable storage devices and can be of
generally conventional design. A detailed description is
therefore omitted. Render targets, such as frame buffers or
texture maps may be stored across DRAMs 220, allowing
partition units 215 to write portions of each render target in
parallel to efficiently use the available bandwidth of parallel
processing memory 204.

Any one of GPCs 208 may process data to be written to
any of the DRAMs 220 within parallel processing memory
204. Crossbar unit 210 is configured to route the output of
each GPC 208 to the input of any partition unit 215 or to
another GPC 208 for further processing. GPCs 208 com-
municate with memory interface 214 through crossbar unit
210 to read from or write to various external memory
devices. In one embodiment, crossbar unit 210 has a con-
nection to memory interface 214 to communicate with I/O
unit 205, as well as a connection to local parallel processing
memory 204, thereby enabling the processing cores within
the different GPCs 208 to communicate with system
memory 104 or other memory that is not local to PPU 202.
In the embodiment shown in FIG. 2, crossbar unit 210 is
directly connected with I/O unit 205. Crossbar unit 210 may
use virtual channels to separate traffic streams between the
GPCs 208 and partition units 215.

Again, GPCs 208 can be programmed to execute process-
ing tasks relating to a wide variety of applications, including
but not limited to, linear and nonlinear data transforms,
filtering of video and/or audio data, modeling operations
(e.g., applying laws of physics to determine position, veloc-
ity and other attributes of objects), image rendering opera-
tions (e.g., tessellation shader, vertex shader, geometry
shader, and/or pixel shader programs), and so on. PPUs 202
may transfer data from system memory 104 and/or local
parallel processing memories 204 into internal (on-chip)
memory, process the data, and write result data back to
system memory 104 and/or local parallel processing memo-
ries 204, where such data can be accessed by other system
components, including CPU 102 or another parallel process-
ing subsystem 112.

A PPU 202 may be provided with any amount of local
parallel processing memory 204, including no local memory,
and may use local memory and system memory in any
combination. For instance, a PPU 202 can be a graphics
processor in a unified memory architecture (UMA) embodi-
ment. In such embodiments, little or no dedicated graphics
(parallel processing) memory would be provided, and PPU
202 would use system memory exclusively or almost exclu-
sively. In UMA embodiments, a PPU 202 may be integrated
into a bridge chip or processor chip or provided as a discrete

US 9,430,242 B2

7
chip with a high-speed link (e.g., PCI Express) connecting
the PPU 202 to system memory via a bridge chip or other
communication means.

As noted above, any number of PPUs 202 can be included
in a parallel processing subsystem 112. For instance, mul-
tiple PPUs 202 can be provided on a single add-in card, or
multiple add-in cards can be connected to communication
path 113, or one or more of PPUs 202 can be integrated into
a bridge chip. PPUs 202 in a multi-PPU system may be
identical to or different from one another. For instance,
different PPUs 202 might have different numbers of pro-
cessing cores, different amounts of local parallel processing
memory, and so on. Where multiple PPUs 202 are present,
those PPUs may be operated in parallel to process data at a
higher throughput than is possible with a single PPU 202.
Systems incorporating one or more PPUs 202 may be
implemented in a variety of configurations and form factors,
including desktop, laptop, or handheld personal computers,
servers, workstations, game consoles, embedded systems,
and the like.

Multiple Concurrent Task Scheduling

Multiple processing tasks may be executed concurrently
on the GPCs 208 and a processing task may generate one or
more “child” processing tasks during execution. The task/
work unit 207 receives the tasks and dynamically schedules
the processing tasks and child processing tasks for execution
by the GPCs 208.

FIG. 3A is a block diagram of the task/work unit 207 of
FIG. 2, according to one embodiment of the present disclo-
sure. The task/work unit 207 includes a task management
unit 300 and the work distribution unit 340. The task
management unit 300 organizes tasks to be scheduled based
on execution priority levels. For each priority level, the task
management unit 300 stores a list of pointers to the TMDs
322 corresponding to the tasks in the scheduler table 321,
where the list may be implemented as a linked list. The
TMDs 322 may be stored in the PP memory 204 or system
memory 104. The rate at which the task management unit
300 accepts tasks and stores the tasks in the scheduler table
321 is decoupled from the rate at which the task manage-
ment unit 300 schedules tasks for execution. Therefore, the
task management unit 300 may collect several tasks before
scheduling the tasks. The collected tasks may then be
scheduled based on priority information or using other
techniques, such as round-robin scheduling.

The work distribution unit 340 includes a task table 345
with slots that may each be occupied by the TMD 322 for a
task that is being executed. The task management unit 300
may schedule tasks for execution when there is a free slot in
the task table 345. When there is not a free slot, a higher
priority task that does not occupy a slot may evict a lower
priority task that does occupy a slot. When a task is evicted,
the task is stopped, and if execution of the task is not
complete, then a pointer to the task is added to a list of task
pointers to be scheduled so that execution of the task will
resume at a later time. When a child processing task is
generated, during execution of a task, a pointer to the child
task is added to the list of task pointers to be scheduled. A
child task may be generated by a TMD 322 executing in the
processing cluster array 230.

Unlike a task that is received by the task/work unit 207
from the front end 212, child tasks are received from the
processing cluster array 230. Child tasks are not inserted into
pushbuffers or transmitted to the front end. The CPU 102 is
not notified when a child task is generated or data for the

10

15

20

25

30

35

40

45

50

55

60

65

8

child task is stored in memory. Another difference between
the tasks that are provided through pushbuffers and child
tasks is that the tasks provided through the pushbuffers are
defined by the application program whereas the child tasks
are dynamically generated during execution of the tasks.

Task Processing Overview

FIG. 3B is a block diagram of a GPC 208 within one of
the PPUs 202 of FIG. 2, according to one embodiment of the
present disclosure. Each GPC 208 may be configured to
execute a large number of threads in parallel, where the term
“thread” refers to an instance of a particular program execut-
ing on a particular set of input data. In some embodiments,
single-instruction, multiple-data (SIMD) instruction issue
techniques are used to support parallel execution of a large
number of threads without providing multiple independent
instruction units. In other embodiments, single-instruction,
multiple-thread (SIMT) techniques are used to support par-
allel execution of a large number of generally synchronized
threads, using a common instruction unit configured to issue
instructions to a set of processing engines within each one of
the GPCs 208. Unlike a SIMD execution regime, where all
processing engines typically execute identical instructions,
SIMT execution allows different threads to more readily
follow divergent execution paths through a given thread
program. Persons of ordinary skill in the art will understand
that a SIMD processing regime represents a functional
subset of a SIMT processing regime.

