US009129238B2

a2z United States Patent (10) Patent No.: US 9,129,238 B2
Chalana et al. 45) Date of Patent: Sep. 8, 2015
(54) DYNAMIC WEB SERVICES WORK FLOW USPC oo 709/200-203

SYSTEM AND METHOD

(75) Inventors: Vishal Chalana, Panchkula (IN); Amit
Sharma, Chandigarh (IN); Piyush
Nagar, Chandigarh (IN); Jearld
Waitkus, San Luis Obispo, CA (US);
Vikram Chalana, Bothell, WA (US)

(73) Assignee: Winshuttle, LL.C, Bothell, WA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 726 days.

(21) Appl. No.: 13/405,138

(22) Filed: Feb. 24, 2012
(65) Prior Publication Data
US 2012/0179503 Al Jul. 12,2012

Related U.S. Application Data

(63) Continuation-in-part of application No. 13/016,704,
filed on Jan. 28, 2011, now Pat. No. 8,701,159.

(60) Provisional application No. 61/334,099, filed on May

12, 2010.
(51) Int.CL

GOGF 15/16 (2006.01)

G06Q 10/06 (2012.01)
(52) US.CL

CPC ... G06Q 10/06 (2013.01); GO6Q 10/0631

(2013.01); GO6Q 10/0633 (2013.01); GO6Q
10/06311 (2013.01); GO6Q 10/06316
(2013.01); GO6Q 10/063112 (2013.01)
(58) Field of Classification Search
CPC GO06Q 40/00; GO6Q 90/00; GO6Q 10/067

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2004/0030627 Al*
2006/0095274 Al*
2006/0247805 Al
2008/0313003 Al

2/2004 Sedukhinccceennnnn 705/36
5/2006 Phillipsetal.c.ccoeeeee 705/1
11/2006 Thomson et al.
12/2008 Racca et al.
2009/0037914 Al 2/2009 Chagoly et al.
2010/0031232 Al 2/2010 Glazier et al.
2010/0319002 Al* 12/2010 Gosainetal.c.......... 719/311
2011/0055254 Al 3/2011 Symons et al.

* cited by examiner

Primary Examiner — Minh-Chau Nguyen
(74) Attorney, Agent, or Firm — AEON Law; Adam L.K.
Philipp

(57) ABSTRACT

A Dynamic Web Service server may facilitate custom Enter-
prise Application interface development with little or no
developer input by dynamically creating a web service for
performing a particular transaction according to a transaction
map. An Enterprise Application client device may create a
transaction map by “recording” a transaction between an
Enterprise Application client and an Enterprise Application
server and mapping transaction fields to a custom interface
generated to collect data for re-performing the recorded trans-
action. The Enterprise Application client device may call the
dynamic web service, and the Dynamic Web Service server
may then perform the recorded transaction using input data
collected in the custom interface. Such a dynamic web service
may be performed as part of an automated business process
managed by a workflow server.

14 Claims, 23 Drawing Sheets

US 9,129,238 B2

Sheet 1 of 23

Sep. 8, 2015

U.S. Patent

phiE AR

s

e,

i e w e

Poe0teg e
e

U.S. Patent Sep. 8, 2015 Sheet 2 of 23 US 9,129,238 B2

nat,.,

w

RS V3 T ——

{ cowpuren-psaie)
eI

k4
L HEsRY

OREATRE SYSTEM 3

e YNAMIC WG SERVIEE PLELISH RIUBRE BEERE @

[YHAMIE WER SURVICE RUUIRE (SR HE W) g

U.S. Patent Sep. 8, 2015 Sheet 3 of 23 US 9,129,238 B2

o,
v,
e,

e,
K3

BIRRLAY

E 3
¥

8 -,

Past
E
=
oo
s
&3
=
jocecd
prees
e
peved
S—
1
el

v NS -
poMeyeR BeacAse Y/

{
L HED

Y
kY

k

o HEMORY

N OFERATING TYSTEM }

: = RECURD-MAP-PUBLISH ROUTINE (SEE HIE 1

CYNAMID WER SERVICE CONSUMPYIIN ROUTINE (8B

HE 13

TRANGACHIOH CUBNT (SRR HER &)

o ERE CUENT{EE HE &

[CLIEHT (BEERE. &

Fig.3

U.S. Patent Sep. 8, 2015 Sheet 4 of 23 US 9,129,238 B2

CLIERE

TRANSACTION "
47

[SERVER FHR G

 YEVEVEVIVRPVTVEVEVETY

R s
L SHANSACHON REOLST O IE O A

TRANSALTHN RESHEES (HATIVE ERP AR

E. 3

—
LA N PRV

o PUBLSH
g5 TR

&N,

&‘q{ Morgnet
X313

¥

P ﬁ?%
I 1
L DNAMES WER SHUICEIDBUIER

gy

Y HAMID WeE SRt fixls"’% REGHESE

F

[ysais g&é SERVIDE DESCRIRE 334% WA

ot ’ ‘«-u,,,,x"m";,"m""m o
ABH BT A NPT A

*v.v.v.v.\ﬁv.\ﬁv.v}

. DYHAMIL WER SERVIDE VUL

AT sk DYRAME

WS SERULE DRLLTD
RECOREED

TS R

NI RESLLTS
@

&

U.S. Patent Sep. 8, 2015 Sheet 5 of 23 US 9,129,238 B2

Hagnd B
CEd i nutnly
fReninn

et altocation
Spaimalisies
I Ao ottt s

pacelzt Muesmfemp (MR

§gﬁ Bal Group
| Lantcs
| Prog
|

1 | Waight Ut

Yodulre i

Shraidmenniang RE
EANAIRD | EAN gy

US 9,129,238 B2

Sheet 6 of 23

Sep. 8, 2015

U.S. Patent

9 b1

BN

g Y

iy wranog alueyy

Ve

X

Buddepy

US 9,129,238 B2

Sheet 7 of 23

Sep. 8, 2015

U.S. Patent

"
e AR BOA RN BendnuEep B & &N.m
BEEg 0
aeutind A B
ARG

SIS R R TP

ZOWIN FO00L 404 19108 NOLLIVENYHL

U.S. Patent Sep. 8, 2015 Sheet 8 of 23 US 9,129,238 B2

V metieears 1 e

US 9,129,238 B2

Sheet 9 of 23

Sep. 8, 2015

U.S. Patent

3
2
&4
5
H
S

e W

" v e i T s
gty . | 55" W

i PR

e ; PRe— -
o Rea &2 EL s 3

PR b R R 1 k3

A A e o B o T A A o A T AT T

US 9,129,238 B2

Sheet 10 of 23

Sep° 8, 2015

U.S. Patent

30 g ppng Dpunips pon

B or &Nm

wma&wﬁ

U.S. Patent

Sep. 8, 2015 Sheet 11 of 23

J—

*.,

fower

L AL RELHRD HaNGALHIN
A ERE 3@%?;&*

¥
HEE T SO e E £

e

) 4 o~
i y./ 18

g

US 9,129,238 B2

U.S. Patent Sep. 8, 2015 Sheet 12 of 23 US 9,129,238 B2

D RiDHRDe AREAE Y .
HAR Sual -

¢ UTHAMIL sy
im%%é’fﬁ?g

ML MAPRL D INRLTS IR
RECORCED TRANBACTION MAF

itk HERRE ¥§f§§ dtaLRIPHUN
FRAMERTRE }~ AR

k4

FIR EACH MAPRED IR Nl

H
YR TR SO .
RESCRIPTIOH

gf‘ ?“‘E
3

U.S. Patent Sep. 8, 2015 Sheet 13 of 23 US 9,129,238 B2

(" RRBIEHSEREE N o™

TSR CORRESPONEGY
RUCE WP T

U.S. Patent Sep. 8, 2015 Sheet 14 of 23 US 9,129,238 B2

o Vi

g

Rif:
DYHAMIL WEB SERULE

UL AN T VG E\
43

?
T E TN WS
ICENTIAER } @

’*"«.

