a2 United States Patent

US009483539B2

10) Patent No.: US 9,483,539 B2

Leggette et al. 45) Date of Patent: Nov. 1, 2016
(54) UPDATING LOCAL DATA UTILIZING A USPC oo 707/618, 620, 638
DISTRIBUTED STORAGE NETWORK See application file for complete search history.
(71) Applicant: CLEVERSAFE, INC., Chicago, IL (56) References Cited
(US) U.S. PATENT DOCUMENTS
(72) Inventors: Wesley Leggette, Chicago, IL (US); 4,092,732 A 5/1978 Ouchi
Greg Dhuse, Chicago, IL (US); 5454,101 A 9/1995 Mackay et al.
Andrew Baptist, Mt. Pleasant, WI 5,485,474 A 1/1996 Rabin
(US); Tlya Volvovski, Chicago, IL (US) 5,774,643 A 6/1998 Lubbers et al.
5,802,364 A 9/1998 Senator et al.
(73) Assignee: INTERNATIONAL BUSINESS 5,809,285 A 9/1998 Hilland
MACHINES CORPORATION, (Continued)
Armonk, NY (US)
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Shamir; How to Share a Secret; Communications of the ACM; vol.
U.S.C. 154(b) by 107 days. 22, No. 11; Nov. 1979; pp. 612-613.
(Continued)
(21) Appl. No.: 13/959,727
) Primary Examiner — Md. 1 Uddin
(22) Filed: Aug. 5, 2013 (74) Attorney, Agent, or Firm — Garlick & Markison;
(65) Prior Publication Data Timothy W. Markison
US 2014/0074786 Al Mar. 13, 2014 57) . ABSTBACT L.
A method begins by a device of a distributed storage
network (DSN) sending read-if-revised requests to storage
Related U.S. Application Data units of the DSN with regards to data cached in local
(60) Provisional application No. 61/700,691, filed on Sep. memory with one or more local memory revision numbers.
13, 2012. The method continues with a storage unit determining
whether a revision number of one portion of the data stored
(51) Int. CL by the storage unit is a more recent revision number than the
GO6F 7/00 (2006.01) one or more local memory revision numbers. When the
GO6F 17/00 (2006.01) revision number is the more recent revision number, the
GO6F 17/30 (2006.01) method continues with the storage unit sending a read
GO6F 3/06 (2006.01) response that includes the portion of the data to the device.
(52) US. CL When the revision number is not the more recent revision
CPC ... GO6F 17/30575 (201301), GO6F 3/0689 number, the method continues with the storage unit sending
(2013.01); GO6F 17/30174 (2013.01) a read response that includes an indication that the data
(58) Field of Classification Search cached in the local memory is a current revision level of the

CPC ... GOGF 17/30575; GOGF 17/30174;
GOGF 3/0689; GOG6F 11/1092

data.
12 Claims, 67 Drawing Sheets

user davice 12 DST processing unit 16

computing core 26

data 40 &/or task.

computing care 26 request 38

DST client
DST client "

core 28

+

[interfaceia | [interface 3z | [interface 30 Je interface 30

user device 14

network 24

interface 33

computing
core 26

DSTN managing
unit 18

DST execution
unit 36

computing
core 28

DST execution
unit 36

DST integrity

processing unit 20

distributed storage &/or
task network {DSTN) module 22

distributed computing system 10

US 9,483,539 B2

Page 2
(56) References Cited 2007/0283167 Al 12/2007 Venters, III et al.
2009/0094251 Al 4/2009 Gladwin et al.
U.S. PATENT DOCUMENTS 2009/0094318 Al 4/2009 Gladwin et al.
2009/0276476 Al* 11/2009 Jollycccoceovvevvrcrcnnnee 707/204
5,890,156 A 3/1999 Rekieta et al. 2010/0023524 Al 1/2010 Gladwin et al.
5,987,622 A 11/1999 Lo Verso et al. 2010/0174690 Al* 7/2010 Marcotte GO6F 17/30174
5991414 A 11/1999 Garay et al. 707/695
6,012,159 A 1/2000 TFischer et al. 2010/0268692 Al* 10/2010 Resch GO6F 11/1044
6,058,454 A 5/2000 Gerlach et al. . 707/687
6,128277 A 10/2000 Bruck et al. 2010/0325363 Al* 12/2010 Olesen GO6F 12/0815
6,175,571 Bl 1/2001 Haddock et al. . 7117135
6,192,472 Bl 2/2001 Garay et al. 2011/0161681 Al* 6/2011 Dhusecc...... GOGF ;iél/?gg
6,256,688 Bl 7/2001 Suetaka et al.
6272658 Bl 82001 Steele of al 2011/0197032 AL* 82011 Patey ...ooooooomre.. 711/133
6,301,604 Bl 10/2001 Nojima
6,356,949 Bl 3/2002 Katsandres et al. OTHER PUBLICATIONS
6,366,995 Bl 4/2002 Vilkov et al.
6,374,336 Bl 4/2002 Peters et al. Rabin; Efficient Dispersal of Information for Security, Load Bal-
6,415,373 Bl 7/2002 Peters et al. ancing, and Fault Tolerance; Journal of the Association for Com-
6,418,539 Bl 7/2002 Walker ’ . i
6,449,688 Bl 9/2002 Peters et al. puter Machinery; vol. 36, No. 2; Apr. 1989; pp. 335-348.
6,567,948 B2 5/2003 Steele et al. Chung; An Automatic Data Segmentation Method for 3D Measured
6,571,282 Bl 5/2003 Bowman-Amuah Data Points; National Taiwan University; pp. 1-8; 1998.
6,609,223 Bl 8/2003 Wolfgang Plank, T1: Erasure Codes for Storage Applications; FAST2005, 4th
6,718,361 Bl 4/2004 Basani et al. Usenix Conference on File Storage Technologies; Dec. 13-16, 2005;
6,760,808 B2 7/2004 Peters et al. pp. 1-74.
6,785,768 B2 8/2004 Peters et al. Wildi; Java iSCSi Initiator; Master Thesis; Department of Computer
g’égg’;fﬁ g% 1?;3883 E/Ili)cukllt?)rrlldet al and Information Science, University of Konstanz; Feb. 2007; 60
’ ’ ’ pgs.
g:ggg:ggg g} 3;5882 PDi(t)t(c)ellnllg(/)w of al. Legg; Lighhveight Directory Access Protqcol (LDAP): Syntaxes
7.024.451 B2 4/2006 Jorgenson and Matching Rules; IETF Network Working Group; RFC 4517,
7,024,600 B2 4/2006 Wolfgang et al. Jun. 2006; pp. 1-50.
7,080,101 Bl 7/2006 Watson et al. Zeilenga; Lightweight Directory Access Protocol (LDAP): Interna-
7,103,824 B2 9/2006 Halford tionalized String Preparation; IETF Network Working Group; RFC
7,103,915 B2 9/2006 Redlich et al. 4518; Jun. 2006; pp. 1-14.
7,111,115 B2 9/2006 Peters et al. Smith; Lightweight Directory Access Protocol (LDAP): Uniform
7,140,044 B2 11/2006 Redlich et al. Resource Locator; IETF Network Working Group; RFC 4516; Jun.
7,146,644 B2 12/2006 Redlich et al. 2006; pp. 1-15.
;’ég’égg g% éggg; IS{};} etl?z{r | Smith; Lightweight Directory Access Protocol (LDAP): String
et Ipurkar et al. Representation of Search Filters; IETF Network Working Group;
7,240,236 B2 7/2007 Cutts et al.
7272613 B2 9/2007 Sim et al. RFC 4515 Jun. 2006; pp. 1-12. .
7’636’724 B2 12/2009 de la Torre et al. Zeilenga; Lightweight Directory Access Protocol (LDAP): Direc-
2002/0062422 Al 5/2002 Butterworth et al. Zosrlyzhifomgg(i)%n Moclle}‘;; IETF Network Working Group; RFC
2002/0166079 Al 11/2002 Ulrich et al. ; Jun. s pp. 1-49.
2003/0018927 Al 1/2003 Gadir et al. Sciberras; Lightweight Directory Access Protocol (LDAP): Schema
2003/0037261 Al 2/2003 Meffert et al. for User Applications; IETF Network Working Group; RFC 4519,
2003/0055892 Al* 3/2003 Huitema HO04L. 29/06 Jun. 2006; pp. 1-33.
) 709204 Harrison; Lightweight Directory Access Protocol (LDAP): Authen-
%88%; 88228 5(7) ﬁ} ‘5‘; %88% ;’\}/Iatlﬂns ot al. tication Methods and Security Mechanisms; IETF Network Work-
u : . . . R
LSS AL I Mhausa g S NC Bl w0 132
2004/0122917 Al 6/2004 Menon et al. DL ’ . o
5004/0215998 Al 10/2004 Buxton et al. cal Specification Road Map; IETF Network Working Group; RFC
2004/0228493 Al 11/2004 Ma et al. 4510; Jun. 2006; pp. 1-8. _
2005/0100022 Al 5/2005 Ramprashad Zeilenga; Lightweight Directory Access Protocol (LDAP): String
2005/0114594 Al 5/2005 Corbett et al. Representation of Distinguished Names; IETF Network Working
2005/0125593 Al 6/2005 Karpoff et al. Group; RFC 4514; Jun. 2006; pp. 1-15.
2005/0131993 Al 6/2005 Fatula, Jr. Sermersheim; Lightweight Directory Access Protocol (LDAP): The
2005/0132070 Al 6/2005 Redlich et al. Protocol; IETF Network Working Group; RFC 4511; Jun. 2006; pp.
2005/0144382 Al 6/2005 Schmisseur 1-68.
2005/0229069 Al 10/2005 Hassner Satran, et al.; Internet Small Computer Systems Interface (iSCSI);
2006/0047907 AL 3/2006 Shiga et al. IETF Network Working Group; RFC 3720; Apr. 2004; pp. 1-257.
2006/0136448 Al 6/2006 Cialini et al. . . . L .
5006/0156059 Al 7/2006 Kitamura Xin, et al.; Evaluation of Distributed Recovery in Large-Scale
5006/0224603 Al 10/2006 Correll. Jr Storage Systems; 13th IEEE International Symposium on High
5007/0079081 Al 4/2007 Gladwin et al. Performance Distributed Computing; Jun. 2004; pp. 172-181.
2007/0079082 Al 4/2007 Gladwin et al. Kubiatowicz, et al.; OceanStore: An Architecture for Global-Scale
2007/0079083 Al 4/2007 Gladwin et al. Persistent Storage; Proceedings of the Ninth International Confer-
2007/0088970 Al 4/2007 Buxton et al. ence on Architectural Support for Programming Languages and
2007/0174192 Al 7/2007 Gladwin et al. Operating Systems (ASPLOS 2000); Nov. 2000; pp. 1-12.
2007/0214285 Al 9/2007 Au et al.
2007/0234110 Al 10/2007 Soran et al. * cited by examiner

US 9,483,539 B2

Sheet 1 of 67

Nov. 1, 2016

U.S. Patent

01 waisAs Bunndwod pajnguisip

} "Old

gl un
Buibeuew N1 SQ

Qg 8l0o
Bunndwios

9¢ Jun
uoynosxs 1sq

T 20BalU [«

] @21ASp J8sh

€ Q0BLOJUI [«

) 4

N

¢ @inpow (N1Sq) Yomeu ysey
Jloyg abeJols pajnguisip

uonnosxs 1S

ggun

¥ Ylomeu

»|

O¢ 2100
Bunndwos

gt 1senbay
yse} Jopg 0 ejep

g

T 2oBUaUI _ _

4
Z€ 90Ul

: !

FE snpow
w8l 1sd

9¢ 2409 Bunndwos

g7 nun Buissaocud | SQ

D¢ uun Buisseonoud
Abejul 1@

9z 9409
Bunndwos

!

_ €T 9oepajul

4

A 4

ZE 20eUaUI

4

A 4

¥ 9|npow
ju=i;d 1S8d

9z 2109 Bunndwios

] @3IASp JBsn

US 9,483,539 B2

Sheet 2 of 67

Nov. 1, 2016

U.S. Patent

¢'9Ol4
r-r---—---—--—-—=-—=-—m-—--------"-"-------"N"N"--""""""-""—"="=== |
_ I
9/ s|npouw ¥7 9|npouw 2/ dnpow aoeuaul 07 8npow 89 9|npow 99 s|npou
S0BLRJUINLSA d0eldUl dH Usey} SIELIBJUI YIoMmIBU 9%eLR! YaH 90BLIBIUI SN
A _ y a ﬁ A F
_ I
_ I
“ h A\ A 4 yv F “
_ §G 90BUAUI [Od ¥9solg "
_ \ WOy I
I 7) |
_ A 4 A 4 _
_ — — 75 o|npow _
_ GJgjonuod | | 09 eoceusul R Nwom_th_ I
_ ol ol _ _
_ ' 801A3p O I
_ I
_ I
! — - — _
_ vS PN S PN 0G 9|npow I
_ Aowsw urew | Jgjjoquos Aowsw | Buissaooid I
_ I
_ [_
_ I
_ ’ I
_ GG Jun Buissaooud |
I soiydelb ospia I
_ I
_ 37 2100 Bupndwios !
- - - - - _____ L

US 9,483,539 B2

Sheet 3 of 67

Nov. 1, 2016

U.S. Patent

U# JIun uopnoaxe |8

06 einpow ¥ 9|npow

uojnoaxa | g Juslp 183
_ _ a|npow
88 Auowsw 98 48]|04ju03 m_mm_,mwoa

u# (shnsau |enJed

U# S0I|S paAelile)

U# ¥se) [enJed

u dno.b 8918

L#un
uonnosxs |8

L# (Shinsa. |eipe

L# S90I|S PaAsLIe.

|# Yse) [elued

L# dnoJB a2|s

¥ omau

€ "ol

201
synsal [eiyed

$90I|S poABLIe)

86
_ SSE) [elped

78 Buissaooud
1sqa punoqui

96
sbuidnoub s011s

/

]
0% Buisseaoud '
10 punogjno m

€ eInpow Jusip 1Sa

—r e e e e----d

US 9,483,539 B2

Sheet 4 of 67

Nov. 1, 2016

U.S. Patent

Ug J1un
UONNJ8X8

1Sd

A

ug dnoib so1s

¥ "Old

08 Buisssooid | 3@ punogino

A

L# nun
uonnooxa

15d

U# ¥Se)

V#1S€)

A

A

L# dnoib 801|s

817 a|npow
— |0JJU0D ¥SE)
36 syse) [eed boINqUISID
A
A
917 8npow
097} [043u09 |0u0D
007 |0Jju0d
A 4]
717 J0j09(0s =TT Bupoous
buidnoib | lolle sq

6

sbuidnolb 9915

097 [04ucd

Y

[

«

221 uonjed ejep

Jad s891|s papoous

Buiuoped
ejep

—T

¢l suonied ejep

o o = = = ————— == —————————— = == == = o]

76 Jse)

26 ejep

US 9,483,539 B2

Sheet 5 of 67

Nov. 1, 2016

U.S. Patent

GOl

SJUN | S oAIjoadsa.

0] Syse) [enJed Buipuodsaliod

pue sbuidnolb 891|s puss

el

A

slojeweled Buissasold ejep

pue s)iun | S Y} Uo paseq
Buiuoninied yse) sulwislep

syse)

|ered aonpoud 0 Buluonied yse)
aU) Uo paseq (s)yse) ay) uopiped

J— A

cel

el

A

sjiun | S Jo Jequinu a8y} uo
poseq ejep oy} Jo sisjoweled
Buissaooud suiwislep

sbuidnoub s21s sonpo.d

0] siejoweled Buissaooid ay) yiim
9oUBpI0IJE Ul BJep 8y Buissaooid

A

[’
[ap/
—

Vel

1

(s)ysey ayj poddns 03 sjiun
1SQ Jo Jsquinu e suiwJaep

A

gt

(s)ysey Buipuodselloo
E PUE Bjep aAI998)

¢l

US 9,483,539 B2

Sheet 6 of 67

Nov. 1, 2016

U.S. Patent

9 'O

8G] ejep
papooud 0G| elep $GT sjuswboes
poolls papoous painodes
051 vl
Buisssooud | gl | 9] buipoous | Buissasoud
fAunoes | Buoys | ol - Anoos
90|s Jad Juswbos
A
727 uolyed 091 10400
ejep Jad so0l1|s — - —
EJep POpoSUs 091 104U0d | 9TT sinpow | |0u0d
|0JJu02
097 |ohuoo

sjuswbes ejep

................................ _
717 Buipoous Jows g |

(4}
uoniyed eyep

US 9,483,539 B2

Sheet 7 of 67

Nov. 1, 2016

U.S. Patent

g juswbss ejep g juswhas ejep ¥ Wawbss ejep Z Juswbas ejep L9
gvp | [w0 [evp | [awp | wop || ovp | 6co | [scp [sep | [9o [aep | | wep | cop || zep | 1ep
oce | [620 [szp | [zzp | 9ep || sep | wap | [szp [z | [vep [ozp | [e | sp || zip | 9ip
sip [[wp [e | [z | wp || o | 6P e | sp o | o | ep e |

J Juswbes ejep G Juawbes exep ¢ Juswbos ejep | Juswbas elep
AN

[svp | vwp | evp | 2o [1op | ovp | 6cp [oep | zep [oo | cep | wep | cep | zep | 1ep |

| ocp [6zp | 2p | 220 [9zp | e | wap [cop | zep | vzp | oz [6ip [sip | sip | oup |

[sip [wp [ep [| up o [ep | o0 | 20 [o [s | o [0 [2o | 1P |

N\

Svp | P | SR | ZhP | LpP
OvP | 6€p | 8€P | Z€P | 9¢p
Gep | ¥ep | €€p | Zep | Lep
0ep | 62p | 82p | Z2p | 92p
SZp | ¥ep | €ep | Zep | Lep
0zp | 6P | 8P | LR | 9lp
SIP | #IP | €W | 2P | LIP
o | 6P | 8P | p | op
sp | w | P | 2 | 1P
021 uonped ejep

251 Siuawbas ejep

ot
Buissaooid

Juswbas

oct

uonied ejep

l¢——

091
[0JJU00

US 9,483,539 B2

Sheet 8 of 67

Nov. 1, 2016

U.S. Patent

8 'Old
| 78s3 853 | orpesa | oepssa | cipgsq | 8#Iuswbes o sedys Elep pepoous Jojes
°
°
°
A= €53 | 9695EP €50 | 12802P €50 | 995p €90 | £ 1UWD3S 10} S30|S BlEp papooLia j033s
| 7zs3 17253 | vewecrzsa | eussipzsa | weepzsq | 2#iuswbes o sedys ejep pepoous Jojes
_ Z 183 ASE _ ZeRLEP 18a _ 21891P 18a _ Z81P 1Sa _ L# JUsWBas 10} S891|S B)ep PBpodLS JO }8s
091 SvT) OF 7 Buipoous 001
oguos | Bupis 1048 1000
N
g Juswbes eep 9 Juswbaes e1ep { Juswbas elep Z Wuswbas ejep
Gyp vy | VP e | P OvP | 6ep 8epP | Z¢EP 9ep | <ep vep | €ep cep | Lep
ocp 6¢P | 8¢P LZP | 9¢P GCP | ¥eP gcP | b lcP | OcP 6P | 8IP LIP | 9IP
GLp Fip | ELP clP | LiP oLp 6P 8P Y 9p ap 144 gp 4y P
/ Wswbes ejep G Juswbas ejep ¢ Juswbas ejep | Juswbos eep

US 9,483,539 B2

Sheet 9 of 67

Nov. 1, 2016

U.S. Patent

| zesa | [1esd | swpesa | | oepesa | | sipesa | 6 'Ol4
[] [] ® ® []
® ® ® ® [J
[J [] o [J []
| zes3 | [1esd [ocscep esa | | 1zeozpesa| [ossp esa |
| 7zs3a | | 1es3 | vevecpzsa | | 6iveipesa| | wsepzsa |
[2153 | [1is3 [zesierTisa | | osalptisa| | zsipTisa |
S# 1500 p# 150 0} &% 150 0) #1500 14150 0)
36 sbuidnoib so1s N\M
¥1T J0)09jes e
budnos | Oor M
| cesa | 1es3 [swpesa | oepesa | sipgsa |
[4
[J
®
| cesa | 1es3 |[oewseresa| lzeozeesa | osapesa | v
uonyed eyep Joj
| zzs3 | 1zs3 | veseepzsa | eesipzsa | weepzsa | SeQUSPePOOUS
| zis3 | i3 |zesier usa| zimoip 1sa | zsipisa |

US 9,483,539 B2

Sheet 10 of 67

Nov. 1, 2016

U.S. Patent

N X3 1sa vIuNn X3 1sd €WNX3 LSd ¢Wun X3 LSa L WnX3.Lsd

(funyo ejep (uomned (uopied (qunyoelep | (3unyo ejep
snonbiuod) | Joy | eep n3) | Jorzeep n3) | snonbpuoo) | snonbiuod)

L X p X G X X Z X
dno.b aois dnoub so1s dnoib s21Is dnoib 221is dnoub a011s
GIUAX3 LSA #IUNXT LSA €HUN X3 1SA ¢IUN X3 LsA Lwun X3 1sa

(unuoejep | (unyoejep | (yunuo eyep (uoniped (uoiped
snonbiuod) | snonBiuod) | snonBiuod) | ol z elep 93} | 1ol | eep 93)
€e z¢ I € G¢ Ve
dnoub 8218 dnoub 8o1js dno.b s91Is dnoub 89118 dnoib 821|s
GIUAXILSA $#IUNXILSA €IUN X3 LSA ZIUN X3 LSa LWun X3 1sa
(uopiped (punyoeyep | (yunyoelep | (unyo eyep (uonped
Jop L eyepn3) | shonbiucd) | shonBiucd) | snonByuoco) | lojz elep H3)
Ve £¢ ¢ 4 G¢
dnouB ao1|s dnouf ao1js dno.B a91Is dnaib aol|s dnoib a91|s
GIUA X3 LSA FIUNX3 LSA €3UN X3 1SA Z2IUN X3 LSa Lwun X3 1sa
(uopiped (uoniped (unyoeep | (junyoejep | (unyo ejep
Jopzeepn3) | 4ol eepn3) | snonbyuoo) | snonbpuoco) | snonbBiuoa)
Gl a €l A Ll
dno.b soiis dnoib sos dno.B so1is dnoib aoiis dnoub so11s
GIUA X3 LSA F#IUNX3 LSA €HUN X3 1SA ZIUN X3 Lsa Liun X3 1sa

50 O -0

Q|
(s,
—

uonauny BuidnolB
pue Buiposus

86 syse) eued

Xt
uoniped eyep

ot
uoniued ejep

H
uoniued ejep

(188 yunyo)
¥
uoniued ejep

v6ise)

0T 54

76 ejep

US 9,483,539 B2

Sheet 11 of 67

Nov. 1, 2016

U.S. Patent

1T 'Old

L#1Un UoNnaaxs 1Sq

86 (shise)
|erped
9g J3||0JIU0D |«
8.1 971
|0Ju02 |0JU0D Y771 |00u0o
18d ¥S8) Aowsw
v A 06 s99I|s
¥€ a|npow 06 3|npow T)
< > Alowaw .
312 15d uoindaxa 1d o8 707, synsal |
y X A 10/
00T seols

=

2071 s)nsal elued

>

A
»

ZZT syse) [ended-gns pueZT sbuidno.b e9118-gns

891 veqpes) 150

interface 169

L#3un d1q o}
(s)1sey [enJed

A
ejep snonfinuod

| €eep o3

¢ ¢Bep 03

171 (unyo)
elep snonfiuoo

L#3un X4
1SQ Jo} sdnoib a21is

X# uoniued

¢# uoniyed

Zi# uonived

L# uoniued

US 9,483,539 B2

Sheet 12 of 67

Nov. 1, 2016

U.S. Patent

<t "9l

L#11Un UoN9axa 1S

9/ | |0JJU0d ¥se)

| uoiped
Joj %se) |elJed

9g J9||0J3u0D

GIP | vIP | €IP | CIP | LIP
6P 8p JAY op
ap P ep cp P v

m
|
|
|
|
|
“
m
m 0lLp
“
1
1
1
“
“
|
|

| uoniued Jo $400|q elep

V71 |0Juod
Alowaw

3% Alowsw

A

snonbijuod pajquiasse-al
06 s|npouw

uoInnlaxa | g
SY00|q BJBp pajquiesse

-84 Uo (s)uonoun]
yse) ered wiopad

| uonited jo | dnolb
Jo} (s)ynsau |ened

Glp 8sd

pL8ELP €A

clelip €sa

0186P €SQ

88./p €30

9%Gp €30

¥8eP 2Sd

Z8LP 1sd

| Buidno.b 991|s ul
| uoniued Jo $821|s
EJep pepoous

US 9,483,539 B2

€1 '9I14

78 uissaooud 15Q punoqui

Sheet 13 of 67

Nov. 1, 2016

U.S. Patent

] |
“ |
| |
“ |
— |

“ g87 ainpow -

[}
Ug Jiun T — »| |0JJUOD ¥%SE) —
LoyNISXd ' Z0F synsad ejued panquISIp m (shinsas
1sd m A “
_ “
" _
|
_ 1IN 1
ug (sinsal [ered | 98 %ﬁwos i
| 061 [04uod 104 067, [03U02 !
U S89I|S PoAsL)) “ !
S “ 067, [0u00 “
o 1 A 4 \ 4 Y “
’ m 08l 787 Buipoosp 8L “
08} > ¢8} bl » bBuuonned —+— 75 eep

N ! Buidno.b-ap Jous s !
J#un > " -op ejep i
uopnaoxe | L (Shinsal ened “ i
| o3 W
1Sd ! 0T 24} uoned !
suonned eje I
SO0I|S poAdLR) | $99I|S PanaLal ejep Jod HIHEQ Elep !
! $99I|S papooud !
|
e h

US 9,483,539 B2

Sheet 14 of 67

Nov. 1, 2016

U.S. Patent

¥1 'Ol

(shinseu
8y} 8onpoud 03 Buissaooid

S}NSaJ 8Y) YIM SOUBPIOII. Ul
synsa. |enJed ay) Buissaosoud

(e
N

0

A

ySE) 8y} U0 paseq

Buissaooid Jnsal Buiuiwieiop

[e0]
~

6

A

synsa. |enJed ayj 0)

Buipuodsa.ioo yse) buirsLiel

[{e/
—

6

A

synsed |enJed aAlgosl

14

|

US 9,483,539 B2

Sheet 15 of 67

Nov. 1, 2016

U.S. Patent

| 78s3 | 1es3 | owesa | oepssa | sipesa |
. ST 'OH
[}
| zess | 1es3 | oevser esa | 1zsozp esa | 9sep €sa | 7T
$82I1IS JO $)9S Ol uolped
| 7zes3 | 1zs3 | vescepzsa | eieeipzsa | veepzsa | € J0} SE0lIS panaujel
| zi1s3 | 1s3 |zewerusa| zivetpisa | zmip isa |
087 J0)09j88 —
Buidnoib-ep 06l joAuos
oot N\
$90I|S paAslje) NEV
| 7ess | | 1esa | | swesa | | opesa | | sipesa |
[] [® [] ®
[[o [®
[] [[[[J
| Zess | | 1esa | |oesseresa| |lzsoceesa| | osspesa |
| uojiped Joj
| zzsa | | vesa | |wesecozsa| [eiseipzsa| | wsepesa |
| 2is3 | | visa | |eesmepusa| [umapisa| | zepisa |
G#NILSAWOS VNI LSAWO4 €4NILSAWOS Z#NILSAWOY ¥ NI LSQ Wos

US 9,483,539 B2

Sheet 16 of 67

Nov. 1, 2016

U.S. Patent

[44)
uonied e Joj
$80I|S paAaLlel

G| ejep
popOooUS Paolls

9G] ejep
PapooUS

91 'Ol

painoss

$GT sjuswboes

287 bBuipoosp Jodie pasiadsip

— 80¢C
¢0¢ Buissesoid —
Buisssooud 707 90z buipoosp RAunoss 0be
> > > _ » Buisseooid
Aynoss a9lls Buiols-ap lous juowbas 5
Jad asieAul osIoAU| juswibes-op
% 061 |04u00 ,
L __ T
6l [0Jju0d 9g] o|npow | 06} |04U00 sjuawbaes ejep
|0Ju0d
06} [04u0d 067, [0u0d

0cl
uonied ejep

US 9,483,539 B2

Sheet 17 of 67

Nov. 1, 2016

U.S. Patent

L1 'Ol
9 Juawbhas ejep g juswbss ejep ¥ wawbas ejep Z Juawbas ejep
4344 yrp | €vP P | P OvP | 6EP gep | LEP oep [gep vep | €EP cep | 1EP
0gp 6CP | 8¢P P | 9¢P GZP | vep gcp | b Lch | OCP 6LP [8IP LIp | 9ip
gip vip | €LP P | LIP 0lp 6P 8p JAY 9p Y 144 €p 4Y 1Y

J luawbhas eyep G JuaLLBas ejep ¢ Juslwbas eep | Juswbas ejep
¥51 Sluowbas .\/V
paInNdas J i
—_ 90¢ buipooap ¥0¢ —_
gl [0AUCO — 103 N Buiis-ap <+— 7B} [04uod
9G] ejep
popodus 3T elep

pepooUs paols

| zes3 | oepssa | sipesa | 4t JueLLBes Joj S90S Jo sjas
[J
[
[]
| Zesa | 1es3 | oswsepesa | €4 13LLID3S 0} 305 4O S1os
| vewecpzsa | 61991p 7280 | 3epzsa | 2# uaWwBas 1o} S80S Jo S]es
_ zewiep 1sa _ 11891p 180 _ Z8LP 1Sa _ L# JuslwBes Jo} s8OS 10 8188

US 9,483,539 B2

Sheet 18 of 67

Nov. 1, 2016

U.S. Patent

Luoiped ejep
sop | vwp | evp | zop | 1op o
T ovp | ecp | gep | sep | oep voniued ejep
gep | vep | eep [zep | 1ep
oep | 6zp | sz | 220 | gep —
1] |
szp | vep | ezp | zep | 1ep Buissonoud 6T
oz | 61p | gip | 2ip | 9ip JuawBas-ap 04100
sip | e | eip [zip | Lip
ow | ep | sp | 2o [o
sp [wp | ep | 0 | 1P T
sjuawbas ejep
[svo | vwp [evp [avp | 1o | oo | 6ep [oep | zep | 9ep | cep | vep | eep | zep | Lep |
| ocp | 62p [oz | 2z | 9zp | szp | wvap [cep | e | 1ap | oze [e [o | 2p | oip |
Lsie [wp [[| up o [e [oo | 2p | oo | o | o |0 |]| ip]
g Juswbas eyep 9 juswbas ejep { Juawbas eyep Z uawbas ejep
vp | | w0 [evp || awe | wwp || ovp | 6cp | [sep [zep | | ocp | cep || vep | oo | [zep | vep
oep || 620 [szp || zzp | 9zp || sz | vap | [ez [2z || vep [ozp || 6wp | ap | up | oip
sip | [wp [e [ap [1P || o | 6P gp | 2p o | gp | gp e | up

J awbas ejep

G Juawbas eyep

¢ Juawbas eyep

| JueLBes ejep

US 9,483,539 B2

Sheet 19 of 67

Nov. 1, 2016

U.S. Patent

(funyo ejep (uoryped (uoniped (unyoeyep | (Munyo ejep
snonbnuos) | Jol | eepD3) | ol geepo3) | snonbnuod) | snonbiuod)
b X v x G X g X AR
dnoib 89118 dnoJb soyis dnoib sas dnoib 89118 dnoub 8918
SN X3 LSA PIUNXI LSA €N XTI LSA CUUnN X3 1SAa | un X3 1sd
(unyoejep | (yunyoeep | (unyo eyep (uopned (uonped
snonBhuod) | snonBhuos) | snonBhuod) | Jopz elepn3) | 4ol | eep H3)
€€ ¢ I € G¢ Ve
dnoib 89118 dnoub 89118 dnoJb eos dnoub 8918 dnoib 891s
guunN X3 1sd #IunX3a Lsa €nx3a 1sd c¢iun X3 L1sa | iun X3 1sd
(uonied (qunyo elep | (qunuoelep [(unyo ejep (uonped
o] | elepn3) | snonbipuod) | snonbhuod) | snonBuuoo) | Jolz eep 03)
ve €c x4 4 G2
dnoub 89118 dnoub 89118 dnoJb eos dnoib 29118 dnoib 891s
guunN X3 1sd #IunX3a Lsa €nx3a 1sd c¢iun X3 L1sa | iun X3 1sd
(uonied (uoped (unyoelep | (unyoeep | (yunyo ejep
Jopzeepny) | Jor | eepna)| snonbnuod) | snonbiuco) | snonbijuod)
Gl vl £l Zl bl
dnoub 89118 dno.b eols dnoJb eos dnoib 89118 dnoub 8918
Glun X3 1sa +IunX3 1sa €iun X3 1Sa ciunx3 1sa L aunx31sa

VAR VA SV

(44
Buipcosp
pue
Buidno.b-ap

X#
uonn/ed eyep

cH
uoniJed ejep

c#
uoniJed ejep

(1es yunyo)
L#
uonied ejep

6T 'Old

vie
Buiuonnsed

|®U

6 Elep

US 9,483,539 B2

Sheet 20 of 67

Nov. 1, 2016

U.S. Patent

Ug Jiun uonnaexe 1sd

[}

[}

1

[}

i

06 enpouw ¥€ einpow “ 0Z 9l

uonnasxa | g usip 18a m
m

35 Alowsw 33 49]/0JU00 m
i

1

U# SS0I|S paAalij.