Operation of GPC 208 is advantageously controlled via a
pipeline manager 305 that distributes processing tasks to
streaming multiprocessors (SMs) 310. Pipeline manager 305
may also be configured to control a work distribution
crossbar 330 by specitying destinations for processed data
output by SMs 310.

In one embodiment, each GPC 208 includes a number M
of SMs 310, where M=1, each SM 310 configured to process
one or more thread groups. Also, each SM 310 advanta-
geously includes an identical set of functional execution
units (e.g., execution units and load-store units—shown as
Exec units 302 and LSUs 303 in FIG. 3C) that may be
pipelined, allowing a new instruction to be issued before a
previous instruction has finished, as is known in the art. Any
combination of functional execution units may be provided.
In one embodiment, the functional units support a variety of
operations including integer and floating point arithmetic
(e.g., addition and multiplication), comparison operations,
Boolean operations (AND, OR, XOR), bit-shifting, and
computation of various algebraic functions (e.g., planar
interpolation, trigonometric, exponential, and logarithmic
functions, etc.); and the same functional unit hardware can
be leveraged to perform different operations.

The series of instructions transmitted to a particular GPC
208 constitutes a thread, as previously defined herein, and
the collection of a certain number of concurrently executing
threads across the parallel processing engines (not shown)
within an SM 310 is referred to herein as a “warp” or “thread
group.” As used herein, a “thread group” refers to a group of
threads concurrently executing the same program on differ-
ent input data, with one thread of the group being assigned
to a different processing engine within an SM 310. A thread
group may include fewer threads than the number of pro-
cessing engines within the SM 310, in which case some
processing engines will be idle during cycles when that
thread group is being processed. A thread group may also
include more threads than the number of processing engines
within the SM 310, in which case processing will take place

US 9,430,242 B2

9

over consecutive clock cycles. Since each SM 310 can
support up to G thread groups concurrently, it follows that
up to G*M thread groups can be executing in GPC 208 at
any given time.

Additionally, a plurality of related thread groups may be
active (in different phases of execution) at the same time
within an SM 310. This collection of thread groups is
referred to herein as a “cooperative thread array” (“CTA”) or
“thread array.” The size of a particular CTA is equal to m*k,
where k is the number of concurrently executing threads in
a thread group and is typically an integer multiple of the
number of parallel processing engines within the SM 310,
and m is the number of thread groups simultaneously active
within the SM 310. The size of a CTA is generally deter-
mined by the programmer and the amount of hardware
resources, such as memory or registers, available to the
CTA.

Each SM 310 contains a level one (LL1) cache (shown in
FIG. 3C) or uses space in a corresponding [.1 cache outside
of the SM 310 that is used to perform load and store
operations. Each SM 310 also has access to level two (L2)
caches that are shared among all GPCs 208 and may be used
to transfer data between threads. Finally, SMs 310 also have
access to off-chip “global” memory, which can include, e.g.,
parallel processing memory 204 and/or system memory 104.
It is to be understood that any memory external to PPU 202
may be used as global memory. Additionally, a level one-
point-five (L.1.5) cache 335 may be included within the GPC
208, configured to receive and hold data fetched from
memory via memory interface 214 requested by SM 310,
including instructions, uniform data, and constant data, and
provide the requested data to SM 310. Embodiments having
multiple SMs 310 in GPC 208 beneficially share common
instructions and data cached in L1.5 cache 335.

Each GPC 208 may include a memory management unit
(MMU) 328 that is configured to map virtual addresses into
physical addresses. In other embodiments, MMU(s) 328
may reside within the memory interface 214. The MMU 328
includes a set of page table entries (PTEs) used to map a
virtual address to a physical address of a tile and optionally
a cache line index. The MMU 328 may include address
translation lookaside buffers (TLB) or caches which may
reside within multiprocessor SM 310 or the L1 cache or
GPC 208. The physical address is processed to distribute
surface data access locality to allow efficient request inter-
leaving among partition units 215. The cache line index may
be used to determine whether or not a request for a cache line
is a hit or miss.

In graphics and computing applications, a GPC 208 may
be configured such that each SM 310 is coupled to a texture
unit 315 for performing texture mapping operations, e.g.,
determining texture sample positions, reading texture data,
and filtering the texture data. Texture data is read from an
internal texture .1 cache (not shown) or in some embodi-
ments from the L1 cache within SM 310 and is fetched from
an [.2 cache that is shared between all GPCs 208, parallel
processing memory 204, or system memory 104, as needed.
Each SM 310 outputs processed tasks to work distribution
crossbar 330 in order to provide the processed task to
another GPC 208 for further processing or to store the
processed task in an L2 cache, parallel processing memory
204, or system memory 104 via crossbar unit 210. A preROP
(pre-raster operations) 325 is configured to receive data from
SM 310, direct data to ROP units within partition units 215,
and perform optimizations for color blending, organize pixel
color data, and perform address translations.

10

15

20

25

30

35

40

45

50

55

60

65

10

It will be appreciated that the core architecture described
herein is illustrative and that variations and modifications
are possible. Any number of processing units, e.g., SMs 310
or texture units 315, preROPs 325 may be included within
a GPC 208. Further, as shown in FIG. 2, a PPU 202 may
include any number of GPCs 208 that are advantageously
functionally similar to one another so that execution behav-
ior does not depend on which GPC 208 receives a particular
processing task. Further, each GPC 208 advantageously
operates independently of other GPCs 208 using separate
and distinct processing units, L1 caches to execute tasks for
one or more application programs.

Persons of ordinary skill in the art will understand that the
architecture described in FIGS. 1, 2, 3A, and 3B in no way
limits the scope of the present invention and that the
techniques taught herein may be implemented on any prop-
erly configured processing unit, including, without limita-
tion, one or more CPUs, one or more multi-core CPUs, one
or more PPUs 202, one or more GPCs 208, one or more
graphics or special purpose processing units, or the like,
without departing the scope of the present invention.

In embodiments of the present invention, it is desirable to
use PPU 202 or other processor(s) of a computing system to
execute general-purpose computations using thread arrays.
Each thread in the thread array is assigned a unique thread
identifier (“thread ID”) that is accessible to the thread during
the thread’s execution. The thread ID, which can be defined
as a one-dimensional or multi-dimensional numerical value
controls various aspects of the thread’s processing behavior.
For instance, a thread ID may be used to determine which
portion of the input data set a thread is to process and/or to
determine which portion of an output data set a thread is to
produce or write.