UEIERMIRE W

f
Ry

%

£y
feta

R B e e
SERYICE METADATA e

H
=
%23

k4
DETERMINE a‘%?g?»’%i”_E it

CALLS] CORRESPONDING 11
IHYCKED DYNAMIE

¥
& ML Y BAivh A Wi
CEARED INRUT DT

k4

ECEWE RENCTE PROCESS TUPIT] 148

k4
PALRALE REMITE PROCESS Batalt
I CUTRUT STRUCHIRES) T
ACCORENG O DeNAME WEE 1
g %ug ?fgﬁ:ﬂjﬁ [

k

¢ RETGRN PADKABED DUTRUT TN
STRUCHIRES) -

H
{"‘.

U.S. Patent Sep. 8, 2015 Sheet 15 of 23 US 9,129,238 B2

: HE TR
} WTERFALE

R
k.4
P
o

.,

VG TU S "—

S

el

£

' COMPUTERLREADARLE §
HEDION |

T Ny
» DUSHEES L/
| PROCESS i

&
p

),’v
{
:
4
A

4
%,

1B HEMERY

e [PERATHE SYSHEM

bili i

e FRIBINERE PRUGERE DEFRUTI IOUTIE (3E0HE. 38

e

Fig.15

U.S. Patent Sep. 8, 2015 Sheet 16 of 23 US 9,129,238 B2

N
i

peovd

#

:Bushess Frovess Bepest ng
i A

&
£
}

E

e

-

4

S -

[BRE i Hyghess aegre

i

Fig .16

U.S. Patent Sep. 8, 2015 Sheet 17 of 23 US 9,129,238 B2

Snebtive
Sanlps

US 9,129,238 B2

Sheet 18 of 23

Sep. 8, 2015

U.S. Patent

Fravealmgy

R

)

N Ammmmminins

R

prTrs

34

1.

Gpfiny BSRSUE AREEA

e

34
syularay sy, SR

J./mwwwmm

-

US 9,129,238 B2

Sheet 19 of 23

Sep. 8, 2015

U.S. Patent

¥

i

4
%
B

e

i \'\.}.

o

US 9,129,238 B2

Sheet 20 of 23

Sep. 8, 2015

U.S. Patent

bl 1 2ed &%m&i %&m&w&. Py

W BRg TIELATY

W SRS T Lot sty 0

e ST TR HA LT T TIOLEL bR
T S aaeeg ik b

3

{ong) pusiey wRe

=
&

U.S. Patent Sep. 8, 2015 Sheet 21 of 23 US 9,129,238 B2

Yhind S 4 ‘\"‘”i}*ﬁ’i{
3 F3ha dilanid B

it e
Fd ‘§§ T8
2 ISR

U.S. Patent

Sep. 8, 2015

Sheet 22 of 23

by 131 %}5 i o
Feivieve husiness

L

h

4 o

S

A
.§'§§§§§ {ggjg\ J\M‘f«! R Y

U.S. Patent Sep. 8, 2015 Sheet 23 of 23 US 9,129,238 B2

153

US 9,129,238 B2

1
DYNAMIC WEB SERVICES WORK FLOW
SYSTEM AND METHOD

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part of U.S. Non-
provisional application Ser. No. 13/016,704, filed Jan. 28,
2011, titled “DYNAMIC WEB SERVICES SYSTEM AND
METHOD,” naming inventors Vishal Chalana, Amit Sharma,
Piyush Nagar, Vishal Sharma, and Vikram Chalana. Applica-
tion Ser. No. 13/016,704 claims the benefit of priority to U.S.
Provisional Application No. 61/334,099, filed May 12, 2010,
titled “DYNAMIC WEB SERVICES SYSTEM AND
METHOD,” naming inventors Vishal Chalana, Amit Sharma,
Piyush Nagar, Vishal Sharma, and Vikram Chalana. The
above-cited applications are incorporated herein by reference
in their entireties, for all purposes.

FIELD

The present invention relates to databases, and more par-
ticularly to methods of defining and providing dynamic web
services for automating database transactions.

BACKGROUND

Enterprise resource planning (“ERP”) systems are
designed to coordinate some or all of the resources, informa-
tion, and activities needed to complete business processes. An
ERP system may support business functions including some
or all of manufacturing, supply chain management, finan-
cials, projects, human resources, customer relationship man-
agement, and the like.

Many ERP systems provide a native application program-
ming interface (“API”) that developers may use to read, write,
update, and/or remove data objects on the database level.
Some ERP systems may also provide a native API that devel-
opers may use for observing, automating, and/or emulating
user interactions with the ERP system, such as through a
graphical user interface (“GUI”). For example, ERP Servers
provided by SAP AG of Weinheim, Germany, typically
expose a native API via remote function calls (“RFC”). An
RFC is a procedure for data interchange (typically via a
TCP/IP connection) between a client (typically an SAP cli-
ent) and a server (typically an SAP server).

In addition, some ERP systems may expose some or all of
anative API as a general-purpose, static “web service,” which
can be accessed over a network, such as the Internet, and
executed on a remote system hosting the requested services.
When using such a web service, clients and servers com-
monly communicate over the Hypertext Transfer Protocol
(“HTTP”) protocol.

There are several web service variants. In one variant,
which has been popular with traditional enterprise, clients
and servers communicate via Extensible Markup Language
(“XML”) messages that follow the Simple Object Access
Protocol (“SOAP”) standard. In such systems, there is often a
machine-readable description of the operations offered by the
service written in the Web Services Description Language
(“WSDL”).

Another web service variant conforms to Representational
State Transfer (“REST”) constraints and uses HT' TP methods
such as PUT, GET, DELETE, and POST instead of SOAP
messages. RESTful web services may or may not use WSDL
definitions and/or XML or JavaScript Object Notation
(“JSON”) messages.

20

25

30

40

45

2

Moreover, many businesses operate an enterprise informa-
tion portal (“EIP”) for integrating business information,
people and processes across organizational boundaries. Many
EIP systems allow businesses to provide and/or manage
facilities such as some or all of intranets, extranets, websites,
document and file management, collaboration spaces, social
tools, enterprise search, business intelligence, process inte-
gration, system integration, workflow automation, and core
infrastructure for third-party extensions. For example, many
businesses use EIP systems such as Microsoft SharePoint,
provided by Microsoft Corporation of Redmond, Wash.; SAP
NetWeaver, provided by SAP AG of Weinheim, Germany;
Sun Java System Portal Server, provided by Oracle Corpora-
tion or Redwood City, Calif.; and the like.

Using native APIs such as those described above, it is often
possible for developers to create custom forms and/or pro-
gram custom clients to enable users to perform specific trans-
actions with the ERP system. And using facilities provided by
an EIP system, it is often possible for developers to enable
users to perform such ERP transactions as part of an auto-
mated workflow.

However, it can be difficult and/or expensive to have devel-
opers implement custom interfaces for interacting with an
ERP system via a native-API, even an API that is exposed via
aweb service. And it can also be difficult and/or expensive to
have developers integrate such custom interfaces into an auto-
mated workflow. Consequently, many businesses must main-
tain an expensive information technology department and/or
use expensive outside consultants to facilitate custom ERP
interface development and workflow integration.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary ERP system in accordance
with one embodiment.

FIG. 2 illustrates several components of an exemplary
DWS Server in accordance with one embodiment.