]
]
]
]
: 0T se0lls ponaLiel
: ' | 78 Buissaooud L
e ! lsgpunoqu [T ZBep
U S89IIS “ “
: !
!]
V# 72 ylomjeu m m
Sa0I|S peAsl}al
JIUN LOJNIBXD | S(L# S80IS peneLl m m
) “ 0% Buissaooud .Iml o
HSSIR gz seols ! 1SQ punogino — Z6 ejep
i
]
1
]
]
1

US 9,483,539 B2

TZ 'Ol

0g 8uissasoud 1 SQ punogino

811 8|npow
|0JJU0D YSE)
peinguisip

A

Sheet 21 of 67

2¢ SSedAq

[

911 8|npow
|04ju0D

Ug J1un
X3 18@ —

0

©

T |01U09

Nov. 1, 2016

jo u Jejid

007 [01]U00

A

[
Buiuonn.ed
elep

Y17 10)08jes 717 Buipoous
Buidnos6 | lola gQq

L#un P
X3 1Sd $90IIS

— 81¢C
k¢ S90I|S pepooUs

6 EJep

U.S. Patent

40 |4 seid $90||s Jo sue||d

US 9,483,539 B2

Sheet 22 of 67

Nov. 1, 2016

U.S. Patent

¢¢ 'Oid
G X ¥ X X X 17X X# Juswbas ejep
®
®
°
| sz | ve | ¢2 | ¢ | ve | | 2#1wowbos epep |
| s | v | 0 | 2o | 11 | | 1#1wewbos epep |
744
Burils 9
Buipoaus
e |
' 707 Buipoous Jote pasiadsip |
1 1
_ m oSt W — m
8l¢ i Buissaooud T ol Buissaooud 4 “
juswbas ejep lad Alml fyunass Buois e Buipoaus fAunsss [* Buissasold _
$92I[S papooUd] 205 Jod Jous JuowBos Juswbas m
! y A —_— [7 !
i 091 |01ju03 1 i
e o o o o o o o] e e o o] - ———— - e |
¢Sl 26 Ejep
797, [04uc) SIT einpow | TaT, [0nu0d sjuswbes elep
[04uco
09T |04u09 097 |o4u0d

US 9,483,539 B2

Sheet 23 of 67

Nov. 1, 2016

U.S. Patent

x Bas Jo x Bas Jo x Bas Jo x Bas Jo x Bas jo
s Gue|d | ousyed | sos¢uejd | sosgled | 8ols | sejd
[
[
[
¢ bas Jo ¢ Bas Jo ¢ Bas o ¢ bss jo ¢ Bas o
sollsGue|id | eoysple|d | soysgued | eoysgejd | eols | sejid
z bas jo Z bas jo z bas o Zbos o Zbos o
s gue|d | sousyed | sous¢ued | osgled | eols | sejd
| Bes Jo | Bes Jo | Bas o | Bes Jo | bas jo
adlsgled | eoysyuejd | eoys¢ued | eoysglepd [eoys | Jejd

GIUN X3 1SA ¥HUN X3 LSA €Wun X3 1sd

cHUN X3 1SA 1Iun X3 18d

vee

Buidnoub Jejid g
Buiois ‘Buipoous

€C 914

6 elep

US 9,483,539 B2

Sheet 24 of 67

Nov. 1, 2016

U.S. Patent

v< "Old

L# Jun uopjnoaxe |1 SJ

¢ o|npow
Wald 15

97 2402 duipndwod

«

A

06 °|npowl
uonnIaxa Jq

9g J9||0J3U0D

Y71 |04u09
Alowaw

» IZ Alowaw

912
$00I[S

001
$00I[S

interface 169

x bos jo
d0l|s | Jey|id

¢ Bos Jo
80J[s | Je||d

gz bas o
90ls | Je||id

| bas jo
d0ls | Jey|id

so0l|s |4 Jey|id

US 9,483,539 B2

Sheet 25 of 67

Nov. 1, 2016

U.S. Patent

Ug Jun
LoINoaXe

15d

U $901|S poAsIel

L#un
uonnJexa

18d

L# S80I|S paAaLijal

L e N

SZ 94

8a7] anpow
|0JJLOI YSE)

paINqUIsip

98] g|npow

(e

08l

BT [01U0D

61 101U

[0U0D

N

787 Buipooep

Buidno.b-ap

001
$90I|S paAsL)al

(e

44

1018 S

8lC
Juswbas ejep Jad

$90I|S PopooUd

ssedAq

8l
Buiuonied

-op ejep

73 duissanoud |SQ punoqul

6 Elep

US 9,483,539 B2

Sheet 26 of 67

Nov. 1, 2016

U.S. Patent

76 elep

9Z ©I4
G X ¥ X £ X Z X L X x# JuswBes ejep
]
°
°
| sz | ve | s | 72 | 1% | z#1uswBos eep |
(1]34
| o | v | v | 0 [1y | 1#wowBoseep | uawBes-ap
144
Buipoosp
puEe 801|$-8p
P T T T
“ ZaT Buipooap Jouo pasladsip
[}
m — 50z
— ! ¢0¢ — &} d —
8le m Buissaooid 707 90¢ Mﬂﬂwwnw 14
Juswibes ejep jod ——» ?:omw " Buoys-op » Buipoosp > Ewemwm » Buisseooud
$90I|S POpodUD w S0I[S BSIAAU| . Jous SSIOA Jusbas-ap
7 A
m A 1 67T, [0U0d '
= — [
61 104U00 | gg] sjnpow | 06} I0AU0D gy151),6as eyep
[03u03
061 |04)u09 0671 [0)u09

US 9,483,539 B2

Sheet 27 of 67

Nov. 1, 2016

U.S. Patent

£¢ O ¢ 3NPOUrNISQ
cTETEE T TN TTTTTTETmTEETTS VTS TTTTTTEEEETTTTN TTTTTEETETTTTTS
ugun P wgn ! | Bgyun ! L ofun ! L
uonnasxe | 8Qq m 1 uopnoexe 1S m I uopnodxe 18Q m I uopnoexe 18Q m I uopnosxe 18Q
| ;] | | | | |
€ anpow w eee i | FTonpow w eee | Fgonpow w eee | | 7T onpow w eee | | 7T onpow
Jugiv 18d ! m Jusid 1sd ! m jugis 1sd ! m Jusip 1Sa ! m Jusid 1Sd
[} [}] [}
95 Ja)04uc0 | 1 w 95 Jojjo5uoo | 1 w 9§ Jofouoo | i w 9§ Joj04u00 | 1 w 35 40|0U02
[} [}] [}

06 anpow | i [5% einpouw m { [56 einpouw m { [95 einpow m [5 eimpow
uonnoaxa | | ! m uognoaxs | | ! m uonnoaxs | | ! m uonnoaxs | | ! m uopnIaXs |
! 1 !] !] !]
| | | L | _ | _

m ! % 8p02 ¥SE) PApoOUs S _ m !

i !] T T T i !

l “] “ 1 ® “ l “

. o 3 -

|] “ i “ “ [¢ opooysey pepooue sq |

“ : “ | “ | [!

] o | [omoommpepootosa] |

i !] ! ; “ - _

U Bjep papoaus §q _ m _ | P00 XsE) v%_Scm sd _

i !) ° ! i ! i “

| ! “ s ! i ! | !

| . _ _ _ _ | _

! ¢ BJEP PAP0OUS SQ | | ! “

! i ! “ B _ Z E1p papoous 5@ _

“ ! “ ! ! 1 I I 1 I

“ m “ m _ | BJep Papoaus §q _

o ! m et ! m o “ m e ! m %

Aiolsw m ! fowsw m ! Aowew] t | Aowsuw m 1| Alowsw

_ ; _ | | | | |

US 9,483,539 B2

Sheet 28 of 67

Nov. 1, 2016

U.S. Patent

8¢ 'Old

P e e e — - -
I

| ueep papoous Jouis 5q

£ BJep Pepoous oo g

| zeep popoous Jous 5q

_ | BJEP PApOOUS JOLD §Q

72 dhpow

(NLSQ) sHomjau yse)
5 oBel0)s panqLIsIp _

| 8poo yse) papoous Joua 5q |

| z2pooyise) pepoous soua sq |

_ | 3P0 YSE) PAPOU3 JOLD S(_

e

¢ uoneuLojul
uoneaojie 1Sd

UONBLLIOU]

)nso)

Z5¢ 9|npowl
uonnqLasip ysej

274 S
ooy (T
Jnsal hedxgje 1Sa
252 9npow
uonnguisip ysey
y 7y
3EC (74
01 Synsau areep | dixsel
. peses | peos|os
ZF 9npow
usIp 1Sd
al* %se} - dl uejep -
dl ¢ 3se) - di ¢ eep -
al | 3se} - di | eyep -
GE¢ SO0 HSEY 10 18] ¥EC BIBP 0 18]

A 4

(54
di ejep
pajoa|es

3

o |
qiysey | ¥0l shnsai
[VIRETE S

Jualjo

T# 8npow

1sd

2

3

al 9 xsey -
al ¥ %sey -
al | xsey-
GCZ SSp03 3SEY JO 19|

dl 6 exep -
dl Zeep-
diceep-
dl | eep-
¥€2 BJEP JO 3S]]

US 9,483,539 B2

Sheet 29 of 67

Nov. 1, 2016

ObZ al¥ser BEz Al elep .
papoes paoes 62 "9l Iyyse]
¢ asel
Ly seL | yysel
y NHm yse]
2 vopeusou mxu 22z ainpow \/ DRl | £l
uoledo||e -« uonnqSIp %sel [4
eadje 1 sa AN L lysel
7 L yselL
N . L L sel | 1 ysel
> ! | =
DN N OIS | ¥5E
\\ AN 9%z den
se|-gn se
« y /<\ // ///)Se|-gns < yse|
A A B //
2 |z N
A g € — — - — — — - —
X 4 7 uols.u93sgL/ol | ZXx uppy | zZX u uols.uo3s-gig | og uippy | o4 u
X o i | |...) | |...
A Al €018 9SG | AN CIPPY | AA () £ 018 935910l | 99 ¢ppy | 49 ¢
¥ 171 L Nwo._m Nwom_m Gie >XHN‘_%< AX ¢ NHo._m Nwwm_w /5 m<HNLnn< av 4
77 7z L OIS 93SG/e | XX hppy | XX L L707S L ©93SGIE | VY LpPY | WY }
W |pow | 0 | 8% coe | 0oc
el bel ¥.¢ Sisisuleled CLC O] 571 ail 99¢ siejelleled ¥9¢ OlY| 5715 [q])
T | =a 5a Y | YL | ¥eEL 5a TV | B | TR
ZGZ S9|npow uonnaaxs | 0GZ uonewuojul abeia)s yse; g¥¢ uonewJoul sbeiq)s ejep

U.S. Patent

US 9,483,539 B2

Sheet 30 of 67

Nov. 1, 2016

U.S. Patent

0¢ Ol

962
paje|suel
Apoeuiod —
SPJOM JO 18| e

262 Spiom
-uou 0} anp
SIouB JOIS||

saselyd Jopg spJom o1110ads pull - 77 ¢ %SB)
oje|SURl) - | € ¥se)

362 SpIom A
anbiun Jo 1s]| T1.€ spJom snbiun
81.€ MO Se]
suolje|suesy
1084109
¥6¢ OTE slodid (| 0) 2ledwod
paje|suel) A
Aposuiooul
Sspiom JO }s]|
ZTE slolio T3¢ elep s 28¢ elep P
uoje|sues paje|suel-al w/xwm.g paje|suel) /&mih c6 ElEp
pJom-uou —
a8z (seselyd) aje|sues) aje|sues
SPIOM pojejSUEY) A
a1y0ads 18| ¥0T saselyd Jopg spiom paje|sues) 0110ads
06¢ Spiom A
-Uou Jo J8|
L Z0¢ (Areuonaip e uijou “6:9) spiom-uou
95z (seselyd) A
Splom o100ds 18|

00F saselyd Jopg spiom ollvads

(271 pue ™| Jsyje PAISNIO) SUOIIRISUBI] 198100 SUILLIBIOP - /| YSe)

(p-1 ¥sey Jeye pal

(171 pue G | YSE] JOYE PBISPIO) SI0LIS UOIRISUB) PJOM-UOU BUILLISISP - 9 | YSE)

apI0) s104 () 0) siedwios - G|, yse)

(£ yse) Joye palapio) yoeq sje|suel) - § | ySel

(posapio-uou) sjelsues) - 7|, yse)

(paJaplo-ucu) spJom snbiun Amyuspl - Z | ysel
(pasopio-uou) spiom-uou AJguap - |~ |, %Sej SISATEUE UOE[SUES - | XSEL

US 9,483,539 B2

Sheet 31 of 67

Nov. 1, 2016

U.S. Patent

R - - S S S BT .
JIUN UO(NOBX® § | JIUN UONOBX® ; ! JlUN UONOSX® | ! JIUN LOJNOSX® § ! JIUN LOIINJSXS | | JIUN UOIINOBXS | | JIun UOJNOBX® |
1 1 1 1 1 1 1

s ti 1sd 4y 1s@ oy 1s@ fi usd b 1s@ ti 1s@ i
7€ ainpow m m F¢ onpow m m F¢ onpow m m FE onpow m m 7€ a|npow m m 7€ a|npow m m 7€ o|npow m
Ul 1SA |1 1| B0 1SA |1 t| B0 L1SA i f| WeloLsa i ff weloLsa fi ff weioLsd i ff welrLsa i
! ! ! ! ! !]

! ! ! ! ! !]

| safionuoo |} 1] | ssjjonuoo |1 i gsjonuoo |1 if piejonuod |1 if ¢ ejonuoo |} 1] zasfonuoo | i | ssjonuoo |
! ! ! ! ! Pl i

| vampow |4 21 ampow |4 i gampow |4 i prampow |4 i [g ampow |4 ¢ [z ampow | [eimpow |
uognoexe | 1| uopnosxe |! i uonnoexs ! 1| uonnosxs (! 4| uopnosxe |! ;| uopgnoexe |! i| uopnoexe |!
10 | 10 | 10 | 10 | 10 | 10 |l 10 m
' ' ' ' ' ']

N |l 1| |] |] | m

! m ! m ¢ 8p09 YSe) papoous S !

| I | I | L | | L | T T 1

Z P09 YSE) Pepoaus §q i m i m i

- -] [T | | m

i m i | ©P0J Sk} papoous SQ i

] i HE HE HE HH i

. m ¢ BJEp Papoous Sq m

!] T T T T]

!] ! ! ! !]

88 fowsw |! 1| 88 Aowew |} 1| g8 Mowew |} 1| 8 Aowew |! 1| 3§ Aowsw |} if B8 Kiowsw |! i| §8 Aowew |}
)))))))

'] ' ' ' ']

US 9,483,539 B2

Sheet 32 of 67

Nov. 1, 2016

U.S. Patent

UONEDIPUI UOISISAUOO JBWIO} ‘UOIJLEd Yoes Joj ojul -ippy ‘suonied jo "oN Q] elep ¢ ol uoiued ejep

202 - S
1 [}
1 P — (o) b o= (o— — — — — !
b el gesiunlsa | gwun 1sd guuN1sSa |¢ced | ¢S®cvrceccl Zeld-1 ¢y | ¢ione ¢ ¢ m
| (€1 se _
i l-1d gLy asn auies)auou | ¢ m
H 1
| !
m b=l ‘Zsiun1sa [23un 1Sd Lnun 1s@ A VA R AR A A 72-1¢ suou 4 !
! - - - i
| Zgy-L gy g1 m
m L-€ sjun 1sa gun 1sq EWN1SA | d | TS8TVYTETTT L | RZId-Lld | T L | L) '
! i
m Z61d- 1761y gl m
! g-¢ sWun 1s@ ¢un 1sa Znnisa | 9kd | LSRRI PILEL T L | RZ L LY | R Laeye | 9 m
m 77-1¢ !
! G-l sjun 1s@ L 3un 18a bnngsa | Sd | LSRRV PILEL T L | RZ vl L vl vl Jeye Gl m
m TR L 9TTT Z¢1d-6G ¢y i
m L-€ sjun 1Sa gun 1sq gnn1sa v id| LS8 VL EL T v eld-L ey £ | Joye vl m
m TSRTYTETLT) 72-6¢ m
m g-¢ siun 1s@ gun 1sq gwnisa el | VSR P eV T) v2-1¢ suou gl !
m G-l syun 1s@ | Jun 18a bwnisa |z | LS P e T ve-l e suou A m
m G-l siun 1s@ L 3un 1sa bnnisa || LSRR e T) 72-1¢ auou bl m
i 9¢ec |
m OF¢ oDEIO)S gccopeio)s | DUsssoold | FEC Bee 9¢¢ !
| PEdTORIDS | JNSer wIei (SWEN | T WX IJ07 UonEd e DUTOPIO YSE] | SSE] | |
! % OlUl }nsal a)elpawia)ul 22 OJul UOIINDaXa YSe) m
m !

US 9,483,539 B2

Sheet 33 of 67

Nov. 1, 2016

U.S. Patent

result 1_2 (list of unique words)

FrRzzzsosseoesemooooooones “ g¢ "old
L ,\“ wH_N%wN - %omm xal
rW eed 100388 [$S5| A uonnued
! ® ® 1| € 1 Insal
| [] o |
i) ° ! eee
1 200 06 “
—| ! g uonied |
=]] sjnsal 1] spow X3 | € — <
3 /ﬁml ened A 1010108 /\“U ¢} JNs8) /U
1]
“ i | L uoned
[o B || € 1 nsel
|| sneas o spowxa [77
i lenJed 1qjoles | |
| DPEqRISUEN) p | Xse) |
| e e e ———— -
e pe 'Ol
: ﬂ_N%me AU Spow X3 m _
mwvv lened 1ajlopes ﬂ)V Z uopiped
: [° ! ejep
1 [] 9]
i ® o ! YY) o
i 201 06 i o
. .| Z uonnJed ©
AL sjinse AL spourxs AU Blep AU 3
i | leped 1djopes | |
1]
i i | | uonped
[] [T] e
™| sinsar [spowxa | 7 —
1| [eped 1040138 |
1 1
1 1

(SpJom anbiun 1) Z | Yse)

result1_3

| result 1_1 (list of non-words) |

]
200 06 |
snses | <3| spow X3 | _
lerped AH_ 1040398 m/u\v Z uoiued
[. ' ejep
® [] 1
L o | (YY) o
201 06 “ S
s)nsa Au Spow X3 AH_ N:M_M._tma AU m
lerped 1ajoses | |} ep
)
1| 1 uonned
20T 06 |V| eep
s)nsal AL Spow X3 r_wm -
[ered 1qloies m
(BJEISUEL) €|, ¥SE) !
.......................... K
= % 1 ®od
“ ﬂ_N%me wcomwxm_]
va lenJed 1040188 ﬂ/w Z uojied
“ . ° ! ejep
! ® [J 1
" L] [) | ese
“ 201 06 “
AH synse) AIJ Spow X3 AL N:M_M_tma AU
L[lened 1ajoes | 1 ep
!]
: 1| 1 uonjped
: SAT = l
3 <01 06 g ejep
x/v s)nse) A.U SpoW X3 rmw
[enJed 1Qlojes m
1
1

(SpIom-uou) || ¥se)

data 92

US 9,483,539 B2

result 1_7 (list of correctly translated
waords)

Sheet 34 of 67

Nov. 1, 2016

result 1_6 (list of errors due to non-
words)

U.S. Patent

| | result1 4 (retranslated data) |

data 92

T T [uopp.ed 9¢ ‘9|4
! 4 06 L2 hnsal —
,A“_u s)nsa. AU Spow X3 AJ Jog
“ lenJed 1qjoes | N|co_g_tma BES W
R el i (ST}
i ™ ™ _ ° > g
1 ! [J o
i i ® = e \

m __ _ m | uopped ! aor 06 m Z uopjped
SB[2R 1] L= [k =
Jnss) o [ere A#T
“ efed 1@Jos | 1+ || uogped 2 ! Nk uoryped

- = 1 Ble
m (Suone|SuRJ) 198.4100) /| 4SE) m G | }nsal = ' ' 1ep
e e e Cmemee a 3 ! ° ° i
S 1 ® ® ! ®
m ° ' ° ° ! n
= Q 1 H
P ||z vopped =il !
“ o7 06 | ! |s 1unse. =3 ! —— |) vonped
A- © “ 200 N
SIEEY spow X3 | , v 1 unses
AML lenJed AH_ 1QdJojes /_L z uoppued AU = AU sinsal AU SPOUI X3 ﬁ
' r ° m 17} JInsal 2 “ [erued 1dioes | 1 [} uorped
m s S | . _ “ (a1edwoo) ™|, ¥sE] m ejep
! m ° e _
i “ s ‘5
m — = i | L uonyec 23
' | g1 nsa. - |~ g
,A_.U synsa. Au spou X3 AH_ A,L M_ w
' lerued 1dijoes |+ || uonped B <
1 — =
1 (SpJom-Uou 0} anp s10.J3) 9 |, s8] m b L3nsad

US 9,483,539 B2

Sheet 35 of 67

=

Nov. 1, 2016

| result 3 (specific translated words/phrases) |

B

U.S. Patent

=

data 92

o \.%I g W Wl
- e [72] o D
6¢ 'Ol g S 2 E = g
g 5 S < ks g
5 2 52 = £ =0 S
mrame 3 |23|db|22|dh| s |db| 5 |dR (28| k| &
~ o 25 Z = 55 S
_mu (n ~— ~ [P) m
m m 6_ 2, 1_ w hb\
2 = = = - o~
@ @ = — =
PP UoleuLciul Jnsa.
8¢ Old L8 '9Old
------.l.-----------mlmw ! “-------------------Mulmw !
] i o 201 i
synses (<3| spow x3 [i — | 5| synsa | spowx3 | i
|eed < 1aops | 15| Z voned m Rv lenJed = 1ajotes | 1.5 | 2 vonped
® ® 1”1 € L insal < ! ® ° ! ElED
° ®] o 1 ® ®]
e ° ! (YY) ™ 5 ! L) e ! (YY)
201 06 i = e ' 201 06 i
s |l soown | o | IR Sk | s | owa | ¢ 7
eped | 7 [Lawges | T L&Y < I = I 1qoes | Jep
]
i [voned il t [} uonped
201 06 51 ¢ nsel - Tm 0T = ! e
s)nsa. AU Spow X3 ﬂw — m N | sinsel Ar. Spow X3 N_\N
lejped 1040308 | i 4| ened 1ajpomps | |
(seselyd | | (soselyd/spiom oljioads) g yse) !
]
i

/SpIOM D1j108ds paje|Suel)) ¢ ¥se)

US 9,483,539 B2

Sheet 36 of 67

Nov. 1, 2016

U.S. Patent

voy 'Old
L8 1slqo L1 pelqo |9 09[qo LG pelgo | ¥ 108[qo 1 ¢ Joslqo 1| j09(qo
ejep elep elep Elep Elep elep elep
Al
o A o A o A ° A o A o 4 o A
O. O. .. .O O.
T v eep
8 v Ly 9y Gy 124 €y AR L ¥
apou Jed) apou jeal [€] spou jes; [€7] spou ses; [€] spou see; [€7] spou jee; [€7] apou jesy 3pou Jes|
g gapou | p gapou | g gapou |, Z €apou | | € opou
xopul | xepur [~ xopul | xopur | Xapul
A
g zopou | Z ¢opou | | ~Z 8pou
xopul | xopu | Xapul

8pou Xapul 1001

[

G aIMONIS Xapul painguisip

US 9,483,539 B2

Sheet 37 of 67

Nov. 1, 2016

U.S. Patent

g0¥ "ol

L€ ojul spou g pjiyd

Z8€ (jeuondo) syies adAy Aey | piiyo

08 Ao Xepuj wnwjuju | piiyo

GZT OWBU 80.N0S BPOU |, PIyd

L€ ojur spou | pjiyo

3E OJU 9pOU UaIpyo

ZIE (leuondo) syes adA Aoy Buigis

0/Z€ A8y xapul wnwiuiw Buigis

2G¢ aweu a3inos spou buljqis

8GE ol apou Buygis

99¢ odA apou

$9¢ (jeuondo) uciSIAal SpOU Xapul

Z0¢ (jeuondo) sweu 82.n0s spou Xapul

GE OJUl 9pOU Xepul

ZG€ 2INjoN)s apou Xapul

«— ¥ee
ssalppe NS(epou xapul

US 9,483,539 B2

Sheet 38 of 67

Nov. 1, 2016

U.S. Patent

0¥ 'Ol

O Ojul ¢ Elep

907 (jeuondo) siies adAy Aoy | ejep

F0v £oy xepul | eep

0¥ EIBp 10 BWEU 82IN0S |, ejep

G6E Ojul | Elep

6t ojul EJEp

1% (jeuondo) syiesy adA) Aey buljgis

0Z¢ £oy xopul wnwiuiw Bugis

L
99¢ alleu 321nos spou @c__g_w

BGE ol apou Buygis

Jo¢ adA) spou

mmA_mco_aov:o_m_>emno£mm_
76¢ (jeuondo) aweu a3inos apou Jes|

3T OjUl SpOU Jes)|

78E einonJ)s spou Jes)

93¢
<«— SSBIppe NS(opou Jes)

{26 SWE.U 80IN0S e Bjep

Coreesd)

948 eWeu 20Jn0s e Blep

Geqe6yp

g9/ swWeu 82.nos Je ejep gceve

q = Aoy xapul Z ejep
698GPGE] = EJEP ¢ EJEP

US 9,483,539 B2

[= Koy xapul | ejep p = A&y x8pul | eiep e = Aoy x8pul | ejep

Sheet 39 of 67

Nov. 1, 2016

U.S. Patent

(26 = SWeLU 82.n0os |, ejep

[INu = A8y xspul wnwiuiuw buygis

INuU = BWeU 82inos apou Bulqis
B9 = odA; apou A|_|

6es
BlWeU 324nos

948 = alleu 22.n0S | Bjep

[= Aoy xapur wnwiuiw buyais

g9/ = SWeU 90IN0S |, ejep

p = A8y xspul wnwiuiw buigis

J¢G = sWeu 82In0s spou mc__n_w

6EG = BLUBU 82IN0S apou Buljgis A|_|

89| = odAy apou

acs
slWeu 82Inos

1e9| = odAy apou

P = Aoy Xapul uiw g pjiyo

[= Aoy xapuj UlW | piIyo

{25 = 8WeU 82Jn0S Z pliyo

$E£G= SWEU 80IN0S |, PlIYo

e = A9 Xapul uiw |, pjiyo

[INu = Aoy xapur uiw Bujjqis

gyS= SUIeU NS | PlIYD

INu = aweu sanos apou buiqis

[= Aoy xopul uiw Buygis

X8pul = adA} spou

Dz = dweu aainos spou Buljgis

]

1ZF BWeU 80In0s

Xapul = adA) apou

[= Aox xapu] UW Z piIyo

)2t = SWEU 82IN0S g PlIyo

B = Aoy X8pul ulw |, pIyo

/4 = eWweu 821nos |, pjiyo

INu = Asy xepul uiw Bugis

(INu = aWeu soinos apou Bulqis

Xapul = adA} apou

gvs sWweu
90In0s
L4y
alleU 83INCS
aor "o1d4

4z dWeu 80Inos

US 9,483,539 B2

Sheet 40 of 67

Nov. 1, 2016

U.S. Patent

30% Ol

¥EF pouisw uonejuswbhos

7S sluswhas Jo Jaquinu | uoluod

0¢F @z1s | uonlod

ZF 8Weu 82inos |, uoplod

Z¥ Ojul | uopod

ZF OJUl |, UOISIaA

TF Ojul 8|qe) uoneoo)|e uswhas

ZF EJEp JO 5ZIS [E10)

0c¥ Aoy xapul ejep
[sweu 108(qo ejep

71 0ju] J09(qo ejep

TF 2injonis 108iqo ejepejow

457
<«— ssaippe N1S(elepejew

US 9,483,539 B2

Sheet 41 of 67

Nov. 1, 2016

U.S. Patent

40v "Old

apou xapul pajepdn ay) ayoed

g

<

1

9p00s

apou xapul pejepdn ue aanpoud

0] $89I|S Xopul pajepdn Jo Jequinu pjoysaly]

p B 1Se8)| Je 8p0osp ‘S30l|S Xepul pajepdn

apnoul sasuodsal pallipow i pea. ay) uaym

[eo]
<+

14

1

sesuodsal pallipouw Ji pee 8Ale08)

=,
<A
<H

1

si1s0nbal palipow | pesl Jo 18s e Jndino

o
I
<

N

9pOU Xapul payoed 8y} 8)o|ap

oJoI9p

44

Xapu

apou
| PAYOED B 8)8jop 0} JAUJSUM BUILLIS)EP

12

<

)

US 9,483,539 B2

Sheet 42 of 67

Nov. 1, 2016

U.S. Patent

b Ol

a|npoL
NLSQ 2y ul epou xapul pajepdn ay) si0)s

o T

ajepdn ay) Buiwlopued
uodn anenb sy wouy 1s8nbal sy 8)99p

0%% 1

apou

xapul pajepdn ue aonpoud 0 1sanbal jsap|o ay)
Upm Buidess |eALLIE JO 8l JO JBpJo Ul 8jepdn
ay) wiopad pue ananb ay; wo.l jsanbas ay)
aAslal 1sanbal ajepdn apou xapul Yoes Joj

857 1

a|npowl
NLS(€ WoJj 8pou Xapul ay) aAsL)a) ‘pasdefo
sey pouad awr a)epdn spou Xepul ay] Usym

57 1

[BALLIE 1O BwwIly Ag s)sanbal
ajepdn spou xapul Jo Ayjednid syj ensnb

<&
<r

75 1

poliad sl a)epdn spou
Xapul UB UILJIM 8pou Xepul Ue Joj sjsenbal
a)epdn apou xapul Jo Ajljein|d e aA1893)

(9]
<

<5)

US 9,483,539 B2

Sheet 43 of 67

Nov. 1, 2016

U.S. Patent

¢y O

polad swi) s)epdn spou Xxapul 8y} usloys

Ly A
poliad awi
ajepdn epou xapul ay) usyibus| |
0Ly
pouad swi ajepdn
BPOU Xapul 8Y) UBLIOYS 0} JOYJoUM duIULIB)op
89% A
Ajpow

apou Xapul ay) Jo Bunepdn Jo [aAs
aouewJoLiad sy uo paseq poliad awi sjepdn
9pOU Xapul Ue AJIpow 0} Jayjeym auiwisjop

99 T

9pou Xapul ue
10 Bunyepdn Jo |aAs| souewIoued e sulwls)ep

C—

US 9,483,539 B2

Sheet 44 of 67

Nov. 1, 2016

U.S. Patent

ujun x31sd

Vey 'Ol

&

U 9suodsal AsJ S)LIM

¢iun X3 1@

u jsanbal ajum aseyd jxau

u jsenbai AaJ ojlIm

Z 9suodsal Asl SjUM

| Jun’X3 1Sd

< Z 1senbau aylum aseyd xau

Z 1senbal Al a)um

097 s1senbal a)um aseyd Jxau

PE€ o|npow

| 9SU0JS3I ADJ)M

787 sesuodsal s s)Im

Jusip 1sd

<€

| 1sanbau 811um aseyd xau
| 1s8nbaJ AsJ BjlIm

287 sjsenbal Aas 8)lum

§F 901A9p 1Sl

US 9,483,539 B2

Sheet 45 of 67

Nov. 1, 2016

U.S. Patent

X L-X
21918 | | A21018

8¢y 'Ol

891A8p 18411 8y Jo 1dwane Bunlm
pajensn||l |0 LUoIsiAaL B 0 [enbo
10 uey) Jajealb si ey uoisiAal
e Jo Bunum [njssaoons Joud

1own 1ewn-aud
ujunx3 1sd

i

u asuodsal yoeqod

X X
ras s | [re101s

U Jsanbau ajLm aseyd jxau

u)senbal Al)M

1ewny 1 8wny-auid
ciunx3 1sd

Z 9suodsal Aal B)UM

Z 1senba. yoeq||o.
Z 1senbal Al 81lIM

X |-X
21018 | | A21018

1ewn] ewny-aid
L Iun X3 1Sd

A

| asuodssu vl a)m

| 1sanbai yoeg)jo.
| 158nbai ASI S)lIm

8% sisenbal ajLum aseyd 1xeu

¥€ 9|npouw

}8F sosuodsal Asl 8)lum

Y

Ui 18a

767 s1senbal
.. X ADIOIIM J oW je

)
.,
N,

)

- Y

.]

b

06
B0IABP PUOSBS

oF S1senbal ¥oeq||od

¥€ 8|npoLu

$8Y Sosu0dsal Aal a)lIm

Y

Jugis 18a

78¥ sisanba.
X ABJ BJlIM 3} E)OP +) BWI) Je

08F solAap ISl

US 9,483,539 B2

Sheet 46 of 67

Nov. 1, 2016

U.S. Patent

acy I

¢y 'Old

L jun’X3 1sd

(o018
Mm} | 3senbal
JLILIOD BYLIM

/
\\\\\\\\\v

| osuodsal Aal ajm

/

(00118 O/m)
| 1senbau Aal ajum

| yroioweusys

¥ ginpow

A

[rreroms |

LIunX4 1sd

| 1s9nbal Jwwo?

/
\\.\\\\\\\\\v

] osuodsel AJ SJUM

/

(s01ls M)
| 1s8nbal Aal ajlum

Jusld 1Sa

[vrei018 | |

A2 ‘oWeURlS

¥ 9lnpow

A

Jusip 1Sd

US 9,483,539 B2

Sheet 47 of 67

Nov. 1, 2016

U.S. Patent

¢ UoISIA®]
U8 JSOW

\

(A1 Jusv8l JSOW)
| 8suodsal Aal 8)um

/

(01]S O/M JO M)
| 1s8nbau AsJ BjM

4¢% 'Ol
erID1S | 2AR01S | LARIDTS
L IunX3 1Sd
€21 18I| UoISInBI
3¢y 'Ol
eARIDTS | ZABIDTIS | L ARIDTS
L Jun X3 18d

| 8suodsal Adl S)lum

/

(891|S O/M IO M)
| 1sonbaJ ASJ B)lIM

§ 731078

¥ ASJ ‘BWeusolls

7€ s|npow
Jusip 1Sd

¥ A_l DTS

b A0l ‘BWEUBIIS

A

7€ a|npow
JusIo 1Sd

US 9,483,539 B2

Sheet 48 of 67

Nov. 1, 2016

U.S. Patent

HEY "OId

| ¢ oaiqeionejun

| eri018 [21015 | L A0i0Ts

| Jun’X3 1sd

\

(nal ABJUN/ARY)
| 8suodsal Al B]lIM

T om—
| 1s9nba. sl B1IMm

€A1 DTS

¢ o) ‘alleusols

A

Oty "Old

_ b 9|qBI0NE}

[ermi01s [2mi015 | LA0i0s

| un’X3 1sd

\

(A81 ABJUN/ARY)
| asuodsal AaJ 8]lIM

T o—
| 1senba. sl)M

¥ 8npow
Jusip 1Sd

y A1 DTS |

 ADJ ‘aWeuDols

A

¥€ s|npow
Jusip 18d

US 9,483,539 B2

Sheet 49 of 67

Nov. 1, 2016

U.S. Patent

1€y 'Ol
- (99115 O/M 1O M)
| preroweusoys | 76F S)senbal LoD
- (1s1| nou)
— _ £} 18] Al _ ¢ 8suodsal ABJ BJLIM
(181 A2)
—_— _ AR _ Z osuodsal Asl ajum
(1s1] rau) !
-« _ €218l A8l _ | asuodsal Add 9)lM
_ ¥ ABJ ‘BLIBUBDIS _ ¥ ABI DTS
Im
€A DTS £/ 018 (29115 O/m JO M)
71078 7701 018 78% sisenbal Aal ajum
| ABI DTS | A1 DTS | A8I DTS —
¢lunx3 1sd ¢nunx3 18d L Wunx318d jusip 18d

US 9,483,539 B2

Sheet 50 of 67

Nov. 1, 2016

U.S. Patent

rey old
- (901]5 O/m JO M)
| presoueusors | 7B% Sisenbal LoD
. (1s1) AeJ)
] | ciiisina | ¢esuodses ras oyum
I (181l A&l
| z'lsiner | zesuodses ros eyum
(181 A1) !
-« _ A NIt _ | asucdsal As))M
_ b ABJ ‘BLIBLSOIS _ b A1 S
A2l
¢ A1 DTS P A1 OTS (801|s O/M JO M)
7 A8l 1S Z A8l 1S 78T sisenbal sl a)um
| A1 DS | AR DTS | A1 DTS ¥E onpouw
£3un X3 150 Zun X3 180 L un X3 180 e 1sa

US 9,483,539 B2

Sheet 51 of 67

Nov. 1, 2016

U.S. Patent

MEP Ol

— | |

—_— | _ SR Y _Nom:o%m;e)M

| proioweusoys | BBF sisenbesyoegol

L 18] ASM _ £ o5U0dsal ADJ SUM

B
»

(1si| rad)
_ G ‘L8l A8l _;wcoaww;e a)lim

gNuN X3 1sd

cIunx31sd

_ i A3 ‘OWEBUBI|S _ ¥ A3 0TS

(90118 O/m JO M)

G A DS 787 Sisenbal Adl a)lum

E ¥ anpow

L Jun'X3 180 IR 1Sa

US 9,483,539 B2

Sheet 52 of 67

Nov. 1, 2016

U.S. Patent

s)un abelojs ay) 0] sysanba ajLM
aseyd 1xau JO 13 e '82IASP JSIIL BU) A ‘onss|
‘ISIX8 JOU S0P BNSSI J0I|JU0D BJLM BU} UBYM

% A

sjun abe.os ay)
0) s}senbal ¥9Bq||04 S1LM JO 10S B ‘80IA8P 181}
3y} Aq ‘anssl ‘IsIxa aNsS| 11|JUCD B]LIM BU) USym

a A

pjuooou | Joljjuoo

S]SIX® 8NSSI J0I|JU0D 8)lIM B
Jay1oum auiLwIsep 0] $9SU0CS) UOISIAS S)LM
PBAIBBI JO 189S BU) ‘@218 1siIL ay) Aq Jaidig)ul

a5 1

¢y Ol

sjun
afielo)s au) J0 BLIOS 1SE3| I8 WOoI) 8suodsal
UOISIABI BJLIM BU) ‘@0IABP 1511 BY) A ‘BAI898)

oS 1

anss| 121[JUOD A)M
[enusiod e Buipsebal asucdsas UoISIABL B)lIM
B ‘sjiun abelo)s sy Jo Buo ay) Aq ‘eieisush

[0

805 in

891A8p puo2as o) 0} abessall Joud
3)lm e 'sjun aBelo)s ay) Jo auo oy} Aq ‘puss

[{=]

06 A

aweu 921is ayy buipiebal
1s8nbal UOISIAG 8]lIM PUODSS B ‘80IABP PUOISS
E WoJ} 'sjun aBelio)s ay) Jo auo ay) Aq ‘aA180a)

<t
O

bal AdJ BJUM pUZ XJ _

188 8U) 0 153nbal UOISIABI S)LUM B JO
aWeu 291Is e ‘syun abelc)s ay) Jo aUo Ag K90

705 T

NSQ & JO siun abe.o)s 0] s1senbe.
LOISIAD. JLIM JO JOS B ‘a21A3p 1Sl B AQ ‘puas

™ f

bau as1 a1um pug ou

US 9,483,539 B2

Sheet 53 of 67

Nov. 1, 2016

U.S. Patent

¥8 anpow Buissesoud

Z A8J Uy uoiyod

ujunx31sd

A

U asuodsal peal

7§ anpow Buissasoud

™ u jsanbay pasiAal |l peal

Z Mol ‘7Y uoiuod

»a

Z 9suodsal peal

giun’X31sd

"7 1senbau pasiAel JI peal

¥8 anpow Buissesoud

»a

| asuodsal peal

Z M8l ‘L Yy uoipod

| IunX3 1sd

| 1senbau pasiaal || peal

Vv 'Ol

| 2 re1 vy uoniod |

°
[270177y uoiod |

| 2 re1) "y uomiod |

¥2G sosuodsal peal

A 4

Z A8l 'y ejep o Adoo

726 sisanba. pasiasu || peal

FE ainpow jueid 180

026 201A8p 1841

US 9,483,539 B2

Sheet 54 of 67

Nov. 1, 2016

U.S. Patent

¥9 g|npow Buissaoo.d

€7 SAal ‘U y uonied

u asuodsal peal

ujun’x41sd

" U jsenbaJ pasiAal Ji peal

u jsenbal a)lim

78 9|npow Buissaoo.d

£'7 SABl ‘7 Uondod

Z 9suodsal peal

»

¢iunx31sd

Z 1sanbal pasinal | pes.
Z 1senbal ajum

¥5 s|npow Buissasold

_ £'Z shal ‘| Ty uoilod

| asuodsa. pesl

L Iun’X415d

< | 1senbal pasiaail I peal
| 1senba. oM

avy 'old)
‘Uy pod

€ A9l
'Z ¥ Jod

€ A8l
', ¥ lod
—

| ¢ r01u™y uoppod |
®

°
°
| € r01°77y voppod |

_ ¢ A3l |,y uolpod _

§zG sisanbal sjum

£ ABI 'Y BIBp pasiAal

Jeuwn e
$E aInpow juslid 18a
| 325 901AGp PUOSS |
| i
! _
! € Aal Z A2l |
! ‘U"y pod ‘U pod !
_ g s !
_ g Adl Z Mal _
! ‘7Y yod 77y Jod |
I g Asl Z A8l _
“ ‘) ¥ pod ‘| 7y pod |
! g Aoy Zraly _
= ly! | BIepJ0 Adod elepjoAdos | | |
ve _ TElep !
awp-aud
sesuodsal peal | +1owp9sod e m
725 sisenbau pesiaal Ji peal | 3% anpol JUSIP 1S |
Je)ep +18Wn e | : |
_
|
|

75 2019 151

US 9,483,539 B2

Sheet 55 of 67

Nov. 1, 2016

U.S. Patent

£ A8l |y uoiued

\.\.\\.\.\\.\.\.\\.\V

(uonealpul pue 89jjs)
| esuodsal pea.