A sequence of per-thread instructions may include at least
one instruction that defines a cooperative behavior between
the representative thread and one or more other threads of
the thread array. For example, the sequence of per-thread
instructions might include an instruction to suspend execu-
tion of operations for the representative thread at a particular
point in the sequence until such time as one or more of the
other threads reach that particular point, an instruction for
the representative thread to store data in a shared memory to
which one or more of the other threads have access, an
instruction for the representative thread to atomically read
and update data stored in a shared memory to which one or
more of the other threads have access based on their thread
IDs, or the like. The CTA program can also include an
instruction to compute an address in the shared memory
from which data is to be read, with the address being a
function of thread ID. By defining suitable functions and
providing synchronization techniques, data can be written to
a given location in shared memory by one thread of a CTA
and read from that location by a different thread of the same
CTA in a predictable manner. Consequently, any desired
pattern of data sharing among threads can be supported, and
any thread in a CTA can share data with any other thread in
the same CTA. The extent, if any, of data sharing among
threads of a CTA is determined by the CTA program; thus,
it is to be understood that in a particular application that uses
CTAs, the threads of a CTA might or might not actually
share data with each other, depending on the CTA program,
and the terms “CTA” and “thread array” are used synony-
mously herein.

FIG. 3C is a block diagram of the SM 310 of FIG. 3B,
according to one embodiment of the present disclosure. The
SM 310 includes an instruction L1 cache 370 that is con-
figured to receive instructions and constants from memory

US 9,430,242 B2

11

via L1.5 cache 335. A warp scheduler and instruction unit
312 receives instructions and constants from the instruction
L1 cache 370 and controls local register file 304 and SM 310
functional units according to the instructions and constants.
The SM 310 functional units include N exec (execution or
processing) units 302 and P load-store units (LSU) 303.

SM 310 provides on-chip (internal) data storage with
different levels of accessibility. Special registers (not shown)
are readable but not writeable by LSU 303 and are used to
store parameters defining each thread’s “position.” In one
embodiment, special registers include one register per thread
(or per exec unit 302 within SM 310) that stores a thread 1D;
each thread ID register is accessible only by a respective one
of the exec unit 302. Special registers may also include
additional registers, readable by all threads that execute the
same processing task represented by a TMD 322 (or by all
LSUs 303) that store a CTA identifier, the CTA dimensions,
the dimensions of a grid to which the CTA belongs (or queue
position if the TMD 322 encodes a queue task instead of a
grid task), and an identifier of the TMD 322 to which the
CTA is assigned.

Ifthe TMD 322 is a grid TMD, execution of the TMD 322
causes a fixed number of CTAs to be launched and executed
to process the fixed amount of data stored in the queue 525.
The number of CTAs is specified as the product of the grid
width, height, and depth. The fixed amount of data may be
stored in the TMD 322 or the TMD 322 may store a pointer
to the data that will be processed by the CTAs. The TMD
322 also stores a starting address of the program that is
executed by the CTAs.

If the TMD 322 is a queue TMD, then a queue feature of
the TMD 322 is used, meaning that the amount of data to be
processed is not necessarily fixed. Queue entries store data
for processing by the CTAs assigned to the TMD 322. The
queue entries may also represent a child task that is gener-
ated by another TMD 322 during execution of a thread,
thereby providing nested parallelism. Typically, execution of
the thread, or CTA that includes the thread, is suspended
until execution of the child task completes. The queue may
be stored in the TMD 322 or separately from the TMD 322,
in which case the TMD 322 stores a queue pointer to the
queue. Advantageously, data generated by the child task may
be written to the queue while the TMD 322 representing the
child task is executing. The queue may be implemented as
a circular queue so that the total amount of data is not limited
to the size of the queue.

CTAs that belong to a grid have implicit grid width,
height, and depth parameters indicating the position of the
respective CTA within the grid. Special registers are written
during initialization in response to commands received via
front end 212 from device driver 103 and do not change
during execution of a processing task. The front end 212
schedules each processing task for execution. Each CTA is
associated with a specific TMD 322 for concurrent execu-
tion of one or more tasks. Additionally, a single GPC 208
may execute multiple tasks concurrently.

A parameter memory (not shown) stores runtime param-
eters (constants) that can be read but not written by any
thread within the same CTA (or any LSU 303). In one
embodiment, device driver 103 provides parameters to the
parameter memory before directing SM 310 to begin execu-
tion of a task that uses these parameters. Any thread within
any CTA (or any exec unit 302 within SM 310) can access
global memory through a memory interface 214. Portions of
global memory may be stored in the L1 cache 320.

Local register file 304 is used by each thread as scratch
space; each register is allocated for the exclusive use of one

20

25

30

40

45

55

12

thread, and data in any of local register file 304 is accessible
only to the thread to which the register is allocated. Local
register file 304 can be implemented as a register file that is
physically or logically divided into P lanes, each having
some number of entries (where each entry might store, e.g.,
a 32-bit word). One lane is assigned to each of the N exec
units 302 and P load-store units L.SU 303, and corresponding
entries in different lanes can be populated with data for
different threads executing the same program to facilitate
SIMD execution. Different portions of the lanes can be
allocated to different ones of the G concurrent thread groups,
so that a given entry in the local register file 304 is accessible
only to a particular thread. In one embodiment, certain
entries within the local register file 304 are reserved for
storing thread identifiers, implementing one of the special
registers. Additionally, a uniform L1 cache 375 stores uni-
form or constant values for each lane of the N exec units 302
and P load-store units LSU 303.

Shared memory 306 is accessible to threads within a
single CTA; in other words, any location in shared memory
306 is accessible to any thread within the same CTA (or to
any processing engine within SM 310). Shared memory 306
can be implemented as a shared register file or shared
on-chip cache memory with an interconnect that allows any
processing engine to read from or write to any location in the
shared memory. In other embodiments, shared state space
might map onto a per-CTA region of off-chip memory, and
be cached in [.1 cache 320. The parameter memory can be
implemented as a designated section within the same shared
register file or shared cache memory that implements shared
memory 306, or as a separate shared register file or on-chip
cache memory to which the LSUs 303 have read-only
access. In one embodiment, the area that implements the
parameter memory is also used to store the CTA ID and task
1D, as well as CTA and grid dimensions or queue position,
implementing portions of the special registers. Each LSU
303 in SM 310 is coupled to a unified address mapping unit
352 that converts an address provided for load and store
instructions that are specified in a unified memory space into
an address in each distinct memory space. Consequently, an
instruction may be used to access any of the local, shared, or
global memory spaces by specifying an address in the
unified memory space.