FIG. 3 illustrates several components of an exemplary Cli-
ent Device in accordance with one embodiment.

FIG. 4 illustrates an exemplary series of communications
between Client, DWS Server, and ERP Server, in accordance
with one embodiment.

FIG. 5 illustrates an exemplary transaction in an ERP client
process in accordance with one embodiment.

FIG. 6 illustrates an exemplary transaction recorded in a
DWS client in accordance with one embodiment.

FIG. 7 illustrates an exemplary transaction published from
a DWS client in accordance with one embodiment.

FIG. 8 illustrates a portion of an automatically-generated
description of a dynamic web service corresponding to an
exemplary transaction in accordance with one embodiment.

FIG. 9 illustrates a forms authoring tool automatically
generating a form according to an exemplary dynamic web
service description in accordance with one embodiment.

FIG. 10 illustrates a form presentation tool obtaining data
in accordance with one embodiment.

FIG. 11 illustrates a record-map-publish routine in accor-
dance with one embodiment.

FIG. 12 illustrates a dynamic web service publish routine
in accordance with one embodiment.

FIG. 13 illustrates a dynamic web service consumption
routine in accordance with one embodiment.

FIG. 14 illustrates a dynamic web service routine in accor-
dance with one embodiment.

FIG. 15 illustrates several components of an exemplary
Workflow Server in accordance with one embodiment.

US 9,129,238 B2

3

FIG. 16 illustrates an exemplary series of communications
between Client, Workflow Server, and DWS Server, in accor-
dance with one embodiment.

FIG. 17 illustrates a user interface such as may be
employed by an exemplary workflow designer application, in
accordance with one embodiment.

FIG. 18 illustrates a user interface such as may be
employed by an exemplary workflow designer application, in
accordance with one embodiment.

FIG. 19 illustrates an exemplary series of communications
between Clients, Workflow Server, DWS Server, and Enter-
prise Information Portal, in accordance with one embodi-
ment.

FIG. 20 illustrates a user interface for, among other things,
notifying a user that the user has been assigned a task as part
of a business process, in accordance with one embodiment.

FIG. 21 illustrates a business process definition routine in
accordance with one embodiment.

FIG. 22 illustrates a routine for running a stored reusable
business process, such as may be performed by Workflow
Server in accordance with one embodiment.

FIG. 23 illustrates a pending task processing subroutine,
such as may be performed by Workflow Server in accordance
with one embodiment.

DESCRIPTION

The detailed description that follows is represented largely
in terms of processes and symbolic representations of opera-
tions by conventional computer components, including a pro-
cessor, memory storage devices for the processor, connected
display devices and input devices. Furthermore, these pro-
cesses and operations may utilize conventional computer
components in a heterogeneous distributed computing envi-
ronment, including remote file Servers, computer Servers and
memory storage devices. Each of these conventional distrib-
uted computing components is accessible by the processor
via a communication network.

Reference is now made in detail to the description of the
embodiments as illustrated in the drawings. While embodi-
ments are described in connection with the drawings and
related descriptions, there is no intent to limit the scope to the
embodiments disclosed herein. On the contrary, the intent is
to cover all alternatives, modifications and equivalents. In
alternate embodiments, additional devices, or combinations
of'illustrated devices, may be added to, or combined, without
limiting the scope to the embodiments disclosed herein.

According to various embodiments, as described below, a
Dynamic Web Service (“DWS”) server may facilitate custom
Enterprise interface development with little or no developer
input by dynamically creating a web service for performing a
particular transaction, according to a transaction map created
by “recording” a transaction between an ERP client and an
ERP server.

FIG. 1 illustrates an exemplary enterprise system 100 in
which client devices 300A-B, one or more DWS Server(s)
200, ERP Server(s) 110, Workflow Server(s) 1500, and Enter-
prise Information Server(s) 115 are connected to a network
150. In some embodiments, ERP Server 110 may further
comprise an application server (not shown), and/or ERP
Server 110 may further include the functionality of an appli-
cation server. DWS Server 200 is also connected to a DWS
data store 105, and Workflow Server 1500 is connected to
business process data store 120. In some embodiments, DWS
Server 200 may communicate with DWS data store 105 via

5

10

15

20

25

30

35

40

45

50

55

60

65

4

network 150, a storage area network (“SAN”), a high speed
serial bus, and/or via other suitable communication technol-
ogy.

In various embodiments, network 150 may include the
Internet, a local area network (“LLAN”), a wide area network
(“WAN”), and/or other data network. In other embodiments,
some or all of DWS Server 200, ERP Server 110, Workflow
Server(s) 1500, and/or Enterprise Information Server(s) 115
may communicate with one another via a channel other than
network 150. For example, some or all of DWS Server 200,
ERP Server 110, Workflow Server(s) 1500, and/or Enterprise
Information Server(s) 115 may be connected via a SAN, a
high speed serial bus, and/or via other suitable communica-
tion technology. In many embodiments, there may be addi-
tional client devices 300. In some embodiments, DWS Server
200, ERP Server 110, Workflow Server(s) 1500, and/or Enter-
prise Information Server(s) 115 may communicate with one
another via a private network, a secure network, and/or a
secure portion of network 150.

FIG. 2 illustrates several components of an exemplary
DWS Server 200. In some embodiments, DWS Server 200
may include many more components than those shown in
FIG. 2. However, itis not necessary that all of these generally
conventional components be shown in order to disclose an
illustrative embodiment. As shown in FIG. 2, the DWS Server
200 includes a network interface 230 for connecting to the
network 150.

The DWS Server 200 also includes a processing unit 210,
a memory 250, and an optional display 240, all intercon-
nected along with the network interface 230 via a bus 220.
The memory 250 generally comprises a random access
memory (“RAM”), a read only memory (“ROM”), and a
permanent mass storage device, such as a disk drive. The
memory 250 stores program code for dynamic web service
publish routine 1200 and dynamic web service routine 1400.
In addition, the memory 250 also stores an operating system
255. These software components may be loaded from a non-
transient computer readable storage medium 295 into
memory 250 ofthe DWS Server 200 using a drive mechanism
(not shown) associated with a non-transient computer read-
able storage medium 295, such as a floppy disc, tape, DVD/
CD-ROM drive, memory card, or the like. In some embodi-
ments, software components may also be loaded via the
network interface 230, rather than via a non-transient com-
puter readable storage medium 295.

DWS Server 200 also communicates via bus 220 with
DWS data store 105. In various embodiments, bus 220 may
comprise a storage area network (“SAN™), a high speed serial
bus, and/or via other suitable communication technology. In
some embodiments, DWS Server 200 may communicate with
DWS data store 105 via network interface 230.

Although an exemplary DWS Server 200 has been
described that generally conforms to conventional general
purpose computing devices, an DWS Server 200 may be any
of'a great number of devices capable of communicating with
the network 150 and/or ERP Server 110, for example, a per-
sonal computer, a game console, a set-top box, a handheld
computer, a cell phone, or any other device that is capable of
providing web services and communicating via a native-API
with ERP Server 110.

FIG. 3 illustrates several components of an exemplary Cli-
ent Device 300. In some embodiments, Client Device 300
may include many more components than those shown in
FIG. 3. However, itis not necessary that all of these generally
conventional components be shown in order to disclose an

US 9,129,238 B2

5

illustrative embodiment. As shown in FIG. 3, the Client
Device 300 includes a network interface 330 for connecting
to the network 150.