A/

| 1sonbal
pasinal I peal

zhal', yoweu |

A

1 |
I _
" | e
" e LTS
I | acsjusoas | 1 | UCISIASI
8|geloABUN " 210U _ 'y SWEU
I _
arv "9l | @suodsal peal
€ 4 L
Adl |y Mod | Aed |y Wod | Asl | Ty od
LIUn X3 18a
[} |
I _
1 |
"]z s
[4
" ABJ JUS03 _ voshal
siqeione) [1] oy || Vv Sweu
I [
Iy "l | @suodsal peal
4 L
A3l |y pod | aal |y pod
L Iun X3 1Sd

\\.\.\.\.\.\.\\.\.\.\.V

(Ajuo uonesipu)

| esuodsal peal
%

pasIAGl JI peal

_ ZAal |y uonied _

¥€ sinpow juai|d | Sa

zhal' yoweu |

A

_ ZAal |,y uondod _

€ ainpow Juai|d 1Sa

US 9,483,539 B2

Sheet 56 of 67

Nov. 1, 2016

U.S. Patent

by 'Ol

¥ A8J |y Jod

¢ A8 |y Mod

\

(181 ABJ pue 821|S)
| 8suodsal peal

/

| 1sonbal
posiAa. JI peal

Z A8l Y eweu

| |
| |
_ _ 14
" L]ezasi
" { UOISIAS) " LOISIAG
Jusdal ,
\ SWweu
a|qeJonejuN m SI0W m s
| 9suodsal peal
14 ¢ 4
Adl |y uod | aes |y uod | Al |y uod | [
L un' X3 1Sd

ZMNaJ |y Mod

€ sinpow jusiid 1Sd

US 9,483,539 B2

Sheet 57 of 67

Nov. 1, 2016

U.S. Patent

T

\\\\\\\\\\\\\

€ ‘7| 118l UoISIAB)

€ ‘2“1 38l UoIsIA®I

AL

o
-

4vv "Old

£
AB) ¢y Mod

€
A3l gy piod

€
Adl |,y Jod

FE einpow juald 184

€

‘71 38| uoIsIABl

17V dWeu

\\\\\\k
— ——

€ 701 ‘g 7y BWeu | -«

_ ¢ A2l ‘g Y sweu

A8l ‘| Ty 8weu

¢ A9l |y Jod

Z el |y 1od

¢ A2I ¢ Y Mod £ A2J 7 Y Uod
Z Al ¢y uod Z Mg yuod
| ABI ¢y Jod | ABI 77y od
gun X3 18d ¢Wunx3418d

| A8J |y Yod

L Jun X4 1Sa

£
ABl ¢y Wod

€
ABl 7y Wod

£
Adl |y Jod

¥E ainpow juaid 180

US 9,483,539 B2

Sheet 58 of 67

Nov. 1, 2016

U.S. Patent

‘e7y aweu

«

.

£ 2 ‘) 181 uoISIAB) L

Ovy 'Ol

€
A8l ¢y Lod

€
A3l gy Hod

€
Ad) |y Jod

F€ ainpow Jusljo |SQ

A

-

_ £ A7 Y Mod

€ ‘7 ‘] 18] UoISIAB)
‘7Y SWeu

\\\\\\\\\\\v\v

2" sl UoISIAG
‘| dweu

—
<

| crezvouey |

£ AB)'gTY AWl _

£ A8l ‘| Ty sWeu

¢ Adl |y Jod

ZAdl |7y uod

£ A8l £y Lod € A8l 7y od
Z A8l gy uod A IR AV
| A8l ¢y uod | A8l g7y Jod
ghunx31S8a ¢iunx318d

) Adl |y Jiod

| Jun X3 18d

€
ABI £y Lod

14
A1 7 Y Jod

€
A3 |y Lod

FE ainpow Jualjo |SQ

US 9,483,539 B2

Sheet 59 of 67

Nov. 1, 2016

U.S. Patent

¥ 'c ‘7 1181] UOISIAGM

T

HYY "OId
14 14 14
Ad) ¢y Wod | A1z y od | Al |y Jod
¥€ ainpow juald 1SQ
A A A
‘\\ —
— pre1g vy uod |y ez 381 LoisiAG)
¢ABIZ vy uod ‘7 ¥ aweu

¥ € ‘7 18| UoISIAB

— _ A8 | Ty pod ‘| v ouweu
[zrerzyouweu |
€ ABl ‘g Y aWeu _
[crei)vouwey
¥ A8l ¢y Jod ¥ A1 7y Jod ¥ As1 |7y Jod
£ A8l ¢y Uod € A8l Z Y Uod £ Asl |7y Uod € < €
Z A2l ¢y Mad 7z Aol 7y Hod 7 AaJ |y Jod A3l ¢y Hod | Aas gy 1od | Al |y pod
glunx3 1sa ciunx31sd Lunx31sa ve SINPOLI LR 154

US 9,483,539 B2

Sheet 60 of 67

Nov. 1, 2016

U.S. Patent

BJEp 83U} JO uoiiod mau sy spnjoul Jayuny
0] asuodsa. peal ay) ‘yun abelojs ayy Aq ‘puss

2] T

jun abeioys sy Aq palols sl elep sy Jo uonlod
M3U € Jey) ‘Iun abelols ay) Ag ‘auilieep

% A

i

Iy "OId

<

suoiod Jualayip
U} Jo auo aU) Jo Buip|ingal ‘Jun abeiojs
aly Ag ‘ejeniul ‘siequinu uoisiaal Alowsw
[B30] S10W JO BUO 8y} UBY] $S8| S| Jun 8be.ojs
8} Ag palois ejep ay} Jo suopod Jusiayip
8U) JO BUO JO JAQUINU UOISIABS BU} UBUM

0% T

EJEp @y}
1O [8AB| UOISIABI JUBLIND B S| 80IABP IS} 8Y) A
payoeo Blep ay) Jey) UoeDIpUI Ue Sopn|oul jey)
asuodsal peal e ‘Yun abelo)s ayy Ag ‘Bulpuss

85 1

Ejep 8y}
J0 suojod Juaiagip 8y} 1o 8U0 8Y) 3pnjOUl O]
ejep ay) Jo Buiyoes ‘ed1aap sy du) Ag ‘slepdn

95 T

80IASP 18Il 8] 0} BJED
ay) Jo suonJod jussalip 8Y] JO 8UO 8Y) SBPN|OUI
Jey) asuodsal pesas e ‘iun abelo)s ay) Ag ‘puss

¥ES A

U004 2I0W

sjaquinu
ucISIAS) AJOLUBLU [B20] S10W 10 BUO BY) Uey)

JAQWINU UOISIASI JUS23 2J0W B s1 Jiun abeiois
au] Ag pal0)s ejep au) Jo suoiod Juslayip
10 8UO JO J8qWINU UOISIASI B JBYI8YMm ‘Sjiun
abeioys ay o Jiun ebeios e Aq ‘suiwsiep

43 1

991A8p 1841 BU} Aq paYDEI BIEP 4O SIBquINU

uoisiAel AJowaw [B20| 8J0W JO BUO Sepn|oul
s1senbal sy} alaym ‘NSQ B Jo siun abeloss o)
s)senbal pasinal-ji-pes) ‘aolnep Jsul e Ag ‘puas

s f

US 9,483,539 B2

Sheet 61 of 67

Nov. 1, 2016

U.S. Patent

$CG asuodsal

yine psixold > T
7G5 1s8nbal » Buissesoid 18q
yine paixoid
°
°
™
FCG asuodsal R
yine paixo.d » ST
» Buissaooid | gq
766 1sanbau
yine paixo.d
Y VY
9GS Jsl| >
ar |0JjU0D SS800.
gl Jlun
Buibeue X 3
C_N_HMQE 3G esuodsel 9l Jun
Lne paixo.d Buissasoid 18

gl

75G 150nbal

yne paixod

V&P "Old

229G asuodsel sse00e

A

006 1sonbai ssadoe

7l
901A3p Jasn

gcg asuodsal uoneonuayne

A

0G5 1senbai uonesnuayne

4
90lASP Josn

US 9,483,539 B2

Sheet 62 of 67

Nov. 1, 2016

U.S. Patent

asy

"Old

90IASP Jasn aLj] 0} asuodsal ssadoe ay) Jndino

8./

LO|

A

1s9nbaJ $$309€ 8] JO UOINOSXS JO JNSal
E 9pN|oul 0] 95U0dSal $$900€E ue djeloush

9/G

A

A

1senbaJ $58008 BY) O UONNIBXS B)E)I|I0.]

25

20IA3P
Jasn ay) 0] asuodsal
$s9228 8y Jndino

Liojew.ojul [elusp

apnjoul 0] asuodsal
$$929€ Ue djeloush

¢LG

L9

A

PaAIBa) Uda(
9ABY SBOIASP JASN JO JeGLUNU PIOYSaIY) B WO.)
sjsenba. SS900. JB|ILIS JOYIaYM SUILLISIop
‘DoIlLIOA A|(RIOAR] SI LOIEOIUBLINE BY) USUM

895

A

80IABp Jasn ay) Jo uolieanuayine Ajliea

995

A

N

B0IABP JBSN B WOJ) 158Nnbal SS800. UR 8AI808)

v9%

t

US 9,483,539 B2

Sheet 63 of 67

Nov. 1, 2016

U.S. Patent

V9% "OId
gEunx31sq <

g 2oIs 99018
g€Nunx3 180 <

p 20IIS G 9IS
& 1un <
9cun X3 1sd C ools 5 o0s
5 uun <
9gunx3 1sd e 5l
9gunx3 1sq <

¢ s AL
9gunx3 1sa <

| 20IIs | ®0lIs

:Z 9dusnbas ;] dauanbas

%€ 8|npow
JsIo 1Sa

US 9,483,539 B2

Sheet 64 of 67

Nov. 1, 2016

U.S. Patent

198 9beIois Jun X3 18qQ
3y} Jo S)lun X3 1S SWoes 1sea| Je 0] $a9I|S ejep
papoous pallpoLL Jo sjes Jo Ajjelnd syy Jndino

865 1

$82I|S BJEP PSPOOUS PallpoW |0 S19S
10 Ayjein|d e sanpoud ¢) sisjsweled [esiadsip
paljipow ay) Buisn ejep Jayio ay) apodus

968 i

sisjweled |esiadsip sy Buizinn 18s abelo)s
JUN X3 1SQ 9y} WO BJep JBYI0 J8A0d8)

2 1

19s obelois Jlun X3 | 8q
U] 10 Spun X3 1 S SWos Jses| e 0) $a0l|s
BIEp Popoous Jo s19s Jo Ajljenid ayy Indino

%8 1

g9y Ol

$9I|S EJEp popoous
10 8188 Jo Ayljeunid e sanpoud 0} s1sjlueled
[esiodsip paiypow sy Buisn ejep oy opodus

05 1

19s 8bRI0IS JUN X3 1S BY) IO [9A8|
Agejieae ay) pue sispeweled [esiodsip sy uo
paseq sieslWweled [esiadsip paljipow sullLIs)ap
‘siojoweded [esiedsip oy Buijipow usym

[eo/]
o0
L0

1

198 abeioys Jun X3 1Sq
U} Jo [9A9] AJl|IgejieA. 8y} UO paseq Jas abelo)s
JUN X3 1SQ 9U} Yum pajeloosse sisjaweled
[EsJadsip AlIpoL 0] Joylaym SUILISIdp

1O

985 T

195 abeiojs Jun
X3 150 2y} jo [aA3) Ajljige|ieA. Ue sulLLdjap

785 1

EJED 2y} yim
pajeloosse jas abeio)s 1un X3 1 Sq e Aluapl

785 1

anpow
NLS{ e Ul e1ep 2i0)s 0} 1senbal a1um e BAI803)

s f

US 9,483,539 B2

Sheet 65 of 67

Nov. 1, 2016

U.S. Patent

UOISIA) MaU B
UM pPoleInosse anpow N1Sa U} ul $891is elep
PBpooLS 0 18$ paonpolida. suy) Bulols ejeyl|ioe]

919 T

S89I|S Blep papoous Jo
188 8y} sonpoude. 01 Juswbas ejep 8yl spoous

g A

UOISIABJ UOWWIOD
8U) U)im Pa1eIo0sSe anpow NS Y} Ul S80)ls
EJep PopooU S40W IO auo ay) Buuols sjey|oe;

] T

SO0||S Bjep Papooua il
J0 8U0 Yy sonpo.d o) Juswbas ejep ay) apoous

019 A

[Ny

$O0I|S BJEp POPOOUS JO Joquinu
Uipim Jejlid [N} & Swiojel S80IjS BJep PepooLd
10 Jaquinu ypim sejjid sy} Uey) ssaf ay) yjim
PAUIQWOD USUM JBy) 4oNs S8i|s Bjep papoous
2J0W JO BUO P(INGaJ 0} JOYIOUM BUILLIBYP

509 1

Ly Old

Juswbes
ejep e aonpotdal 0) S30I|S BIEP POPOOUD
4O Jagunu p|OYS3IY} Sp0SP B} Sp0Iap

509 T

SO0||S B)ep papooud
10 JoqUINU PIOYSaIL) SPOISP U} DASUIE.
‘S99I[S BJEP POPOJUS JO JOqUINU PlOYSBI)
8poosp B 1Ses)| Je S8pNjoul S80IjS Blep papoous
10 Jaquinu yipim Jeyjid 8y) ueY) $S8] BY) UBYM

709 T

$89I|S BIEP Papo3Us JO 188 aY)
yim pejeiocsse sialsweled [esiadsip Aluspl

209 T

8|NpoW N1SQ e Wolj

9|qeAsLIB) 8B LOISIAS) UOLUWOD B JO $80I|S
B)Ep POPOOUS JO 18S B |0 S80I BJep Pepoaus
JO Jaquinu y)pim Jejjid e uey) ssa| Jey Josjep

s f

US 9,483,539 B2

Sheet 66 of 67

Nov. 1, 2016

U.S. Patent

2 enpow
NLSd

v8y Old
U N SIS
g g7 jun
«—— Buisseocid |
SN 1sa B
T NeIs
D
°
°
°
© Uz ools
s 37 un
«— s Buissaooud |« -~
< mlm I 180 ¢ 90|
AT
L zeols
S
g 97 un
«—— s Buisseocid | —
< ¢ 1 20 180 L 99|
AR
EE

7€ o|npow
Juslpd 1Sd

D —
819 eyep

US 9,483,539 B2

Sheet 67 of 67

Nov. 1, 2016

U.S. Patent

g8y "old

syun Buisssooid | §Q J0 188
3y} J0 19sgNS 8y} JE palo)s SIS EJEP PApOdUD
[9A8] 1SI11 JO JBGINU P|OYSBIY] B JO SJIUBPI
pue ‘syun Buissaooid | S J0 188 Y JO 18SgNS
8y} Jo sielyusp! ‘ejep 8y} o q| Ejep e usamiaqg
UONBID0SSE U spnjoul o) A1ojoalip e sjepdn

09 1

syun Buisssoonid | §Q J018S
8y Jo sjun Buissacoid | gQq Jayio 0 abessaw
uone|gaued e indine ‘syun Buissescid | SQ
10 }9s 2y JO Josqns e woJy sasuodsal abeiois
8|qeJCAR] JO Jaquinu pjoysaly) e BuiAigoal usym

628 1

s)un Buissasoud | S J018S 8U) Jo
BLIOS JSE| 1B WOJ) Sasucdsal abelols anladsl

5% 1

syun Buissaooid [J0 1S B O
S89I|S BJEp POPOIUS [9A8] 181 JO 188 8Y) Indino
‘S891|S BJep PApOoUS [9AB] 1811} 10)85 Loes Jo)

24 T

$3JI|S BJep PAPOIUa [9A3] JSUL
10 8188 Jo Aye.n|d e sanpoud 0y EIEP BY) BPOIUS

4] 1

Blep 810)s 0] }senbal e sagsal

e f

US 9,483,539 B2

1

UPDATING LOCAL DATA UTILIZING A
DISTRIBUTED STORAGE NETWORK

CROSS REFERENCE TO RELATED PATENTS

The present U.S. Utility Patent Application claims priority
pursuant to 35 U.S.C. §119(e) to the following U.S. Provi-
sional Patent Application which is hereby incorporated
herein by reference in its entirety and made part of the
present U.S. Utility Patent Application for all purposes:

1. U.S. Provisional Application Ser. No. 61/700,691, entitled

“UPDATING A DISPERSED STORAGE AND TASK

NETWORK INDEX,” filed Sep. 13, 2012.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not applicable

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT
DISC

Not applicable
BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This invention relates generally to computer networks and
more particularly to dispersed storage of data and distributed
task processing of data.

2. Description of Related Art

Computing devices are known to communicate data,
process data, and/or store data. Such computing devices
range from wireless smart phones, laptops, tablets, personal
computers (PC), work stations, and video game devices, to
data centers that support millions of web searches, stock
trades, or on-line purchases every day. In general, a com-
puting device includes a central processing unit (CPU), a
memory system, user input/output interfaces, peripheral
device interfaces, and an interconnecting bus structure.

As is further known, a computer may effectively extend
its CPU by using “cloud computing” to perform one or more
computing functions (e.g., a service, an application, an
algorithm, an arithmetic logic function, etc.) on behalf of the
computer. Further, for large services, applications, and/or
functions, cloud computing may be performed by multiple
cloud computing resources in a distributed manner to
improve the response time for completion of the service,
application, and/or function. For example, Hadoop is an
open source software framework that supports distributed
applications enabling application execution by thousands of
computers.

In addition to cloud computing, a computer may use
“cloud storage™ as part of its memory system. As is known,
cloud storage enables a user, via its computer, to store files,
applications, etc. on an Internet storage system. The Internet
storage system may include a RAID (redundant array of
independent disks) system and/or a dispersed storage system
that uses an error correction scheme to encode data for
storage.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a schematic block diagram of an embodiment of
a distributed computing system in accordance with the
present invention;

25

30

40

45

60

2

FIG. 2 is a schematic block diagram of an embodiment of
a computing core in accordance with the present invention;

FIG. 3 is a diagram of an example of a distributed storage
and task processing in accordance with the present inven-
tion;

FIG. 4 is a schematic block diagram of an embodiment of
an outbound distributed storage and/or task (DST) process-
ing in accordance with the present invention;

FIG. 5 is a logic diagram of an example of a method for
outbound DST processing in accordance with the present
invention;

FIG. 6 is a schematic block diagram of an embodiment of
a dispersed error encoding in accordance with the present
invention;

FIG. 7 is a diagram of an example of a segment processing
of the dispersed error encoding in accordance with the
present invention;

FIG. 8 is a diagram of an example of error encoding and
slicing processing of the dispersed error encoding in accor-
dance with the present invention;

FIG. 9 is a diagram of an example of grouping selection
processing of the outbound DST processing in accordance
with the present invention;

FIG. 10 is a diagram of an example of converting data into
slice groups in accordance with the present invention;

FIG. 11 is a schematic block diagram of an embodiment
of a DST execution unit in accordance with the present
invention;

FIG. 12 is a schematic block diagram of an example of
operation of a DST execution unit in accordance with the
present invention;

FIG. 13 is a schematic block diagram of an embodiment
of an inbound distributed storage and/or task (DST) pro-
cessing in accordance with the present invention;

FIG. 14 is a logic diagram of an example of a method for
inbound DST processing in accordance with the present
invention;

FIG. 15 is a diagram of an example of de-grouping
selection processing of the inbound DST processing in
accordance with the present invention;

FIG. 16 is a schematic block diagram of an embodiment
of a dispersed error decoding in accordance with the present
invention;

FIG. 17 is a diagram of an example of de-slicing and error
decoding processing of the dispersed error decoding in
accordance with the present invention;

FIG. 18 is a diagram of an example of a de-segment
processing of the dispersed error decoding in accordance
with the present invention;

FIG. 19 is a diagram of an example of converting slice
groups into data in accordance with the present invention;

FIG. 20 is a diagram of an example of a distributed
storage within the distributed computing system in accor-
dance with the present invention;

FIG. 21 is a schematic block diagram of an example of
operation of outbound distributed storage and/or task (DST)
processing for storing data in accordance with the present
invention;

FIG. 22 is a schematic block diagram of an example of a
dispersed error encoding for the example of FIG. 21 in
accordance with the present invention;

FIG. 23 is a diagram of an example of converting data into
pillar slice groups for storage in accordance with the present
invention;

FIG. 24 is a schematic block diagram of an example of a
storage operation of a DST execution unit in accordance
with the present invention;

US 9,483,539 B2

3

FIG. 25 is a schematic block diagram of an example of
operation of inbound distributed storage and/or task (DST)
processing for retrieving dispersed error encoded data in
accordance with the present invention;

FIG. 26 is a schematic block diagram of an example of a
dispersed error decoding for the example of FIG. 25 in
accordance with the present invention;

FIG. 27 is a schematic block diagram of an example of a
distributed storage and task processing network (DSTN)
module storing a plurality of data and a plurality of task
codes in accordance with the present invention;

FIG. 28 is a schematic block diagram of an example of the
distributed computing system performing tasks on stored
data in accordance with the present invention;

FIG. 29 is a schematic block diagram of an embodiment
of a task distribution module facilitating the example of FIG.
28 in accordance with the present invention;

FIG. 30 is a diagram of a specific example of the
distributed computing system performing tasks on stored
data in accordance with the present invention;

FIG. 31 is a schematic block diagram of an example of a
distributed storage and task processing network (DSTN)
module storing data and task codes for the example of FIG.
30 in accordance with the present invention;

FIG. 32 is a diagram of an example of DST allocation
information for the example of FIG. 30 in accordance with
the present invention;

FIGS. 33-38 are schematic block diagrams of the DSTN
module performing the example of FIG. 30 in accordance
with the present invention;

FIG. 39 is a diagram of an example of combining result
information into final results for the example of FIG. 30 in
accordance with the present invention;

FIG. 40A is a diagram illustrating an example of an index
structure in accordance with the present invention;

FIG. 40B is a diagram illustrating an example of an index
node structure in accordance with the present invention;

FIG. 40C is a diagram illustrating an example of a leaf
node structure in accordance with the present invention;

FIG. 40D is a diagram illustrating another example of an
index structure in accordance with the present invention;

FIG. 40E is a diagram illustrating an example of a
metadata object structure in accordance with the present
invention;

FIG. 40F is a flowchart illustrating an example of updat-
ing a cached index node in accordance with the present
invention;

FIG. 41 is a flowchart illustrating an example of updating
an index node in accordance with the present invention;

FIG. 42 is a flowchart illustrating an example of adjusting
an index node update time period in accordance with the
present invention;

FIGS. 43A-B are schematic block diagrams of embodi-
ments of a dispersed storage network (DSN) in accordance
with the present invention;

FIGS. 43C-D are timing diagrams illustrating examples of
timing of writing data in accordance with the present inven-
tion;

FIGS. 43E-H are timing diagrams illustrating examples of
timing of responses to writing of data in accordance with the
present invention;

FIGS. 431-K are timing diagrams illustrating examples of
writing data to a set of storage units in accordance with the
present invention;

FIG. 43L is a flowchart illustrating an example of storing
data in accordance with the present invention;

15

25

30

35

40

45

50

55

60

65

4

FIGS. 44A-B are schematic block diagrams of more
embodiments of a dispersed storage network (DSN) in
accordance with the present invention;

FIGS. 44C-FE are timing diagrams illustrating examples of
timing of reading data in accordance with the present
invention;

FIGS. 44F-H are timing diagrams illustrating examples of
reading data from a set of storage units in accordance with
the present invention;

FIG. 441 is a flowchart illustrating an example of reading
data in accordance with the present invention;

FIG. 45A is a schematic block diagram of another
embodiment of a distributed computing system in accor-
dance with the present invention;

FIG. 45B is a flowchart illustrating an example of autho-
rizing an access request in accordance with the present
invention;

FIG. 46A is a schematic block diagram of another
embodiment of a distributed computing system in accor-
dance with the present invention;

FIG. 46B is a flowchart illustrating another example of
storing data in accordance with the present invention;

FIG. 47 is a flowchart illustrating an example of rebuild-
ing data in accordance with the present invention;

FIG. 48A is a schematic block diagram of another
embodiment of a distributed computing system in accor-
dance with the present invention; and

FIG. 48B is a flowchart illustrating another example of
storing data in accordance with the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 is a schematic block diagram of an embodiment of
a distributed computing system 10 that includes a user
device 12 and/or a user device 14, a distributed storage
and/or task (DST) processing unit 16, a distributed storage
and/or task network (DSTN) managing unit 18, a DST
integrity processing unit 20, and a distributed storage and/or
task network (DSTN) module 22. The components of the
distributed computing system 10 are coupled via a network
24, which may include one or more wireless and/or wire
lined communication systems; one or more private intranet
systems and/or public internet systems; and/or one or more
local area networks (LLAN) and/or wide area networks
(WAN).

The DSTN module 22 includes a plurality of distributed
storage and/or task (DST) execution units 36 that may be
located at geographically different sites (e.g., one in Chi-
cago, one in Milwaukee, etc.). Each of the DST execution
units is operable to store dispersed error encoded data and/or
to execute, in a distributed manner, one or more tasks on
data. The tasks may be a simple function (e.g., a mathemati-
cal function, a logic function, an identify function, a find
function, a search engine function, a replace function, etc.),
a complex function (e.g., compression, human and/or com-
puter language translation, text-to-voice conversion, voice-
to-text conversion, etc.), multiple simple and/or complex
functions, one or more algorithms, one or more applications,
etc.

Each of the user devices 12-14, the DST processing unit
16, the DSTN managing unit 18, and the DST integrity
processing unit 20 include a computing core 26 and may be
a portable computing device and/or a fixed computing
device. A portable computing device may be a social net-
working device, a gaming device, a cell phone, a smart
phone, a personal digital assistant, a digital music player, a

US 9,483,539 B2

5

digital video player, a laptop computer, a handheld com-
puter, a tablet, a video game controller, and/or any other
portable device that includes a computing core. A fixed
computing device may be a personal computer (PC), a
computer server, a cable set-top box, a satellite receiver, a
television set, a printer, a fax machine, home entertainment
equipment, a video game console, and/or any type of home
or office computing equipment. User device 12 and DST
processing unit 16 are configured to include a DST client
module 34.

With respect to interfaces, each interface 30, 32, and 33
includes software and/or hardware to support one or more
communication links via the network 24 indirectly and/or
directly. For example, interface 30 supports a communica-
tion link (e.g., wired, wireless, direct, via a LAN, via the
network 24, etc.) between user device 14 and the DST
processing unit 16. As another example, interface 32 sup-
ports communication links (e.g., a wired connection, a
wireless connection, a LAN connection, and/or any other
type of connection to/from the network 24) between user
device 12 and the DSTN module 22 and between the DST
processing unit 16 and the DSTN module 22. As yet another
example, interface 33 supports a communication link for
each of the DSTN managing unit 18 and DST integrity
processing unit 20 to the network 24.

The distributed computing system 10 is operable to sup-
port dispersed storage (DS) error encoded data storage and
retrieval, to support distributed task processing on received
data, and/or to support distributed task processing on stored
data. In general and with respect to DS error encoded data
storage and retrieval, the distributed computing system 10
supports three primary operations: storage management,
data storage and retrieval (an example of which will be
discussed with reference to FIGS. 20-26), and data storage
integrity verification. In accordance with these three primary
functions, data can be encoded, distributedly stored in
physically different locations, and subsequently retrieved in
a reliable and secure manner. Such a system is tolerant of a
significant number of failures (e.g., up to a failure level,
which may be greater than or equal to a pillar width minus
a decode threshold minus one) that may result from indi-
vidual storage device failures and/or network equipment
failures without loss of data and without the need for a
redundant or backup copy. Further, the system allows the
data to be stored for an indefinite period of time without data
loss and does so in a secure manner (e.g., the system is very
resistant to attempts at hacking the data).

The second primary function (i.e., distributed data storage
and retrieval) begins and ends with a user device 12-14. For
instance, if a second type of user device 14 has data 40 to
store in the DSTN module 22, it sends the data 40 to the DST
processing unit 16 via its interface 30. The interface 30
functions to mimic a conventional operating system (OS)
file system interface (e.g., network file system (NFS), flash
file system (FFS), disk file system (DFS), file transfer
protocol (FTP), web-based distributed authoring and ver-
sioning (WebDAV), etc.) and/or a block memory interface
(e.g., small computer system interface (SCSI), internet small
computer system interface (iSCSI), etc.). In addition, the
interface 30 may attach a user identification code (ID) to the
data 40.

To support storage management, the DSTN managing
unit 18 performs DS management services. One such DS
management service includes the DSTN managing unit 18
establishing distributed data storage parameters (e.g., vault
creation, distributed storage parameters, security param-
eters, billing information, user profile information, etc.) for

10

15

20

25

30

35

40

45

50

55

60

65

6

a user device 12-14 individually or as part of a group of user
devices. For example, the DSTN managing unit 18 coordi-
nates creation of a vault (e.g., a virtual memory block)
within memory of the DSTN module 22 for a user device,
a group of devices, or for public access and establishes per
vault dispersed storage (DS) error encoding parameters for
a vault. The DSTN managing unit 18 may facilitate storage
of DS error encoding parameters for each vault of a plurality
of vaults by updating registry information for the distributed
computing system 10. The facilitating includes storing
updated registry information in one or more of the DSTN
module 22, the user device 12, the DST processing unit 16,
and the DST integrity processing unit 20.

The DS error encoding parameters (e.g. or dispersed
storage error coding parameters) include data segmenting
information (e.g., how many segments data (e.g., a file, a
group of files, a data block, etc.) is divided into), segment
security information (e.g., per segment encryption, compres-
sion, integrity checksum, etc.), error coding information
(e.g., pillar width, decode threshold, read threshold, write
threshold, etc.), slicing information (e.g., the number of
encoded data slices that will be created for each data
segment); and slice security information (e.g., per encoded
data slice encryption, compression, integrity checksum,
etc.).

The DSTN managing unit 18 creates and stores user
profile information (e.g., an access control list (ACL)) in
local memory and/or within memory of the DSTN module
22. The user profile information includes authentication
information, permissions, and/or the security parameters.
The security parameters may include encryption/decryption
scheme, one or more encryption keys, key generation
scheme, and/or data encoding/decoding scheme.

The DSTN managing unit 18 creates billing information
for a particular user, a user group, a vault access, public vault
access, etc. For instance, the DSTN managing unit 18 tracks
the number of times a user accesses a private vault and/or
public vaults, which can be used to generate a per-access
billing information. In another instance, the DSTN manag-
ing unit 18 tracks the amount of data stored and/or retrieved
by a user device and/or a user group, which can be used to
generate a per-data-amount billing information.

Another DS management service includes the DSTN
managing unit 18 performing network operations, network
administration, and/or network maintenance. Network
operations includes authenticating user data allocation
requests (e.g., read and/or write requests), managing cre-
ation of vaults, establishing authentication credentials for
user devices, adding/deleting components (e.g., user
devices, DST execution units, and/or DST processing units)
from the distributed computing system 10, and/or establish-
ing authentication credentials for DST execution units 36.
Network administration includes monitoring devices and/or
units for failures, maintaining vault information, determin-
ing device and/or unit activation status, determining device
and/or unit loading, and/or determining any other system
level operation that affects the performance level of the
system 10. Network maintenance includes facilitating
replacing, upgrading, repairing, and/or expanding a device
and/or unit of the system 10.

To support data storage integrity verification within the
distributed computing system 10, the DST integrity process-
ing unit 20 performs rebuilding of ‘bad’ or missing encoded
data slices. At a high level, the DST integrity processing unit
20 performs rebuilding by periodically attempting to
retrieve/list encoded data slices, and/or slice names of the
encoded data slices, from the DSTN module 22. For

US 9,483,539 B2

7

retrieved encoded slices, they are checked for errors due to
data corruption, outdated version, etc. If a slice includes an
error, it is flagged as a ‘bad’ slice. For encoded data slices
that were not received and/or not listed, they are flagged as
missing slices. Bad and/or missing slices are subsequently
rebuilt using other retrieved encoded data slices that are
deemed to be good slices to produce rebuilt slices. The
rebuilt slices are stored in memory of the DSTN module 22.
Note that the DST integrity processing unit 20 may be a
separate unit as shown, it may be included in the DSTN
module 22, it may be included in the DST processing unit
16, and/or distributed among the DST execution units 36.

To support distributed task processing on received data,
the distributed computing system 10 has two primary opera-
tions: DST (distributed storage and/or task processing) man-
agement and DST execution on received data (an example of
which will be discussed with reference to FIGS. 3-19). With
respect to the storage portion of the DST management, the
DSTN managing unit 18 functions as previously described.
With respect to the tasking processing of the DST manage-
ment, the DSTN managing unit 18 performs distributed task
processing (DTP) management services. One such DTP
management service includes the DSTN managing unit 18
establishing DTP parameters (e.g., user-vault affiliation
information, billing information, user-task information, etc.)
for a user device 12-14 individually or as part of a group of
user devices.

Another DTP management service includes the DSTN
managing unit 18 performing DTP network operations,
network administration (which is essentially the same as
described above), and/or network maintenance (which is
essentially the same as described above). Network opera-
tions include, but are not limited to, authenticating user task
processing requests (e.g., valid request, valid user, etc.),
authenticating results and/or partial results, establishing
DTP authentication credentials for user devices, adding/
deleting components (e.g., user devices, DST execution
units, and/or DST processing units) from the distributed
computing system, and/or establishing DTP authentication
credentials for DST execution units.

To support distributed task processing on stored data, the
distributed computing system 10 has two primary opera-
tions: DST (distributed storage and/or task) management
and DST execution on stored data. With respect to the DST
execution on stored data, if the second type of user device
14 has a task request 38 for execution by the DSTN module
22, it sends the task request 38 to the DST processing unit
16 via its interface 30. An example of DST execution on
stored data will be discussed in greater detail with reference
to FIGS. 27-39. With respect to the DST management, it is
substantially similar to the DST management to support
distributed task processing on received data.

FIG. 2 is a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50,
a memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (TO) controller 56, a
peripheral component interconnect (PCI) interface 58, an 10
interface module 60, at least one 10 device interface module
62, a read only memory (ROM) basic input output system
(BIOS) 64, and one or more memory interface modules. The
one or more memory interface module(s) includes one or
more of a universal serial bus (USB) interface module 66, a
host bus adapter (HBA) interface module 68, a network
interface module 70, a flash interface module 72, a hard
drive interface module 74, and a DSTN interface module 76.