The L1 cache 320 in each SM 310 can be used to cache
private per-thread local data and also per-application global
data. In some embodiments, the per-CTA shared data may be
cached in the L1 cache 320. The L.SUs 303 are coupled to
the shared memory 306 and the [.1 cache 320 via a memory
and cache interconnect 380.

Instruction Throttling

Each SM 310 requires power to control the circuit ele-
ments that make up each of the hardware subunits within SM
310. The required power changes dynamically based on the
operations being performed by SM 310. Each change to a
gate voltage of a transistor or each transition of a Flip-Flop
requires some small amount of current. Further, the circuit
elements that comprise SM 310 are not ideal and experience
some incremental current leakage that must be supplied by
the power supply of SM 310. Warp scheduler and instruction
unit 312 may be configured to throttle the issue rate of
instructions being dispatched on the functional execution
units of SM 310 to help control the current draw of SM 310.
This power management function allows a system designer
to provide a lower supply voltage power source that has a
smaller voltage overhead, thereby decreasing energy con-

US 9,430,242 B2

13

sumption. Alternatively, the power management function
may allow SM 310 to be operated at a higher clock fre-
quency due to shorter set-up and hold times associated with
a lower supply voltage, thereby increasing processing capac-
ity. One implementation of the power management function
is described below in conjunction with FIGS. 4-7.

FIG. 4 is a block diagram of the warp scheduler and
instruction unit 312 of FIG. 3C, according to one example
embodiment of the present disclosure. The warp scheduler
and instruction unit 312 is configured to manage scheduling
of individual instructions on each of the functional execution
units of SM 310. In one embodiment, each SM 310 may
include one or more warp scheduler and instruction units
312, with each distinct warp scheduler and instruction unit
312 coupled to one or more functional execution units. As
shown in FIG. 4, the warp scheduler and instruction unit 312
includes an instruction cache fetch unit 412, a scheduler unit
420, a decode unit 450, and a dispatch unit 470. The
instruction cache fetch unit 412 is configured to fetch cache
lines containing the instructions for the warps assigned to
SM 310 from the instruction L1 cache 370. In one embodi-
ment, each cache line is 512 bits wide, storing eight instruc-
tions (64 bits wide) in a single cache line. The instruction
cache fetch unit 412 routes instructions fetched from the
instruction L1 cache 370 to the scheduler unit 420 for
scheduling the instructions on the various functional execu-
tion units of SM 310.

An SM 310 may be assigned a plurality of warps for
concurrent execution. Scheduler unit 420 determines which
warps to execute during the next clock cycle. In one embodi-
ment, scheduler unit 420 maintains a priority associated with
each of the warps assigned to SM 310 and schedules
instructions for execution on the functional execution units
(e.g., exec units 302 and LSUs 303) based on the priorities.
For example, scheduler unit 420 may maintain a 6-bit, an
8-bit, or a 10-bit priority value associated with each of 16
different warps assigned to SM 310 at any given time. The
priority value may be assigned based on various factors. A
priority value may be based on when the warp was sched-
uled on SM 310 by task/work unit 207 (e.g., the longest
pending warp may have the highest priority). In other
embodiments, other priority schemes may be adopted, such
as by basing the priority value, at least partially, on sched-
uling hints determined by the compiler within device driver
103. Scheduler unit 420 issues the next instruction selected
for execution to decode unit 450. In alternative embodi-
ments, scheduler unit 420 may issue instructions from two
or more separate warps during the same clock cycle (e.g.,
dual-issue, quad-issue, etc.), where each instruction is issued
to a subset of the functional execution units associated with
the scheduler unit 420.

The decode unit 450 decodes the next instruction and
transmits the decoded instruction to the dispatch unit 470.
Again, in some embodiments, multiple instructions may be
issued during the same clock cycle by one or more separate
and distinct warp scheduler and instruction units 312 within
SM 310. Dispatch unit 470 implements a FIFO and writes
the decoded values to local register file 304 for execution by
execution units 302 or load/store units 303. Although decode
unit 450 is shown in FIG. 4 as receiving instructions from
scheduler unit 420, where scheduling may be implemented
prior to performing a decode of the instruction, in alternative
embodiments, decode unit 450 may receive instructions
directly from instruction cache fetch unit 412, decode the
instructions, and transmit the decoded instruction data to
scheduler unit 420 for scheduling.

5

10

15

20

25

30

35

40

45

55

60

65

14

In one embodiment, scheduler unit 420 is configured to
control the frequency that instructions are dispatched to the
execution units of SM 310. For example, during a given
clock cycle, scheduler unit 420 may cause dispatch unit 470
to write data to LRF 304 to be processed by one or more of
the functional execution units. The data is processed and
results are written back into LRF 304 or directly to shared
memory 306 or L1 cache 320. The switching of transistors
within the various hardware units of SM 310 to perform such
operations requires current, which increases the load on the
power supplied to SM 310. During other clock cycles,
scheduler unit 420 may stall execution of the functional
units and reduce the amount of power consumed by SM 310
during those clock cycles, by not scheduling any instructions
during that clock cycle. By choosing when to schedule
instructions, scheduler unit 420 may effectively throttle
GPU performance to prevent surges in current draw caused
by the SM 310 transitioning from idle to full processing
capacity in a short time period.

FIG. 5A illustrates power distribution within the computer
system 100, according to one example embodiment of the
present disclosure. As shown in FIG. 5A, computer system
100 includes a switched-mode power supply (SPMS) 510.
The SPMS 510 is coupled to a mains AC power such as the
United States’ common residential power supply at 120
VAC and 60 Hz frequency. The SPMS 510 converts the AC
power to one or more DC power supplies 504 that are
provided to the various components of computer system
100. In one embodiment, parallel processing subsystem 112
comprises a discrete graphics card 520 that includes a
voltage regulator 530, a PPU 202(0) and a PP memory
204(0). The graphics card 520 may be coupled to CPU 102
and SMPS 510 via a graphics bus (e.g., communications
path 113) that includes DC power 504 as well as one or more
communications paths. For example, graphics card 520 may
conform to a PCle form factor that includes a +12 VDC main
power supply and a +3.3 VDC secondary power supply.