The Client Device 300 also includes a processing unit 310,
a memory 350, and a display 340, all interconnected along
with the network interface 330 via a bus 320. The memory
350 generally comprises a random access memory (“RAM”),
aread only memory (“ROM”), and a permanent mass storage
device, such as a disk drive. The memory 350 stores program
code for record-map-publish routine 1100 and dynamic web
service consumption routine 1300. In addition, the memory
350 also stores an operating system 355, as well as an ERP
client 402, a DWS client 403, and a custom Transaction client
401 (see FIG. 4, discussed below). These software compo-
nents may be loaded from a non-transient computer readable
storage medium 395 into memory 350 of the Client Device
300 using a drive mechanism (not shown) associated with a
non-transient computer readable storage medium 395, such
as a floppy disc, tape, DVD/CD-ROM drive, memory card, or
the like. In some embodiments, software components may
also be loaded via the network interface 330, rather than via a
non-transient computer readable storage medium 395.

Although an exemplary Client Device 300 has been
described that generally conforms to conventional general
purpose computing devices, an Client Device 300 may be any
of'a great number of devices capable of communicating with
the network 150 and/or ERP Server 110, for example, a per-
sonal computer, a game console, a set-top box, a handheld
computer, a cell phone, or any other device that is capable of
accessing a accessing web services.

FIG. 4 illustrates an exemplary series of communications
between Client 300, DWS Server 200, and ERP Server 110, in
accordance with one embodiment. In one embodiment, three
software processes on Client 300 are involved: an ERP client
402, a DWS client 403, and a custom Transaction client 401.
Beginning the illustrated sequence of operations, a user
defines a transaction 405 using ERP client 402.

For example, as illustrated in FIG. 5, a user may in one
embodiment define and perform a transaction using an SAP
client, such as SAPgui 500. In the exemplary transaction
illustrated in FIG. 5, the user is updating SAP data using a
Material Number field 505, a Material Description field 510,
a Gross Weight field 515, and a Net Weight field 525.
Although the exemplary transaction illustrated herein uses
SAP’s ERP system, in other embodiments, equivalent proce-
dures may be used to implement equivalent functionality in
other ERP systems.

Referring again to FIG. 4, once the transaction is defined,
ERP client 402 performs the transaction, sending one or more
transaction requests 410 to ERP Server 110 using a native API
provided by the ERP Server 110. In response, ERP Server 110
returns 415 one or more transaction results (e.g., a list of
updated fields, status message(s), log data, responsive data,
and the like). For example, in one embodiment, ERP client
402 (e.g., SAPgui) communicates with ERP Server 110 (e.g.,
an SAP server) via one or more RFCs. In other embodiments,
ERP Server 110 may expose a native APl as a web service, in
which case, ERP client 402 may communicate with ERP
Server 110 via SOAP messages, XML messages/data, JSON
data, or the like.

As the user defines 405 and performs 410 the transaction,
DWS client 403 monitors the user’s activities in ERP client
402 and/or monitors the ERP client’s communications with
ERP Server 110. Using data thereby collected, DWS client
403 records and maps 420 the transaction that was defined
405 and performed 410 in ERP client 402.

10

15

20

25

30

35

40

45

50

55

60

65

6

For example, as illustrated in FIG. 6, in one embodiment, a
DWS client such as transactionSHUTTLE 600, provided by
Winshuttle, Inc. of Bothell, Wash. (the assignee of this appli-
cation), may record and map the transaction. As illustrated in
FIG. 6, transactionSHUTTLE 600 has recorded the exem-
plary transaction (as defined according to FIG. 5), and the
user has mapped the Material Number field 605, the Material
Description field 610, the Gross Weight field 615, and the Net
Weight field 625 to XML sources, indicating that when the
recorded transaction is re-played at a later time, values for
these fields will be provided by XML data. In other embodi-
ments, one or more of the fields may be mapped to an alternate
data source, such as a spreadsheet column or database field.

Referring again to FIG. 4, once the transaction is recorded
and mapped 420, DWS client 403 sends a publish transaction
request 425 to DWS Server 200. In response, DWS Server
200 creates a dynamic web service 430 for the recorded
transaction, including automatically generating a description
of the dynamic web service, and returns an identifier 435 for
the created dynamic web service.

For example, as illustrated in FIG. 7, transaction-
SHUTTLE 700 has requested that the exemplary transaction
(as defined according to FIG. 5) be published as a dynamic
web service. The publication request includes a unique
method name 705 for the dynamic web service, a web service
description 710, and a publish-request URL 715 at the DWS
Server 200. Also illustrated is the dynamic web service iden-
tifier 720 (here, an URL for a WSDL XML schema corre-
sponding to the newly-created dynamic web service) that was
returned by DWS Server 200.

FIG. 8 illustrates a portion of an automatically-generated
description (here, a portion of a WSDL XML schema) corre-
sponding to the exemplary transaction (as defined according
to FIG. 5). The exemplary WSDL XML schema includes a
unique method name 801 for the dynamic web service, as
well as elements 830, 835 for running the recorded transac-
tion and for receiving a response from the DWS Server 200.
The illustrated element 830 for running the recorded transac-
tion also includes a series of elements for providing input data
to the recorded transaction, including a Material Number
element 805, a Material Description element 810, a Gross
Weight element 815, and a Net Weight element 825.

Referring again to FIG. 4, once the transaction has been
published as a dynamic web service, DWS client 403 pro-
vides the dynamic web service identifier 440 to a custom
Transaction client 401, which uses the identifier to request a
description of the identified dynamic web service 445 from
DWS Server 200. DWS Server 200 returns the requested
description 450. Using the received dynamic web service
description, Transaction client 401 generates a custom inter-
face 455 for providing input data for the recorded transaction.

For example, as illustrated in FIG. 9, a forms-authoring
tool such as Microsoft InfoPath forms, provided by Microsoft
Corporation of Redmond, Wash., can parse the WSDL XML
schema describing the exemplary recorded transaction (as
defined according to F1G. 5) and generate a form having fields
linked to the appropriate inputs used by the dynamic web
service. For example, the form illustrated in FIG. 9 has fields
for the Material Number field 905, the Material Description
field 910, the Gross Weight field 915, and the Net Weight field
925. In some embodiments, a form such as that illustrated in
FIG. 9may also have a control (not shown) for performing the
transaction and field 935 for displaying output from perform-
ing the transaction (if any). In many embodiments, a user may
further customize the automatically-generated form, such as
by providing user-friendly names, rearranging and/or resiz-
ing form fields, and the like.

US 9,129,238 B2

7

In other embodiments, other forms-authoring tools may be
employed to at least partially automatically generate a form
having fields linked to the appropriate inputs used by the
dynamic web service. For example, in various embodiments,
a form may be generated using a tool such as LiveCycle
Designer, provided by Adobe Systems Incorporated of
Mountain View, Calif.; a Windows Forms application, such as
Microsoft Visual Studio, also provided by Microsoft Corpo-
ration of Redmond, Wash.; a mobile forms builder, such as
Canvas, provided by Canvas Solutions, Inc. of Herndon, Va.;
and/or a web-form builder, such as Oracle Application
Express (APEX), provided by Oracle Corporation of Red-
wood Shores, Calif.

Referring again to FIG. 4, once the custom Transaction
client 401 has generated a custom interface for providing
input data for the recorded transaction, Transaction client 401
obtains input data from a user 460 and sends a dynamic web
service invocation 465 to DWS Server 200. DWS Server 200
identifies the recorded transaction corresponding to the
dynamic web service invocation, transforms 470 the dynamic
web service invocation into one or more transaction requests,
and sends the one or more transaction requests 475 to ERP
Server 110 via a native ERP API. ERP Server 110 returns
transaction results 480 (if any) via the native ERP API, and
DWS Server 200 sends the transaction results 485 (if any) to
Transaction client 401.