The DSTN interface module 76 functions to mimic a
conventional operating system (OS) file system interface

25

30

40

45

8

(e.g., network file system (NFS), flash file system (FFS),
disk file system (DFS), file transfer protocol (FTP), web-
based distributed authoring and versioning (WebDAV), etc.)
and/or a block memory interface (e.g., small computer
system interface (SCSI), internet small computer system
interface (iSCSI), etc.). The DSTN interface module 76
and/or the network interface module 70 may function as the
interface 30 of the user device 14 of FIG. 1. Further note that
the 10 device interface module 62 and/or the memory
interface modules may be collectively or individually
referred to as 10 ports.

FIG. 3 is a diagram of an example of the distributed
computing system performing a distributed storage and task
processing operation. The distributed computing system
includes a DST (distributed storage and/or task) client
module 34 (which may be in user device 14 and/or in DST
processing unit 16 of FIG. 1), a network 24, a plurality of
DST execution units 1-n that includes two or more DST
execution units 36 of FIG. 1 (which form at least a portion
of DSTN module 22 of FIG. 1), a DST managing module
(not shown), and a DST integrity verification module (not
shown). The DST client module 34 includes an outbound
DST processing section 80 and an inbound DST processing
section 82. Each of the DST execution units 1-n includes a
controller 86, a processing module 84, memory 88, a DT
(distributed task) execution module 90, and a DST client
module 34.

In an example of operation, the DST client module 34
receives data 92 and one or more tasks 94 to be performed
upon the data 92. The data 92 may be of any size and of any
content, where, due to the size (e.g., greater than a few
Terabytes), the content (e.g., secure data, etc.), and/or task(s)
(e.g., MIPS intensive), distributed processing of the task(s)
on the data is desired. For example, the data 92 may be one
or more digital books, a copy of a company’s emails, a
large-scale Internet search, a video security file, one or more
entertainment video files (e.g., television programs, movies,
etc.), data files, and/or any other large amount of data (e.g.,
greater than a few Terabytes).

Within the DST client module 34, the outbound DST
processing section 80 receives the data 92 and the task(s) 94.
The outbound DST processing section 80 processes the data
92 to produce slice groupings 96. As an example of such
processing, the outbound DST processing section 80 parti-
tions the data 92 into a plurality of data partitions. For each
data partition, the outbound DST processing section 80
dispersed storage (DS) error encodes the data partition to
produce encoded data slices and groups the encoded data
slices into a slice grouping 96. In addition, the outbound
DST processing section 80 partitions the task 94 into partial
tasks 98, where the number of partial tasks 98 may corre-
spond to the number of slice groupings 96.

The outbound DST processing section 80 then sends, via
the network 24, the slice groupings 96 and the partial tasks
98 to the DST execution units 1-n of the DSTN module 22
of FIG. 1. For example, the outbound DST processing
section 80 sends slice group 1 and partial task 1 to DST
execution unit 1. As another example, the outbound DST
processing section 80 sends slice group #n and partial task
#n to DST execution unit #n.

Each DST execution unit performs its partial task 98 upon
its slice group 96 to produce partial results 102. For
example, DST execution unit #1 performs partial task #1 on
slice group #1 to produce a partial result #1, for results. As
a more specific example, slice group #1 corresponds to a
data partition of a series of digital books and the partial task
#1 corresponds to searching for specific phrases, recording

US 9,483,539 B2

9

where the phrase is found, and establishing a phrase count.
In this more specific example, the partial result #1 includes
information as to where the phrase was found and includes
the phrase count.

Upon completion of generating their respective partial
results 102, the DST execution units send, via the network
24, their partial results 102 to the inbound DST processing
section 82 of the DST client module 34. The inbound DST
processing section 82 processes the received partial results
102 to produce a result 104. Continuing with the specific
example of the preceding paragraph, the inbound DST
processing section 82 combines the phrase count from each
of the DST execution units 36 to produce a total phrase
count. In addition, the inbound DST processing section 82
combines the ‘where the phrase was found’ information
from each of the DST execution units 36 within their
respective data partitions to produce ‘where the phrase was
found’ information for the series of digital books.

In another example of operation, the DST client module
34 requests retrieval of stored data within the memory of the
DST execution units 36 (e.g., memory of the DSTN mod-
ule). In this example, the task 94 is retrieve data stored in the
memory of the DSTN module. Accordingly, the outbound
DST processing section 80 converts the task 94 into a
plurality of partial tasks 98 and sends the partial tasks 98 to
the respective DST execution units 1-n.

In response to the partial task 98 of retrieving stored data,
a DST execution unit 36 identifies the corresponding
encoded data slices 100 and retrieves them. For example,
DST execution unit #1 receives partial task #1 and retrieves,
in response thereto, retrieved slices #1. The DST execution
units 36 send their respective retrieved slices 100 to the
inbound DST processing section 82 via the network 24.

The inbound DST processing section 82 converts the
retrieved slices 100 into data 92. For example, the inbound
DST processing section 82 de-groups the retrieved slices
100 to produce encoded slices per data partition. The
inbound DST processing section 82 then DS error decodes
the encoded slices per data partition to produce data parti-
tions. The inbound DST processing section 82 de-partitions
the data partitions to recapture the data 92.

FIG. 4 is a schematic block diagram of an embodiment of
an outbound distributed storage and/or task (DST) process-
ing section 80 of a DST client module 34 FIG. 1 coupled to
a DSTN module 22 of a FIG. 1 (e.g., a plurality of n DST
execution units 36) via a network 24. The outbound DST
processing section 80 includes a data partitioning module
110, a dispersed storage (DS) error encoding module 112, a
grouping selector module 114, a control module 116, and a
distributed task control module 118.

In an example of operation, the data partitioning module
110 partitions data 92 into a plurality of data partitions 120.
The number of partitions and the size of the partitions may
be selected by the control module 116 via control 160 based
on the data 92 (e.g., its size, its content, etc.), a correspond-
ing task 94 to be performed (e.g., simple, complex, single
step, multiple steps, etc.), DS encoding parameters (e.g.,
pillar width, decode threshold, write threshold, segment
security parameters, slice security parameters, etc.), capa-
bilities of the DST execution units 36 (e.g., processing
resources, availability of processing recourses, etc.), and/or
as may be inputted by a user, system administrator, or other
operator (human or automated). For example, the data
partitioning module 110 partitions the data 92 (e.g., 100
Terabytes) into 100,000 data segments, each being 1 Giga-
byte in size. Alternatively, the data partitioning module 110
partitions the data 92 into a plurality of data segments, where

10

20

25

30

40

45

50

55

60

65

10

some of data segments are of a different size, are of the same
size, or a combination thereof.

The DS error encoding module 112 receives the data
partitions 120 in a serial manner, a parallel manner, and/or
a combination thereof. For each data partition 120, the DS
error encoding module 112 DS error encodes the data
partition 120 in accordance with control information 160
from the control module 116 to produce encoded data slices
122. The DS error encoding includes segmenting the data
partition into data segments, segment security processing
(e.g., encryption, compression, watermarking, integrity
check (e.g., CRC), etc.), error encoding, slicing, and/or per
slice security processing (e.g., encryption, compression,
watermarking, integrity check (e.g., CRC), etc.). The control
information 160 indicates which steps of the DS error
encoding are active for a given data partition and, for active
steps, indicates the parameters for the step. For example, the
control information 160 indicates that the error encoding is
active and includes error encoding parameters (e.g., pillar
width, decode threshold, write threshold, read threshold,
type of error encoding, etc.).

The grouping selector module 114 groups the encoded
slices 122 of a data partition into a set of slice groupings 96.
The number of slice groupings corresponds to the number of
DST execution units 36 identified for a particular task 94.
For example, if five DST execution units 36 are identified for
the particular task 94, the grouping selector module groups
the encoded slices 122 of a data partition into five slice
groupings 96. The grouping selector module 114 outputs the
slice groupings 96 to the corresponding DST execution units
36 via the network 24.

The distributed task control module 118 receives the task
94 and converts the task 94 into a set of partial tasks 98. For
example, the distributed task control module 118 receives a
task to find where in the data (e.g., a series of books) a phrase
occurs and a total count of the phrase usage in the data. In
this example, the distributed task control module 118 rep-
licates the task 94 for each DST execution unit 36 to produce
the partial tasks 98. In another example, the distributed task
control module 118 receives a task to find where in the data
a first phrase occurs, where in the data a second phrase
occurs, and a total count for each phrase usage in the data.
In this example, the distributed task control module 118
generates a first set of partial tasks 98 for finding and
counting the first phrase and a second set of partial tasks for
finding and counting the second phrase. The distributed task
control module 118 sends respective first and/or second
partial tasks 98 to each DST execution unit 36.

FIG. 5 is a logic diagram of an example of a method for
outbound distributed storage and task (DST) processing that
begins at step 126 where a DST client module receives data
and one or more corresponding tasks. The method continues
at step 128 where the DST client module determines a
number of DST units to support the task for one or more data
partitions. For example, the DST client module may deter-
mine the number of DST units to support the task based on
the size of the data, the requested task, the content of the
data, a predetermined number (e.g., user indicated, system
administrator determined, etc.), available DST units, capa-
bility of the DST units, and/or any other factor regarding
distributed task processing of the data. The DST client
module may select the same DST units for each data
partition, may select different DST units for the data parti-
tions, or a combination thereof.

The method continues at step 130 where the DST client
module determines processing parameters of the data based
on the number of DST units selected for distributed task

US 9,483,539 B2

11

processing. The processing parameters include data parti-
tioning information, DS encoding parameters, and/or slice
grouping information. The data partitioning information
includes a number of data partitions, size of each data
partition, and/or organization of the data partitions (e.g.,
number of data blocks in a partition, the size of the data
blocks, and arrangement of the data blocks). The DS encod-
ing parameters include segmenting information, segment
security information, error encoding information (e.g., dis-
persed storage error encoding function parameters including
one or more of pillar width, decode threshold, write thresh-
old, read threshold, generator matrix), slicing information,
and/or per slice security information. The slice grouping
information includes information regarding how to arrange
the encoded data slices into groups for the selected DST
units. As a specific example, if the DST client module
determines that five DST units are needed to support the
task, then it determines that the error encoding parameters
include a pillar width of five and a decode threshold of three.

The method continues at step 132 where the DST client
module determines task partitioning information (e.g., how
to partition the tasks) based on the selected DST units and
data processing parameters. The data processing parameters
include the processing parameters and DST unit capability
information. The DST unit capability information includes
the number of DT (distributed task) execution units, execu-
tion capabilities of each DT execution unit (e.g., MIPS
capabilities, processing resources (e.g., quantity and capa-
bility of microprocessors, CPUs, digital signal processors,
co-processor, microcontrollers, arithmetic logic circuitry,
and/or any other analog and/or digital processing circuitry),
availability of the processing resources, memory informa-
tion (e.g., type, size, availability, etc.)), and/or any informa-
tion germane to executing one or more tasks.

The method continues at step 134 where the DST client
module processes the data in accordance with the processing
parameters to produce slice groupings. The method contin-
ues at step 136 where the DST client module partitions the
task based on the task partitioning information to produce a
set of partial tasks. The method continues at step 138 where
the DST client module sends the slice groupings and the
corresponding partial tasks to respective DST units.

FIG. 6 is a schematic block diagram of an embodiment of
the dispersed storage (DS) error encoding module 112 of an
outbound distributed storage and task (DST) processing
section. The DS error encoding module 112 includes a
segment processing module 142, a segment security pro-
cessing module 144, an error encoding module 146, a slicing
module 148, and a per slice security processing module 150.
Each of these modules is coupled to a control module 116 to
receive control information 160 therefrom.

In an example of operation, the segment processing
module 142 receives a data partition 120 from a data
partitioning module and receives segmenting information as
the control information 160 from the control module 116.
The segmenting information indicates how the segment
processing module 142 is to segment the data partition 120.
For example, the segmenting information indicates how
many rows to segment the data based on a decode threshold
of an error encoding scheme, indicates how many columns
to segment the data into based on a number and size of data
blocks within the data partition 120, and indicates how many
columns to include in a data segment 152. The segment
processing module 142 segments the data 120 into data
segments 152 in accordance with the segmenting informa-
tion.

10

15

20

25

30

35

40

45

50

55

60

65

12

The segment security processing module 144, when
enabled by the control module 116, secures the data seg-
ments 152 based on segment security information received
as control information 160 from the control module 116. The
segment security information includes data compression,
encryption, watermarking, integrity check (e.g., cyclic
redundancy check (CRC), etc.), and/or any other type of
digital security. For example, when the segment security
processing module 144 is enabled, it may compress a data
segment 152, encrypt the compressed data segment, and
generate a CRC value for the encrypted data segment to
produce a secure data segment 154. When the segment
security processing module 144 is not enabled, it passes the
data segments 152 to the error encoding module 146 or is
bypassed such that the data segments 152 are provided to the
error encoding module 146.

The error encoding module 146 encodes the secure data
segments 154 in accordance with error correction encoding
parameters received as control information 160 from the
control module 116. The error correction encoding param-
eters (e.g., also referred to as dispersed storage error coding
parameters) include identifying an error correction encoding
scheme (e.g., forward error correction algorithm, a Reed-
Solomon based algorithm, an online coding algorithm, an
information dispersal algorithm, etc.), a pillar width, a
decode threshold, a read threshold, a write threshold, etc.
For example, the error correction encoding parameters iden-
tify a specific error correction encoding scheme, specifies a
pillar width of five, and specifies a decode threshold of three.
From these parameters, the error encoding module 146
encodes a data segment 154 to produce an encoded data
segment 156.

The slicing module 148 slices the encoded data segment
156 in accordance with the pillar width of the error correc-
tion encoding parameters received as control information
160. For example, if the pillar width is five, the slicing
module 148 slices an encoded data segment 156 into a set of
five encoded data slices. As such, for a plurality of encoded
data segments 156 for a given data partition, the slicing
module outputs a plurality of sets of encoded data slices 158.

The per slice security processing module 150, when
enabled by the control module 116, secures each encoded
data slice 158 based on slice security information received
as control information 160 from the control module 116. The
slice security information includes data compression,
encryption, watermarking, integrity check (e.g., CRC, etc.),
and/or any other type of digital security. For example, when
the per slice security processing module 150 is enabled, it
compresses an encoded data slice 158, encrypts the com-
pressed encoded data slice, and generates a CRC value for
the encrypted encoded data slice to produce a secure
encoded data slice 122. When the per slice security process-
ing module 150 is not enabled, it passes the encoded data
slices 158 or is bypassed such that the encoded data slices
158 are the output of the DS error encoding module 112.
Note that the control module 116 may be omitted and each
module stores its own parameters.

FIG. 7 is a diagram of an example of a segment processing
of a dispersed storage (DS) error encoding module. In this
example, a segment processing module 142 receives a data
partition 120 that includes 45 data blocks (e.g., d1-d45),
receives segmenting information (i.e., control information
160) from a control module, and segments the data partition
120 in accordance with the control information 160 to
produce data segments 152. Each data block may be of the
same size as other data blocks or of a different size. In
addition, the size of each data block may be a few bytes to

US 9,483,539 B2

13

megabytes of data. As previously mentioned, the segmenting
information indicates how many rows to segment the data
partition into, indicates how many columns to segment the
data partition into, and indicates how many columns to
include in a data segment.

In this example, the decode threshold of the error encod-
ing scheme is three; as such the number of rows to divide the
data partition into is three. The number of columns for each
row is set to 15, which is based on the number and size of
data blocks. The data blocks of the data partition are
arranged in rows and columns in a sequential order (i.e., the
first row includes the first 15 data blocks; the second row
includes the second 15 data blocks; and the third row
includes the last 15 data blocks).

With the data blocks arranged into the desired sequential
order, they are divided into data segments based on the
segmenting information. In this example, the data partition
is divided into 8 data segments; the first 7 include 2 columns
of three rows and the last includes 1 column of three rows.
Note that the first row of the 8 data segments is in sequential
order of the first 15 data blocks; the second row of the 8 data
segments in sequential order of the second 15 data blocks;
and the third row of the 8 data segments in sequential order
of the last 15 data blocks. Note that the number of data
blocks, the grouping of the data blocks into segments, and
size of the data blocks may vary to accommodate the desired
distributed task processing function.

FIG. 8 is a diagram of an example of error encoding and
slicing processing of the dispersed error encoding process-
ing the data segments of FIG. 7. In this example, data
segment 1 includes 3 rows with each row being treated as
one word for encoding. As such, data segment 1 includes
three words for encoding: word 1 including data blocks d1
and d2, word 2 including data blocks d16 and d17, and word
3 including data blocks d31 and d32. Each of data segments
2-7 includes three words where each word includes two data
blocks. Data segment 8 includes three words where each
word includes a single data block (e.g., d15, d30, and d45).

In operation, an error encoding module 146 and a slicing
module 148 convert each data segment into a set of encoded
data slices in accordance with error correction encoding
parameters as control information 160. More specifically,
when the error correction encoding parameters indicate a
unity matrix Reed-Solomon based encoding algorithm, 5
pillars, and decode threshold of 3, the first three encoded
data slices of the set of encoded data slices for a data
segment are substantially similar to the corresponding word
of the data segment. For instance, when the unity matrix
Reed-Solomon based encoding algorithm is applied to data
segment 1, the content of the first encoded data slice
(DS1_d1&2) of the first set of encoded data slices (e.g.,
corresponding to data segment 1) is substantially similar to
content of the first word (e.g., d1 & d2); the content of the
second encoded data slice (DS1_d16&17) of the first set of
encoded data slices is substantially similar to content of the
second word (e.g., d16 & d17); and the content of the third
encoded data slice (DS1_d31&32) of the first set of encoded
data slices is substantially similar to content of the third
word (e.g., d31 & d32).

The content of the fourth and fifth encoded data slices
(e.g., ES1_1 and ES1_2) of the first set of encoded data
slices include error correction data based on the first-third
words of the first data segment. With such an encoding and
slicing scheme, retrieving any three of the five encoded data
slices allows the data segment to be accurately recon-
structed.

15

25

40

45

60

14

The encoding and slicing of data segments 2-7 yield sets
of encoded data slices similar to the set of encoded data
slices of data segment 1. For instance, the content of the first
encoded data slice (DS2_d3&4) of the second set of encoded
data slices (e.g., corresponding to data segment 2) is sub-
stantially similar to content of the first word (e.g., d3 & d4);
the content of the second encoded data slice (DS2_d18&19)
of the second set of encoded data slices is substantially
similar to content of the second word (e.g., d18 & d19); and
the content of the third encoded data slice (DS2_d33&34) of
the second set of encoded data slices is substantially similar
to content of the third word (e.g., d33 & d34). The content
of the fourth and fifth encoded data slices (e.g., ES1_1 and
ES1_2) of the second set of encoded data slices includes
error correction data based on the first-third words of the
second data segment.

FIG. 9 is a diagram of an example of grouping selection
processing of an outbound distributed storage and task
(DST) processing in accordance with grouping selector
information as control information 160 from a control
module. Encoded slices for data partition 122 are grouped in
accordance with the control information 160 to produce slice
groupings 96. In this example, a grouping selector module
114 organizes the encoded data slices into five slice group-
ings (e.g., one for each DST execution unit of a distributed
storage and task network (DSTN) module). As a specific
example, the grouping selector module 114 creates a first
slice grouping for a DST execution unit #1, which includes
first encoded slices of each of the sets of encoded slices. As
such, the first DST execution unit receives encoded data
slices corresponding to data blocks 1-15 (e.g., encoded data
slices of contiguous data).

The grouping selector module 114 also creates a second
slice grouping for a DST execution unit #2, which includes
second encoded slices of each of the sets of encoded slices.
As such, the second DST execution unit receives encoded
data slices corresponding to data blocks 16-30. The grouping
selector module 114 further creates a third slice grouping for
DST execution unit #3, which includes third encoded slices
of each of the sets of encoded slices. As such, the third DST
execution unit receives encoded data slices corresponding to
data blocks 31-45.

The grouping selector module 114 creates a fourth slice
grouping for DST execution unit #4, which includes fourth
encoded slices of each of the sets of encoded slices. As such,
the fourth DST execution unit receives encoded data slices
corresponding to first error encoding information (e.g.,
encoded data slices of error coding (EC) data). The grouping
selector module 114 further creates a fifth slice grouping for
DST execution unit #5, which includes fifth encoded slices
of each of the sets of encoded slices. As such, the fifth DST
execution unit receives encoded data slices corresponding to
second error encoding information.

FIG. 10 is a diagram of an example of converting data 92
into slice groups that expands on the preceding figures. As
shown, the data 92 is partitioned in accordance with a
partitioning function 164 into a plurality of data partitions
(1-x, where x is an integer greater than 4). Each data
partition (or chunkset of data) is encoded and grouped into
slice groupings as previously discussed by an encoding and
grouping function 166. For a given data partition, the slice
groupings are sent to distributed storage and task (DST)
execution units. From data partition to data partition, the
ordering of the slice groupings to the DST execution units
may vary.

For example, the slice groupings of data partition #1 is
sent to the DST execution units such that the first DST

US 9,483,539 B2

15

execution receives first encoded data slices of each of the
sets of encoded data slices, which corresponds to a first
continuous data chunk of the first data partition (e.g., refer
to FIG. 9), a second DST execution receives second encoded
data slices of each of the sets of encoded data slices, which
corresponds to a second continuous data chunk of the first
data partition, etc.

For the second data partition, the slice groupings may be
sent to the DST execution units in a different order than it
was done for the first data partition. For instance, the first
slice grouping of the second data partition (e.g., slice group
2_1) is sent to the second DST execution unit; the second
slice grouping of the second data partition (e.g., slice group
2_2) is sent to the third DST execution unit; the third slice
grouping of the second data partition (e.g., slice group 2_3)
is sent to the fourth DST execution unit; the fourth slice
grouping of the second data partition (e.g., slice group 2_4,
which includes first error coding information) is sent to the
fifth DST execution unit; and the fifth slice grouping of the
second data partition (e.g., slice group 2_5, which includes
second error coding information) is sent to the first DST
execution unit.

The pattern of sending the slice groupings to the set of
DST execution units may vary in a predicted pattern, a
random pattern, and/or a combination thereof from data
partition to data partition. In addition, from data partition to
data partition, the set of DST execution units may change.
For example, for the first data partition, DST execution units
1-5 may be used; for the second data partition, DST execu-
tion units 6-10 may be used; for the third data partition, DST
execution units 3-7 may be used; etc. As is also shown, the
task is divided into partial tasks that are sent to the DST
execution units in conjunction with the slice groupings of
the data partitions.

FIG. 11 is a schematic block diagram of an embodiment
of'a DST (distributed storage and/or task) execution unit that
includes an interface 169, a controller 86, memory 88, one
or more DT (distributed task) execution modules 90, and a
DST client module 34. The memory 88 is of sufficient size
to store a significant number of encoded data slices (e.g.,
thousands of slices to hundreds-of-millions of slices) and
may include one or more hard drives and/or one or more
solid-state memory devices (e.g., flash memory, DRAM,
etc.).

In an example of storing a slice group, the DST execution
module receives a slice grouping 96 (e.g., slice group #1) via
interface 169. The slice grouping 96 includes, per partition,
encoded data slices of contiguous data or encoded data slices
of error coding (EC) data. For slice group #1, the DST
execution module receives encoded data slices of contiguous
data for partitions #1 and #x (and potentially others between
3 and x) and receives encoded data slices of EC data for
partitions #2 and #3 (and potentially others between 3 and
x). Examples of encoded data slices of contiguous data and
encoded data slices of error coding (EC) data are discussed
with reference to FIG. 9. The memory 88 stores the encoded
data slices of slice groupings 96 in accordance with memory
control information 174 it receives from the controller 86.

The controller 86 (e.g., a processing module, a CPU, etc.)
generates the memory control information 174 based on a
partial task(s) 98 and distributed computing information
(e.g., user information (e.g., user 1D, distributed computing
permissions, data access permission, etc.), vault information
(e.g., virtual memory assigned to user, user group, tempo-
rary storage for task processing, etc.), task validation infor-
mation, etc.). For example, the controller 86 interprets the
partial task(s) 98 in light of the distributed computing

10

15

20

25

30

35

40

45

50

55

60

65

16

information to determine whether a requestor is authorized
to perform the task 98, is authorized to access the data,
and/or is authorized to perform the task on this particular
data. When the requestor is authorized, the controller 86
determines, based on the task 98 and/or another input,
whether the encoded data slices of the slice grouping 96 are
to be temporarily stored or permanently stored. Based on the
foregoing, the controller 86 generates the memory control
information 174 to write the encoded data slices of the slice
grouping 96 into the memory 88 and to indicate whether the
slice grouping 96 is permanently stored or temporarily
stored.

With the slice grouping 96 stored in the memory 88, the
controller 86 facilitates execution of the partial task(s) 98. In
an example, the controller 86 interprets the partial task 98 in
light of the capabilities of the DT execution module(s) 90.
The capabilities include one or more of MIPS capabilities,
processing resources (e.g., quantity and capability of micro-
processors, CPUs, digital signal processors, co-processor,
microcontrollers, arithmetic logic circuitry, and/or any other
analog and/or digital processing circuitry), availability of the
processing resources, etc. If the controller 86 determines that
the DT execution module(s) 90 have sufficient capabilities,
it generates task control information 176.

The task control information 176 may be a generic
instruction (e.g., perform the task on the stored slice group-
ing) or a series of operational codes. In the former instance,
the DT execution module 90 includes a co-processor func-
tion specifically configured (fixed or programmed) to per-
form the desired task 98. In the latter instance, the DT
execution module 90 includes a general processor topology
where the controller stores an algorithm corresponding to
the particular task 98. In this instance, the controller 86
provides the operational codes (e.g., assembly language,
source code of a programming language, object code, etc.)
of the algorithm to the DT execution module 90 for execu-
tion.

Depending on the nature of the task 98, the DT execution
module 90 may generate intermediate partial results 102 that
are stored in the memory 88 or in a cache memory (not
shown) within the DT execution module 90. In either case,
when the DT execution module 90 completes execution of
the partial task 98, it outputs one or more partial results 102.
The partial results 102 may also be stored in memory 88.

If, when the controller 86 is interpreting whether capa-
bilities of the DT execution module(s) 90 can support the
partial task 98, the controller 86 determines that the DT
execution module(s) 90 cannot adequately support the task
98 (e.g., does not have the right resources, does not have
sufficient available resources, available resources would be
too slow, etc.), it then determines whether the partial task 98
should be fully offloaded or partially offloaded.

If the controller 86 determines that the partial task 98
should be fully offloaded, it generates DST control infor-
mation 178 and provides it to the DST client module 34. The
DST control information 178 includes the partial task 98,
memory storage information regarding the slice grouping
96, and distribution instructions. The distribution instruc-
tions instruct the DST client module 34 to divide the partial
task 98 into sub-partial tasks 172, to divide the slice group-
ing 96 into sub-slice groupings 170, and identify other DST
execution units. The DST client module 34 functions in a
similar manner as the DST client module 34 of FIGS. 3-10
to produce the sub-partial tasks 172 and the sub-slice
groupings 170 in accordance with the distribution instruc-
tions.

US 9,483,539 B2

17

The DST client module 34 receives DST feedback 168
(e.g., sub-partial results), via the interface 169, from the
DST execution units to which the task was offloaded. The
DST client module 34 provides the sub-partial results to the
DST execution unit, which processes the sub-partial results
to produce the partial result(s) 102.

If the controller 86 determines that the partial task 98
should be partially offloaded, it determines what portion of
the task 98 and/or slice grouping 96 should be processed
locally and what should be offloaded. For the portion that is
being locally processed, the controller 86 generates task
control information 176 as previously discussed. For the
portion that is being offloaded, the controller 86 generates
DST control information 178 as previously discussed.

When the DST client module 34 receives DST feedback
168 (e.g., sub-partial results) from the DST executions units
to which a portion of the task was offloaded, it provides the
sub-partial results to the DT execution module 90. The DT
execution module 90 processes the sub-partial results with
the sub-partial results it created to produce the partial
result(s) 102.

The memory 88 may be further utilized to retrieve one or
more of stored slices 100, stored results 104, partial results
102 when the DT execution module 90 stores partial results
102 and/or results 104 in the memory 88. For example, when
the partial task 98 includes a retrieval request, the controller
86 outputs the memory control 174 to the memory 88 to
facilitate retrieval of slices 100 and/or results 104.

FIG. 12 is a schematic block diagram of an example of
operation of a distributed storage and task (DST) execution
unit storing encoded data slices and executing a task thereon.
To store the encoded data slices of a partition 1 of slice
grouping 1, a controller 86 generates write commands as
memory control information 174 such that the encoded
slices are stored in desired locations (e.g., permanent or
temporary) within memory 88.

Once the encoded slices are stored, the controller 86
provides task control information 176 to a distributed task
(DT) execution module 90. As a first step of executing the
task in accordance with the task control information 176, the
DT execution module 90 retrieves the encoded slices from
memory 88. The DT execution module 90 then reconstructs
contiguous data blocks of a data partition. As shown for this
example, reconstructed contiguous data blocks of data par-
tition 1 include data blocks 1-15 (e.g., d1-d15).

With the contiguous data blocks reconstructed, the DT
execution module 90 performs the task on the reconstructed
contiguous data blocks. For example, the task may be to
search the reconstructed contiguous data blocks for a par-
ticular word or phrase, identify where in the reconstructed
contiguous data blocks the particular word or phrase
occurred, and/or count the occurrences of the particular
word or phrase on the reconstructed contiguous data blocks.
The DST execution unit continues in a similar manner for
the encoded data slices of other partitions in slice grouping
1. Note that with using the unity matrix error encoding
scheme previously discussed, if the encoded data slices of
contiguous data are uncorrupted, the decoding of them is a
relatively straightforward process of extracting the data.

If, however, an encoded data slice of contiguous data is
corrupted (or missing), it can be rebuilt by accessing other
DST execution units that are storing the other encoded data
slices of the set of encoded data slices of the corrupted
encoded data slice. In this instance, the DST execution unit
having the corrupted encoded data slices retrieves at least
three encoded data slices (of contiguous data and of error
coding data) in the set from the other DST execution units

25

35

40

45

50

55

60

65

18

(recall for this example, the pillar width is 5 and the decode
threshold is 3). The DST execution unit decodes the
retrieved data slices using the DS error encoding parameters
to recapture the corresponding data segment. The DST
execution unit then re-encodes the data segment using the
DS error encoding parameters to rebuild the corrupted
encoded data slice. Once the encoded data slice is rebuilt, the
DST execution unit functions as previously described.

FIG. 13 is a schematic block diagram of an embodiment
of an inbound distributed storage and/or task (DST) pro-
cessing section 82 of a DST client module coupled to DST
execution units of a distributed storage and task network
(DSTN) module via a network 24. The inbound DST pro-
cessing section 82 includes a de-grouping module 180, a DS
(dispersed storage) error decoding module 182, a data de-
partitioning module 184, a control module 186, and a
distributed task control module 188. Note that the control
module 186 and/or the distributed task control module 188
may be separate modules from corresponding ones of out-
bound DST processing section or may be the same modules.

In an example of operation, the DST execution units have
completed execution of corresponding partial tasks on the
corresponding slice groupings to produce partial results 102.
The inbound DST processing section 82 receives the partial
results 102 via the distributed task control module 188. The
inbound DST processing section 82 then processes the
partial results 102 to produce a final result, or results 104.
For example, if the task was to find a specific word or phrase
within data, the partial results 102 indicate where in each of
the prescribed portions of the data the corresponding DST
execution units found the specific word or phrase. The
distributed task control module 188 combines the individual
partial results 102 for the corresponding portions of the data
into a final result 104 for the data as a whole.

In another example of operation, the inbound DST pro-
cessing section 82 is retrieving stored data from the DST
execution units (i.e., the DSTN module). In this example, the
DST execution units output encoded data slices 100 corre-
sponding to the data retrieval requests. The de-grouping
module 180 receives retrieved slices 100 and de-groups
them to produce encoded data slices per data partition 122.
The DS error decoding module 182 decodes, in accordance
with DS error encoding parameters, the encoded data slices
per data partition 122 to produce data partitions 120.

The data de-partitioning module 184 combines the data
partitions 120 into the data 92. The control module 186
controls the conversion of retrieved slices 100 into the data
92 using control signals 190 to each of the modules. For
instance, the control module 186 provides de-grouping
information to the de-grouping module 180, provides the DS
error encoding parameters to the DS error decoding module
182, and provides de-partitioning information to the data
de-partitioning module 184.

FIG. 14 is a logic diagram of an example of a method that
is executable by distributed storage and task (DST) client
module regarding inbound DST processing. The method
begins at step 194 where the DST client module receives
partial results. The method continues at step 196 where the
DST client module retrieves the task corresponding to the
partial results. For example, the partial results include
header information that identifies the requesting entity,
which correlates to the requested task.

The method continues at step 198 where the DST client
module determines result processing information based on
the task. For example, if the task were to identify a particular
word or phrase within the data, the result processing infor-
mation would indicate to aggregate the partial results for the

US 9,483,539 B2

19

corresponding portions of the data to produce the final result.
As another example, if the task were to count the occur-
rences of a particular word or phrase within the data, results
of processing the information would indicate to add the
partial results to produce the final results. The method
continues at step 200 where the DST client module pro-
cesses the partial results in accordance with the result
processing information to produce the final result or results.

FIG. 15 is a diagram of an example of de-grouping
selection processing of an inbound distributed storage and
task (DST) processing section of a DST client module. In
general, this is an inverse process of the grouping module of
the outbound DST processing section of FIG. 9. Accord-
ingly, for each data partition (e.g., partition #1), the de-
grouping module retrieves the corresponding slice grouping
from the DST execution units (EU) (e.g., DST 1-5).

As shown, DST execution unit #1 provides a first slice
grouping, which includes the first encoded slices of each of
the sets of encoded slices (e.g., encoded data slices of
contiguous data of data blocks 1-15); DST execution unit #2
provides a second slice grouping, which includes the second
encoded slices of each of the sets of encoded slices (e.g.,
encoded data slices of contiguous data of data blocks 16-30);
DST execution unit #3 provides a third slice grouping,
which includes the third encoded slices of each of the sets of
encoded slices (e.g., encoded data slices of contiguous data
of data blocks 31-45); DST execution unit #4 provides a
fourth slice grouping, which includes the fourth encoded
slices of each of the sets of encoded slices (e.g., first encoded
data slices of error coding (EC) data); and DST execution
unit #5 provides a fifth slice grouping, which includes the
fifth encoded slices of each of the sets of encoded slices
(e.g., first encoded data slices of error coding (EC) data).

The de-grouping module de-groups the slice groupings
(e.g., received slices 100) using a de-grouping selector 180
controlled by a control signal 190 as shown in the example
to produce a plurality of sets of encoded data slices (e.g.,
retrieved slices for a partition into sets of slices 122). Each
set corresponding to a data segment of the data partition.

FIG. 16 is a schematic block diagram of an embodiment
of a dispersed storage (DS) error decoding module 182 of an
inbound distributed storage and task (DST) processing sec-
tion. The DS error decoding module 182 includes an inverse
per slice security processing module 202, a de-slicing mod-
ule 204, an error decoding module 206, an inverse segment
security module 208, a de-segmenting processing module
210, and a control module 186.

In an example of operation, the inverse per slice security
processing module 202, when enabled by the control module
186, unsecures each encoded data slice 122 based on slice
de-security information received as control information 190
(e.g., the compliment of the slice security information dis-
cussed with reference to FIG. 6) received from the control
module 186. The slice security information includes data
decompression, decryption, de-watermarking, integrity
check (e.g., CRC verification, etc.), and/or any other type of
digital security. For example, when the inverse per slice
security processing module 202 is enabled, it verifies integ-
rity information (e.g., a CRC value) of each encoded data
slice 122, it decrypts each verified encoded data slice, and
decompresses each decrypted encoded data slice to produce
slice encoded data 158. When the inverse per slice security
processing module 202 is not enabled, it passes the encoded
data slices 122 as the sliced encoded data 158 or is bypassed
such that the retrieved encoded data slices 122 are provided
as the sliced encoded data 158.

10

15

20

25

30

35

40

45

50

55

60

65

20

The de-slicing module 204 de-slices the sliced encoded
data 158 into encoded data segments 156 in accordance with
a pillar width of the error correction encoding parameters
received as control information 190 from the control module
186. For example, if the pillar width is five, the de-slicing
module 204 de-slices a set of five encoded data slices into an
encoded data segment 156. The error decoding module 206
decodes the encoded data segments 156 in accordance with
error correction decoding parameters received as control
information 190 from the control module 186 to produce
secure data segments 154. The error correction decoding
parameters include identifying an error correction encoding
scheme (e.g., forward error correction algorithm, a Reed-
Solomon based algorithm, an information dispersal algo-
rithm, etc.), a pillar width, a decode threshold, a read
threshold, a write threshold, etc. For example, the error
correction decoding parameters identify a specific error
correction encoding scheme, specify a pillar width of five,
and specify a decode threshold of three.