DC power 504 is coupled to a voltage regulator 530 that
switches power to the various components of graphics card
520. In one embodiment, voltage regulator 530 converts the
+12 VDC main power supply to a stepped down power
supply at a lower and stable voltage, such as +5 VDC. In
another embodiment, voltage regulator 530 may pass the
+3.3 VDC secondary voltage supply to the electrical com-
ponents through an electronically controlled switch such that
the various components of the graphics card 520 may be
turned on or off by CPU 102, independent of whether DC
power 504 is on or off. In yet another embodiment, voltage
regulator 530 may include an electrical charge storage
element such as a capacitor or inductor and/or a filter
element to reduce any electrical noise in the DC signal
passed to the electrical components of graphics card 520.
Voltage regulator 530 is coupled to each of the components
of graphics card 520 to provide power to run the compo-
nents.

As shown in FIG. 5A, PPU 202(0) and PP memory 204(0)
include decoupling capacitors 542 and 544 that are con-
nected to the DC output of voltage regulator 530. Although
not shown explicitly in FIG. 5A, capacitors 542 and 544
include a first conductor coupled to the DC output of voltage
regulator 530 and a second conductor coupled to ground,
where the first conductor and second conductor are sepa-
rated by a dielectric. The DC output of voltage regulator 530
may also be coupled to the components of PPU 202(0) such
as one or more SMs 310 and memory interface 214. It will

US 9,430,242 B2

15

be appreciated that not all components of PPU 202(0) are
shown explicitly in FIG. 5A to avoid obscuring the disclo-
sure.

Capacitors such as C 542 and C 544 may be added to
various components to compensate for varying electrical
loads and to compensate for varying electrical supply. For
example, DC power 504 may include a slight ripple at a
frequency of 60 Hz due to rectifying the AC supply voltage,
which does not completely remove the AC current from DC
power 504. In addition, surges in load from other compo-
nents can cause a voltage drop in DC power 504, which may
be compensated by draining capacitors 542 or 544 as
needed. In one embodiment, capacitors 542 and 544 are
decoupling capacitors structurally attached to the printed
circuit board (PCB) connecting each of the components of
graphics card 520, where capacitors 542 and 544 are placed
proximate to the integrated circuit (IC) packages of PPU
202(0) and PP memory 204(0), respectively. Capacitors 542
and 544 may be ceramic capacitors of a particular size
specified based on the electrical characteristics of PPU
202(0) and PP memory 204(0). In alternative embodiments,
capacitors 542 and 544 may be metal oxide semiconductor
(MOS) capacitors formed on the substrate of the IC.

It will be appreciated that the effectiveness of the decou-
pling capacitor is dependent the capacitance of the decou-
pling capacitors as well as the line inductance and series
resistance of the interconnects between the decoupling
capacitors and the decoupled circuit. The larger the distance
between the capacitor and the circuit, the larger the induc-
tance and the less effective the capacitor will be at handling
transient loads produced by the circuit. If the capacitance is
ineffective, then the voltage level of DC power 504 is
required to include an overhead above a threshold voltage
required by the particular load. For example, SM 310 may
require a minimum voltage of 3.0 VDC in order to operate
reliably. If the capacitor 542 is merely a ceramic capacitor
placed next to the IC package for PPU 202(0), then DC
power 504 may be capable of dropping 0.2 VDC at the
supply of SM 310 due to transient load requirements caused
by dynamic operations performed by SM 310. Therefore,
DC power 504 must be supplied by SMPS 510 at a minimum
of 3.2 VDC. The higher the supply voltage, the larger the
energy consumption, which could drain batteries of note-
book computers faster, for example. In contrast, if each
component of PPU 202(0) implements one or more decou-
pling capacitors directly on the chip, decreasing the induc-
tance between the decoupling capacitor and the decoupled
circuit, the required voltage overhead may be 0.08 VDC,
allowing DC power 504 to be supplied at a minimum 3.08
VDC, thereby reducing power consumption of computer
system 100. Furthermore, lower operating voltages may
allow the processing units to be operated at a higher fre-
quency, thereby increasing the processing capacity of the
processing units.

FIG. 5B illustrates SM 310 of FIG. 5A, according to one
example embodiment of the present disclosure. As shown in
FIG. 5B, SM 310 includes decoupling capacitor 551, LRF
304, one or more exec units 302, one or more LSUs 303,
memory and cache interconnect 380, shared memory 306,
and L1 cache 320. SM 310 of FIG. 5B is similar to SM 310
of FIG. 3C and may include some or all of the components
shown in FIG. 3C even though such components are not
shown explicitly in FIG. 5B. Similar to the function of
capacitors 542 and 544 described above in connection with
FIG. 5A, decoupling capacitor 551 is configured to com-
pensate for transient load requirements of SM 310 during
operation. Decoupling capacitor 551 may be a MOS capaci-

20

40

45

55

16

tor implemented within the same silicon substrate as SM 310
and proximate thereto. Decoupling capacitor 551 includes a
first contact coupled to a DC power output of voltage
regulator 530 and a second contact coupled to ground.

The DC power output of voltage regulator 530 is also
coupled to each of the various subunits of SM 310, which
may also implement additional decoupling capacitors 552
through 557. Exec Unit 302(0) includes decoupling capaci-
tor 552, LSU 303(0) includes decoupling capacitor 553,
LRF 304 includes decoupling capacitor 554, .1 cache
includes decoupling capacitor 555, shared memory 306
includes decoupling capacitor 556, and memory and cache
interconnect 380 includes decoupling capacitor 557. Each of
decoupling capacitors 552 through 557 may be a MOS
capacitor implemented within the same silicon substrate as
their corresponding units and located proximate thereto,
having first and second contacts coupled to the DC power
output of voltage regulator 530 and ground, respectively.

It will be appreciated that each of the decoupling capaci-
tors of FIGS. 5A and 5B may or may not be included within
the components of graphics card 520, depending on the
desired electrical characteristics of the design. Increasing the
number/size of capacitors may reduce the required voltage
overhead of the power supply, at the expense of cost and
complexity. Therefore, designers may perform a cost/benefit
analysis of the particular system design, sacrificing energy
efficiency for reduced production costs. Alternatively, a
system designer may choose to provide fewer decoupling
capacitors within the IC, opting instead to implement a
power management technique such as instruction throttling
to avoid surges in current draw on the supply voltage.

FIGS. 6A-6F are graphs that illustrate instruction throt-
tling techniques implemented by scheduler unit 420, accord-
ing to one example embodiment of the present disclosure. As
described above, each SM 310 of PPU 202 may include one
or more warp scheduler and instruction units 312, each
coupled to one or more of the functional execution units of
SM 310 and configured to schedule the instructions for
warps on the functional execution units for execution. The
warp scheduler and instruction unit 312 (and, more specifi-
cally, the scheduler unit 420 within the warp scheduler and
instruction unit 312) may implement an algorithm that
prevents a sudden surge in current draw by the functional
execution units.