For example, as illustrated in FIG. 10, a form presented via
a web service can obtain data from a user for fields in a form
1000 automatically-generated as described herein. For
example, as illustrated in FIG. 10, a user has filled in the form
1000, entering values for the Material Number field 1005, the
Material Description field 1010, the Gross Weight field 1015,
and the Net Weight field 1025. The user may invoke control
1030 to save the data for later processing. In other embodi-
ments, form 1000 may include a control (not shown) for
performing the transaction, and the form invoked the corre-
sponding dynamic web service, sending appropriately-for-
matted XML data to DWS Server 200, which transformed the
dynamic web service request into one or more native-API
transactions with ERP Server 110. Transactionresults (if any)
are displayed in field 1035.

Although the exemplary Transaction client 401 is illus-
trated as a web-service form, in other embodiments, any
client that supports web services can be used, including pre-
sentation tool such as Acrobat Reader or Acrobat Pro, pro-
vided by Adobe Systems Incorporated of Mountain View,
Calif.; Microsoft InfoPath forms, provided by Microsoft Cor-
poration of Redmond, Wash.; a Windows Forms application,
such as Microsoft Visual Studio, also provided by Microsoft
Corporation of Redmond, Wash.; and/or a HyperText Markup
Language, Adobe Flash, or other web-based front-end that
can be called from a web-enabled computer or mobile device.
In some embodiments, a Transaction client 401 may be
deployed on a mobile device, such as a mobile phone, PDA,
tablet, game console, or the like, which may or may not be the
same device on which the transaction was originally
recorded.

FIG. 11 illustrates a record-map-publish routine 1100 in
accordance with one embodiment. In some embodiments,
routine 1100 may be performed by Client 300 in communi-
cation with DWS Server 200. In block 1105, routine 1100
observes and records a native-ERP-API transaction between
an ERP client 402 and ERP Server 110. For example, in one
embodiment, a DWS client process 403 (e.g., transaction-
SHUTTLE) may observe and record a transaction between an
ERPclient402 (e.g., SAPGui) and ERP Server 110 (e.g., SAP
server), for example, via an SAP GUI scripting interface. In

5

10

15

20

25

30

35

40

45

50

55

60

65

8

some embodiments, routine 1100 may also monitor network
communications between an ERP client 402 and ERP Server
110.

Inblock 1110, routine 1100 maps data sources and/or data
sinks (if any) involved in the recorded transaction. For
example, in some embodiments, ERP Server 110 may return
a list of fields involved in the transaction or other metadata
about the transaction. In some embodiments, routine 1100
may observe the user interacting with particular fields in the
ERP client process 402. In some embodiments, routine 1100
may solicit mapping information from a user, accepting user
input to create mappings between particular input and/or
output fields involved in the transaction and external data
sources and/or data sinks (e.g., XML data, spreadsheet data,
database data, and the like). In some embodiments, one or
more of the fields involved in the transaction may not be
mapped to an external source, but the data provided during the
original transaction recording is treated as static data for that
field.

In called-routine block 1200, routine 1100 calls a remote
publish routine 1200 (see FIG. 12, discussed below) at DWS
Server 200 to have the recorded and mapped transaction
published as a dynamic web service. For example, in one
embodiment, DWS Server 200 may provide a static “Publish”
web service that routine 1100 can use to have the recorded/
mapped transaction published as a dynamic web service.

In some embodiments, called-routine 1200 returns a
dynamic service description and/or a dynamic service
description identifier (e.g., a WSDL XML schema describing
the dynamic web service and/or an URL for such a WSDL
file), and in block 1115, routine 1100 stores (at least tran-
siently) the dynamic service description and/or a dynamic
service description identifier. Routine 1100 ends in block
1199.

FIG. 12 illustrates a dynamic web service publish routine
1200. In some embodiments, routine 1200 may be performed
by DWS Server 200. In block 1205, routine 1200 receives a
recorded transaction map describing a recorded transaction
between an ERP client 402 and ERP Server 110 and mapping
one or more fields involved in the transaction to one or more
external data sources (e.g., to XML data). For example, in one
embodiment, routine 1200 receives a “TxR” file, such as
those created by the transactionSHUTTLE software applica-
tion.

Using the recorded transaction map, in block 1210, routine
1200 automatically generates a description framework for a
new dynamic web service corresponding to the recorded
transaction. For example, in one embodiment, routine 1200
generates a framework for a WSDL XML schema such as that
partially illustrated in FIG. 8, discussed above. In some
embodiments, routine 1200 may store the description frame-
work in DWS data store 105. In block 1215, routine 1200
determines (if need be) and stores a new service identifier for
the dynamic web service that will correspond to the recorded
transaction map. In some embodiments, routine 1200 may
store the service identifier in DWS data store 105. For
example, for the exemplary transaction illustrated in FIGS.
5-8, discussed above, routine 1200 may store the unique
dynamic web service identifier, “ChangeMaterial” (see field
705, above).

In block 1220, routine 1200 identifies one or more input
fields that have been mapped to one or more external data
sources. Beginning in block 1225, routine 1200 processes
each identified mapped input field. In block 1230, routine
1200 defines an input for the dynamic web service corre-
sponding to the current mapped input field. In block 1235,
routine 1200 stores the defined input in the service descrip-

US 9,129,238 B2

9

tion framework. In block 1240, routine 1200 cycles back to
block 1225 to process the next mapped input field (if any).

For example, for the exemplary transaction illustrated in
FIGS. 5-8, discussed above, routine 1200 may identify an
input field mapped to a “Material Number” data source (e.g.,
field 605 in FIG. 6) and generate and store a corresponding
input element in a WSDL XML schema (e.g., element 805 in
FIG. 8). Similarly, for the exemplary transaction, routine
1200 may further identify mapped input fields 610-25 (as
illustrated in FI1G. 6) and generate elements 810-25 (as illus-
trated in FIG. 8).

Having generated and stored an identifier and description
for a new dynamic web service corresponding to a recorded
transaction map, in block 1245, routine 1200 stores com-
pleted dynamic web service description, for example, in
DWS data store 105. In some embodiments, routine 1200
may also obtain and store additional data and/or files, such as
ERP authentication credentials (see, e.g., FIG. 7 field 710).

Routine 1200 ends in bock 1299, making available at least
one of the identifier and the description, e.g., to the calling
routine (which may be a remote process on a client device,
e.g., Client 300). For example, in one embodiment, routine
1200 may return an URL containing the unique dynamic web
service identifier. In one embodiment, this URL simply
returns the dynamic web service description stored in block
1245 (e.g., a WSDL XML Schema) to a requestor. For
example, if the unique dynamic web service identifier is “Cre-
ateMaterial,” then in one embodiment, the returned URL may
take the following form: “http://abc.com/winshuttleserver/
Service.sve/CreateMaterial? WSDL”. Since the dynamic web
service identifier is unique, this URL is also unique and
specific to the published service.

FIG. 13 illustrates a dynamic web service consumption
routine 1300 in accordance with one embodiment. In some
embodiments, routine 1100 may be performed by Client 300
(more specifically, by a Transaction client process 401 on
Client 300) in communication with DWS Server 200. Inblock
1305, routine 1300 obtains a description for a dynamic web
service corresponding to a recorded transaction with ERP
Server 110. For example, in some embodiments, routine 1300
may obtain an URL (e.g., from DWS client 403) from which
routine 1300 requests and receives a service description. In
other embodiments, routine 1300 may obtain such an URL
and/or service description from a local process (e.g., DWS
client 403) or file.