The inverse segment security processing module 208,
when enabled by the control module 186, unsecures the
secured data segments 154 based on segment security infor-
mation received as control information 190 from the control
module 186. The segment security information includes data
decompression, decryption, de-watermarking, integrity
check (e.g., CRC, etc.) verification, and/or any other type of
digital security. For example, when the inverse segment
security processing module 208 is enabled, it verifies integ-
rity information (e.g., a CRC value) of each secure data
segment 154, it decrypts each verified secured data segment,
and decompresses each decrypted secure data segment to
produce a data segment 152. When the inverse segment
security processing module 208 is not enabled, it passes the
decoded data segment 154 as the data segment 152 or is
bypassed.

The de-segment processing module 210 receives the data
segments 152 and receives de-segmenting information as
control information 190 from the control module 186. The
de-segmenting information indicates how the de-segment
processing module 210 is to de-segment the data segments
152 into a data partition 120. For example, the de-segment-
ing information indicates how the rows and columns of data
segments are to be rearranged to yield the data partition 120.

FIG. 17 is a diagram of an example of de-slicing and error
decoding processing of a dispersed error decoding module.
A de-slicing module 204 receives at least a decode threshold
number of encoded data slices 158 for each data segment in
accordance with control information 190 and provides
encoded data 156. In this example, a decode threshold is
three. As such, each set of encoded data slices 158 is shown
to have three encoded data slices per data segment. The
de-slicing module 204 may receive three encoded data slices
per data segment because an associated distributed storage
and task (DST) client module requested retrieving only three
encoded data slices per segment or selected three of the
retrieved encoded data slices per data segment. As shown,
which is based on the unity matrix encoding previously
discussed with reference to FIG. 8, an encoded data slice
may be a data-based encoded data slice (e.g., DS1_d1&d2)
or an error code based encoded data slice (e.g., ES3_1).

An error decoding module 206 decodes the encoded data
156 of each data segment in accordance with the error
correction decoding parameters of control information 190
to produce secured segments 154. In this example, data
segment 1 includes 3 rows with each row being treated as
one word for encoding. As such, data segment 1 includes
three words: word 1 including data blocks d1 and d2, word

US 9,483,539 B2

21
2 including data blocks d16 and d17, and word 3 including
data blocks d31 and d32. Each of data segments 2-7 includes
three words where each word includes two data blocks. Data
segment 8 includes three words where each word includes a
single data block (e.g., d15, d30, and d45).

FIG. 18 is a diagram of an example of a de-segment
processing of an inbound distributed storage and task (DST)
processing. In this example, a de-segment processing mod-
ule 210 receives data segments 152 (e.g., 1-8) and rearranges
the data blocks of the data segments into rows and columns
in accordance with de-segmenting information of control
information 190 to produce a data partition 120. Note that
the number of rows is based on the decode threshold (e.g.,
3 in this specific example) and the number of columns is
based on the number and size of the data blocks.

The de-segmenting module 210 converts the rows and
columns of data blocks into the data partition 120. Note that
each data block may be of the same size as other data blocks
or of a different size. In addition, the size of each data block
may be a few bytes to megabytes of data.

FIG. 19 is a diagram of an example of converting slice
groups into data 92 within an inbound distributed storage
and task (DST) processing section. As shown, the data 92 is
reconstructed from a plurality of data partitions (1-x, where
X is an integer greater than 4). Each data partition (or chunk
set of data) is decoded and re-grouped using a de-grouping
and decoding function 212 and a de-partition function 214
from slice groupings as previously discussed. For a given
data partition, the slice groupings (e.g., at least a decode
threshold per data segment of encoded data slices) are
received from DST execution units. From data partition to
data partition, the ordering of the slice groupings received
from the DST execution units may vary as discussed with
reference to FIG. 10.

FIG. 20 is a diagram of an example of a distributed
storage and/or retrieval within the distributed computing
system. The distributed computing system includes a plu-
rality of distributed storage and/or task (DST) processing
client modules 34 (one shown) coupled to a distributed
storage and/or task processing network (DSTN) module, or
multiple DSTN modules, via a network 24. The DST client
module 34 includes an outbound DST processing section 80
and an inbound DST processing section 82. The DSTN
module includes a plurality of DST execution units. Each
DST execution unit includes a controller 86, memory 88,
one or more distributed task (DT) execution modules 90, and
a DST client module 34.

In an example of data storage, the DST client module 34
has data 92 that it desires to store in the DSTN module. The
data 92 may be a file (e.g., video, audio, text, graphics, etc.),
a data object, a data block, an update to a file, an update to
a data block, etc. In this instance, the outbound DST
processing module 80 converts the data 92 into encoded data
slices 216 as will be further described with reference to
FIGS. 21-23. The outbound DST processing module 80
sends, via the network 24, to the DST execution units for
storage as further described with reference to FIG. 24.

In an example of data retrieval, the DST client module 34
issues a retrieve request to the DST execution units for the
desired data 92. The retrieve request may address each DST
executions units storing encoded data slices of the desired
data, address a decode threshold number of DST execution
units, address a read threshold number of DST execution
units, or address some other number of DST execution units.
In response to the request, each addressed DST execution

10

15

20

25

30

35

40

45

50

55

60

65

22

unit retrieves its encoded data slices 100 of the desired data
and sends them to the inbound DST processing section 82,
via the network 24.

When, for each data segment, the inbound DST process-
ing section 82 receives at least a decode threshold number of
encoded data slices 100, it converts the encoded data slices
100 into a data segment. The inbound DST processing
section 82 aggregates the data segments to produce the
retrieved data 92.

FIG. 21 is a schematic block diagram of an embodiment
of an outbound distributed storage and/or task (DST) pro-
cessing section 80 of a DST client module coupled to a
distributed storage and task network (DSTN) module (e.g.,
a plurality of DST execution units) via a network 24. The
outbound DST processing section 80 includes a data parti-
tioning module 110, a dispersed storage (DS) error encoding
module 112, a grouping selector module 114, a control
module 116, and a distributed task control module 118.

In an example of operation, the data partitioning module
110 is by-passed such that data 92 is provided directly to the
DS error encoding module 112. The control module 116
coordinates the by-passing of the data partitioning module
110 by outputting a bypass 220 message to the data parti-
tioning module 110.

The DS error encoding module 112 receives the data 92
in a serial manner, a parallel manner, and/or a combination
thereof. The DS error encoding module 112 DS error
encodes the data in accordance with control information 160
from the control module 116 to produce encoded data slices
218. The DS error encoding includes segmenting the data 92
into data segments, segment security processing (e.g.,
encryption, compression, watermarking, integrity check
(e.g., CRC, etc.)), error encoding, slicing, and/or per slice
security processing (e.g., encryption, compression, water-
marking, integrity check (e.g., CRC, etc.)). The control
information 160 indicates which steps of the DS error
encoding are active for the data 92 and, for active steps,
indicates the parameters for the step. For example, the
control information 160 indicates that the error encoding is
active and includes error encoding parameters (e.g., pillar
width, decode threshold, write threshold, read threshold,
type of error encoding, etc.).

The grouping selector module 114 groups the encoded
slices 218 of the data segments into pillars of slices 216. The
number of pillars corresponds to the pillar width of the DS
error encoding parameters. In this example, the distributed
task control module 118 facilitates the storage request.

FIG. 22 is a schematic block diagram of an example of a
dispersed storage (DS) error encoding module 112 for the
example of FIG. 21. The DS error encoding module 112
includes a segment processing module 142, a segment
security processing module 144, an error encoding module
146, a slicing module 148, and a per slice security process-
ing module 150. Each of these modules is coupled to a
control module 116 to receive control information 160
therefrom.

In an example of operation, the segment processing
module 142 receives data 92 and receives segmenting infor-
mation as control information 160 from the control module
116. The segmenting information indicates how the segment
processing module is to segment the data. For example, the
segmenting information indicates the size of each data
segment. The segment processing module 142 segments the
data 92 into data segments 152 in accordance with the
segmenting information.

The segment security processing module 144, when
enabled by the control module 116, secures the data seg-

US 9,483,539 B2

23

ments 152 based on segment security information received
as control information 160 from the control module 116. The
segment security information includes data compression,
encryption, watermarking, integrity check (e.g., CRC, etc.),
and/or any other type of digital security. For example, when
the segment security processing module 144 is enabled, it
compresses a data segment 152, encrypts the compressed
data segment, and generates a CRC value for the encrypted
data segment to produce a secure data segment. When the
segment security processing module 144 is not enabled, it
passes the data segments 152 to the error encoding module
146 or is bypassed such that the data segments 152 are
provided to the error encoding module 146.

The error encoding module 146 encodes the secure data
segments in accordance with error correction encoding
parameters received as control information 160 from the
control module 116. The error correction encoding param-
eters include identifying an error correction encoding
scheme (e.g., forward error correction algorithm, a Reed-
Solomon based algorithm, an information dispersal algo-
rithm, etc.), a pillar width, a decode threshold, a read
threshold, a write threshold, etc. For example, the error
correction encoding parameters identify a specific error
correction encoding scheme, specifies a pillar width of five,
and specifies a decode threshold of three. From these param-
eters, the error encoding module 146 encodes a data segment
to produce an encoded data segment.

The slicing module 148 slices the encoded data segment
in accordance with a pillar width of the error correction
encoding parameters. For example, if the pillar width is five,
the slicing module slices an encoded data segment into a set
of five encoded data slices. As such, for a plurality of data
segments, the slicing module 148 outputs a plurality of sets
of'encoded data slices as shown within encoding and slicing
function 222 as described.

The per slice security processing module 150, when
enabled by the control module 116, secures each encoded
data slice based on slice security information received as
control information 160 from the control module 116. The
slice security information includes data compression,
encryption, watermarking, integrity check (e.g., CRC, etc.),
and/or any other type of digital security. For example, when
the per slice security processing module 150 is enabled, it
may compress an encoded data slice, encrypt the com-
pressed encoded data slice, and generate a CRC value for the
encrypted encoded data slice to produce a secure encoded
data slice tweaking. When the per slice security processing
module 150 is not enabled, it passes the encoded data slices
or is bypassed such that the encoded data slices 218 are the
output of the DS error encoding module 112.

FIG. 23 is a diagram of an example of converting data 92
into pillar slice groups utilizing encoding, slicing and pillar
grouping function 224 for storage in memory of a distributed
storage and task network (DSTN) module. As previously
discussed the data 92 is encoded and sliced into a plurality
of sets of encoded data slices; one set per data segment. The
grouping selector module organizes the sets of encoded data
slices into pillars of data slices. In this example, the DS error
encoding parameters include a pillar width of 5 and a decode
threshold of 3. As such, for each data segment, 5 encoded
data slices are created.

The grouping selector module takes the first encoded data
slice of each of the sets and forms a first pillar, which may
be sent to the first DST execution unit. Similarly, the
grouping selector module creates the second pillar from the
second slices of the sets; the third pillar from the third slices

5

10

15

20

25

30

35

40

45

50

55

60

65

24

of the sets; the fourth pillar from the fourth slices of the sets;
and the fifth pillar from the fifth slices of the set.

FIG. 24 is a schematic block diagram of an embodiment
of'a distributed storage and/or task (DST) execution unit that
includes an interface 169, a controller 86, memory 88, one
or more distributed task (DT) execution modules 90, and a
DST client module 34. A computing core 26 may be utilized
to implement the one or more DT execution modules 90 and
the DST client module 34. The memory 88 is of sufficient
size to store a significant number of encoded data slices
(e.g., thousands of slices to hundreds-of-millions of slices)
and may include one or more hard drives and/or one or more
solid-state memory devices (e.g., flash memory, DRAM,
etc.).

In an example of storing a pillar of slices 216, the DST
execution unit receives, via interface 169, a pillar of slices
216 (e.g., pillar #1 slices). The memory 88 stores the
encoded data slices 216 of the pillar of slices in accordance
with memory control information 174 it receives from the
controller 86. The controller 86 (e.g., a processing module,
a CPU, etc.) generates the memory control information 174
based on distributed storage information (e.g., user infor-
mation (e.g., user ID, distributed storage permissions, data
access permission, etc.), vault information (e.g., virtual
memory assigned to user, user group, etc.), etc.). Similarly,
when retrieving slices, the DST execution unit receives, via
interface 169, a slice retrieval request. The memory 88
retrieves the slice in accordance with memory control infor-
mation 174 it receives from the controller 86. The memory
88 outputs the slice 100, via the interface 169, to a request-
ing entity.

FIG. 25 is a schematic block diagram of an example of
operation of an inbound distributed storage and/or task
(DST) processing section 82 for retrieving dispersed error
encoded data 92. The inbound DST processing section 82
includes a de-grouping module 180, a dispersed storage
(DS) error decoding module 182, a data de-partitioning
module 184, a control module 186, and a distributed task
control module 188. Note that the control module 186 and/or
the distributed task control module 188 may be separate
modules from corresponding ones of an outbound DST
processing section or may be the same modules.

In an example of operation, the inbound DST processing
section 82 is retrieving stored data 92 from the DST execu-
tion units (i.e., the DSTN module). In this example, the DST
execution units output encoded data slices corresponding to
data retrieval requests from the distributed task control
module 188. The de-grouping module 180 receives pillars of
slices 100 and de-groups them in accordance with control
information 190 from the control module 186 to produce
sets of encoded data slices 218. The DS error decoding
module 182 decodes, in accordance with the DS error
encoding parameters received as control information 190
from the control module 186, each set of encoded data slices
218 to produce data segments, which are aggregated into
retrieved data 92. The data de-partitioning module 184 is
by-passed in this operational mode via a bypass signal 226
of control information 190 from the control module 186.

FIG. 26 is a schematic block diagram of an embodiment
of'a dispersed storage (DS) error decoding module 182 of an
inbound distributed storage and task (DST) processing sec-
tion. The DS error decoding module 182 includes an inverse
per slice security processing module 202, a de-slicing mod-
ule 204, an error decoding module 206, an inverse segment
security module 208, and a de-segmenting processing mod-
ule 210. The dispersed error decoding module 182 is oper-
able to de-slice and decode encoded slices per data segment

US 9,483,539 B2

25

218 utilizing a de-slicing and decoding function 228 to
produce a plurality of data segments that are de-segmented
utilizing a de-segment function 230 to recover data 92.

In an example of operation, the inverse per slice security
processing module 202, when enabled by the control module
186 via control information 190, unsecures each encoded
data slice 218 based on slice de-security information (e.g.,
the compliment of the slice security information discussed
with reference to FIG. 6) received as control information
190 from the control module 186. The slice de-security
information includes data decompression, decryption, de-
watermarking, integrity check (e.g., CRC verification, etc.),
and/or any other type of digital security. For example, when
the inverse per slice security processing module 202 is
enabled, it verifies integrity information (e.g., a CRC value)
of each encoded data slice 218, it decrypts each verified
encoded data slice, and decompresses each decrypted
encoded data slice to produce slice encoded data. When the
inverse per slice security processing module 202 is not
enabled, it passes the encoded data slices 218 as the sliced
encoded data or is bypassed such that the retrieved encoded
data slices 218 are provided as the sliced encoded data.

The de-slicing module 204 de-slices the sliced encoded
data into encoded data segments in accordance with a pillar
width of the error correction encoding parameters received
as control information 190 from a control module 186. For
example, if the pillar width is five, the de-slicing module
de-slices a set of five encoded data slices into an encoded
data segment. Alternatively, the encoded data segment may
include just three encoded data slices (e.g., when the decode
threshold is 3).

The error decoding module 206 decodes the encoded data
segments in accordance with error correction decoding
parameters received as control information 190 from the
control module 186 to produce secure data segments. The
error correction decoding parameters include identifying an
error correction encoding scheme (e.g., forward error cor-
rection algorithm, a Reed-Solomon based algorithm, an
information dispersal algorithm, etc.), a pillar width, a
decode threshold, a read threshold, a write threshold, etc.
For example, the error correction decoding parameters iden-
tify a specific error correction encoding scheme, specify a
pillar width of five, and specify a decode threshold of three.

The inverse segment security processing module 208,
when enabled by the control module 186, unsecures the
secured data segments based on segment security informa-
tion received as control information 190 from the control
module 186. The segment security information includes data
decompression, decryption, de-watermarking, integrity
check (e.g., CRC, etc.) verification, and/or any other type of
digital security. For example, when the inverse segment
security processing module is enabled, it verifies integrity
information (e.g., a CRC value) of each secure data segment,
it decrypts each verified secured data segment, and decom-
presses each decrypted secure data segment to produce a
data segment 152. When the inverse segment security pro-
cessing module 208 is not enabled, it passes the decoded
data segment 152 as the data segment or is bypassed. The
de-segmenting processing module 210 aggregates the data
segments 152 into the data 92 in accordance with control
information 190 from the control module 186.

FIG. 27 is a schematic block diagram of an example of a
distributed storage and task processing network (DSTN)
module that includes a plurality of distributed storage and
task (DST) execution units (#1 through #n, where, for
example, n is an integer greater than or equal to three). Each

30

40

45

55

26

of the DST execution units includes a DST client module 34,
a controller 86, one or more DT (distributed task) execution
modules 90, and memory 88.

In this example, the DSTN module stores, in the memory
of the DST execution units, a plurality of DS (dispersed
storage) encoded data (e.g., 1 through n, where n is an
integer greater than or equal to two) and stores a plurality of
DS encoded task codes (e.g., 1 through k, where k is an
integer greater than or equal to two). The DS encoded data
may be encoded in accordance with one or more examples
described with reference to FIGS. 3-19 (e.g., organized in
slice groupings) or encoded in accordance with one or more
examples described with reference to FIGS. 20-26 (e.g.,
organized in pillar groups). The data that is encoded into the
DS encoded data may be of any size and/or of any content.
For example, the data may be one or more digital books, a
copy of a company’s emails, a large-scale Internet search, a
video security file, one or more entertainment video files
(e.g., television programs, movies, etc.), data files, and/or
any other large amount of data (e.g., greater than a few
Terabytes).

The tasks that are encoded into the DS encoded task code
may be a simple function (e.g., a mathematical function, a
logic function, an identify function, a find function, a search
engine function, a replace function, etc.), a complex function
(e.g., compression, human and/or computer language trans-
lation, text-to-voice conversion, voice-to-text conversion,
etc.), multiple simple and/or complex functions, one or more
algorithms, one or more applications, etc. The tasks may be
encoded into the DS encoded task code in accordance with
one or more examples described with reference to FIGS.
3-19 (e.g., organized in slice groupings) or encoded in
accordance with one or more examples described with
reference to FIGS. 20-26 (e.g., organized in pillar groups).

In an example of operation, a DST client module of a user
device or of a DST processing unit issues a DST request to
the DSTN module. The DST request may include a request
to retrieve stored data, or a portion thereof, may include a
request to store data that is included with the DST request,
may include a request to perform one or more tasks on stored
data, may include a request to perform one or more tasks on
data included with the DST request, etc. In the cases where
the DST request includes a request to store data or to retrieve
data, the client module and/or the DSTN module processes
the request as previously discussed with reference to one or
more of FIGS. 3-19 (e.g., slice groupings) and/or 20-26
(e.g., pillar groupings). In the case where the DST request
includes a request to perform one or more tasks on data
included with the DST request, the DST client module
and/or the DSTN module process the DST request as pre-
viously discussed with reference to one or more of FIGS.
3-19.

In the case where the DST request includes a request to
perform one or more tasks on stored data, the DST client
module and/or the DSTN module processes the DST request
as will be described with reference to one or more of FIGS.
28-39. In general, the DST client module identifies data and
one or more tasks for the DSTN module to execute upon the
identified data. The DST request may be for a one-time
execution of the task or for an on-going execution of the
task. As an example of the latter, as a company generates
daily emails, the DST request may be to daily search new
emails for inappropriate content and, if found, record the
content, the email sender(s), the email recipient(s), email
routing information, notify human resources of the identified
email, etc.

US 9,483,539 B2

27

FIG. 28 is a schematic block diagram of an example of a
distributed computing system performing tasks on stored
data. In this example, two distributed storage and task (DST)
client modules 1-2 are shown: the first may be associated
with a user device and the second may be associated with a
DST processing unit or a high priority user device (e.g., high
priority clearance user, system administrator, etc.). Each
DST client module includes a list of stored data 234 and a
list of tasks codes 236. The list of stored data 234 includes
one or more entries of data identifying information, where
each entry identifies data stored in the DSTN module 22.
The data identifying information (e.g., data ID) includes one
or more of a data file name, a data file directory listing,
DSTN addressing information of the data, a data object
identifier, etc. The list of tasks 236 includes one or more
entries of task code identifying information, when each
entry identifies task codes stored in the DSTN module 22.
The task code identifying information (e.g., task ID)
includes one or more of a task file name, a task file directory
listing, DSTN addressing information of the task, another
type of identifier to identify the task, etc.

As shown, the list of data 234 and the list of tasks 236 are
each smaller in number of entries for the first DST client
module than the corresponding lists of the second DST client
module. This may occur because the user device associated
with the first DST client module has fewer privileges in the
distributed computing system than the device associated
with the second DST client module. Alternatively, this may
occur because the user device associated with the first DST
client module serves fewer users than the device associated
with the second DST client module and is restricted by the
distributed computing system accordingly. As yet another
alternative, this may occur through no restraints by the
distributed computing system, it just occurred because the
operator of the user device associated with the first DST
client module has selected fewer data and/or fewer tasks
than the operator of the device associated with the second
DST client module.

In an example of operation, the first DST client module
selects one or more data entries 238 and one or more tasks
240 from its respective lists (e.g., selected data ID and
selected task ID). The first DST client module sends its
selections to a task distribution module 232. The task
distribution module 232 may be within a stand-alone device
of the distributed computing system, may be within the user
device that contains the first DST client module, or may be
within the DSTN module 22.

Regardless of the task distribution module’s location, it
generates DST allocation information 242 from the selected
task ID 240 and the selected data ID 238. The DST alloca-
tion information 242 includes data partitioning information,
task execution information, and/or intermediate result infor-
mation. The task distribution module 232 sends the DST
allocation information 242 to the DSTN module 22. Note
that one or more examples of the DST allocation information
will be discussed with reference to one or more of FIGS.
29-39.

The DSTN module 22 interprets the DST allocation
information 242 to identify the stored DS encoded data (e.g.,
DS error encoded data 2) and to identify the stored DS error
encoded task code (e.g., DS error encoded task code 1). In
addition, the DSTN module 22 interprets the DST allocation
information 242 to determine how the data is to be parti-
tioned and how the task is to be partitioned. The DSTN
module 22 also determines whether the selected DS error
encoded data 238 needs to be converted from pillar grouping
to slice grouping. If so, the DSTN module 22 converts the

5

10

15

20

25

30

35

40

45

50

55

60

28

selected DS error encoded data into slice groupings and
stores the slice grouping DS error encoded data by over-
writing the pillar grouping DS error encoded data or by
storing it in a different location in the memory of the DSTN
module 22 (i.e., does not overwrite the pillar grouping DS
encoded data).

The DSTN module 22 partitions the data and the task as
indicated in the DST allocation information 242 and sends
the portions to selected DST execution units of the DSTN
module 22. Each of the selected DST execution units
performs its partial task(s) on its slice groupings to produce
partial results. The DSTN module 22 collects the partial
results from the selected DST execution units and provides
them, as result information 244, to the task distribution
module. The result information 244 may be the collected
partial results, one or more final results as produced by the
DSTN module 22 from processing the partial results in
accordance with the DST allocation information 242, or one
or more intermediate results as produced by the DSTN
module 22 from processing the partial results in accordance
with the DST allocation information 242.

The task distribution module 232 receives the result
information 244 and provides one or more final results 104
therefrom to the first DST client module. The final result(s)
104 may be result information 244 or a result(s) of the task
distribution module’s processing of the result information
244.

In concurrence with processing the selected task of the
first DST client module, the distributed computing system
may process the selected task(s) of the second DST client
module on the selected data(s) of the second DST client
module. Alternatively, the distributed computing system
may process the second DST client module’s request sub-
sequent to, or preceding, that of the first DST client module.
Regardless of the ordering and/or parallel processing of the
DST client module requests, the second DST client module
provides its selected data 238 and selected task 240 to a task
distribution module 232. If the task distribution module 232
is a separate device of the distributed computing system or
within the DSTN module, the task distribution modules 232
coupled to the first and second DST client modules may be
the same module. The task distribution module 232 pro-
cesses the request of the second DST client module in a
similar manner as it processed the request of the first DST
client module.

FIG. 29 is a schematic block diagram of an embodiment
of a task distribution module 232 facilitating the example of
FIG. 28. The task distribution module 232 includes a plu-
rality of tables it uses to generate distributed storage and task
(DST) allocation information 242 for selected data and
selected tasks received from a DST client module. The tables
include data storage information 248, task storage informa-
tion 250, distributed task (DT) execution module informa-
tion 252, and task < sub-task mapping information 246.

The data storage information table 248 includes a data
identification (ID) field 260, a data size field 262, an
addressing information field 264, distributed storage (DS)
information 266, and may further include other information
regarding the data, how it is stored, and/or how it can be
processed. For example, DS encoded data #1 has a data ID
of 1, a data size of AA (e.g., a byte size of a few Terabytes
or more), addressing information of Addr_1_AA, and DS
parameters of 3/5; SEG_1; and SLC_1. In this example, the
addressing information may be a virtual address correspond-
ing to the virtual address of the first storage word (e.g., one
or more bytes) of the data and information on how to
calculate the other addresses, may be a range of virtual

US 9,483,539 B2

29

addresses for the storage words of the data, physical
addresses of the first storage word or the storage words of
the data, may be a list of slice names of the encoded data
slices of the data, etc. The DS parameters may include
identity of an error encoding scheme, decode threshold/
pillar width (e.g., 3/5 for the first data entry), segment
security information (e.g., SEG_1), per slice security infor-
mation (e.g., SLC_1), and/or any other information regard-
ing how the data was encoded into data slices.

The task storage information table 250 includes a task
identification (ID) field 268, a task size field 270, an address-
ing information field 272, distributed storage (DS) informa-
tion 274, and may further include other information regard-
ing the task, how it is stored, and/or how it can be used to
process data. For example, DS encoded task #2 has a task ID
of 2, a task size of XY, addressing information of
Addr_2_XY, and DS parameters ot 3/5; SEG_2; and SLC_2.
In this example, the addressing information may be a virtual
address corresponding to the virtual address of the first
storage word (e.g., one or more bytes) of the task and
information on how to calculate the other addresses, may be
a range of virtual addresses for the storage words of the task,
physical addresses of the first storage word or the storage
words of the task, may be a list of slices names of the
encoded slices of the task code, etc. The DS parameters may
include identity of an error encoding scheme, decode thresh-
old/pillar width (e.g., 3/5 for the first data entry), segment
security information (e.g., SEG_2), per slice security infor-
mation (e.g., SLC_2), and/or any other information regard-
ing how the task was encoded into encoded task slices. Note
that the segment and/or the per-slice security information
include a type of encryption (if enabled), a type of com-
pression (if enabled), watermarking information (if
enabled), and/or an integrity check scheme (if enabled).

The task < sub-task mapping information table 246
includes a task field 256 and a sub-task field 258. The task
field 256 identifies a task stored in the memory of a
distributed storage and task network (DSTN) module and
the corresponding sub-task fields 258 indicates whether the
task includes sub-tasks and, if so, how many and if any of
the sub-tasks are ordered. In this example, the task < sub-
task mapping information table 246 includes an entry for
each task stored in memory of the DSTN module (e.g., task
1 through task k). In particular, this example indicates that
task 1 includes 7 sub-tasks; task 2 does not include sub-
tasks, and task k includes r number of sub-tasks (where r is
an integer greater than or equal to two).

The DT execution module table 252 includes a DST
execution unit ID field 276, a DT execution module 1D field
278, and a DT execution module capabilities field 280. The
DST execution unit ID field 276 includes the identity of DST
units in the DSTN module. The DT execution module ID
field 278 includes the identity of each DT execution unit in
each DST unit. For example, DST unit 1 includes three DT
executions modules (e.g., 1_1, 1.2, and 1_3). The DT
execution capabilities field 280 includes identity of the
capabilities of the corresponding DT execution unit. For
example, DT execution module 1_1 includes capabilities X,
where X includes one or more of MIPS capabilities, pro-
cessing resources (e.g., quantity and capability of micropro-
cessors, CPUs, digital signal processors, co-processor,
microcontrollers, arithmetic logic circuitry, and/or any other
analog and/or digital processing circuitry), availability of the
processing resources, memory information (e.g., type, size,
availability, etc.), and/or any information germane to execut-
ing one or more tasks.

10

15

20

25

30

35

40

45

50

55

60

65

30

From these tables, the task distribution module 232 gen-
erates the DST allocation information 242 to indicate where
the data is stored, how to partition the data, where the task
is stored, how to partition the task, which DT execution units
should perform which partial task on which data partitions,
where and how intermediate results are to be stored, etc. If
multiple tasks are being performed on the same data or
different data, the task distribution module factors such
information into its generation of the DST allocation infor-
mation.

FIG. 30 is a diagram of a specific example of a distributed
computing system performing tasks on stored data as a task
flow 318. In this example, selected data 92 is data 2 and
selected tasks are tasks 1, 2, and 3. Task 1 corresponds to
analyzing translation of data from one language to another
(e.g., human language or computer language); task 2 corre-
sponds to finding specific words and/or phrases in the data;
and task 3 corresponds to finding specific translated words
and/or phrases in translated data.

In this example, task 1 includes 7 sub-tasks: task 1_1—
identify non-words (non-ordered); task 1_2—identify
unique words (non-ordered); task 1_3—translate (non-or-
dered); task 1_4—translate back (ordered after task 1_3);
task 1_5—compare to ID errors (ordered after task 1-4); task
1_6—determine non-word translation errors (ordered after
task 1_5 and 1_1); and task 1_7-determine correct transla-
tions (ordered after 1_5 and 1_2). The sub-task further
indicates whether they are an ordered task (i.e., are depen-
dent on the outcome of another task) or non-order (i.e., are
independent of the outcome of another task). Task 2 does not
include sub-tasks and task 3 includes two sub-tasks: task 3_1
translate; and task 3_2 find specific word or phrase in
translated data.

In general, the three tasks collectively are selected to
analyze data for translation accuracies, translation errors,
translation anomalies, occurrence of specific words or
phrases in the data, and occurrence of specific words or
phrases on the translated data. Graphically, the data 92 is
translated 306 into translated data 282; is analyzed for
specific words and/or phrases 300 to produce a list of
specific words and/or phrases 286; is analyzed for non-
words 302 (e.g., not in a reference dictionary) to produce a
list of non-words 290; and is analyzed for unique words 316
included in the data 92 (i.e., how many different words are
included in the data) to produce a list of unique words 298.
Each of these tasks is independent of each other and can
therefore be processed in parallel if desired.

The translated data 282 is analyzed (e.g., sub-task 3_2) for
specific translated words and/or phrases 304 to produce a list
of specific translated words and/or phrases 288. The trans-
lated data 282 is translated back 308 (e.g., sub-task 1_4) into
the language of the original data to produce re-translated
data 284. These two tasks are dependent on the translate task
(e.g., task 1_3) and thus must be ordered after the translation
task, which may be in a pipelined ordering or a serial
ordering. The re-translated data 284 is then compared 310
with the original data 92 to find words and/or phrases that
did not translate (one way and/or the other) properly to
produce a list of incorrectly translated words 294. As such,
the comparing task (e.g., sub-task 1_5) 310 is ordered after
the translation 306 and re-translation tasks 308 (e.g., sub-
tasks 1_3 and 1_4).

The list of words incorrectly translated 294 is compared
312 to the list of non-words 290 to identify words that were
not properly translated because the words are non-words to
produce a list of errors due to non-words 292. In addition,
the list of words incorrectly translated 294 is compared 314

US 9,483,539 B2

31

to the list of unique words 298 to identify unique words that
were properly translated to produce a list of correctly
translated words 296. The comparison may also identify
unique words that were not properly translated to produce a
list of unique words that were not properly translated. Note
that each list of words (e.g., specific words and/or phrases,
non-words, unique words, translated words and/or phrases,
etc.,) may include the word and/or phrase, how many times
it is used, where in the data it is used, and/or any other
information requested regarding a word and/or phrase.

FIG. 31 is a schematic block diagram of an example of a
distributed storage and task processing network (DSTN)
module storing data and task codes for the example of FIG.
30. As shown, DS encoded data 2 is stored as encoded data
slices across the memory (e.g., stored in memories 88) of
DST execution units 1-5; the DS encoded task code 1 (of
task 1) and DS encoded task 3 are stored as encoded task
slices across the memory of DST execution units 1-5; and
DS encoded task code 2 (of task 2) is stored as encoded task
slices across the memory of DST execution units 3-7. As
indicated in the data storage information table and the task
storage information table of FIG. 29, the respective data/task
has DS parameters of 3/5 for their decode threshold/pillar
width; hence spanning the memory of five DST execution
units.

FIG. 32 is a diagram of an example of distributed storage
and task (DST) allocation information 242 for the example
of FIG. 30. The DST allocation information 242 includes
data partitioning information 320, task execution informa-
tion 322, and intermediate result information 324. The data
partitioning information 320 includes the data identifier
(ID), the number of partitions to split the data into, address
information for each data partition, and whether the DS
encoded data has to be transformed from pillar grouping to
slice grouping. The task execution information 322 includes
tabular information having a task identification field 326, a
task ordering field 328, a data partition field ID 330, and a
set of DT execution modules 332 to use for the distributed
task processing per data partition. The intermediate result
information 324 includes tabular information having a name
1D field 334, an ID of the DST execution unit assigned to
process the corresponding intermediate result 336, a scratch
pad storage field 338, and an intermediate result storage field
340.

Continuing with the example of FIG. 30, where tasks 1-3
are to be distributedly performed on data 2, the data parti-
tioning information includes the ID of data 2. In addition, the
task distribution module determines whether the DS
encoded data 2 is in the proper format for distributed
computing (e.g., was stored as slice groupings). If not, the
task distribution module indicates that the DS encoded data
2 format needs to be changed from the pillar grouping
format to the slice grouping format, which will be done by
the DSTN module. In addition, the task distribution module
determines the number of partitions to divide the data into
(e.g., 2_1 through 2_z) and addressing information for each
partition.

The task distribution module generates an entry in the task
execution information section for each sub-task to be per-
formed. For example, task 1_1 (e.g., identify non-words on
the data) has no task ordering (i.e., is independent of the
results of other sub-tasks), is to be performed on data
partitions 2_1 through 2_z by DT execution modules 1_1,
2.1,3_1,4_1,and 5_1. For instance, DT execution modules
1.1,2.1,3_1,4_1, and 5_1 search for non-words in data
partitions 2_1 through 2_z to produce task 1_1 intermediate
results (R1-1, which is a list of non-words). Task 1_2 (e.g.,

10

20

25

30

35

40

45

50

55

60

65

32

identify unique words) has similar task execution informa-
tion as task 1_1 to produce task 1_2 intermediate results
(R1-2, which is the list of unique words).

Task 1_3 (e.g., translate) includes task execution infor-
mation as being non-ordered (i.e., is independent), having
DT executionmodules 1_1,2_1,3_1,4_1, and 5_1 translate
data partitions 2_1 through 2_4 and having DT execution
modules 1_2,2 2,3_2,4 2 and 5_2 translate data partitions
2_5 through 2_z to produce task 1_3 intermediate results
(R1-3, which is the translated data). In this example, the data
partitions are grouped, where different sets of DT execution
modules perform a distributed sub-task (or task) on each
data partition group, which allows for further parallel pro-
cessing.

Task 1_4 (e.g., translate back) is ordered after task 1_3
and is to be executed on task 1_3’s intermediate result (e.g.,
R1-3_1) (e.g., the translated data). DT execution modules
1.1,2.1,3_1,4_1, and 5_1 are allocated to translate back
task 1_3 intermediate result partitions R1-3_1 through
R1-3_4 and DT execution modules 1_2,2 2, 6_1,7_1, and
7_2 are allocated to translate back task 1_3 intermediate
result partitions R1-3_5 through R1-3_z to produce task 1-4
intermediate results (R1-4, which is the translated back
data).