In one embodiment, scheduler unit 420 includes logic that
causes the issue rate of instructions to be throttled whenever
the current issue rate is substantially above a long term
moving average. The throttling rate maintained by the
scheduler unit 420 is calculated based on the issue rate for
the current scheduling period and a long-term moving
average. The issue rate for the current scheduling period is
determined by counting the number of clock cycles in which
scheduler unit 420 issues at least one instruction. It will be
appreciated that in some embodiments, scheduler unit 420
may be able to issue more than one instruction per sched-
uling period, such as if scheduler unit 420 may issue one
instruction from a first warp to a first portion of exec units
302, a second instruction from a second warp to a second
portion of exec units 302, and a third instruction to one or
more LSU 303. The issue rate may be referred to in units of
instructions per scheduling period throughout the present
disclosure. In embodiments where scheduler unit 420 may
issue more than one instruction in a given clock cycle, the
unit of instructions per scheduling period reflects the number
of cycles per scheduling period in which one or more
instructions was issued by scheduler unit 420.

US 9,430,242 B2

17

In one embodiment, the moving average is calculated by
adding a product of a decay rate and the issue rate for the
current scheduling period to the product of one minus the
decay rate and the moving average calculated during the
previous scheduling period, such as set forth below in
Equation 1. In Equation 1, A, represents the moving average
for the current scheduling period, I, represents the issue rate
for the current scheduling period, D represents a decay
coeflicient (where the decay rate is equal to D divided by 2%,
where N is the number of bits of precision used to implement
the counters for the scheduling period), and A, represents the
moving average for the previous scheduling period. For
example, if D equals 1 and N equals 4, then the issue rate for
the current scheduling period, I,, contributes Yis to the
moving average for the current scheduling period, and the
moving average for the previous scheduling period, A,
contributes %16 to the moving average for the current
scheduling period. Varying the decay coefficient will affect
how quickly the moving average reacts to changes in the
issue rate. The throttling rate for the current scheduling
period is then calculated by adding a throttling offset to the
moving average for the current scheduling period. In alter-
native embodiments, a different calculation may be per-
formed to calculate the moving average, such as by taking
an arithmetic mean of the issue rates for the K previous
scheduling periods.

Ag=(D2MV [+[(2N-D)2N %4, (Eq. 1)

In one embodiment, the scheduler unit 420 may be
configurable by device driver 103. For example, device
driver 103 may be programmed to write specific values into
special registers of PPU 202 that change the number of clock
cycles in a scheduling period, set a minimum throttling rate,
or change other default values that affect the operation of
scheduler unit 420. One implementation will set the number
of clock cycles per scheduling period according to Equation
2, where C represents the number of clock cycles in a
scheduling period and N is an integer that reflects the
number of bits of precision implemented by the specific
throttling algorithm. For example, the scheduling period
may be 15 clock cycles (N=4), 255 clock cycles (N=8), or
1024 clock cycles (N=10) providing up to 16, 256, or 1024
discrete levels of throttling, respectively. For purposes of
illustration, FIGS. 6A through 6D reflect a scheduling period
of 15 clock cycles, but alternative embodiments may set the
scheduling period to a larger or smaller number of clock
cycles. It will be appreciated that the size of the scheduling
period indirectly affects how quickly the scheduler unit 420
is capable of ramping up the processing capacity of SM 310
to 100% efficiency (i.e., issuing one or more instructions per
clock cycle).

Cc=2N-1 (Eq. 2)

As shown in FIG. 6A, a graph 600A is configured with an
independent axis 602 that represents discrete scheduling
periods (starting at 0 and continuing for 25 consecutive
scheduling periods) and a dependent axis 604 that represents
the number of instructions issued per scheduling period
(from 0 to 2¥-1). Three curves are plotted on graph 600A,
a first curve 612 that represents the number of issued
instructions per scheduling period, a second curve 614 that
represents a throttling limit imposed by scheduler unit 420,
and a third curve that represents a moving average of
instructions issued per scheduling period. In one embodi-
ment, scheduler unit 420 implements a minimum throttling
rate that prevents instructions from being throttled whenever
the current issue rate is below a threshold level. For

10

15

20

25

30

35

40

45

50

55

60

65

18

example, in FIG. 6A, the second curve 614, which repre-
sents the throttling rate of scheduler unit 420, reflects a
throttling rate of 5 instructions per scheduling period during
the first and second scheduling periods even though the
actual issue rate and the long term moving average, reflect
an issue rate of O instructions per scheduling period. An
issue rate of 0 may reflect that SM 310 is currently idle and
that there is no pending work being processed by SM 310.

However, during the third scheduling period, SM 310
receives work to be processed by one or more functional
execution units of SM 310. The new instructions being
issued by scheduler unit 420 are reflected in graph 600A by
the jump of'the first curve from 0 instructions per scheduling
period to 5 instructions per scheduling period. Although SM
310 may have additional work that is capable of being
processed during the other 10 clock cycles of the third
scheduling period, scheduler unit 420 is configured to
throttle the number of issued instructions to prevent SM 310
from creating a large DI/DT spike in DC power 504,
allowing SM 310 to instead draw a small additional amount
of current from decoupling capacitors 551-557. At the
conclusion of each scheduling period, scheduler unit 420
updates the moving average based on the calculated issue
rate for the current scheduling period and compares the issue
rate during the current scheduling period to the calculated
moving average. If the difference 618 between the issue rate
and the moving average is below a threshold value, then the
throttling rate may be increased by one step size. As shown
in FIG. 6A, the throttling rate is increased until scheduling
period 15, where the throttling rate equals the maximum
issue rate (i.e., one or more instructions issued every clock
cycle of the scheduling period).

FIG. 6B shows a graph 600B that includes similar curves
to FIG. 6A plotted on the same axes. However, the decay
coeflicient associated with graph 600B is less than 1. Con-
sequently, the moving average (i.e., curve 616) causes the
throttling rate to increase one step every other scheduling
period. By changing the decay coefficient (e.g., to %2) the
ramp speed is decreased, thereby requiring a longer duration
to bring SM 310 from idle to the maximum issue rate.