In block 1310, routine 1300 determines one or more ser-
vice inputs mapped to one or more external data sources in the
dynamic service description. Beginning in block 1315, rou-
tine 1300 processes each identified service input. In block
1320, routine 1300 obtains input data corresponding to the
current service input. In block 1325, routine 1300 cycles back
to block 1315 to process the next service input (if any).

For example, for the exemplary transaction illustrated in
FIGS. 8-10, discussed above, routine 1300 may identify a
service input mapped to a “Material Number” data source
(e.g., element 805 in FIG. 8) obtain corresponding input from
auser (e.g., via form field 1005 in FIG. 10). Similarly, for the
exemplary transaction, routine 1300 may further identify ser-
vice inputs 810-25 (as illustrated in FIG. 8) and obtain inputs
via corresponding form fields 1010-25 (as illustrated in FIG.
10).

In block 1330, routine 1300 packages the obtained input
data according to the obtained dynamic service description.
For example, in one embodiment, routine 1300 packages the
input data into XML according to the WSDL service descrip-

10

15

20

25

30

35

40

45

50

55

60

65

10
tion. In some embodiments, routine 1300 packages the input
data into an XML, SOAP message according to the WSDL
service description.

In called-routine block 1400 (see FIG. 14, discussed
below), routine 1300 passes the packaged data to the dynamic
web service corresponding to the obtained dynamic web ser-
vice description. In some embodiments, called-routine 1400
is a remote process that routine 1300 invokes on DWS Server
200 by calling a static “Run” web service, passing in as
parameters a dynamic web service identifier and the corre-
sponding packaged data.

In block 1335, routine 1300 receives output from the
invoked dynamic web service (if any). For example, in some
embodiments, the dynamic web service may return log infor-
mation, and/or requested data structures. Routine 1300 ends
in block 1399.

FIG. 14 illustrates a dynamic web service routine 1400 in
accordance with one embodiment. In some embodiments,
routine 1100 may be performed by DWS Server 200. In block
1405, routine 1400 receives an indication to invoke a dynamic
web service. For example, in one embodiment, a static web
service (e.g., a “Run” web service) may be invoked with an
indication of a dynamic web service to perform.

In block 1410, routine 1400 determines an identifier cor-
responding to the indicated dynamic web service. For
example, in one embodiment, routine 1400 may determine a
dynamic web service identifier passed in as a parameter to a
static web service.

In block 1415, routine 1400 obtains metadata correspond-
ing to the identified dynamic web service. For example, in one
embodiment, routine 1400 obtains metadata from a metadata
library in DWS data store 105. In some embodiments, the
obtained metadata includes information from a recorded
transaction map. In some embodiments, the obtained meta-
data may also include ERP authentication credentials.

Inblock 1420, routine 1400 obtains a package of input data
in a first data format. For example, in one embodiment, rou-
tine 1400 obtains XML and/or SOAP data corresponding to
one or more input fields.

In block 1425, routine 1400 parses the input data package
according to the obtained dynamic web service metadata, and
if necessary, in block 1430, routine 1400 repackages the input
data into a second data format according to the dynamic web
service metadata. For example, in one embodiment, routine
1400 repackages XML and/or SOAP data structures into one
or more packages of data structured so as to comply with an
RFC calling mechanism used to communicate via a native-
API with ERP Server 110.

In block 1435, using the obtained dynamic web service
metadata, routine 1400 determines one or more remote
native-ERP-API calls corresponding to the invoked dynamic
web service. For example, in one embodiment, routine 1400
may determine one or more RFC calls that were recorded
between an ERP client 402 and ERP Server 110.

In block 1440, routine 1400 invokes the one or more
remote native-ERP-API calls on ERP Server 110, using the
repackaged input data in place of the input data originally
provided in the recorded transaction. In some embodiments,
routine 1400 may essentially “mimic” the behavior of the
ERP client 402 from which the transaction was originally
recorded, using RFC to invoke the ERP Server’s native-ERP-
API. In other embodiments, routine 1400 may use a native-
ERP web service API to perform the recorded transaction
with the newly provided input data.

In block 1445, routine 1400 receives output data from the
remotely-invoked native-ERP-API calls (if any). In block
1450, routine 1400 packages the output data into one or more

US 9,129,238 B2

11

output structures (if any) identified in the dynamic web ser-
vice metadata. In block 1499, routine 1400 ends, making
available the packaged output structures (if any), e.g., to the
calling remote process.

FIG. 15 illustrates several components of an exemplary
Workflow Server 1500. In some embodiments, Workflow
Server 1500 may include many more components than those
shown in FIG. 15. However, it is not necessary that all ofthese
generally conventional components be shown in order to
disclose an illustrative embodiment. As shown in FIG. 15, the
Workflow Server 1500 includes a network interface 1530 for
connecting to the network 150.

The Workflow Server 1500 also includes a processing unit
1510, a memory 1550, and an optional display 1540, all
interconnected along with the network interface 1530 via a
bus 1520. The memory 1550 generally comprises a random
access memory (“RAM”), a read only memory (“ROM”), and
a permanent mass storage device, such as a disk drive. The
memory 1550 stores program code for a business process
definition routine 2100 and business process routine 2200. In
addition, the memory 1550 also stores an operating system
1555. These software components may be loaded from a
non-transient computer readable storage medium 1595 into
memory 1550 of the Workflow Server 1500 using a drive
mechanism (not shown) associated with a non-transient com-
puter readable storage medium 1595, such as a floppy disc,
tape, DVD/CD-ROM drive, memory card, or the like. Insome
embodiments, software components may also be loaded via
the network interface 1530, rather than via a non-transient
computer readable storage medium 1595.

Workflow Server 1500 also communicates via bus 1520
with business process data store 120. In various embodi-
ments, bus 1520 may comprise a storage area network
(“SAN”), a high speed serial bus, and/or via other suitable
communication technology. In some embodiments, Work-
flow Server 1500 may communicate with business process
data store 120 via network interface 1530.

Although an exemplary Workflow Server 1500 has been
described that generally conforms to conventional general
purpose computing devices, an Workflow Server 1500 may be
any of a great number of devices capable of communicating
with the network 150, clients 300A-B, DWS server 200,
enterprise information portal server 115, and/or ERP Server
110, for example, a personal computer, a game console, a
set-top box, a handheld computer, a cell phone, or any other
suitable device.

FIG. 16 illustrates an exemplary series of communications
between Client 300, Workflow Server 1500, and DWS Server
200, in accordance with one embodiment in which Workflow
Server 1500 obtains and stores a definition for a reusable
business process that makes use of a dynamic web service
provided by DWS Server 200.

The illustrated sequence begins with Client 300 sending to
Workflow Server 1500 arequest 1605 to create a new business
process that will make use of a dynamic web service, the
request 1605 including an identifier of that dynamic web
service.

Using the dynamic web service identifier, Workflow Server
1500 sends to DWS Server 200 a request 1610 for a descrip-
tion of the identified dynamic web service. In return, DWS
Server 200 sends to Workflow Server 1500 the requested
dynamic web service description 1615 (e.g., a WSDL XML
schema corresponding to the identified dynamic web ser-
vice).

In some embodiments, each task in a workflow may be
associated with a form for collecting, displaying, reviewing/
approving, and/or submitting data associated with the task.

10

15

20

25

30

35

40

45

50

55

60

65

12

Using the dynamic web service description, Workflow Server
1500 generates 1620 a form template configured to use inputs
and/or outputs described in the dynamic web service descrip-
tion.