Task 1_5 (e.g., compare data and translated data to
identify translation errors) is ordered after task 1_4 and is to
be executed on task 1_4’s intermediate results (R4-1) and on
the data. DT execution modules 1_1,2 1,3_1,4_1,and 5_1
are allocated to compare the data partitions (2_1 through
2_z) with partitions of task 1-4 intermediate results parti-
tions R1-4_1 through R1-4_z to produce task 1_5 interme-
diate results (R1-5, which is the list words translated incor-
rectly).

Task 1_6 (e.g., determine non-word translation errors) is
ordered after tasks 1 _1 and 1_5 and is to be executed on
tasks 1_1’s and 1_5’s intermediate results (R1-1 and R1-5).
DT execution modules 1_1, 2.1, 3.1, 4 1, and 5_1 are
allocated to compare the partitions of task 1_1 intermediate
results (R1-1_1 through R1-1_z) with partitions of task 1-5
intermediate results partitions (R1-5_1 through R1-5_z) to
produce task 1_6 intermediate results (R1-6, which is the list
translation errors due to non-words).

Task 1_7 (e.g., determine words correctly translated) is
ordered after tasks 1_2 and 1_5 and is to be executed on
tasks 1_2’s and 1_5’s intermediate results (R1-1 and R1-5).
DT execution modules 1_2, 2 2, 3 2, 4 2, and 5_2 are
allocated to compare the partitions of task 1_2 intermediate
results (R1-2_1 through R1-2_z) with partitions of task 1-5
intermediate results partitions (R1-5_1 through R1-5_z) to
produce task 1_7 intermediate results (R1-7, which is the list
of correctly translated words).

Task 2 (e.g., find specific words and/or phrases) has no
task ordering (i.e., is independent of the results of other
sub-tasks), is to be performed on data partitions 2_1 through
2_z by DT execution modules 3_1,4_1,5_1,6_1, and 7_1.
For instance, DT execution modules3_1,4_1,5_1,6_1, and
7_1 search for specific words and/or phrases in data parti-
tions 2_1 through 2_z to produce task 2 intermediate results
(R2, which is a list of specific words and/or phrases).

Task 3_2 (e.g., find specific translated words and/or
phrases) is ordered after task 1_3 (e.g., translate) is to be
performed on partitions R1-3_1 through R1-3_z by DT
execution modules 1.2, 2.2, 3 2, 4 2, and 5_2. For
instance, DT execution modules 1_2,2_2,3 2,4 2, and5_2
search for specific translated words and/or phrases in the
partitions of the translated data (R1-3_1 through R1-3_z) to

US 9,483,539 B2

33

produce task 3_2 intermediate results (R3-2, which is a list
of specific translated words and/or phrases).

For each task, the intermediate result information indi-
cates which DST unit is responsible for overseeing execu-
tion of the task and, if needed, processing the partial results
generated by the set of allocated DT execution units. In
addition, the intermediate result information indicates a
scratch pad memory for the task and where the correspond-
ing intermediate results are to be stored. For example, for
intermediate result R1-1 (the intermediate result of task
1_1), DST unit 1 is responsible for overseeing execution of
the task 1_1 and coordinates storage of the intermediate
result as encoded intermediate result slices stored in memory
of DST execution units 1-5. In general, the scratch pad is for
storing non-DS encoded intermediate results and the inter-
mediate result storage is for storing DS encoded intermedi-
ate results.

FIGS. 33-38 are schematic block diagrams of the distrib-
uted storage and task network (DSTN) module performing
the example of FIG. 30. In FIG. 33, the DSTN module
accesses the data 92 and partitions it into a plurality of
partitions 1-z in accordance with distributed storage and task
network (DST) allocation information. For each data parti-
tion, the DSTN identifies a set of its DT (distributed task)
execution modules 90 to perform the task (e.g., identify
non-words (i.e., not in a reference dictionary) within the data
partition) in accordance with the DST allocation informa-
tion. From data partition to data partition, the set of DT
execution modules 90 may be the same, different, or a
combination thereof (e.g., some data partitions use the same
set while other data partitions use different sets).

For the first data partition, the first set of DT execution
modules (e.g., 1.1, 2_1, 3_1, 4_1, and 5_1 per the DST
allocation information of FIG. 32) executes task 1_1 to
produce a first partial result 102 of non-words found in the
first data partition. The second set of DT execution modules
(e.g, 1.1,2_1,3_1,4 1, and 5_1 per the DST allocation
information of FIG. 32) executes task 1_1 to produce a
second partial result 102 of non-words found in the second
data partition. The sets of DT execution modules (as per the
DST allocation information) perform task 1_1 on the data
partitions until the “z” set of DT execution modules per-
forms task 1_1 on the “zth” data partition to produce a “zth”
partial result 102 of non-words found in the “zth” data
partition.

As indicated in the DST allocation information of FIG.
32, DST execution unit 1 is assigned to process the first
through “zth” partial results to produce the first intermediate
result (R1-1), which is a list of non-words found in the data.
For instance, each set of DT execution modules 90 stores its
respective partial result in the scratchpad memory of DST
execution unit 1 (which is identified in the DST allocation or
may be determined by DST execution unit 1). A processing
module of DST execution 1 is engaged to aggregate the first
through “zth” partial results to produce the first intermediate
result (e.g., R1_1). The processing module stores the first
intermediate result as non-DS error encoded data in the
scratchpad memory or in another section of memory of DST
execution unit 1.

DST execution unit 1 engages its DST client module to
slice grouping based DS error encode the first intermediate
result (e.g., the list of non-words). To begin the encoding, the
DST client module determines whether the list of non-words
is of a sufficient size to partition (e.g., greater than a
Terabyte). If yes, it partitions the first intermediate result
(R1-1) into a plurality of partitions (e.g., R1-1_1 through

20

30

35

40

45

60

34

R1-1_m). If the first intermediate result is not of sufficient
size to partition, it is not partitioned.

For each partition of the first intermediate result, or for the
first intermediate result, the DST client module uses the DS
error encoding parameters of the data (e.g., DS parameters
of data 2, which includes 3/5 decode threshold/pillar width
ratio) to produce slice groupings. The slice groupings are
stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-5).

In FIG. 34, the DSTN module is performing task 1_2
(e.g., find unique words) on the data 92. To begin, the DSTN
module accesses the data 92 and partitions it into a plurality
of partitions 1-z in accordance with the DST allocation
information or it may use the data partitions of task 1_1 if
the partitioning is the same. For each data partition, the
DSTN identifies a set of its DT execution modules to
perform task 1_2 in accordance with the DST allocation
information. From data partition to data partition, the set of
DT execution modules may be the same, different, or a
combination thereof. For the data partitions, the allocated set
of DT execution modules executes task 1_2 to produce a
partial results (e.g., 1% through “zth”) of unique words found
in the data partitions.

As indicated in the DST allocation information of FIG.
32, DST execution unit 1 is assigned to process the first
through “zth” partial results 102 of task 1_2 to produce the
second intermediate result (R1-2), which is a list of unique
words found in the data 92. The processing module of DST
execution 1 is engaged to aggregate the first through “zth”
partial results of unique words to produce the second inter-
mediate result. The processing module stores the second
intermediate result as non-DS error encoded data in the
scratchpad memory or in another section of memory of DST
execution unit 1.

DST execution unit 1 engages its DST client module to
slice grouping based DS error encode the second interme-
diate result (e.g., the list of non-words). To begin the
encoding, the DST client module determines whether the list
of unique words is of a sufficient size to partition (e.g.,
greater than a Terabyte). If yes, it partitions the second
intermediate result (R1-2) into a plurality of partitions (e.g.,
R1-2_1 through R1-2_m). If the second intermediate result
is not of sufficient size to partition, it is not partitioned.

For each partition of the second intermediate result, or for
the second intermediate results, the DST client module uses
the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/
pillar width ratio) to produce slice groupings. The slice
groupings are stored in the intermediate result memory (e.g.,
allocated memory in the memories of DST execution units
1-5).

In FIG. 35, the DSTN module is performing task 1_3
(e.g., translate) on the data 92. To begin, the DSTN module
accesses the data 92 and partitions it into a plurality of
partitions 1-z in accordance with the DST allocation infor-
mation or it may use the data partitions of task 1_1 if the
partitioning is the same. For each data partition, the DSTN
identifies a set of its DT execution modules to perform task
1_3 in accordance with the DST allocation information (e.g.,
DT executionmodules 1_1,2_1,3_1,4_1, and 5_1 translate
data partitions 2_1 through 2_4 and DT execution modules
1.2,2.2,3 2,42, and 5_2 translate data partitions 2_5
through 2_z7). For the data partitions, the allocated set of DT
execution modules 90 executes task 1_3 to produce partial
results 102 (e.g., 1% through “zth”) of translated data.

As indicated in the DST allocation information of FIG.
32, DST execution unit 2 is assigned to process the first

US 9,483,539 B2

35

through “zth” partial results of task 1_3 to produce the third
intermediate result (R1-3), which is translated data. The
processing module of DST execution 2 is engaged to aggre-
gate the first through “zth” partial results of translated data
to produce the third intermediate result. The processing
module stores the third intermediate result as non-DS error
encoded data in the scratchpad memory or in another section
of memory of DST execution unit 2.

DST execution unit 2 engages its DST client module to
slice grouping based DS error encode the third intermediate
result (e.g., translated data). To begin the encoding, the DST
client module partitions the third intermediate result (R1-3)
into a plurality of partitions (e.g., R1-3_1 through R1-3_y).
For each partition of the third intermediate result, the DST
client module uses the DS error encoding parameters of the
data (e.g., DS parameters of data 2, which includes 3/5
decode threshold/pillar width ratio) to produce slice group-
ings. The slice groupings are stored in the intermediate result
memory (e.g., allocated memory in the memories of DST
execution units 2-6 per the DST allocation information).

As is further shown in FIG. 35, the DSTN module is
performing task 1_4 (e.g., retranslate) on the translated data
of the third intermediate result. To begin, the DSTN module
accesses the translated data (from the scratchpad memory or
from the intermediate result memory and decodes it) and
partitions it into a plurality of partitions in accordance with
the DST allocation information. For each partition of the
third intermediate result, the DSTN identifies a set of its DT
execution modules 90 to perform task 1_4 in accordance
with the DST allocation information (e.g., DT execution
modules 1_1, 2_1, 3_1, 4_1, and 5_1 are allocated to
translate back partitions R1-3_1 through R1-3_4 and DT
execution modules 1_2,2_2,6_1,7_1, and 7_2 are allocated
to translate back partitions R1-3_5 through R1-3_z). For the
partitions, the allocated set of DT execution modules
executes task 1_4 to produce partial results 102 (e.g., 1%
through “zth”) of re-translated data.

As indicated in the DST allocation information of FIG.
32, DST execution unit 3 is assigned to process the first
through “zth” partial results of task 1_4 to produce the fourth
intermediate result (R1-4), which is retranslated data. The
processing module of DST execution 3 is engaged to aggre-
gate the first through “zth” partial results of retranslated data
to produce the fourth intermediate result. The processing
module stores the fourth intermediate result as non-DS error
encoded data in the scratchpad memory or in another section
of memory of DST execution unit 3.

DST execution unit 3 engages its DST client module to
slice grouping based DS error encode the fourth intermedi-
ate result (e.g., retranslated data). To begin the encoding, the
DST client module partitions the fourth intermediate result
(R1-4) into a plurality of partitions (e.g., R1-4_1 through
R1-4_z). For each partition of the fourth intermediate result,
the DST client module uses the DS error encoding param-
eters of the data (e.g., DS parameters of data 2, which
includes 3/5 decode threshold/pillar width ratio) to produce
slice groupings. The slice groupings are stored in the inter-
mediate result memory (e.g., allocated memory in the
memories of DST execution units 3-7 per the DST allocation
information).

In FIG. 36, a distributed storage and task network (DSTN)
module is performing task 1_5 (e.g., compare) on data 92
and retranslated data of FIG. 35. To begin, the DSTN
module accesses the data 92 and partitions it into a plurality
of partitions in accordance with the DST allocation infor-
mation or it may use the data partitions of task 1_1 if the
partitioning is the same. The DSTN module also accesses

5

10

15

20

25

30

35

40

45

50

55

60

65

36

the retranslated data from the scratchpad memory, or from
the intermediate result memory and decodes it, and parti-
tions it into a plurality of partitions in accordance with the
DST allocation information. The number of partitions of the
retranslated data corresponds to the number of partitions of
the data.

For each pair of partitions (e.g., data partition 1 and
retranslated data partition 1), the DSTN identifies a set of its
DT execution modules 90 to perform task 1_5 in accordance
with the DST allocation information (e.g., DT execution
modules 1_1, 2_1, 3_1, 4_1, and 5_1). For each pair of
partitions, the allocated set of DT execution modules
executes task 1_5 to produce partial results 102 (e.g., 1%
through “zth”) of a list of incorrectly translated words and/or
phrases.

As indicated in the DST allocation information of FIG.
32, DST execution unit 1 is assigned to process the first
through “zth” partial results of task 1_5 to produce the fifth
intermediate result (R1-5), which is the list of incorrectly
translated words and/or phrases. In particular, the processing
module of DST execution 1 is engaged to aggregate the first
through “zth” partial results of the list of incorrectly trans-
lated words and/or phrases to produce the fifth intermediate
result. The processing module stores the fifth intermediate
result as non-DS error encoded data in the scratchpad
memory or in another section of memory of DST execution
unit 1.

DST execution unit 1 engages its DST client module to
slice grouping based DS error encode the fifth intermediate
result. To begin the encoding, the DST client module par-
titions the fifth intermediate result (R1-5) into a plurality of
partitions (e.g., R1-5_1 through R1-5_z). For each partition
of the fifth intermediate result, the DST client module uses
the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/
pillar width ratio) to produce slice groupings. The slice
groupings are stored in the intermediate result memory (e.g.,
allocated memory in the memories of DST execution units
1-5 per the DST allocation information).

As is further shown in FIG. 36, the DSTN module is
performing task 1_6 (e.g., translation errors due to non-
words) on the list of incorrectly translated words and/or
phrases (e.g., the fifth intermediate result R1-5) and the list
of non-words (e.g., the first intermediate result R1-1). To
begin, the DSTN module accesses the lists and partitions
them into a corresponding number of partitions.

For each pair of partitions (e.g., partition R1-1_1 and
partition R1-5_1), the DSTN identifies a set of its DT
execution modules 90 to perform task 1_6 in accordance
with the DST allocation information (e.g., DT execution
modules 1_1, 2_1, 3_1, 4_1, and 5_1). For each pair of
partitions, the allocated set of DT execution modules
executes task 1_6 to produce partial results 102 (e.g., 1%
through “zth”) of a list of incorrectly translated words and/or
phrases due to non-words.

As indicated in the DST allocation information of FIG.
32, DST execution unit 2 is assigned to process the first
through “zth” partial results of task 1_6 to produce the sixth
intermediate result (R1-6), which is the list of incorrectly
translated words and/or phrases due to non-words. In par-
ticular, the processing module of DST execution 2 is
engaged to aggregate the first through “zth” partial results of
the list of incorrectly translated words and/or phrases due to
non-words to produce the sixth intermediate result. The
processing module stores the sixth intermediate result as
non-DS error encoded data in the scratchpad memory or in
another section of memory of DST execution unit 2.

US 9,483,539 B2

37

DST execution unit 2 engages its DST client module to
slice grouping based DS error encode the sixth intermediate
result. To begin the encoding, the DST client module par-
titions the sixth intermediate result (R1-6) into a plurality of
partitions (e.g., R1-6_1 through R1-6_z). For each partition
of the sixth intermediate result, the DST client module uses
the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/
pillar width ratio) to produce slice groupings. The slice
groupings are stored in the intermediate result memory (e.g.,
allocated memory in the memories of DST execution units
2-6 per the DST allocation information).

As is still further shown in FIG. 36, the DSTN module is
performing task 1_7 (e.g., correctly translated words and/or
phrases) on the list of incorrectly translated words and/or
phrases (e.g., the fifth intermediate result R1-5) and the list
of unique words (e.g., the second intermediate result R1-2).
To begin, the DSTN module accesses the lists and partitions
them into a corresponding number of partitions.

For each pair of partitions (e.g., partition R1-2_1 and
partition R1-5_1), the DSTN identifies a set of its DT
execution modules 90 to perform task 1_7 in accordance
with the DST allocation information (e.g., DT execution
modules 1.2, 2.2, 3_2, 4_2, and 5_2). For each pair of
partitions, the allocated set of DT execution modules
executes task 1_7 to produce partial results 102 (e.g., 1%
through “zth) of a list of correctly translated words and/or
phrases.

As indicated in the DST allocation information of FIG.
32, DST execution unit 3 is assigned to process the first
through “zth™ partial results of task 1_7 to produce the
seventh intermediate result (R1-7), which is the list of
correctly translated words and/or phrases. In particular, the
processing module of DST execution 3 is engaged to aggre-
gate the first through “zth” partial results of the list of
correctly translated words and/or phrases to produce the
seventh intermediate result. The processing module stores
the seventh intermediate result as non-DS error encoded data
in the scratchpad memory or in another section of memory
of DST execution unit 3.

DST execution unit 3 engages its DST client module to
slice grouping based DS error encode the seventh interme-
diate result. To begin the encoding, the DST client module
partitions the seventh intermediate result (R1-7) into a
plurality of partitions (e.g., R1-7_1 through R1-7_z). For
each partition of the seventh intermediate result, the DST
client module uses the DS error encoding parameters of the
data (e.g., DS parameters of data 2, which includes 3/5
decode threshold/pillar width ratio) to produce slice group-
ings. The slice groupings are stored in the intermediate result
memory (e.g., allocated memory in the memories of DST
execution units 3-7 per the DST allocation information).

In FIG. 37, the distributed storage and task network
(DSTN) module is performing task 2 (e.g., find specific
words and/or phrases) on the data 92. To begin, the DSTN
module accesses the data and partitions it into a plurality of
partitions 1-z in accordance with the DST allocation infor-
mation or it may use the data partitions of task 1_1 if the
partitioning is the same. For each data partition, the DSTN
identifies a set of its DT execution modules 90 to perform
task 2 in accordance with the DST allocation information.
From data partition to data partition, the set of DT execution
modules may be the same, different, or a combination
thereof. For the data partitions, the allocated set of DT
execution modules executes task 2 to produce partial results
102 (e.g., 1* through “zth™) of specific words and/or phrases
found in the data partitions.

5

10

15

20

25

30

35

40

45

50

55

60

65

38

As indicated in the DST allocation information of FIG.
32, DST execution unit 7 is assigned to process the first
through “zth” partial results of task 2 to produce task 2
intermediate result (R2), which is a list of specific words
and/or phrases found in the data. The processing module of
DST execution 7 is engaged to aggregate the first through
“zth” partial results of specific words and/or phrases to
produce the task 2 intermediate result. The processing
module stores the task 2 intermediate result as non-DS error
encoded data in the scratchpad memory or in another section
of memory of DST execution unit 7.

DST execution unit 7 engages its DST client module to
slice grouping based DS error encode the task 2 intermediate
result. To begin the encoding, the DST client module deter-
mines whether the list of specific words and/or phrases is of
a sufficient size to partition (e.g., greater than a Terabyte). If
yes, it partitions the task 2 intermediate result (R2) into a
plurality of partitions (e.g., R2_1 through R2_m). If the task
2 intermediate result is not of sufficient size to partition, it is
not partitioned.

For each partition of the task 2 intermediate result, or for
the task 2 intermediate results, the DST client module uses
the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/
pillar width ratio) to produce slice groupings. The slice
groupings are stored in the intermediate result memory (e.g.,
allocated memory in the memories of DST execution units
1-4, and 7).

In FIG. 38, the distributed storage and task network
(DSTN) module is performing task 3 (e.g., find specific
translated words and/or phrases) on the translated data
(R1-3). To begin, the DSTN module accesses the translated
data (from the scratchpad memory or from the intermediate
result memory and decodes it) and partitions it into a
plurality of partitions in accordance with the DST allocation
information. For each partition, the DSTN identifies a set of
its DT execution modules to perform task 3 in accordance
with the DST allocation information. From partition to
partition, the set of DT execution modules may be the same,
different, or a combination thereof. For the partitions, the
allocated set of DT execution modules 90 executes task 3 to
produce partial results 102 (e.g., 1°* through “zth™) of spe-
cific translated words and/or phrases found in the data
partitions.

As indicated in the DST allocation information of FIG.
32, DST execution unit 5 is assigned to process the first
through “zth” partial results of task 3 to produce task 3
intermediate result (R3), which is a list of specific translated
words and/or phrases found in the translated data. In par-
ticular, the processing module of DST execution 5 is
engaged to aggregate the first through “zth” partial results of
specific translated words and/or phrases to produce the task
3 intermediate result. The processing module stores the task
3 intermediate result as non-DS error encoded data in the
scratchpad memory or in another section of memory of DST
execution unit 7.

DST execution unit 5 engages its DST client module to
slice grouping based DS error encode the task 3 intermediate
result. To begin the encoding, the DST client module deter-
mines whether the list of specific translated words and/or
phrases is of a sufficient size to partition (e.g., greater than
a Terabyte). If yes, it partitions the task 3 intermediate result
(R3) into a plurality of partitions (e.g., R3_1 through R3_m).
If the task 3 intermediate result is not of sufficient size to
partition, it is not partitioned.

For each partition of the task 3 intermediate result, or for
the task 3 intermediate results, the DST client module uses

US 9,483,539 B2

39

the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/
pillar width ratio) to produce slice groupings. The slice
groupings are stored in the intermediate result memory (e.g.,
allocated memory in the memories of DST execution units
1-4, 5, and 7).

FIG. 39 is a diagram of an example of combining result
information into final results 104 for the example of FIG. 30.
In this example, the result information includes the list of
specific words and/or phrases found in the data (task 2
intermediate result), the list of specific translated words
and/or phrases found in the data (task 3 intermediate result),
the list of non-words found in the data (task 1 first interme-
diate result R1-1), the list of unique words found in the data
(task 1 second intermediate result R1-2), the list of transla-
tion errors due to non-words (task 1 sixth intermediate result
R1-6), and the list of correctly translated words and/or
phrases (task 1 seventh intermediate result R1-7). The task
distribution module provides the result information to the
requesting DST client module as the results 104.

FIG. 40A is a diagram illustrating an example of a
distributed index structure 350 of one or more indexes
utilized to access a data object of one or more data objects
1_1 through 1_w, 3_1 through 3_w, 4_1 through 4_w, etc.,
where at least some of the one or more data objects are
stored in at least one of a distributed storage and task
network (DSTN) and a dispersed storage network (DSN),
and where a data object of the one or more data objects is
dispersed storage error encoded to produce a plurality sets of
encoded data slices, and where the plurality of sets of
encoded data slices are stored in the DSN (e.g., and/or
DSTN) utilizing a common source name (e.g., DSN
address). The source name provides a DSTN and/or DSN
address including one or more of vault identifier (ID) (e.g.,
such a vault ID associates a portion of storage resources of
the DSN with one or more DSN user devices), a vault
generation indicator (e.g., identify a vault generation of one
or more of generations), and an object number that corre-
sponds to the data object (e.g., a random number assigned to
the data object when the data object is stored in the DSN).

The distributed index structure 350 includes at least two
nodes represented in the index structure as nodes associated
with two or more node levels. One or more nodes of the at
least two nodes of the distributed index structure 350 may be
dispersed storage error encoded to produce one or more sets
of encoded index slices. The one or more sets of encoded
index slices may be stored in at least one of a local memory,
a DSN memory, and a distributed storage and task network
(DSTN) module. For example, each node of a 100 node
distributed index structure are individually dispersed storage
error encoded to produce at least 100 sets of encoded index
slices for storage in the DSTN module. As another example,
the 100 node index structure is aggregated into one index file
and the index file is dispersed storage error encoded to
produce a set of encoded index slices for storage in the
DSTN module.

Each node of the at least two nodes includes at least one
of an index node and a leaf node. One index node of the at
least two nodes includes a root index node. Alternatively, the
distributed index structure 350 includes just one node,
wherein the one node is a leaf node and where the leaf node
is a root node. The distributed index structure 350 may
include any number of index nodes, any number of leaf
nodes, and any number of node levels. Each level of the any
number of node levels includes nodes of a common node
type. For example, all nodes of node level 4 are leaf nodes
and all nodes of node level 3 are index nodes. As another

10

15

20

25

30

35

40

45

50

55

60

65

40

example, as illustrated, the distributed index structure 350
includes eight index nodes and eight leaf nodes, where the
eight index nodes are organized in three node levels, where
a first node level includes a root index node 1_1, a second
node level includes index nodes 2_1, 2_2, and 2_3, and a
third node level includes index nodes 3_1, 3_2, 3_3, 3_4,
and 3_5, and where the eight leaf nodes are organized in a
last (e.g., fourth) node level, where the last node level
includes leaf nodes 4_1,4 2,4 3,4.4,4 5,4 6,4 7, and
4_8.

Each data object of the one or more data objects is
associated with at least one index key per distributed index
structure of the one or more distributed indexes, where the
index key includes a searchable element of the distributed
index and may be utilized to locate the data object in
accordance with key type traits. An index key type of an
index key includes a category of the index key (e.g., string
integer, etc.). An index key type exhibits traits. Each index
key is associated with one or more key type traits (e.g., for
an associated index structure), where a key type traits
includes one or more of a type indicator, a trait indicator, a
comparing function (e.g., defining how an associate index
key of this type should be compared, such as sorting and/or
manipulation, to other such index keys), a serialization
function (e.g., encoding function for storage), a de-serial-
ization function (e.g., decoding function for retrieval), and
an absolute minimum value of the index key.

Each leaf node of the at least two nodes may be associated
with one or more data objects. The association includes at
least one of, for each data object of the one or more data
objects, storing an index key associated with the data object
in the leaf node, storing a source name associated with the
data object in the leaf node, and storing the data object in the
leaf node. For example, leaf node 4_2 includes a data object
4_2 and an index key associated with data object 4_2. As
another example, leaf node 4_3 includes source names
associated with data object 3_1 through 3_w and index keys
associated with data object 3_1 through 3_w. Each leaf node
is associated with a minimum index key, where the mini-
mum index key is a minimum value of one or more index
keys associated with the one or more data objects in accor-
dance with the key type traits (e.g., sorted utilizing a
comparing function of the key type traits to identify the
minimum value).

Each leaf node is a child in a parent-child relationship
with one index node, where the one index node is a parent
in the parent-child relationship. Each child node has one
parent node and each parent node has one or more child
nodes. The one index node (e.g., parent node) stores a
minimum index key associated with the leaf node (e.g., child
node). As such, a parent node stores a minimum index key
for each child node of the one or more child nodes. Two
index nodes may form a parent-child relationship. In such a
parent-child relationship, a parent-child node pair is repre-
sented in the index structure with a parent node of the
parent-child relationship associated with a parent node level
that is one level above in the index structure than a child
node level associated with a child node of the parent-child
relationship.

A leaf node is a sibling node of another leat node when a
minimum index key associated with the leaf node is ordered
greater than a last minimum index key associated with the
other leaf node, where the last minimum index key associ-
ated with the leaf node is sorted above any other last
minimum index keys associated with any other lower order
leaf nodes and where the minimum index key associated
with the leaf node is ordered less than any other minimum

US 9,483,539 B2

41

index keys associated with any other higher order leaf nodes.
A sibling node of a node is represented in the index structure
on a common level with the node and one node position to
the right. A last node on the far right of a node level has no
sibling (e.g., null sibling). All other nodes, if any, other than
a last far right node, of a common node level have a sibling
node. For example, leaf node 4_2 is a sibling node to leaf
node 4_1, leaf node 4_3 is a sibling node to leaf node 4_2,
etc., leaf node 4_8 is a sibling node to leaf node 4_7 and leaf
node 4_8 has no sibling node.

Each index node of the at least two nodes may be
associated with one or more child nodes. Such a child node
includes at least one of another index node or a leaf node.
The association includes, for each child node of the one
more child nodes, storing a minimum index key associated
with the child node in the index node and storing a source
name associated with the child node in the index node. Each
child node is associated with a minimum index key, where
the minimum index key is a minimum value of one or more
index keys associated with the child node (e.g., the mini-
mum index key is a minimum value of one or more index
keys associated with one or more children nodes of the child
node or one or more data objects of the child node in
accordance with the key type traits, sorted utilizing a com-
paring function of the key type traits to identify the mini-
mum value when the child node is a leaf node). For example,
index node 3_2 includes a minimum index key (e.g., of data
object 3_1) and source name associated with leaf node 4_3.
As another example, index node 3_3 includes a minimum
index key and source name associated with leaf node 4_4
and another minimum index key and another source name
associated with leaf node 4_5. As yet another example,
index node 2_3 includes a minimum index key and source
name associated with index node 3_4 and minimum index
key and another source name associated with index node
3_5.

An index node is a sibling node of another index node
when a minimum index key associated with the index node
is ordered greater than a last minimum index key associated
with the other index node, where the last minimum index
key associated with the index node is sorted above any other
last minimum index keys associated with any other lower
order index nodes and where the minimum index key
associated with the index node is ordered less than any other
minimum index keys associated with any other higher order
index nodes. For example, index node 3_2 is a sibling node
to index node 3_1, index node 3_3 is a sibling node to index
node 3_2, etc., index node 3_6 is a sibling node to index
node 3_5 and index node 3_6 has no sibling node.

FIG. 40B is a diagram illustrating an example of an index
node structure 352 for an index node that includes index
node information 356, sibling node information 358, and
children node information 360. Alternatively, there is no
sibling node information 358 when the index node has no
sibling node. The index node information 356 includes one
or more of an index node source name field 362, an index
node revision field 364, and a node type field 366. Inclusion
and/or use of the index node source name field 362 and the
index node revision field 364 is optional.

The sibling node information 358 includes a sibling node
source name field 368, a sibling minimum index key field
370, and a sibling key type traits field 372. Inclusion and/or
use of the sibling key type traits field 372 is optional. The
children node information 360 includes one or more child
node information sections 374, 376, etc. corresponding to
each child node of the index node. Each child node infor-
mation section of the one or more child node information

10

15

20

25

30

35

40

45

50

55

60

65

42

sections includes a corresponding child node source name
field 378, a corresponding child minimum index key field
380, and a corresponding child key type traits ficld 382. For
example, the corresponding child node source name field
378 of a child 1 node information section 374 includes a
child 1 node source name entry. Inclusion and/or use of the
corresponding child key type traits field 382 is optional.

The index node source name field 362 may include an
index node dispersed storage network (DSN) address 354
entry (e.g., source name) corresponding to a storage location
for the index node. The index node revision field 364 may
include an index node revision entry corresponding to a
revision number of information contained in the index node.
Use of the index node revision field 364 enables generating
two or more similar indexes while saving each revision of
the two or more similar indexes. The node type field 366
includes a node type entry, where the node type entry
indicates whether the node is a leaf node or not a leaf node.
The node type indicates that the node is not a leaf node when
the node is the index node.

The sibling node source name field 368 includes a sibling
node source name entry (e.g., sibling node DSN address)
corresponding to where a sibling node is stored in a DSN
memory and/or a distributed storage and task network
(DSTN) module when the index node has the sibling node
as a sibling. The sibling node is another index node when the
index node has the sibling. The sibling node source name
field 368 may include a null entry when the index node does
not have a sibling. The sibling minimum index key field 370
includes a sibling of minimum index key corresponding to
the sibling node when the index node has the sibling node as
the sibling. The sibling key type traits field 372 may include
sibling key type traits corresponding to the sibling node
when the index node has the sibling node as the sibling and
when the sibling key type traits field is utilized. Alterna-
tively, index structure metadata may include key type traits
utilized globally for each node of the index structure.

The index structure metadata may include one or more of
key type traits to be utilized for all nodes of a corresponding
index, key type traits to be utilized for all index nodes of the
corresponding index, key type traits to be utilized for all leaf
nodes of the corresponding index, a source name of a root
node of the index structure, a maximum number of index
structure levels, a minimum number of the next level struc-
tures, a maximum number of elements per index structure
level, a minimum number of elements per index structure
level, and index revision number, and an index name. The
index structure metadata may be utilized for one or more of
accessing the index, generating the index, updating the
index, saving the index, deleting portions of the index,
adding a portion to the index, cloning a portion of the index,
and searching through the index. The index structure meta-
data may be stored in one or more of a local memory, one
or more nodes of the index structure, and as encoded
metadata slices in at least one of the DSTN module and the
DSN memory.

The child node source name field 378 includes a child
node source name entry (e.g., child node DSN address)
corresponding to a storage location for the child node. For
example, a child 1 node source name field 378 of a child 1
node information section 374 includes a child 1 node source
name. The child minimum index key field 380 includes a
child minimum index key corresponding to the child node.
For example, a child 1 minimum index key field 380 of the
child 1 node information section 374 includes a child 1
minimum index key. The child key type traits field 382 may
include child key type traits corresponding to the child node

US 9,483,539 B2

43

when the index node has the child node as the child and
when the child key type traits field is utilized. Alternatively,
the index structure metadata may include key type traits
utilized globally for each node of the index structure.

FIG. 40C is a diagram illustrating an example of a leaf
node structure 384 that includes leaf node information 388,
sibling node information 358, and data information 392.
Alternatively, there is no sibling node information 358 when
the leaf node has no sibling node. The leaf node information
388 includes one or more of a leaf node source name field
394, a leaf node revision field 396, and a node type field 366.
Inclusion and/or use of the leaf node source name field 394
and the leaf node revision field 396 is optional. The sibling
node information 358 includes a sibling node source name
field 368, a sibling minimum index key field 370, and a
sibling key type traits field 372. Inclusion and/or use of the
sibling key type traits field 372 is optional. The data infor-
mation 392 includes one or more data information sections
398, 400, etc. corresponding to each data object associated
with the leaf node. Alternatively, the data information 392
includes null information when no data object is presently
associated with the leaf node. Each data information section
of the one or more data information sections includes a
corresponding data (e.g., data object) source name or data
field 402, a corresponding data index key field 404, and a
corresponding data key type traits field 406. For example,
the corresponding data source name field 402 of a data 1
node information section 398 includes a data 1 source name
entry. Inclusion and/or use of the corresponding data key
type traits field 406 is optional.

The leaf node source name field 394 may include a leaf
node source name entry (e.g., leaf node distributed storage
and task network (DSTN) address and/or a dispersed storage
network (DSN) address) corresponding to a storage location
of the leaf node. The leaf node revision field 396 may
include a leaf node revision entry corresponding to a revi-
sion number of information contained in the leaf node. Use
of the leaf node revision enables generating two or more
similar indexes while saving each revision of the two or
more similar indexes. The node type field 366 includes a
node type, where the node type indicates whether the node
is a leaf node or not a leaf node. The node type indicates that
the node is a leaf node when the node is the leaf node.

The sibling node source name field 368 includes a sibling
node source name entry (e.g., sibling node DSN address)
corresponding to a storage location for a sibling when the
leaf node has the sibling node as a sibling. The sibling node
is another leaf node when the leaf node has the sibling. The
sibling node source name field 368 may include a null entry
when the leaf node does not have a sibling. The sibling
minimum index key field 370 includes a minimum index key
associated with the sibling node when the leaf node has the
sibling node as the sibling. The sibling key type traits field
372 may include sibling key type traits corresponding to the
sibling node when the leaf node has the sibling node as the
sibling and when the sibling key type traits field 372 is
utilized. Alternatively, index structure metadata may include
key type traits utilized globally for each leaf node of the
index structure.

The data source name or data field 402 includes at least
one of a data source name entry (e.g., a DSN address)
corresponding to a storage location of data and the data (e.g.,
a data object, one or more encoded data slices of data). For
example, a data 1 source name or data field 402 of a data 1
information section 398 includes a DSN address source
name of a first data object. As another example, the data 1
source name or data field 402 of the data 1 information

20

30

40

45

55

44

section includes the data 1 data object. The data index key
field 404 includes a data index key corresponding to the
data. For example, a data 1 index key field order for of the
data 1 information section 398 includes a data 1 index key.
The data key type traits field 406 may include data key type
traits corresponding to the data when the data key type traits
field 406 is utilized. Alternatively, the index structure meta-
data may include key type traits utilized globally for each
data object associated with the index structure.

FIG. 40D is a diagram illustrating another example of an
index structure of an example index utilized to access data
stored in at least one of a dispersed storage network (DSN)
memory and a distributed storage and task network (DSTN)
module. In the example, the index structure includes three
leaf nodes and three index nodes. Each of the three leaf
nodes and the three index nodes are individually encoded
using a dispersed storage error coding function to produce a
set of corresponding node slices that are stored in the DSTN
module. The index structure provides an index for three data
objects stored in the DSTN module, where the data objects
stored in the DSTN module utilizing source names 76B,
8F6, and 92D, and global key type traits includes a com-
paring function to sort string type index keys alphabetically.
The data stored at source name 76B is associated with an
index key of “a” as that data begins with a character “a”. The
data stored at source name 8F6 is associated with an index
key of “d” as that data begins with a character “d”. The data
stored at source name 92D is associated with an index key
of “9” as that data begins with a character “j”.