FIG. 6C shows a graph 600C that represents the state of
scheduler unit 420 in one possible scenario. Graphs 600A
and 600B reflect instruction throttling when the amount of
available work ready to be dispatched to the functional
execution units is sufficient to issue at least one instruction
every clock cycle. However, in some instances, the amount
of work scheduled for processing may only be sufficient to
issue instructions during a subset of the clock cycles. For
example, the curve 612 shows a steady state issue rate
during scheduling periods 1-7 of 8 instructions per sched-
uling period. However, during the 8” scheduling period, SM
310 receives additional work such that scheduler unit 420
could issue instructions during every clock cycle. If instruc-
tion throttling was enabled constantly, then the issue rate
would only be allowed to increase by the offset difference.
While the described operation may prevent a surge in DI/DT,
the offset difference may be so small that the incremental
change in current draw is not large enough to cause SPMS
510 to increase the duty cycle of the switching mechanism,
thereby increasing the amount of power available to the
various components of computer system 100. Consequently,
as a plurality of components slowly increase the amount of
power drawn from the SPMS 510, the decoupling capacitors
of SM 310 will drain until the components cause a large
voltage drop on the DC power 504 affecting the operation of
all other components of computer system 100 until SMPS

US 9,430,242 B2

19

510 “reacts” and can correct the supplied voltage level by
updating the duty cycle of the control signal.

In one embodiment, to avoid disruptions to DC power
504, instruction throttling is disabled temporarily when SM
310 is executing at a steady state issue rate (i.e., where the
moving average is constant over a consecutive number of
scheduling periods). When additional work causes scheduler
unit 420 to issue instructions at a higher issue rate, such that
the difference between the issue rate and the moving average
is above a threshold trigger distance, throttling is turned on.
In one embodiment, scheduler unit 420 may issue instruc-
tions at the maximum issue rate for one scheduling cycle.
After this scheduling cycle, a new throttling rate is calcu-
lated by adding a throttling offset to the moving average for
the current scheduling period. Thus, scheduler unit 420 will
decrease the issue rate during the next subsequent schedul-
ing period to match the new throttling rate and slowly ramp
up to the maximum issue rate as the moving average
increases. It will be appreciated that the minimum throttling
rate, as shown in FIGS. 6A and 6B, may be set accordingly
such that the difference in power draw between SM 310
being idle and SM 310 issuing instructions at the minimum
throttling rate will cause a reaction by SPMS 510. FIG. 6D
shows a graph 600D, similar to graph 600C, which corre-
sponds to a decay coeflicient less than 1.

FIG. 6E shows a graph 600E that represents the state of
scheduler unit 420 in another possible scenario. Graph 600E
reflects how scheduler unit 420 reacts when the issue rate
(i.e., curve 612) drops from a maximum issue rate to zero.
As shown in FIG. 6E, scheduler unit 420 is issuing instruc-
tions at 15 instructions per scheduling period for the first 6
scheduling periods. However, during the seventh scheduling
period, the issue rate changes from 15 to 0. For example, SM
310 may complete all pending tasks such that there are no
more instructions in the queue waiting to be issued. In one
embodiment, instruction throttling (i.e., curve 614) is turned
off during steady state operation at the maximum issue rate.
As the moving average (i.e., curve 616), drops in reaction to
the changing issue rate, the moving average passes a trigger
level 620, thereby causing throttling to be turned on. As
shown, the moving average drops below 4 instructions per
scheduling period during the 12% scheduling period. Con-
sequently, throttling is turned on during the 13? scheduling
period and the throttling rate is set to 5 instructions per
scheduling period, the minimum throttling rate. During the
16™ scheduling period, SM 310 receives more work for
processing and scheduler unit 420 dispatches instructions for
processing at the throttled issue rate.

It will be appreciated that although FIGS. 1-6E illustrate
the components embodied within PPU 202 which may be a
graphics processing unit, the techniques and components of
these embodiments may also be implemented in other types
of processing units such as central processing units having
one or more cores or general purpose graphics processing
units (GP-GPUs). Other types of processing units are within
the scope of the present disclosure.

FIG. 7 illustrates a method 700 for throttling the instruc-
tion issue rate of a processor to prevent a surge in DI/DT,
according to one example embodiment of the present dis-
closure. Although the method steps are described in con-
junction with the systems of FIGS. 1-6, persons of ordinary
skill in the art will understand that any system configured to
perform the method steps, in any order, is within the scope
of the disclosure.

Method 700 begins at step 710, where scheduling unit 420
receives one or more instructions for execution by one or
more functional execution units of SM 310. At step 712,

5

10

15

20

25

30

35

40

45

50

55

60

65

20

scheduling unit 420 issues a number of instructions, the
number not to exceed a throttling rate maintained by the
scheduling unit 420. In one embodiment, the throttling rate
is set equal to the moving average plus an offset value and
may be limited to never fall below a minimum threshold
value. At step 714, scheduling unit 420 updates the moving
average based on the number of instructions issued during
the current scheduling period. In one embodiment, the
moving average is updated according to Equation 1, set forth
above.

At step 716, scheduling unit 420 calculates a difference
between the moving average and the instruction issue rate
for the current scheduling period. At step 718, scheduling
unit 420 updates the throttling rate based on the difference.
If the difference is below the trigger value, then the sched-
uling unit 420 updates the throttling rate by increasing the
throttling rate by one step size. In one embodiment, the step
size is equal to one instruction per scheduling period.
However, if the difference is greater than or equal to the
trigger value, then scheduling unit 420 updates the throttling
rate by setting the throttling rate equal to the moving average
plus an offset value. After step 718, method 700 terminates.

It will be appreciated that steps 710 through 718 may be
repeated for successive scheduling periods, thereby continu-
ously updating the throttled issue rate and allowing the SM
310 to ramp up processing capacity from idle to the maxi-
mum issue rate.

In sum, a processor includes one or more execution units
coupled to a scheduling unit that is configured to select a
number of instructions for execution by the one or more
execution units during a given scheduling period. The
execution units may be connected to one or more decoupling
capacitors that store a small amount of incremental power
for the circuits of the execution units. The scheduling unit is
configured to throttle the instruction issue rate of the execu-
tion units to prevent surges in DI/DT. A moving average of
the number of instructions issued during a scheduling period
is maintained. The number of instructions issued during the
current scheduling period is set less than or equal to a
throttling rate that is greater than or equal to a minimum
throttling issue rate. Otherwise, the throttling rate is set
equal to the moving average plus an offset value.