For example, FIG. 17 illustrates a user interface 1700 such
as may be employed by an exemplary workflow designer
application, in accordance with one embodiment. User inter-
face 1700 includes a table 1705 indicating input fields (de-
scribed in the dynamic web service description) and corre-
sponding form input fields. User interface 1700 also includes
a table 1710 indicating output fields (described in the
dynamic web service description) and corresponding form
output fields. User interface 1700 further includes a control
1715 for generating a form template (here, a blank form
configured to use input and output fields indicated in tables
1705 and 1710).

Referring again to FIG. 16, Workflow Server 1500 sends to
Client 300 a form template 1625 configured to use inputs
and/or outputs described in the dynamic web service descrip-
tion. Using the form template, a user of Client 300 designs
1630 one or more forms to collect, display, and/or validate
data corresponding to inputs and/or outputs described in the
dynamic web service description. (See, e.g., FIG. 9, discussed
above.)

Once one or more forms have been designed, Client 300
sends to Workflow Server 1500 one or more form definitions
1635, task definitions 1640, associations 1643 between form
definitions and task definitions, business actor role designa-
tions 1645, and actor/task assignments 1650. In some
embodiments, may further send additional business-process-
related data, such as sequencing information.

For example, FIG. 18 illustrates a user interface 1800 such
as may be employed by an exemplary workflow designer
application, in accordance with one embodiment. User inter-
face 1800 includes configurable “swim lanes” 1805A-B rep-
resenting designated business actor roles. Configurable task-
controls 1810A-D represent different task definitions, each of
which has been assigned to a particular business actor role, as
configurably indicated by the task control’s being positioned
within a particular swim lane. (Although in the illustrated
user interface, task control 1810C represents an automatic
task that is only nominally assigned to the business actor role
represented by swim lane 1805A.) Further, task sequence
controls 1815A-C depict task sequencing data indicating a
configurable sequence in which tasks represented by task-
controls 1810A-D are to be performed.

User interface 1800 depicts a simple business process defi-
nition, but similar user interfaces could also be used to define
more complex business processes involving additional busi-
ness actor roles, non-linear task sequencing, and the like.

Referring again to FIG. 16, Workflow Server 1500 stores
1655 (e.g., in business process data store 120) a definition for
a reusable business process or work flow corresponding to
these definitions, associations, designations, and assign-
ments. Workflow Server 1500 then sends to Client 300 an
identifier 1660 that Client 300 (or others) can use to subse-
quently invoke the stored business process.

FIG. 19 illustrates an exemplary series of communications
between Clients 300A-B, Workflow Server 1500, DWS
Server 200, and Enterprise Information Portal 115, in accor-
dance with one embodiment in which Workflow Server 1500
manages a stored business process.

Client 300A sends to Workflow Server 1500 an invocation
1905 of a stored reusable business process, the invocation
including an identifier identifying the stored business pro-
cess. Workflow Server 1500 retrieves the invoked business-
process definition (e.g., from business process data store 120)

US 9,129,238 B2

13

and determines the tasks defined within the business process
and the business actor roles to which the tasks have been
assigned.

Workflow Server 1500 sends to Enterprise Information
Portal 115 at least one request 1902 for data related to actors
(or groups of actors) who may be able to fill the various
business actor roles. Enterprise Information Portal 115
responds with data 1925 related to actors (or groups of actors)
who may be able to fill the various business actor roles, and
Workflow Server 1500 identifies one or more actors to fill the
various business actor roles defined in the business process.

For example, if a task is assigned to an “Accounting Man-
ager” business actor role, Workflow Server 1500 may query
Enterprise Information Portal 115 to identify one or more
suitable individuals within an enterprise.

In the illustrated scenario, the business process includes
two actor-assigned tasks assigned to two business roles to be
respectively filled by the operators of Clients 300A and B (in
that sequence).

Workflow Server 1500 sends to Client 300A a task notifi-
cation 1935 notifying the operator of Client 300A that he or
she has been assigned a task as part of the invoked business
process.

For example, FIG. 20 illustrates a user interface 2000
showing (among other things) a task notification 2005 indi-
cating to an enterprise actor that he or she has been assigned
a task as part of a business process.

Referring again to FIG. 19, when the actor operating Client
300A takes up the assigned task, Client 300A sends to Work-
flow Server 1500 a request 1940 for a form associated with the
assigned task, to which Workflow Server 1500 responds by
sending the form 1945 associated with the assigned task.
(See, e.g., FIG. 10, discussed above.)

In the illustrated sequence, the task assigned to the actor
operating Client 300A involves entering data 1950 into the
form. Once the actor operating Client 300A has completed
the task of entering data, Client 300A sends to Workflow
Server 1500 an indication 1955 that the assigned task has
been completed.

Determining that the next pending task in the business
process is assigned to the actor operating Client 300B, Work-
flow Server 1500 sends to Client 300B a task notification
1960 notifying the operator of Client 300B that he or she has
been assigned a task as part of the invoked business process.
(See, e.g., FIG. 20, discussed above.)

When the actor operating Client 300B takes up the
assigned task, Client 300B sends to Workflow Server 1500 a
request 1965 for a form associated with the assigned task, to
which Workflow Server 1500 responds by sending the form
1970 associated with the assigned task. (See, e.g., FIG. 10,
discussed above.)

In the illustrated sequence, the task assigned to the actor
operating Client 300B involves reviewing and/or approving
1975 form data. Once the actor operating Client 300B has
completed the task of reviewing and/or approving data, Client
300B sends to Workflow Server 1500 an indication 1980 that
the assigned task has been completed.

Determining that the next pending task in the business
process is an automatic task to invoke a dynamic web service
associated with the business process, Workflow Server 1500
sends to DWS Server 200 an invocation 1985 invoking a
dynamic web service using data from form associated with
the business process.

DWS Server 200 processes the invocation (see, e.g., rou-
tine 1400, illustrated in FI1G. 14 and discussed above), includ-
ing communicating with ERP Server 110 (not shown). DWS
Server 200 returns transaction results (if any) to Workflow

5

10

15

20

25

30

35

40

45

50

55

60

65

14

Server 1500. In some embodiments, the business process may
call for dynamic web service transaction results to be pre-
sented to an actor and/or subjected to further tasks (not
shown).

FIG. 21 illustrates a business process definition routine
2100, such as may be performed by Workflow Server 1500 in
accordance with one embodiment. In block 2105, routine
2100 obtains an identifier identifying a dynamic web service
to be associated with a new business process definition.

In block 2110, routine 2100 obtains a description (e.g.,
(e.g., a WSDL XML schema) corresponding to the identified
dynamic web service. For example, in one embodiment, rou-
tine 2100 may retrieve the dynamic web service description
from a dynamic web service server (e.g., DWS Server 200).

In some embodiments, each task in a business process may
be associated with a form for collecting, displaying, review-
ing/approving, and/or submitting data associated with the
task. In block 2115, routine 2100 generates a form template
configured to use inputs and/or outputs described in the
dynamic web service description. (See, e.g., FIG. 17, dis-
cussed above.)

In block 2120, routine 2100 obtains one or more form
definitions designed from the form template generated in
block 2115. For example, in one embodiment, routine 2100
may provide the form template to a client device, where an
operator may design a form using a forms-authoring tool such
as described above in respect to FIG. 9. In some embodi-
ments, one or more forms may include a control by which an
operator can manually invoke the dynamic web service to
obtain, submit, and/or validate form data.

In block 2125, routine 2100 obtains a plurality of task
definitions defining a plurality of tasks that collectively make
up the business process. For example, using a workflow
designer tool such as that illustrated in FIG. 18, discussed
above, an operator may define several tasks, including actor-
assigned tasks such as collecting and/or entering form data;
viewing, reviewing, and/or approving form data; validating
form data, and the like. Additionally, in some embodiments,
an operator may define tasks to be automatically performed
by a workflow engine (e.g., automatically invoking a dynamic
web service based on form data).