A leaf node stored at source name SAB includes a node
type indicating a leaf node, a sibling node source name
pointing to a leaf node stored at source name 52D, a sibling
minimum index key of “d”, a data 1 source name of 76B, a
data 1 index key of “a”, a data 2 direct data entry (e.g.,
b39d5ac9), and a data 2 index key of “b”. The leaf node
stored at source name 52D includes a node type indicating
a leaf node, a sibling node source name pointing to a leaf
node stored at source name 539, a sibling minimum index
key of 7, a data 1 source name of 8F6, and a data 1 index
key of “d”. The leaf node stored at source name 539 includes
a node type indicating a leaf node, a null sibling node source
name (e.g., since last leaf node of leaf node level), a null
sibling minimum index key, a data 1 source name of 92D,
and a data 1 index key of “j”.

An index node stored at source name 4F7 includes a node
type indicating not a leaf node (e.g., index node), a sibling
node source name pointing to an index node stored at source
name 42C, a sibling minimum index key of “j”, a child 1
source name of SAB, a child 1 minimum index key of “a”,
a child 2 source name of 52D, and a child 2 minimum index
key of “d”. The index node stored at source name 42C
includes a node type indicating not a leaf node (e.g., index
node), a null sibling node source name (e.g., since last index
node of an index node level), a null sibling minimum index
key, a child 1 source name of 539, and a child 1 minimum
index key of “j”. An index node (e.g., a root node) stored at
source name 2FD includes a node type indicating not a leaf
node (e.g., index node), a null sibling node source name
(e.g., since root node), a null sibling minimum index key, a
child 1 source name of 4F7, a child 1 minimum index key
of “a”, a child 2 source name of 42C, and a child 2 minimum
index key of “9”.

FIG. 40E is a diagram illustrating an example of a
metadata object structure 410 that includes data object
information 414 and segment allocation table information
416. A metadata object is generated in accordance with the
metadata object structure 410 such that the metadata object

US 9,483,539 B2

45

410 describes a data object stored as one or more versions
in a dispersed storage and task network (DSTN). The
metadata object is stored in the DSTN utilizing a metadata
DSTN address 412. Each version of the one or more
versions of the data is stored as two or more portions in the
DSTN. The data object information 414 includes common
information with regards to the data object. The segment
allocation table information 416 includes information relat-
ing to the two or more portions of each of the one or more
versions.

In particular, the data object information 414 includes a
data object name field 418, a data index key field 420, and
a total size of data field 422. The data object name field 418
includes a data object name associated with the data. The
data index key field 420 includes a data index key associated
with the data object. The total size of data field 422 includes
a total size of data value associated with the data object.

The segment allocation table information 416 includes
version information 424 for each of the one or more versions
of the data. The version information 424 includes portion
information 426 for each of the two or more portions of the
data. The portion information includes 426 a portion source
name field 428, a portion size field 430, a portion number of
segments field 432, and a segmentation method field 434.
The portion source name field 428 includes a starting source
name of a first segment of a corresponding portion. The
portion size field 430 includes a portion size of the portion
(e.g., total number of bytes of the portion). The portion
number of segments field 432 includes a number of seg-
ments for the portion. The segmentation method 434 field
includes a segmentation method identifier (e.g., fixed size
segmentation, variable size segmentation, ramping size up
segmentation, ramping size down segmentation, etc.).

FIG. 40F is a flowchart illustrating an example of updat-
ing a cached index node. The method begins at step 440
where a processing module (e.g., of a distributed storage and
task (DST) client module) determines whether to delete a
cached index node. The cached index node may be stored in
a local memory associated with the DST client module in
addition to being stored as one or more sets of encoded index
slices in a distributed storage and task network (DSTN)
module. The cached index node may be cached upon one or
more of retrieving the index node from the DSTN module
and generating an updated version of the index node.

The determining may be based on one or more of a size
of the index node, an age of the index node since last
caching, an available storage resource level, a frequency
level of index node retrieval, and a level of the index node
within an associated index. For example, processing module
determines to delete the cached index node more often for
lowest levels of the index. As another example, the process-
ing module determines to delete the cached index node when
the age of the index node since last storage is greater than a
last storage threshold. As yet another example, a processing
module determines to delete the cached index node when the
frequency level of index node retrieval is less than a retrieval
threshold. The method branches to step 444 when the
processing module determines to not delete the cached index
node. The method continues to step 442 when the processing
module determines to delete the cached index node. The
method continues at step 442 where the processing module
deletes the cached index node. The deleting includes delet-
ing the cached index node from a cache memory and
resetting the age of the index node since last storage.

The method continues at step 444 where the processing
module sends a set of read if modified requests. The out-
putting includes generating the set of read if modified

10

20

40

45

50

46

requests and outputting the set of read if modified requests
to the DSTN module. The set of read if modified requests
includes at least one set of slice names associated with
storage of the index node in the DSTN module and a
revision number associated with the cached index node. The
method continues at step 446 where the processing module
receives read if modified responses. Each read if modified
response includes one or more of a slice name, one or more
slice revision numbers, and an updated index slice for each
slice revision number when the slice revision number of the
one or more slice revision numbers is greater than the
revision number of the cached index node.

When the read if modified responses include updated
index slices, the method continues at step 448 where the
processing module decodes at least a decode threshold
number of the updated index slices using a dispersed storage
error coding function to produce an updated index node. The
decoding includes selecting updated index slices corre-
sponding to a latest revision of the one or more slice revision
numbers. The method continues at step 450 where the
processing module caches the updated index node. For
example, the processing module stores the updated index
node in the local memory. The caching may include gener-
ating and storing a timestamp associated with storage of the
updated index node.

FIG. 41 is a flowchart illustrating an example of updating
an index node. The method begins at step 452 where a
processing module (e.g., of a distributed storage and task
(DST) client module) receives a plurality of index node
update requests for an index node within an index node
update time period. For example, the processing module
receives 12 index node update requests for the index node
within 100 ms when the index node update time period is
established to be 100 ms. The method continues at step 454
where the processing module queues the plurality of index
node update requests by time of arrival. For example, the
processing module enters a first index node update request
into a first position of a storage queue when the first index
node update request was received first, enters a second index
node update request into a second possession of the storage
queue when the second index node update request was
received second, etc.

When the index node update time period has elapsed, the
method continues at step 456 where the processing module
retrieves the index node from a distributed storage and task
network (DSTN) module. The retrieving includes generating
one or more sets of read slice requests that includes one or
more sets of slice names corresponding to one or more sets
of index slices, sending the one more sets of read slice
requests to the DSTN module, receiving one or more sets of
at least a decode threshold number of index slices, and
decoding each of the one or more sets of at least the decode
threshold number of index slices using a dispersed storage
error coding function to reproduce the index node.

For each index node update requests, the method contin-
ues at step 458 where the processing module retrieves the
request from the queue and performs the update in order of
time of arrival starting with the oldest request (e.g., first
queued) to produce an updated index node. The processing
module sequentially performs each request of the plurality
of queued index node update requests. The method contin-
ues at step 460 where the processing module deletes the
request from the queue upon performing the update. The
method continues at step 462 where the processing module
stores the updated index node in the DSTN module. The
storing includes encoding the updated index node using the
dispersed storage error coding function to produce one or

US 9,483,539 B2

47

more sets of updated index slices, generating one or more
sets of write slice requests that includes the one or more sets
of' updated index slices and the one more sets of slice names
corresponding to the one or more sets of index slices, and
outputting the one or more sets of write slice requests to the
DSTN module.

FIG. 42 is a flowchart illustrating an example of adjusting
an index node update time period. The method begins at step
464 where a processing module (e.g., of a distributed storage
and task (DST) client module) determines a performance
level of updating of an index node. The determining includes
one or more of detecting a frequency level of update
conflicts of the index node, detecting a frequency level of
update requests for the index node, and detecting an average
time to update the index node. The method continues at step
466 where the processing module determines whether to
modify an index node update time period based on the
performance level of the updating of the index node. The
determining is based on comparing at least a portion of the
performance level of updating of the index node to one or
more performance level thresholds. For example, processing
module determines to modify the index node update time
period when the frequency level of update conflicts of index
node is greater than an update conflict frequency threshold.
The method loops back to step 464 when the processing
module determines not to modify the index node update time
period. The method continues to step 468 when the process-
ing module determines to modify the index node update time
period.

The method continues at step 468 where the processing
module determines whether to shorten the index node update
time period. The determining may be based on the perfor-
mance level of updating the index node and one or more
performance level thresholds. For example, the processing
module determines to shorten the next node update time
period when the frequency level of update conflicts of the
index node is less than a frequency threshold and the
frequency level of update requests for the index node is less
than an update threshold. As another example, the process-
ing module determines to lengthen the index node update
time period when the average time to update the index node
is greater than an update time threshold (e.g., using too much
bandwidth). The method branches step 472 when the pro-
cessing module determines to shorten the index node update
time period. The method continues to step 470 when the
processing module determines to lengthen the index node
update time period.

The method continues at step 470 where the processing
module lengthens the index node update time period when
the processing module determines to lengthen the index
node update time period. The processing module may
lengthen the index update time period by adding a prede-
termined amount of time to the index node update time
period to produce a modified index node update time period.
The method continues at step 472 where the processing
module shortens the index node update time period when the
processing module determines to shorten the index node
update time period. The processing module may shorten the
index update time period by subtracting another predeter-
mined amount of time from the index node update time
period to produce the modified index node update time
period.

FIGS. 43A-B are schematic block diagrams of embodi-
ments of a dispersed storage network (DSN) that include a
set of storage units, a network 24, and one or more devices
(e.g., a first device 480, a second device 490). Each storage
unit may be the distributed storage and task (DST) execution

10

15

20

25

30

35

40

45

50

55

60

65

48
unit of FIG. 1. The network 24 may be the network 24 of
FIG. 1. Each device 480, 490 includes a DST client module
34 of FIG. 1. Each device 480, 490 may be the user device
12 of FIG. 1.

The DSN functions to store data from the first device 480
and the second device 490 while avoiding a write conflict.
The data may be revised from time to time producing revised
data of an associated revision level. The write conflict
includes attempting to write a revision of the data that
associated with a revision level that is not greater than all
revision levels associated with currently stored recoverable
revisions of the data. For example, the write conflict is
produced when the first device writes a first revision fol-
lowed in time by the second device attempting to write the
first revision. As another example, the write conflict is
produced when the first device attempts to write a third
revision of the data when a fourth revision of the data is
recoverable from the DSN.

The DST client module 34 encodes the data using a
dispersed storage error coding function to produce a plural-
ity of sets of encoded data slices. The DST client module 34
associates a common revision level with each encoded data
slice based on one or more of a revision level associated with
a previously produced revision of the data, initiating a list
command, receiving a list response, receiving a message
from another device, and performing a lookup. When the
data is revised, the DST client module 34 encodes the
revised data to produce a plurality of sets of revised encoded
data slices. Next, the DST client module 34 associates
another common revision level with each revised encoded
data slice. As a specific example, the DST client module 34
associates a revision number of 4 as the revision level for
each of the revised encoded data slices when a revision
number of 4 was the revision level for each of the encoded
data slices associated with the data prior to revision.

In an example of writing the revised data to the set of
storage units with reference to FIG. 43A, the DST client
module 34 of the first device 480 sends a set of write revision
requests 482 to the storage units of the DSN. Each write
revision request 1-n includes a slice name and a revision
number corresponding to a revision level of a revised
encoded data slice to be stored in the DSN. The write
revision request may further include the revised encoded
data slice of the respective revised encoded data slices.
Alternatively, the write revision request does not include the
revision number when the storage units utilize a method to
generate a write revision response that doesn’t require the
revision number as is discussed in more detail below. FIGS.
43C-D are timing diagrams illustrating examples of timing
of writing data from the DST client module 34 to DST EX
unit 1. In particular, FIG. 43C illustrates an example when
the DST client module 34 sends write revision request 1 of
the set of write revision request 482 to DST EX unit 1, where
the write revision request includes a slice name, a revision
number of 4, and a revised encoded data slice of revision 4.
The DST EX unit 1 temporarily stores (e.g., non-retrievable
while temporarily stored) the revised encoded data slice of
revision 4 and issues a write revision response 1 to the DST
client module 34. Having detected no conflict issue, the DST
client module 34 issues a commit request 1 to the DST EX
unit 1. The DST DX unit 1 non-temporarily stores the
encoded data slice of revision 4 (e.g., changing its status to
retrievable from non-retrievable).

FIG. 43D illustrates another example when the DST client
module 34 sends the write revision request 1 to the DST EX
unit 1, where the write revision request includes the slice
name and the revision number of 4 (e.g., no slice). The DST

US 9,483,539 B2

49

EX unit 1 issues the write revision response 1 to the DST
client module 34. Having detected no conflict issue, the DST
client module 34 issues a write commit request 1 to the DST
EX unit 1 that includes the revised encoded data slice of
revision 4. The DST DX unit 1 non-temporarily stores the
encoded data slice of revision 4.

Returning to the discussion of FIGS. 43A-B, having
received a write revision request, each of the storage units
locks the slice name for the write revision request. While the
slice name is locked for the write revision request, one of the
storage units may receive a second write revision request
regarding the slice name from another device of the DSN
(e.g., the second user device 490). When the second write
revision request is received, the storage unit sends a write
error message to the other device (e.g., indicating a lock
error status). The other device may try again when the lock
is lifted upon completion of processing the write revision
request from the first device 480.

The set of storage units further processes the set of write
revision requests to generate a set of write revision
responses 484 regarding a potential write conflict issue
based on the revision number and send the set of write
revision responses 484 to the first device 480. FIGS. 43E-H
are timing diagrams illustrating examples of timing of
sending a write revision response from DST EX unit 1 to the
DST client module 34 in response to writing of data. As a
specific example of FIG. 43E, the DST client module 34
issues a write revision request 1 to the DST EX unit 1 that
includes a slice name and a revision 4. The DST EX unit 1
generates a write revision response 1 to include a list of
revision numbers 1-3 that corresponds to a number of
revised encoded data slices having the slice name that the
DST EX unit 1 is storing. As another specific example of
FIG. 43F, DST EX unit 1 generates the write revision
response 1 to include a most recent revision number 3
corresponding to a most recently stored one of the respective
revised encoded data slices. As yet another specific example
of FIG. 43G, the DST EX unit 1 generates the write revision
response 1 to include a favorable revision number indication
4 and in FIG. 43H generates the write revision response 1 to
include an unfavorable revision number indication 3. For
instance, the DST EX unit 1 compares a most recent revision
number 3 corresponding to a most recently stored one of the
respective revised encoded data slices to the revision num-
ber 4 of FIG. 43G or 3 of FIG. 43H. In the example of FIG.
43G, when the most recent revision number 3 is less than the
revision number 4, the DST EX unit 1 indicates the favor-
able revision number indication 4. In the example of FIG.
43H, when the most recent revision number 3 is greater than
or equal to the revision number 3, the DST EX unit 1
indicates the unfavorable revision number indication 3.

Returning to the discussion of FIGS. 43A-B, the first
device 480 receives the write revision responses 484 from at
least some of the storage units to produce a set of received
write revision responses. The DST client module 34 inter-
prets the set of received write revision responses to deter-
mine whether the write conflict issue exists. As a specific
example, when the storage unit generates the write revision
response to include the list of revisions, the first device 480
interprets the lists of revision numbers of the set of received
write revision responses in view of the revision number by
comparing a most recent revision number of the lists of
revision numbers to the revision number. When at least a
decode threshold number of the lists of revision numbers
compare favorably to the revision number, the first device
480 indicates that the write conflict issue does not exist. As
another specific example, when the storage unit generates

25

35

40

45

50

50

the write revision response to include the most recent
revision number, the first device 480 interprets the most
recent revision numbers of the set of received write revision
responses in view of the revision number and when at least
a decode threshold number of the most recent revision
numbers compare favorably (e.g. less than) to the revision
number, the first device 480 indicates that the write conflict
issue does not exist. As yet another specific example, when
the storage unit generates the write revision response to
include the favorable or unfavorable revision number indi-
cation, the first device 480 interprets the set of received write
revision responses by indicating that the write conflict issue
does not exist when at least a decode threshold number of
favorable revision number indications were received.

When the write conflict issue does not exist, the first
device 480 issues a set of next phase write requests 486 to
the storage units regarding storing the respective revised
encoded data slices. For example, next phase write request
1 includes the revised encoded data slice of the respective
revised encoded data slices when the revised encoded data
slice was not included in the write revision request 1. As
another example, the next phase write request 1 includes a
commit request 1 to instruct the DST EX unit 1 to non-
temporarily store the revised encoded data slice that was
included in the write revision request 1.

FIG. 43B further illustrates an example when the write
conflict issue does exist. In an example of operation, the
second device 490, at time t, issues a set of write revision x
requests 482 to the set of storage units. DST EX units 1-n
temporarily stores a set of revised encoded data slices
associated with revision x at approximately time t. The set
of storage units issues write revision responses 1-n 484 with
regards to revision x to the second device 490 indicating that
a most recent revision associated with the set of revised
encoded data slices has a revision number of x-1 (e.g., no
conflict since x-1<x). Having detected no conflicts, the
second device 490 issues a set of commit requests 1-n as
next phase write requests 486 1-n to the set of storage units
to non-temporarily store the set of revised encoded data
slices associated with revision x. Subsequent to completion
of writing the set of revised encoded data slices associated
with revision x from the second device 490, the first device
480, at time t+delta t, issues another set of write revision x
requests 482 to the set of storage units that includes another
set of revised encoded data slices associated with a revision
number of x. The set of storage units issues write revision
responses 484 with regards to revision X to the first device
480 indicating that a most recent revision associated with the
set of revised encoded data slices has a revision number of
x (e.g., conflict since x not <x). Having detected the write
conflict, the first device 480 issues a set of rollback requests
488 regarding aborting storage of respective revised
encoded data slices (e.g., delete the other set of revised
encoded data slices from the first device 480).

FIGS. 431-K are timing diagrams illustrating examples of
writing data to the set of storage units further illustrating the
DST client module 34 issuing the set of write revision
requests 482 to the set of storage units (e.g., DST EX units
1-3), the set of storage units issuing a set of write revision
responses 1-3, and the DST client module 34 issuing a set of
commit requests 492 (e.g., FIGS. 431-J) when determining
to proceed with storage of the set of revised encoded data
slices or alternatively issuing a set of rollback requests 488
(e.g., FIG. 43K) when determining not to proceed with
storage of the set of revised encoded data slices. The FIGS.
431-K further illustrate a storage system with a decode
threshold is 2 and a set of storage units that includes 3

US 9,483,539 B2

51

storage units (e.g., pillar width of 3). The DST client module
34 issues the set of write revision requests 482 that includes
the revised encoded data slice of revision 4 to the set of
storage units. Each of the storage units issues a write
revision response to the DST client module 34.

In an example of proceeding with storage of the revised
set of encoded data slices when no conflict exists, FIG. 431
includes the storage units that have previously stored dif-
ferent revisions of sets of revised encoded data slices such
that revision 2 is a most recently written revision that is
recoverable and each storage unit has a different most recent
revision. The first storage unit issues a write revision
response 1 that includes a revision list of revisions 1-3. The
second storage unit issues a write revision response 2 that
includes a revision list of revisions 1-2. The third storage
unit issues a write revision response 3 that includes a
revision list of revisions 1 and 3. Alternatively, any storage
unit may issue a corresponding write revision response that
includes another format such as favorable/unfavorable and a
most recent revision number. Having received the set of
write revision responses 1-3, the DST client module 34
interprets the set of write revision responses to determine
that no conflict exists and to proceed with issuing a set of
commit requests 492 to the set of storage units. As a specific
example, the DST client module 34 interprets the set of
received revision lists to identify a revision 2 as a most
recent recoverable revision. Next, the DST client module 34
determines that no conflict exists since revision 4 is greater
than revision 2. As another specific example when the set of
storage units issues favorable/unfavorable format write revi-
sion responses, the DST client module 34 determines that no
conflict exists since the decode threshold number of the
storage units sends favorable write revision responses (e.g.,
all storage units send favorable responses since 4>3 and
4>2). As yet another specific example when the set of
storage units issues the most recent revision format write
revision responses, the DST client module 34 determines
that no conflict exists since the decode threshold number of
storage units (e.g., storage units 1 and 3) sends a most recent
revision of 3 which is less than 4.

In an example of proceeding with storage of the revised
set of encoded data slices when some conflict exists, FIG.
43] includes the storage units that have previously stored
different revisions of sets of revised encoded data slices such
that revision 2 is a most recently written revision that is
recoverable and each storage unit has a different most recent
revision (e.g., storage unit 1 has rev 4, unit 2 has rev 2, and
unit 3 has rev 3). The first storage unit issues a write revision
response 1 that includes a revision list of revisions 1, 2, 4.
The second storage unit issues a write revision response 2
that includes a revision list of revisions 1-2. The third
storage unit issues a write revision response 3 that includes
a revision list of revisions 1 and 3. Alternatively, any storage
unit may issue a corresponding write revision response that
includes another format such as favorable/unfavorable and a
most recent revision number. Having received the set of
write revision responses 1-3, the DST client module 34
interprets the set of write revision responses to determine
that, while a conflict exists with storage unit 1, to proceed
with issuing a set of commit requests 492 to the set of
storage units. As a specific example, the DST client module
34 interprets the set of received revision lists to identify a
revision 2 as a most recent recoverable revision. Next, the
DST client module 34 determines that no conflict exists
since revision 4 is greater than revision 2. As another
specific example when the set of storage units issues favor-
able/unfavorable format write revision responses, the DST

10

15

20

25

30

35

40

45

50

55

60

65

52

client module 34 determines that no conflict exists since the
decode threshold number of the storage units sends favor-
able write revision responses (e.g., storage units 2-3 send
favorable responses since 4>2 and 4>3 while storage unit 1
sends an unfavorable response since 4 not >4). As yet
another specific example when the set of storage units issues
the most recent revision format write revision responses, the
DST client module 34 determines that, while a conflict exists
with storage unit 1, proceed with the set of commit requests
492 since the decode threshold number of storage units (e.g.,
storage units 2 and 3) sends a most recent revision of 2 and
3 which is less than 4.

In an example of not proceeding with storage of the
revised set of encoded data slices when some conflict exists,
FIG. 43K includes the storage units that have previously
stored different revisions of sets of revised encoded data
slices such that revision 5 is a most recently written revision
that is recoverable and the storage unit has a variety of most
recent revisions (e.g., storage unit 1 has rev 5, unit 2 has rev
5, and unit 3 has rev 1). The first storage unit issues a write
revision response 1 that includes a revision list of revisions
1 and 5. The second storage unit issues a write revision
response 2 that includes a revision list of revisions 1 and 5.
The third storage unit issues a write revision response 3 that
includes a revision list of revision 1. Alternatively, any
storage unit may issue a corresponding write revision
response that includes another format such as favorable/
unfavorable and a most recent revision number. Having
received the set of write revision responses 1-3, the DST
client module 34 interprets the set of write revision
responses to determine that one or more a conflicts exists
and to issue a set of rollback requests 488 to the set of
storage units (e.g., instead of commit requests). As a specific
example, the DST client module 34 interprets the set of
received revision lists to identify a revision 5 as a most
recent recoverable revision. Next, the DST client module 34
determines that the write conflict exists since revision 4 is
not greater than revision 5. As another specific example
when the set of storage units issues favorable/unfavorable
format write revision responses, the DST client module 34
determines that conflict exists since a decode threshold
number of the storage units is not send favorable write
revision responses (e.g., storage units 1 and 2 send unfa-
vorable responses since 4 not >5 while storage unit 3 sends
a favorable response since 4>1). As yet another specific
example when the set of storage units issues the most recent
revision format write revision responses, the DST client
module 34 determines that a conflict exists since the decode
threshold number of storage units (e.g., storage units 1 and
2) sends a most recent revision of 5 which is not less than
4.

FIG. 43L is a flowchart illustrating an example of storing
data. The method begins at step 500 where a first device of
a dispersed storage network (DSN) sends a set of write
revision requests to storage units of the DSN. Each write
revision request of the set of write revision requests includes
a slice name and a revision number corresponding to a
revision level of a revised encoded data slice to be stored in
the DSN. The write revision request may further include the
revised encoded data slice of the respective revised encoded
data slices. Alternatively, the write revision request does not
include the revision number when the storage units utilize a
method to generate a write revision response that doesn’t
require the revision number (e.g., a revision list, a most
revision) and the revised encoded data slice will be sent later
along with a revision number.

US 9,483,539 B2

53

The method continues at step 502 where one of the
storage units locks the slice name for a corresponding one of
the set of write revision requests. While the slice name is
locked for the corresponding one of the set of write revision
requests, the method continues at step 504 where the one of
the storage units receives from a second device of the DSN,
a second write revision request regarding the slice name
(e.g., same slice name). Alternatively, when not receiving
the second write revision request, the method branches to
step 508. The method continues at step 506 where the one of
the storage units sends a write error message to the second
device when the one of the storage units receives the second
write revision request regarding the slice name.

The method continues at step 508 where the one of the
storage units generates a write revision response regarding a
potential write conflict issue based on the revision number.
As a specific example, the one of the storage units generates
the write revision response to include a list of revision
numbers that corresponds to a number of revised encoded
data slices having the slice name that the one of the storage
units is storing. As another specific example, the one of the
storage units generates the write revision response to include
a most recent revision number corresponding to a most
recently stored one of the respective revised encoded data
slices. As yet another specific example, the one of the
storage units generates the write revision response to include
a favorable or unfavorable revision number indication. For
instance, the one of the storage units compares a most recent
revision number corresponding to a most recently stored one
of the respective revised encoded data slices to the revision
number. When the most recent revision number is less than
the revision number, the one of the storage units indicates
the favorable revision number indication. When the most
recent revision number is greater than or equal to the
revision number, the one of the storage units indicates the
unfavorable revision number indication.

The method continues at step 510 where the first device
receives the write revision responses from at least some of
the storage units to produce a set of received write revision
responses. The method continues at step 512 where the first
device interprets the set of received write revision responses
to determine whether a write conflict issue exists. As a
specific example, when the storage unit generates the write
revision response to include the list of revision, the first
device interprets the lists of revision numbers of the set of
received write revision responses in view of the revision
number by comparing a most recent revision number of the
lists of revision numbers to the revision number. When at
least a decode threshold number of the lists of revision
numbers compare favorably to the revision number, the first
device indicates that the write conflict issue does not exist.

As another specific example, when the storage unit gen-
erates the write revision response to include the most recent
revision number, the first device interprets the most recent
revision numbers of the set of received write revision
responses in view of the revision number and when at least
a decode threshold number of the most recent revision
numbers compare favorably (e.g., less than) to the revision
number, the first device indicates that the write conflict issue
does not exist. As yet another specific example, when the
storage unit generates the write revision response to include
the favorable or unfavorable revision number indication, the
first device interprets the set of received write revision
responses by indicating that the write conflict issue does not
exist when at least a decode threshold number of favorable
revision number indications were received.

25

30

40

45

55

54

When the write conflict issue exists, the method continues
at step 514 where the first device issues a set of write roll
back requests to the storage units regarding aborting storage
of respective revised encoded data slices. As a specific
example, the first device generates a rollback request to
include one or more of a corresponding slice name, the
revision number, and a transaction number associated with
the set of write revision requests. When the write conflict
issue does not exist, the method continues at step 516 where
the first device issues a set of next phase write requests to the
storage units regarding storing the respective revised
encoded data slices. As a specific example, the first device
generates a next phase write request to include a write
commit request including one or more of the corresponding
slice name, the revision number, and the transaction number
associated with the set of write revision requests.

FIGS. 44A-B are schematic block diagrams of more
embodiments of a dispersed storage network (DSN) that
include a first device 520, a second device 526, a network
24, and a set of distributed storage and task (DST) execution
units 1-n. The first device 520 may be the user device 12 of
FIG. 1. A second device 526 may be the DST processing unit
16 of FIG. 1. The first and second devices 520, 526, include
the DST client module 34 of FIG. 1. Each DST execution
unit of the set of DST execution units 1-n may be the DST
execution unit 36 of FIG. 1. Each DST execution unit
includes the processing module 84 of FIG. 3.

Data is segmented to produce a plurality of data segments.
A data segment of the plurality of data segments is dispersed
storage error encoded to produce a set of encoded data
slices. A plurality of sets of encoded data slices is stored in
the set of DST execution units 1-n. Each of the DST
execution units stores a different portion of the data. The
different portion of the data corresponds to one or more
encoded data slices of one or more sets of encoded data
slices.

Each DST client module 34 stores a copy of the data by
caching in local memory (e.g., of the DST client module 34,
of the first and second devices). One or more local memory
revision numbers correspond to the different portions of the
data that are cached in the local memory. For example, the
DST client module 34 of the first device 520 stores a set of
portions A 1-n (e.g. corresponding to data A) that correspond
to a second revision of data A. As a specific example of
determining the one or more local memory revision num-
bers, the DST client module 34 determines a common
revision number (e.g., rev 2) for the different portions of the
data as the one or more local memory revision numbers. As
another specific example, the DST client module 34 deter-
mines a local revision number (e.g., rev 2) for each of the
different portions of the data as the one or more local
memory revision numbers.

From time to time, each DST client module 34 updates
storage of the copy of the data when a newer revision of the
data is stored in the set of DST execution units 1-n. FIG. 44A
illustrates an example of the updating when the copy of the
data does not require the updating and FIG. 44B illustrates
another example of the updating when the copy of the data
requires the updating. When the copy of data is cached in the
local memory of the first device 520, the DST client module
34 sends, via the network 24, read-if-revised requests 522 to
the set of DST execution units 1-n as a set of read if revised
requests 1-n. The read-if-revised requests 522 includes a
name of the data (e.g., a DSN address, a slice name) and the
one or more local memory revision numbers corresponding
to the different portions of the data that are cached in the
local memory. As a specific example, the DST client module

US 9,483,539 B2

55

34 sends the read-if-revised requests 522 as a query to
determine whether the data cached in the local memory is
outdated (e.g., based on detecting a potentially outdated
encoded data slice). As another specific example, the first
device sends the read-if-revised requests 522 as a read
request to read the data from the set of DST execution units
(e.g., an active process requires the data within the DST
client module 34). As yet another specific example, the DST
client module 34 sends the read-if-revised requests in
response to a scheduled task (e.g., check data synchroniza-
tion every two minutes).

Having received a read if modified request 1, DST execu-
tion unit 1 determines whether a revision number of one of
the different portions of the data stored by the DST execu-
tion unit 1 is a more recent revision number than the one or
more local memory revision numbers of the read if modified
request 1 (e.g., more recent when revision number greater
than revision number of the request). When the revision
number of the one of the different portions of the data stored
by the DST execution unit 1 is not the more recent revision
number than the one or more local memory revision num-
bers, the DST execution unit 1 sends a read response 1 that
includes an indication that, with respect to the one of the
different portions of the data, the data cached in the local
memory by the DST client module 34 of the first device 520
is a current revision level of the data (e.g., the revision
number of the DST execution unit 1 is equal to or less than
the one or more local memory revision numbers).

FIGS. 44C-E are timing diagrams illustrating examples of
timing of reading data and providing read responses that
includes the DST client module 34 and the DST execution
unit 1. In particular, FIG. 44C illustrates an example of DST
execution unit 1 sending the read response 1 that includes
the indication that the data cached in the local memory by
the DST client module 34 is the current revision level of the
data. As a specific example, the DST execution unit 1 sends
the read response 1 to include a list of revision numbers
(e.g., rev 1, 2 for data name A) corresponding to the one of
the different portions of the data. As another specific
example, the DST execution unit 1 sends the read response
1 to include the more recent revision number (e.g., revision
2). As yet another specific example, the DST execution unit
1 sends the read response 1 to include a favorable indication
(e.g., favorable to indicate that the one or more local
memory revision numbers are not outdated).

FIGS. 44F-H are timing diagrams illustrating examples of
reading data and providing read responses that includes the
DST client module 34 and a set of DST execution units 1-3
when a pillar width is three and a decode threshold is 2. In
particular, FIG. 44F illustrates the example when the data
cached in the local memory by the DST client module 34 is
the current revision level of the data. For instance, the DST
client module 34 stores portions of data A corresponding to
a third revision level and each of the DST execution units
stores portions of data A corresponding to revisions 1-3. The
DST client module 34 sends a read if modified requests to
the set of DST execution units. For the example, the DST
client module 34 sends the read if modified request to DST
execution unit 1 with regards to a first portion of data A of
revision 3. Each of the DST execution units sends a read
response that includes an indication that the data cached in
the local memory is the current revision level of the data. For
example, DST execution unit 2 sends a read response that
includes, for a second portion of data A, a revision list of
revisions 1-3. Accordingly, the portions of data A cached the
DST client module 34 do not require updating.

10

15

20

25

30

35

40

45

50

55

60

56

Returning to the discussion of FIG. 44A, the DST client
module 34 of the first device 520 receives read responses
524 from the set of DST execution units 1-n as read
responses 1-n (e.g., confirming that the data cached in local
memory is a current revision level of the data). When the
revision number of one of the different portions of the data
stored by the DST execution unit 1 is less than the one or
more local memory revision numbers, the DST execution
unit 1 initiates rebuilding of the one of the different portions
of'the data. For example, the DST execution unit 1 performs
the rebuilding. As another example, the DST execution unit
1 issues a rebuilding request to a rebuilding entity of the
DSN, where the rebuilding request includes identity of the
one of the different portions of the data.

The DST execution unit 1 determines whether, based on
the name of the data received in the read if revised request
1, a new portion of the data is stored by the DST execution
unit 1 (e.g., additional encoded data slices of additional data
segments). When the DST execution unit 1 determines that
the new portion of the data is stored by the DST execution
unit 1, the DST execution unit 1 sends the read response 1
to further include the new portion of the data (e.g., the
additional encoded data slices). The DST client module 34
caches the new portion of the data in the local memory.

FIG. 44B illustrates another example of the updating of
the storage of the copy of the data when the newer revision
of the data is stored in the set of DST execution units 1-n.
The second device 526 creates a revised version 3 of the data
A and, at time t, issues a set of write requests 528 to the set
of DST execution units 1-n as write requests 1-n. The set of
DST execution units 1-n, at time t, store revisions 2-3 of the
portions of data A. first device 520 stores the copy of data
A with revision level 2 prior to time t. Subsequent to time t,
the DST client module 34 of the first device 520 sends, at
time t+delta t, read if revised requests 522 to the set of DST
execution units 1-n with regards to portions 1-n of data A
stored in the local memory with the revision level of 2. The
set of DST execution units 1-n receives read if revised
requests 1-n regarding revision 2 (e.g., the one or more local
memory revision numbers).

When the revision number of the one of the different
portions of the data stored by the DST execution unit 1 is the
more recent revision number than the one or more local
memory revision numbers, the DST execution unit 1 sends
sending a read response 1 that includes the one of the
different portions of the data to the to the DST client module
34 of the first device 520 (e.g., the revision number of the
DST execution unit 1 is greater than the one or more local
memory revision numbers). The read response further
includes at least one of the list of revision numbers (e.g., rev
2-3) corresponding to the one of the different portions of the
data, the more recent revision number (e.g., 3), and an
unfavorable indication (e.g., unfavorable to indicate that the
one or more local memory revision numbers of rev 2 are
outdated). The DST client module 34 of the first device 520
updates caching of the data in the local memory to include
the one of the different portions of the data (e.g., the first
device stores a newer revision 3 from the set of DST
execution units 1-n).

FIGS. 44D-E illustrate examples of timing of reading data
and providing the read responses when the one of the
different portions of the data stored by the DST execution
unit 1 is the more recent revision number than the one or
more local memory revision numbers (e.g., rev 2). In
particular, FIG. 44D illustrates an example of DST execu-
tion unit 1 sending the read response 1 that includes the
indication that the data cached in the local memory by the

US 9,483,539 B2

57

DST client module 34 is not the current revision level of the
data and the one of the different portions (e.g., revision 3 of
portion 1 of data A). As a specific example, the DST
execution unit 1 sends the read response 1 to include a list
of revision numbers (e.g., rev 1, 2, 3 for data name A)
corresponding to the one of the different portions of the data.
As another specific example, the DST execution unit 1 sends
the read response 1 to include the more recent revision
number (e.g., revision 3). As yet another specific example,
the DST execution unit 1 sends the read response 1 to
include an unfavorable indication (e.g., unfavorable to indi-
cate that the one or more local memory revision numbers are
outdated since 3>2).