One advantage of the disclosed system is that by throttling
the issue rate of instructions on the processor, a small
decoupling capacitor is capable of handling any sudden
increase in power drawn by the processor. Therefore, the
voltage overhead required to maintain reliable operation of
the processor is reduced. This allows the processor to be run
at higher clock frequencies or to be supplied power at more
energy efficient voltage levels.

The disclosure has been described above with reference to
specific embodiments. Persons of ordinary skill in the art,
however, will understand that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the disclosure as set forth in the
appended claims. The foregoing description and drawings
are, accordingly, to be regarded in an illustrative rather than
a restrictive sense.

What is claimed is:

1. A computer-implemented method for throttling an
instruction issue rate of a processor, the method comprising:

receiving a plurality of instructions to be issued to one or

more execution units within the processor;
dispatching a subset of instructions included in the plu-
rality of instructions to the one or more execution units
within a first number of clock cycles during a current
scheduling period, wherein the instruction issue rate

US 9,430,242 B2

21

during the current scheduling period is defined by a
number of clock cycles for which at least one instruc-
tion is dispatched, and wherein the instruction issue
rate during the current scheduling period is less than or
equal to a throttling rate for the current scheduling
period;

updating a moving average based on the instruction issue
rate during the current scheduling period; and

updating a throttling rate for a next scheduling period 0

based on the moving average.

2. The method of claim 1, wherein the instruction issue
rate is equal to the number of clock cycles during the current
scheduling period in which at least one instruction was
dispatched to the one or more execution units.

3. The method of claim 2, wherein each scheduling period
comprises a number of clock cycles corresponding to the
number of bits of precision used to determine the instruction
issue rate.

4. The method of claim 1, wherein updating the moving
average comprises adding the product of a decay rate and the
instruction issue rate to the product of one minus the decay
rate and the moving average.

5. The method of claim 1, wherein updating the moving
average comprises calculating an arithmetic mean of instruc-
tion issue rates for two or more previous scheduling periods
as well as the instruction issue rate for the current scheduling
period.

6. The method of claim 1, wherein the throttling rate is
greater than or equal to a minimum throttling rate and less
than or equal to a maximum instruction issue rate associated
with the processor.

7. The method of claim 6, wherein updating the throttling
rate comprises:

calculating a difference between the throttling rate and the

moving average; and

if the difference is less than a trigger value, then increas-

ing the throttling rate by one step size, or

if the difference is greater than or equal to the trigger

value, then setting the throttling rate equal to a sum of
the moving average and an offset value.

8. The method of claim 1, further comprising:

determining whether the moving average is constant for a

threshold number of consecutive scheduling periods;
and

if the moving average is not constant for a threshold

number of consecutive scheduling periods, then
restricting the instruction issue rate during the next
scheduling period based on the updated throttling rate
for the next scheduling period, or

if the moving average is constant for a threshold number

of consecutive scheduling periods, then disabling throt-
tling the instruction issue rate of the processor by
allowing the instruction issue rate during the next
scheduling period to exceed the updated throttling rate
for the next scheduling period.

9. A processing unit that includes one or more execution
units for throttling an instruction issue rate of the processor
according to a throttling rate, comprising:

a scheduler configured to:

receive one or more instructions to be issued to the one
or more execution units,

dispatch a subset of instructions included in the one or
more instructions to the one or more execution units
within a first number of clock cycles during a current
scheduling period, wherein the instruction issue rate

15

20

25

30

35

40

45

50

55

60

65

22

during the current scheduling period is defined by a
number of clock cycles for which at least one
instruction is dispatched,

update an average of instructions issued based on the
instruction issue rate during the current scheduling
period, and

update the throttling rate for a next scheduling period
based on the average of instructions issued.

10. The processor of claim 9, wherein the instruction issue
rate is equal to the number of clock cycles during the current
scheduling period in which at least one instruction was
dispatched to the one or more execution units.

11. The processor of claim 10, wherein each scheduling
period comprises a number of clock cycles corresponding to
the number of bits of precision used to determine the
instruction issue rate.

12. The processor of claim 9, wherein updating the
average of instructions issued comprises adding the product
of a decay rate and the instruction issue rate to the product
of one minus the decay rate and the average of instructions
issued.

13. The processor of claim 9, wherein updating the
average of instructions issued comprises calculating an
arithmetic mean of instruction issue rates for two or more
previous scheduling periods as well as the instruction issue
rate for the current scheduling period.

14. The processor of claim 9, wherein the throttling rate
is greater than or equal to a minimum throttling rate and less
than or equal to a maximum instruction issue rate associated
with the processor.

15. The processing unit of claim 14, wherein updating the
throttling rate comprises:

calculating a difference between the throttling rate and the

average of instructions issued; and

if the difference is less than a trigger value, then increas-

ing the throttling rate by one step size, or

if the difference is greater than or equal to the trigger

value, then setting the throttling rate equal to a sum of
the average of instructions issued and an offset value.

16. A computing device for throttling an instruction issue
rate of a processor according to a throttling rate, comprising:

a memory; and

a processor coupled to the memory and including one or

more execution units and a scheduler coupled to the

one or more execution units, wherein the scheduler is

configured to:

receive one or more instructions to be issued to the one
or more execution units,

dispatch a subset of instructions included in the one or
more instructions to the one or more execution units
within a first number of clock cycles during a current
scheduling period,

update the throttling rate for a next scheduling period
based on the instruction issue rate during the current
scheduling period.

17. The computing device of claim 16, wherein the
processor comprises a streaming multi-processor that
includes a plurality of execution units.

18. The computing device of claim 16, further comprising
a switched mode power supply configured to generate a DC
supply voltage.

19. The computing device of claim 18, wherein the
processor includes at least one decoupling capacitor con-
nected to the DC supply voltage.

20. The computing device of claim 16, wherein updating
the throttling rate comprises:

US 9,430,242 B2
23

calculating a difference between the throttling rate and an
average of instructions issued; and

if the difference is less than a trigger value, then increas-
ing the throttling rate by one step size, or

if the difference is greater than or equal to the trigger 5
value, then setting the throttling rate equal to a sum of
the average of instructions issued and an offset value.

#* #* #* #* #*

24

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,430,242 B2 Page 1 of 1
APPLICATION NO. : 13/437765

DATED : August 30, 2016

INVENTOR(S) : Peter Michael Nelson et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims
Column 21, Claim 9, Line 58, please delete “processing unit” and insert --processor--;
Column 22, Claim 15, Line 32, please delete “processing unit” and insert --processor--;

Column 22, Claim 16, Line 53, please insert --and-- after period.,.

Signed and Sealed this
Tenth Day of January, 2017

Dectatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