FIG. 44D-E illustrates examples of DST execution unit 1
sending the read response 1 that includes the indication that
the data cached in the local memory by the DST client
module 34 is not the current revision level of the data and the
one of the different portions (e.g., revisions 3 and 4 of
portion 1 of data A). As a specific example, the DST
execution unit 1 sends the read response 1 to include a list
of revision numbers (e.g., rev 2, 3, 4 for data name A)
corresponding to the one of the different portions of the data.
As another specific example, the DST execution unit 1 sends
the read response 1 to include the more recent revision
number (e.g., revision 4). As yet another specific example,
the DST execution unit 1 sends the read response 1 to
include an unfavorable indication (e.g., unfavorable to indi-
cate that the one or more local memory revision numbers are
outdated since 4>2).

FIGS. 44G-H illustrates examples of DST execution units
1-3 sending the read responses 1-3 that includes the indica-
tion that the data cached in local memory by the DST client
module 34 is not the current revision level of the data and the
one or more different portions. The DST client module 34
stores portions of data A comment where a first and third
portions corresponds to a revision level 3 and a second
portion corresponds to a revision level 2. In particular, FIG.
44G illustrates an example when each of the DST execution
units stores portions of data A corresponding to revisions
1-3. The DST client module 34 sends read if modified
requests to DST execution units 1 and 3 with regards to
revision 3 and another read if modified request to DST
execution unit 2 with regards to revision 2. The DST
execution units 1 and 3 sends read responses that includes an
indication that the data cached in the local memory is the
current revision level of the data. For example, the DST
execution units 1 and 3 sends the read response that includes
a revision list of revisions 1-3. Accordingly, the first and
third portions of data A cached by the DST client module 34
do not require updating. The DST execution unit 2 sends a
read response that includes the third revision of the second
portion of data A and an indication that the data cached in the
local memory is not the current revision level of the data. For
example, the DST execution unit 2 sends the read response
that includes the third revision of the second portion of data
A and the revision list of revisions 1-3. Accordingly, the
DST client module 34 updates the second portion of data A
with the third revision.

FIG. 44H illustrates another example when each of the
DST execution units stores portions of data A corresponding
to revisions 2-4. The DST client module 34 sends read if
modified requests to DST execution units 1 and 3 with
regards to revision 3 and another read if modified request to
DST execution unit 2 with regards to revision 2. The DST
execution units 1 and 3 sends read responses that includes a
fourth revision of the first and third portions of data A and
an indication that the data cached in the local memory is not

10

15

20

25

30

35

40

45

50

55

60

65

58

the current revision level of the data. The DST execution
unit 2 sends a read response that includes the third and fourth
revisions of the second portion of data A and an indication
that the data cached in the local memory is not the current
revision level of the data. Accordingly, the DST client
module 34 updates each portion 1-3 of data A with the fourth
revisions.

FIG. 441 is a flowchart illustrating an example of reading
data. When a copy of data is cached in local memory of a
first device of a distributed storage network (DSN), the
method begins at step 530 where the first device sends
read-if-revised requests to storage units of the DSN. Each of
the storage units stores a different portion of the data. The
read-if-revised requests includes a name of the data (e.g., a
DSN address, a slice name) and one or more local memory
revision numbers corresponding to the different portions of
the data that are cached in the local memory. The data is
segmented to produce a plurality of data segments. A data
segment of the plurality of data segments is dispersed
storage error encoded to produce a set of encoded data
slices. A plurality of sets of encoded data slices is stored in
the storage units. The different portion of the data corre-
sponds to one or more encoded data slices of one or more
sets of encoded data slices. As an example of sending the
read-if-revised requests, the first device sends the read-if-
revised requests as a query to determine whether the data
cached in the local memory is outdated. As another example,
the first device sends the read-if-revised requests as a read
request to read the data from the storage units. As yet another
example, the first device sends the read-if-revised requests in
response to a scheduled task. As an example of determining
the one or more local memory revision numbers, the first
device determines a common revision number for the dif-
ferent portions of the data as the one or more local memory
revision numbers. As another example, the first device
determines a local revision number for each of the different
portions of the data as the one or more local memory
revision numbers.

The method continues at step 532 where a storage unit of
the storage units determines whether a revision number of
one of the different portions of the data stored by the storage
unit is a more recent revision number than the one or more
local memory revision numbers. The method branches to
step 538 when the storage unit determines that the revision
number of the one of the different portions of the data stored
by the storage unit is not the more recent revision than the
one or more local memory revision numbers. The method
continues to step 534 when the storage unit determines that
the revision number of the one of the different portions of the
data stored by the storage unit is the more recent revision
than that one or more local memory revision numbers.

When the revision number of the one of the different
portions of the data stored by the storage unit is the more
recent revision number than the one or more local memory
revision numbers, the method continues at step 534 where
the storage unit sends sending a read response that includes
the one of the different portions of the data to the first device
(e.g., the revision number of the storage unit is greater than
the one or more local memory revision numbers). The read
response includes at least one of a list of revision numbers
corresponding to the one of the different portions of the data,
the more recent revision number, and an unfavorable indi-
cation (e.g., unfavorable to indicate that the one or more
local memory revision numbers are outdated). The method
continues at step 536 where the first device updates caching
of the data in the local memory to include the one of the

US 9,483,539 B2

59

different portions of the data (e.g., the first device stores a
newer revision from the storage unit). The method branches
to step 542.

When the revision number of the one of the different
portions of the data stored by the storage unit is not the more
recent revision number than the one or more local memory
revision numbers, the method continues at step 538 where
the storage unit sends a read response that includes an
indication that (e.g., list of revision numbers, a most recent
revision number, a favorable indication), with respect to the
one of the different portions of the data, the data cached in
the local memory is a current revision level of the data (e.g.,
the revision number of the storage unit is equal to or less
than the one or more local memory revision numbers). When
the revision number of one of the different portions of the
data stored by the storage unit is less than the one or more
local memory revision numbers, the method continues at
step 540 where the storage unit initiates rebuilding of the one
of the different portions of the data.

The method continues at step 542 where the storage unit
determines, based on the name of the data, that a new portion
of the data is stored by the storage unit (e.g., additional
encoded data slices of additional data segments). The
method continues at step 544 where the storage unit sends
the read response to further include the new portion of the
data (e.g., the additional encoded data slices).

FIG. 45A is a schematic block diagram of another
embodiment of a distributed computing system that includes
a plurality of user devices 12, a plurality of distributed
storage and task (DST) processing units 16, and the distrib-
uted storage and task network (DSTN) managing unit 18 of
a DSTN of FIG. 1. The system functions to authenticate the
plurality of user devices 12 and to authorize DSTN access
requests 560 from the plurality of user devices 12.

In an example of operation to authenticate a user device
12, the user device 12 generates an authentication request
550. The authentication request 550 includes one or more of
a user name associated with the user device 12 and a user
device password associated with the user device 12. The
user device 12 sends the authentication request 550 to a DST
processing unit 16. The DST processing unit 16 generates a
proxied authentication request 552 based on the authentica-
tion request 550. The proxied authentication request 552
includes one or more of the username, the user device
password, a DST identifier (ID) associated with the DST
processing unit 16, a DST processing unit public key of a
public-private key pair, and a signed certificate (e.g., signed
by a certificate authority of the DSTN). The DST processing
unit 16 sends the proxied authentication request five and 52
to the DSTN managing unit 18.

The DSTN managing unit 18 authenticates the proxied
authentication request 552 by a series of steps. A first step
includes comparing the username and DST ID to an entry of
allowed user device/DST processing unit principal associa-
tions maintained by an access control list (ACL). The
principal associations identify two or more principals that
are required to operate together. When the comparison is
favorable (e.g., an allowed pairing or association), a second
step includes verifying the signed certificate utilizing the
DST processing unit public key in accordance with a cer-
tificate verification approach. For example, the DSTN man-
aging unit 18 decrypts a signature of the signed certificate
utilizing at least one of the DST processing unit public key
and a public key associated with the certificate authority to
produce a decrypted signature. The DSTN managing unit 18
verifies the signed certificate as valid when the decrypted
signature compares favorably (e.g., substantially the same)

10

15

20

25

30

35

40

45

50

55

60

65

60

to a result produced by performing a deterministic function
(e.g., a hashing function) on the signed certificate. Other
verification procedures may be utilized. The DSTN manag-
ing unit 18 indicates that the proxied authentication request
552 is authenticated when the comparison is favorable.

When the DSTN managing unit 18 indicates that the
proxied authentication request 552 is authenticated, the
DSTN managing unit 18 generates a proxied authentication
response 554 that includes an indication that the authenti-
cation request 552 is favorably authenticated. When the
DSTN managing unit 18 indicates that the proxied authen-
tication request 552 is not authenticated, the DSTN manag-
ing unit 18 generates a proxied authentication response 554
that includes one or more of an indication that the authen-
tication request 550 is not authenticated and allowable
principal associations that include the user device 12. The
DSTN managing unit 18 sends the proxied authentication
response 554 to the DST processing unit 16. The DST
processing unit 16 generates an authentication response 558
based on the proxied authentication response 554. The
authentication response 558 includes one of an authenticated
indicator and a not authenticated indicator. When the authen-
tication response 558 includes the not authenticated indica-
tor, the authentication response 558 further includes the
allowable principal associations. The user device 12 may
access a different DST processing units 16 to achieve a
favorable allowable principal association for a subsequent
authentication request 550 based on the authentication
response 558.

In an example of operation to authorize the user device
12, the DSTN managing unit 18 distributes an access control
list 556 to the plurality of DST processing units 16 for
utilization during an access request sequence. The access
control list 556 includes a plurality of entries. An entry of the
plurality of entries includes a vault ID, an access type,
principal IDs, and a principal threshold number. One or
more user devices 12 of the plurality of user devices 12 each
generates the access request 560 that includes an access type
and a user device ID. The user device 12 sends the access
request 560 to an associated DST processing unit 16. The
DST processing unit 16 authorizes the access request 560 by
a series of steps. A first step includes verifying that the user
device 12 is favorably authenticated. A second step includes
comparing user device ID and access type of the access
request 560 to the access control list 556 to determine
whether the access request 560 is allowed. For example, the
DST processing unit 16 allows the access request 560 when
the access type and the user device 1D compares favorably
to an entry of the access control list 556 that includes the
access type and the user device ID. A third step includes
determining whether a number of the user device IDs
compares favorably (e.g., greater than) to the principal
threshold number when more than one user device is issuing
associated access request 560. For example, the DST pro-
cessing units 16 indicates that the one or more access
requests are authorized when the number of user device IDs
(e.g., received and compare favorably to the ACL entry) is
greater than or equal to the principal threshold number.

The DST processing unit 16 generates one or more access
responses 562 to include results of authorization of the one
or more access requests 560. An access response 562
includes one of an authorized indicator and a not authorized
indicator. When the access response includes the not autho-
rized indicator, the access response 562 may further include
the principal IDs and the principal threshold number. The
one more user devices 12 may coordinate generation of a
different one or more access requests 560 to achieve a

US 9,483,539 B2

61

favorable authorized indicator for a subsequent access
request scenario. The method to authorize the one more
access requests is described in greater detail with reference
to FIG. 45B.

FIG. 45B is a flowchart illustrating an example of authen-
ticating an access request. The method begins at step 564
where a processing module (e.g., of a distributed storage and
task (DST) processing unit) receives an access request from
a user device. The method continues at step 566 where the
processing module verifies authentication of the user device.
For example, the processing module checks a recently
authenticated list to verify that the user device has recently
been favorably authenticated.

When the authentication is favorably verified, the method
continues at step 568 where the processing module deter-
mines whether similar access requests from a principal
threshold number of the devices have been received. The
method branches to step 574 when similar access requests
from the principal threshold number of user devices have
been received. The method continues to step 570 when
similar access requests from the principal threshold number
of user devices have not been received. The method con-
tinues at step 570 where the processing module generates an
access response to include denial information. The denial
information includes one or more of a reason denied code,
identifiers of principals involved, identifiers of allowed
principals not involved, and the principal threshold number.
The method continues at step 572 where the processing
module outputs the access response to the user device.
Alternatively, or in addition to, the processing module sends
the access response to other associated principals (e.g., other
user devices).

The method continues at step 574 where the processing
module facilitates execution of the access request when the
similar access requests from the principal threshold number
of'user devices have been received. The facilitating includes
at least one of executing a read request, a write request, a list
request, etc. The method continues at step 576 where the
processing module generates an access response to include
a result of execution of the access request. For example, the
processing module generates the access response to include
an encoded data slice when the access request includes a
request to read the encoded data slice. As another example,
the processing module generates the access response to
include a write confirmation indicator when the access
request includes a request to write the encoded data slice.
The method continues at step 578 where the processing
module outputs the access response to the user device.
Alternatively, or in addition to, the processing module
outputs the access response to other requesting principals.

FIG. 46A is a schematic block diagram of another
embodiment of a distributed computing system that includes
a distributed storage and task (DST) client module 34 and a
plurality of DST execution units 36 of FIG. 1. In an example
of operation, the system stores data segments as sets of
encoded data slices 1-6 in the plurality of DST execution
units 36. The DST client module 34 encodes each data
segment using a dispersed storage error coding function to
produce a set of encoded data slices in accordance with
dispersal parameters. The dispersal parameters includes a
pillar width a decode threshold. The DST client module 34
may determine the dispersal parameters based on storage
conditions. The storage conditions includes one or more of
current dispersal parameters, a reliability goal, an availabil-
ity goal, a performance goal, an actual reliability level, an
actual availability level, an actual performance goal, and
estimates of one or more of reliability, availability, and

40

45

55

62

performance. For example, the DST client module 34 deter-
mines the dispersal parameters to include a pillar width of
six when six DST execution units 36 of the plurality of DST
execution units 36 are associated with favorable availability.
As another example, the DST client module 34 determines
the dispersal parameters to include a decode threshold of
four in accordance with an estimated reliability level when
the pillar width is six.

The determining of the dispersal parameters may be
dynamic as a function of changes of the storage conditions.
For example, the DST client module 34 determines the
dispersal parameters to include pillar width of five when one
of the previously available six DST execution units 36
becomes unavailable. As another example, the DST client
module 34 determines to update the decode threshold to
three in accordance with an estimated reliability level when
the pillar width is five. In addition, the DST client module
34 may retrieve at least one previously stored data segment
utilizing a previous set of dispersal parameters to reproduce
the data segment for re-encoding utilizing the dispersal
parameters for re-storage in an updated pillar width number
of the plurality of DST execution units 36. The method of
operation to store data utilizing using adaptively determined
dispersal parameters is discussed in greater detail with
reference to FIG. 46B.

FIG. 46B is a flowchart illustrating another example of
storing data. The method begins at step 580 where a pro-
cessing module (e.g., of a distributed storage and task (DST)
client module) receives a write request to store data in a
distributed storage and task network (DSTN) module. The
method continues at step 582 where the processing module
identifies a DST execution unit storage set associated with
the data (e.g., identify a vault based on an identifier of a
requesting entity by a registry lookup, identify the storage
set based on the vault ID by a lookup by a registry lookup).
The method continues at step 584 where the processing
module determines an availability level of the DST execu-
tion unit storage set. The availability level includes at least
one of how many DST execution units of the DST execution
unit storage set are not operational and which DST execution
units of the DST execution units storage set are operational.
The determining may be based on one or more of initiating
a test, initiating a query, receiving a response, and perform-
ing a lookup.

The method continues at step 586 where the processing
module determines whether to modify dispersal parameters
associated with the DST execution unit storage set based on
storage conditions including the availability level of the
DST execution unit storage set. For example, the processing
module determines to modify dispersal parameters when the
availability level of the DST execution unit storage set is less
than an availability level threshold. When modifying the
dispersal parameters, the method continues at step 588
where the processing module determines modified dispersal
parameters based on the dispersal parameters and the storage
conditions including the availability level of the DST execu-
tion unit storage set. For example, the processing module
determines modified dispersal parameters to include a pillar
width of six when the dispersal parameters includes a pillar
width of five and the availability level of the DST execution
unit storage set indicates that six DST execution units are
now available. As another example, the processing module
determines the modified dispersal parameters to include a
decode threshold of four when the dispersal parameters
includes a decode threshold of three and an estimated
reliability level of the DST execution unit storage set that

US 9,483,539 B2

63

includes six DST execution units compares favorably with a
reliability level threshold when utilizing the decode thresh-
old four.

The method continues at step 590 where the processing
module encodes the data using a dispersed storage error
coding function in accordance with the modified dispersal
parameters to produce a plurality of sets of encoded data
slices. The method continues at step 592 where the process-
ing module outputs the plurality of sets of encoded data
slices to at least some DST execution units (e.g., to available
units) of the DST execution unit storage set. The method
continues at step 594 where the processing module recovers
other data from the DST execution unit storage set utilizing
the dispersal parameters. The recovering includes retrieving
slices from available DST execution units and decoding the
retrieved slices using the dispersal parameters to reproduce
the other data. The method continues at step 596 where the
processing module encodes the other data using the dis-
persed storage error coding function in accordance with the
modified dispersal parameters to produce a plurality of sets
of modified encoded data slices. The method continues at
step 598 where the processing module outputs the plurality
of sets of modified encoded data slices to at least some DST
execution units (e.g., available units) of the DST execution
unit storage set.

FIG. 47 is a flowchart illustrating an example of rebuild-
ing data. The method begins at step 600 where a processing
module (e.g., of a distributed storage and task (DST) client
module) detects that less than a pillar width number of
encoded data slices of a set of encoded data slices of a
common revision are retrievable from a distributed storage
and task network (DSTN) module. The detecting includes at
least one of receiving a message, invoking a list query, and
comparing query responses. The method continues at step
602 where the processing module identifies dispersal param-
eters associated with a set of encoded data slices. The
identifying includes at least one of performing a registry
lookup, reading at least one encoded data slice of the set of
encoded data slices, and extracting the dispersal parameters
from the at least one encoded data slice.

When the less then the pillar width number of encoded
data slices includes at least a decode threshold number of
encoded data slices, the method continues at step 604 where
the processing module retrieves the at least the decode
threshold number of encoded data slices. The retrieving
includes generating at least a decode threshold number of
read slice requests for any available decode threshold num-
ber of encoded data slices of the set of encoded data slices,
outputting the at least the decode threshold number of reads
slice requests to the DSTN module, and receiving the least
the decode threshold number of encoded data slices.

The method continues at step 606 where the processing
module decodes the decode threshold number of encoded
data slices using a dispersed storage error coding function in
accordance with the dispersal parameters to reproduce a data
segment. The method continues at step 608 where the
processing module determines whether to rebuild one or
more encoded data slices such that when combined with the
less than the pillar width number of encoded data slices
reforms a full pillar width number of encoded data slices.
The determining may be based on one or more of the
dispersal parameters, a memory availability indicator, a
reliability goal, a performance goal, a request, a lookup, and
a predetermination. For example, the processing module
determines to rebuild the one or more encoded data slices
when a reliability goal indicates to always provide a full
pillar width number of encoded data slices. The method

25

30

35

40

45

64

branches to step 614 when the processing module deter-
mines not to rebuild the one or more encoded data slices.
The method continues to step 610 when the processing
module determines to rebuild the one or more encoded data
slices.

The method continues at step 610 where the processing
module encodes the data segment using the dispersed stor-
age error coding function in accordance with the dispersal
parameters to produce the one or more encoded data slices.
The method continues at step 612 where the processing
module facilitates storing the one or more encoded data
slices in the DSTN module associated with the common
revision. The facilitating includes, for each slice of the one
more encoded data slices, generating a write slice request
that includes the encoded data slice and a revision number
of the common revision.

The method continues at step 614 where the processing
module encodes the data segment using the dispersed stor-
age or coding function in accordance with the dispersal
parameters to reproduce the set of encoded data slices (e.g.,
full pillar width set) when the processing module determines
not to rebuild the one or more encoded data slices. The
method continues at step 616 where the processing module
facilitates storing the reproduced set of encoded data slices
in the DSTN module associated with a new revision. The
facilitating includes generating a set of write slice requests
that includes the set of encoded data slices and a new
revision number.

FIG. 48A is a schematic block diagram of another
embodiment of a distributed computing system that includes
the distributed storage and task (DST) client module 34, a
plurality of the DST processing unit 16, and the distributed
storage and task network (DSTN) module 22 of FIG. 1. The
system functions to store data 618 in the DSTN module 22.
The DST client module 34 encodes the data 618 (e.g., a data
segment) using a dispersed storage error coding function
utilizing first level dispersal parameters to produce a first
level set of encoded data slices 1-N. The first level dispersal
parameters includes a pillar width N and a decode threshold
K. The plurality of DST processing unit 16 includes a set of
N DST processing units 16.

The DST client module 34 sends the first level set of
encoded data slices 1-N to the set of DST processing unit 16.
Each DST processing unit 16 encodes a corresponding first
level encoded data slice using the dispersed storage error
coding function utilizing second level dispersal parameters
to produce a corresponding second level set of encoded data
slices 1-n. The second level dispersal parameters includes a
pillar width n and a decode threshold k. For example, a first
DST processing unit 16 of the set of DST processing units
16 encodes data slice 1 of the set of encoded data slices 1-N
using the dispersed storage error coding function utilizing
the second level dispersal parameters to produce a second
level set of encoded data slices 1_1 through 1_n. Next, the
DST processing unit 16 outputs the corresponding second
level set of encoded data slices 1-n to the DSTN module 22
for storage therein.

The DST processing unit 16 receives a confirmation from
the DSTN module 22 that at least a second level dispersal
parameters write threshold number of the second level set of
encoded data slices 1-n have been successfully stored in the
DSTN module 22. When the DST processing unit 16
receives the confirmation, the DST processing unit 16 gen-
erates a slice storage confirmation message and outputs the
slice storage confirmation message to the DST client module
34. The DST client module 34 receives slice storage con-
firmation messages from at least some of the set of DST

US 9,483,539 B2

65

processing unit 16. When a first level dispersal parameters
write threshold number of slice storage confirmation mes-
sages have been received by the DST client module 34, the
DST client module 34 generates and outputs a cancellation
message (e.g., rollback, delete) to any remaining DST
processing unit 16 that have not output a slice confirmation
message to the DST client module 34. The DST client
module creates a directory entry for the data segment that
includes object IDs assigned to each encoded data slice of
the set of encoded data slices 1-N corresponding to the first
level dispersal parameters write threshold number of slice
storage confirmation messages.

The system may also function to retrieve the data segment
from the DSTN module 22. When receiving a read request
for the data segment, the DST client module 34 accesses the
directory entry for the data segment to obtain the object IDs
for each encoded data slice corresponding to the first level
dispersal parameters write threshold number of slice storage
confirmation messages. Next, the DST client module gen-
erates and outputs retrieval requests for each encoded data
slice corresponding to the first level dispersal parameters
write threshold number of slice storage confirmation mes-
sages to corresponding DST processing units 16. Each DST
processing unit 16 of the corresponding DST processing
units 16 retrieves at least a second level dispersal parameter
decode threshold number of encoded data slices from the
DSTN module 22, decodes the retrieved encoded data slices
to reproduce a corresponding slice, and outputs a corre-
sponding encoded data slice to the DST client module 34.
The DST client module 34 decodes at least a first level
dispersal parameter decode threshold number of received
corresponding encoded data slices to reproduce the data
segment. The method of operation to store the data segment
is discussed in greater detail with reference to FIG. 48B.

FIG. 48B is a flowchart illustrating another example of
storing data. The method begins at step 620 where a pro-
cessing module (e.g., of a distributed storage and task (DST)
client module) receives a request to store data. The request
may include one or more of a data object and a data identifier
(ID) associated with the data object. The method continues
at step 622 where the processing module encodes the data
using a dispersed storage error coding function utilizing first
level dispersal parameters to produce a plurality of sets of
first level encoded data slices. For each set of the first level
encoded data slices, the method continues at step 624 where
the processing module outputs the set of first level encoded
data slices to a set of distributed storage and task (DST)
processing units. The outputting includes generating a set of
store data requests that the set of first level encoded data
slices.

Each DST processing unit of the set of DST processing
units encodes a corresponding first level encoded data slice
of the set of first level encoded data slices using the
dispersed storage error coding function utilizing second
level dispersal parameters to produce a plurality of sets of
second level encoded data slices for storage in a distributed
storage and task network (DSTN) module. Each DST pro-
cessing unit of the set of DST processing units generates and
outputs a storage response that includes one of a failure
indicator and an indicator that a second level dispersal
parameter write threshold number of encoded data slices of
a corresponding second level set of encoded data slices has
been successfully stored in the DSTN module.

The method continues at step 626 where the processing
module receives storage responses from at least some of the
set of DST processing units. When receiving a first level
dispersal parameter write threshold number of favorable

20

35

40

45

50

66

storage responses from a subset of the set of DST processing
units, the method continues at step 628 where the processing
module generates and outputs a cancellation message to
other DST processing units of the set of DST processing
units. The cancellation message includes at least one of a
deletion request and a rollback request. The method contin-
ues at step 630 where the processing module updates a
directory to include an association between the data ID of
the data, identifiers of the subset of the set of DST process-
ing units, and identifiers of a first level dispersal parameter
write threshold number of encoded data slices stored at the
subset of the set of DST processing units.

As may be used herein, the terms “substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but is not limited
to, component values, integrated circuit process variations,
temperature variations, rise and fall times, and/or thermal
noise. Such relativity between items ranges from a differ-
ence of a few percent to magnitude differences. As may also
be used herein, the term(s) “operably coupled to”, “coupled
t0”, and/or “coupling” includes direct coupling between
items and/or indirect coupling between items via an inter-
vening item (e.g., an item includes, but is not limited to, a
component, an element, a circuit, and/or a module) where,
for indirect coupling, the intervening item does not modify
the information of a signal but may adjust its current level,
voltage level, and/or power level. As may further be used
herein, inferred coupling (i.e., where one element is coupled
to another element by inference) includes direct and indirect
coupling between two items in the same manner as “coupled
t0”. As may even further be used herein, the term “operable
t0” or “operably coupled to” indicates that an item includes
one or more of power connections, input(s), output(s), etc.,
to perform, when activated, one or more its corresponding
functions and may further include inferred coupling to one
or more other items. As may still further be used herein, the
term “associated with”, includes direct and/or indirect cou-
pling of separate items and/or one item being embedded
within another item. As may be used herein, the term
“compares favorably”, indicates that a comparison between
two or more items, signals, etc., provides a desired relation-
ship. For example, when the desired relationship is that
signal 1 has a greater magnitude than signal 2, a favorable
comparison may be achieved when the magnitude of signal
1 is greater than that of signal 2 or when the magnitude of
signal 2 is less than that of signal 1.

As may also be used herein, the terms “processing mod-
ule”, “processing circuit”, and/or “processing unit” may be
a single processing device or a plurality of processing
devices. Such a processing device may be a microprocessor,
micro-controller, digital signal processor, microcomputer,
central processing unit, field programmable gate array, pro-
grammable logic device, state machine, logic circuitry, ana-
log circuitry, digital circuitry, and/or any device that
manipulates signals (analog and/or digital) based on hard
coding of the circuitry and/or operational instructions. The
processing module, module, processing circuit, and/or pro-
cessing unit may be, or further include, memory and/or an
integrated memory element, which may be a single memory
device, a plurality of memory devices, and/or embedded
circuitry of another processing module, module, processing
circuit, and/or processing unit. Such a memory device may
be a read-only memory, random access memory, volatile
memory, non-volatile memory, static memory, dynamic
memory, flash memory, cache memory, and/or any device

US 9,483,539 B2

67

that stores digital information. Note that if the processing
module, module, processing circuit, and/or processing unit
includes more than one processing device, the processing
devices may be centrally located (e.g., directly coupled
together via a wired and/or wireless bus structure) or may be
distributedly located (e.g., cloud computing via indirect
coupling via a local area network and/or a wide area
network). Further note that if the processing module, mod-
ule, processing circuit, and/or processing unit implements
one or more of its functions via a state machine, analog
circuitry, digital circuitry, and/or logic circuitry, the memory
and/or memory element storing the corresponding opera-
tional instructions may be embedded within, or external to,
the circuitry comprising the state machine, analog circuitry,
digital circuitry, and/or logic circuitry. Still further note that,
the memory element may store, and the processing module,
module, processing circuit, and/or processing unit executes,
hard coded and/or operational instructions corresponding to
at least some of the steps and/or functions illustrated in one
or more of the Figures. Such a memory device or memory
element can be included in an article of manufacture.

The present invention has been described above with the
aid of method steps illustrating the performance of specified
functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention. Further, the boundaries of these func-
tional building blocks have been arbitrarily defined for
convenience of description. Alternate boundaries could be
defined as long as the certain significant functions are
appropriately performed. Similarly, flow diagram blocks
may also have been arbitrarily defined herein to illustrate
certain significant functionality. To the extent used, the flow
diagram block boundaries and sequence could have been
defined otherwise and still perform the certain significant
functionality. Such alternate definitions of both functional
building blocks and flow diagram blocks and sequences are
thus within the scope and spirit of the claimed invention.
One of average skill in the art will also recognize that the
functional building blocks, and other illustrative blocks,
modules and components herein, can be implemented as
illustrated or by discrete components, application specific
integrated circuits, processors executing appropriate soft-
ware and the like or any combination thereof.

The present invention may have also been described, at
least in part, in terms of one or more embodiments. An
embodiment of the present invention is used herein to
illustrate the present invention, an aspect thereof, a feature
thereof, a concept thereof, and/or an example therecof. A
physical embodiment of an apparatus, an article of manu-
facture, a machine, and/or of a process that embodies the
present invention may include one or more of the aspects,
features, concepts, examples, etc. described with reference
to one or more of the embodiments discussed herein. Fur-
ther, from figure to figure, the embodiments may incorporate
the same or similarly named functions, steps, modules, etc.
that may use the same or different reference numbers and, as
such, the functions, steps, modules, etc. may be the same or
similar functions, steps, modules, etc. or different ones.

While the transistors in the above described figure(s)
is/are shown as field effect transistors (FETs), as one of
ordinary skill in the art will appreciate, the transistors may
be implemented using any type of transistor structure includ-

20

25

30

35

40

45

50

55

68

ing, but not limited to, bipolar, metal oxide semiconductor
field effect transistors (MOSFET), N-well transistors, P-well
transistors, enhancement mode, depletion mode, and zero
voltage threshold (VT) transistors.

Unless specifically stated to the contra, signals to, from,
and/or between elements in a figure of any of the figures
presented herein may be analog or digital, continuous time
or discrete time, and single-ended or differential. For
instance, if a signal path is shown as a single-ended path, it
also represents a differential signal path. Similarly, if a signal
path is shown as a differential path, it also represents a
single-ended signal path. While one or more particular
architectures are described herein, other architectures can
likewise be implemented that use one or more data buses not
expressly shown, direct connectivity between elements, and/
or indirect coupling between other elements as recognized
by one of average skill in the art.

The term “module” is used in the description of the
various embodiments of the present invention. A module
includes a processing module, a functional block, hardware,
and/or software stored on memory for performing one or
more functions as may be described herein. Note that, if the
module is implemented via hardware, the hardware may
operate independently and/or in conjunction software and/or
firmware. As used herein, a module may contain one or more
sub-modules, each of which may be one or more modules.

While particular combinations of various functions and
features of the present invention have been expressly
described herein, other combinations of these features and
functions are likewise possible. The present invention is not
limited by the particular examples disclosed herein and
expressly incorporates these other combinations.

What is claimed is:

1. A method comprises:

to determine whether a copy of data that is cached in local

memory of a first device of a distributed storage
network (DSN) as a plurality of sets of encoded data
slices is up to date, sending, by the first device, read-
if-revised requests to storage units of the DSN regard-
ing the plurality of sets of encoded data slices wherein
a read-if-revised request of the read-if-revised requests
includes a name of the data and a local revision number,
wherein the data is divided into a plurality of data
segments, wherein the plurality of data segments are
dispersed storage error encoded into the plurality of
sets of encoded data slices, wherein each of the storage
units stores a different encoded data slice from each set
of at least some of the plurality of sets of encoded data
slices to produce a different portion of the data and
wherein one of the read-if-revised requests includes
slices names for the encoded data slices of the different
portion of the data and corresponding local memory
revision numbers;

determining, by a storage unit of the storage units,

whether each revision number of stored encoded data
slices of a corresponding different portion of the data is
a more recent revision number than the corresponding
local memory revision numbers;

when one of the revision numbers of the stored encoded

data slices of the corresponding different portion is the
more recent revision number than the corresponding
local memory revision number, sending, by the storage
unit, a read response that includes the stored encoded
data slice of the different portion having the more
recent revision number to the first device; and

when the revision numbers of other stored encoded data

slices of the different portion are not the more recent

US 9,483,539 B2

69

revision number than the corresponding other local
memory revision numbers, sending, by the storage unit,
a read response that includes an indication that, with
respect to the other stored encoded data slices, the
corresponding other encoded data slices cached in the
local memory are a current revision level.

2. The method of claim 1 further comprises:

updating, by the first device, caching of the data in the
local memory to include the stored encoded data slice
having the more recent revision number.

3. The method of claim 1, wherein the sending the

read-if-revised requests comprises one of:

sending the read-if-revised requests as a query to deter-
mine whether the data cached in the local memory is
outdated;

sending the read-if-revised requests as a read request to
read the data from the storage units; and

sending the read-if-revised requests in response to a
scheduled task.

4. The method of claim 1, wherein the read response that

includes the indication comprises one of:

a list of revision numbers corresponding to the stored
encoded data slices of a corresponding different por-
tion;

the more recent revision number shared by each of the
stored encoded data slices of a corresponding different
portion; and

a favorable indication.

5. The method of claim 1 further comprises:

when the revision number of another one of the stored
encoded data slices is less than the corresponding
another one of the local memory revision numbers,
initiating, by the storage unit, rebuilding of the another
one of the stored encoded data slices.

6. The method of claim 1 further comprises:

determining, by the first device, a common revision
number for the different portions of the data as the
corresponding local memory revision numbers; and

determining, by the first device, a local revision number
for each of the different portions of the data as the
corresponding local memory revision numbers.

7. A dispersed storage network (DSN) comprises:

a first module, when operable within a first device of the
DSN, causes the first device to:
to determine whether a copy of data that is cached in

local memory of a first device of the DSN as a
plurality of sets of encoded data slices is up to date,
send read-if-revised requests to storage units of the
DSN regarding the plurality of sets of encoded data
slices wherein a read-if-revised request of the read-
if-revised requests includes a name of the data and a
local revision number, wherein the data is divided
into a plurality of data segments, wherein the plu-
rality of data segments are dispersed storage error
encoded into the plurality of sets of encoded data
slices, wherein each of the storage units stores a
different encoded data slice from each set of at least
some of the plurality of sets of encoded data slices to
produce a different portion of the data and wherein
one of the read-if-revised requests includes slices
names for the encoded data slices of the different
portion of the data and corresponding local memory
revision numbers;

a second module, when operable within a storage unit,
causes the storage unit to:

10

15

20

25

30

40

45

50

55

60

70

determine whether each revision number of stored
encoded data slices of a corresponding different
portion of the data is a more recent revision number
than the corresponding local memory revision num-
bers; and
a third module, when operable within the storage unit,
causes the storage unit to:
when one of the revision numbers of the stored encoded
data slices of the corresponding different portion is
the more recent revision number than the corre-
sponding local memory revision number, sending a
read response that includes the stored encoded data
slice of the different portion having the more recent
revision number the first device; and

when the revision numbers of other stored encoded data
slices of the different portion are not the more recent
revision number than the corresponding other local
memory revision numbers, send a read response that
includes an indication that, with respect to other
stored encoded data slices, the corresponding other
encoded data slices cached in the local memory are
a current revision.

8. The DSN of claim 7 further comprises:

a fourth module, when operable within the first device of
the DSN, causes the first device to:
update caching of the data in the local memory to

include the stored encoded data slice having the
more recent revision number.

9. The DSN of claim 7, wherein the first module functions

to send the read-if-revised requests by one of:

sending the read-if-revised requests as a query to deter-
mine whether the data cached in the local memory is
outdated;

sending the read-if-revised requests as a read request to
read the data from the storage units; and

sending the read-if-revised requests in response to a
scheduled task.

10. The DSN of claim 7, wherein the read response that

includes the indication comprises one of:
a list of revision numbers corresponding to the stored
encoded data slices of a corresponding different por-
tion;
the more recent revision number shared by each of the
stored encoded data slices of a corresponding different
portion; and
a favorable indication.
11. The DSN of claim 7 further comprises:
the third module further functions to cause the storage
unit to:
when the revision number of another one of the stored
encoded data slices is less than the corresponding
another local memory revision numbers, initiate
rebuilding of the another one of the stored encoded
data slices.
12. The DSN of claim 7 further comprises:
the first module further functions to:
determine a common revision number for the different
portions of the data as the corresponding local
memory revision numbers; and

determine a local revision number for each of the
different portions of the data as the corresponding
local memory revision numbers.

#* #* #* #* #*