In block 2130, routine 2100 obtains a plurality of role
designations designating a plurality of business actor roles.
(See, e.g., swim lanes 1805A-B, as shown in FIG. 18, dis-
cussed above.) For example, in one embodiment, business
actor roles may be determined according to an enterprise’s
organization chart, as may be accessible via an enterprise
information portal (e.g., Enterprise Information Portal 115).
In some cases, a business actor role may correspond to a
particular individual actor (e.g., Joe Smith in accounting, the
actor who invoked the business process, or the like) within an
enterprise. In other cases, a business actor role may represent
a class of actors (e.g., accounting managers, the materials
department, or the like). In some embodiments, an “auto-
matic” actor role may be used to represent tasks to be auto-
matically performed by a workflow engine during the perfor-
mance of the business process.

In block 2135, routine 2100 obtains task assignments
respectively assigning the tasks defined in block 2125 to
business actor roles designated in block 2130. For example,
using a workflow designer tool such as that illustrated in FI1G.
18, discussed above, an operator may assign tasks to a busi-
ness actor role by positioning task controls within actor-role
swim lanes.

In block 2140, routine 2100 obtains sequencing informa-
tion indicating a sequence in which tasks are to be performed.
For example, using a workflow designer tool such as that

US 9,129,238 B2

15

illustrated in FIG. 18, discussed above, an operator may
employ task sequence controls 1815A-C to indicate a task
sequence. In various embodiments, task sequencing informa-
tion may include conditional sequences, iterative sequences,
series and/or parallel sequences, and/or other like sequencing
control structures.

Inblock 2145, routine 2100 stores (e.g., in business process
data store 120) a reusable business process definition corre-
sponding to the data obtained in blocks 2120-2140.

In block 2150, routine 2100 provides an identifier that can
be used to subsequently invoke the stored business process.
Routine 2100 ends in block 2199.

FIG. 22 illustrates a routine 2200 for running a stored
reusable business process, such as may be performed by
Workflow Server 1500 in accordance with one embodiment.
In block 2205, routine 2200 obtains an identifier to invoke a
stored reusable business process. Using the identifier, in
block 2210, routine 2200 retrieves a corresponding business
process definition (e.g., from business process data store
120).

In block 2215, routine 2200 identifies among the tasks
defined within the business process definition one or more
pending tasks (here, tasks that have no preceding tasks or
other precondition that must be satisfied before they are in
condition to be performed). For example, in the business
process illustrated in FI1G. 18, discussed above, routine 2200
would identify task 1810A as being initially pending.

Beginning in opening loop block 2220, routine 2200 pro-
cesses each pending task identified in block 2215. In subrou-
tine block 2300 (see FIG. 23, discussed below), routine 2200
processes the current pending task. In closing loop block
2230, routine 2200 iterates back to opening loop block 2220
to process the next pending task identified in block 2215 (if
any). Once all pending tasks identified in block 2215 have
been processed, routine 2200 ends in block 2299.

FIG. 23 illustrates a pending task processing subroutine
2300, such as may be performed by Workflow Server 1500 in
accordance with one embodiment. In block 2305, subroutine
2300 obtains (from the business process definition) a task
definition for the current pending task. In decision block
2310, subroutine 2300 determines whether the current pend-
ing task is to be automatically performed (such as by auto-
matically invoking a dynamic web service), as opposed to
being assigned to a business actor role to be filled by a human
actor.

If the current pending task is to be automatically per-
formed, then in block 2345, subroutine 2300 obtains (from
the task and/or business process definition) a dynamic web
service identifier associated with the current pending task.

As discussed variously above, a dynamic web service may
have one or more input and/or output fields that are mapped to
one or more form fields of one or more forms associated with
the business process. In block 2350, subroutine 2300 obtains
form data that corresponds to input fields (if any) of the
dynamic web service.

In block 2355, subroutine 2300 automatically invokes the
dynamic web service using the dynamic web service identi-
fier obtained in block 2345 and the form data (if any) obtained
in block 2350.

In decision block 2360, subroutine 2300 determines
whether it received transaction results from its invocation of
the dynamic web service. If not, then in block 2340, subrou-
tine 2300 records the current formerly-pending task as being
completed. If so, then in block 2365, subroutine 2300 pro-
vides the transactions results (e.g., by populating one or more
form fields) before recording the current formerly-pending
task as being completed in block 2365.

10

15

20

25

30

35

40

45

50

55

60

65

16

On the other hand, if in decision block 2310, subroutine
2300 determines that the current pending task is not to be
automatically performed, then in block 2315, subroutine
2300 determines which business actor role the current pend-
ing task is assigned to, and in block 2320, subroutine 2300
identifies one or more business actors to fill that role. For
example, in one embodiment, subroutine 2300 may consult
an enterprise information portal (e.g., Enterprise Information
Portal 115) to identify one or more actors to fill the business
actor role.

In block 2325, subroutine 2300 notifies the identified busi-
ness actor(s) of the current pending task that is assigned to the
actor(s). (See, e.g., FIG. 20, discussed above.) Once the iden-
tified business actor(s) has/have undertaken the current pend-
ing task, in block 2330, subroutine 2300 provides a form
associated with the current pending task to the actor(s). (See,
e.g., FIG. 10, discussed above.)

Once the task has been completed by the identified busi-
ness actor(s), in block 2335, subroutine 2300 receives a task
completion indication, and in block 2340, subroutine 2300
records the current formerly-pending task as being com-
pleted.

In decision block 2343, subroutine 2300 determines
whether the completion of the current formerly-pending task
has put one or more uncompleted tasks in condition to be
performed. For example, in the business process illustrated in
FIG. 18, discussed above, once task 1810A has been com-
pleted, task 1810B (the next task in series) would be put into
condition to be performed. If no uncompleted tasks have been
put into condition to be performed, then subroutine 2300 ends
in block 2399, returning to the caller.

However, if in decision block 2343, subroutine 2300 iden-
tifies one or more newly-pending tasks that have been put into
condition to be performed be the completion (block 2340) of
the current formerly-pending task, then beginning in opening
loop block 2370, subroutine 2300 processes each of the
newly-pending tasks. In subroutine block 2300, subroutine
2300 calls itself to process the current newly-pending task. In
closing loop block 2375, subroutine 2300 iterates back to
opening loop block 2220 to process the next newly-pending
task identified in block 2343 (if any). (Although this process
is depicted as recursive for illustration purposes, other
embodiments may employ different control structures to pro-
cess tasks in an appropriate sequence.)

Once all newly-pending tasks have been processed, sub-
routine 2300 ends in block 2399, returning to the caller.

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that a whole variety of alternate and/or equiva-
lent implementations may be substituted for the specific
embodiments shown and described without departing from
the scope of the present invention. For example, although the
description above refers to embodiments involving enterprise
resource planning systems, other embodiments may be simi-
larly used in other types of enterprise application systems in
which a transaction between an enterprise client and an enter-
prise server may be recorded and mapped, as variously
described above. For example, the systems and methods
described herein may be used in connection with enterprise
systems such as customer relationship management
(“CRM”) systems, accounting systems, supply chain man-
agement systems, and the like. This application is intended to
cover any adaptations or variations of the embodiments dis-
cussed herein.

What is claimed is:

1. A computer-implemented method for automating a busi-
ness process, the method comprising:

US 9,129,238 B2

17

obtaining, by the computer, a service description frame-
work describing a dynamic web service for invoking a
previously-recorded business transaction associated
with the business process, said service description
framework describing a plurality of transaction data
fields;
obtaining, by the computer, one or more form definitions
defining at least one transaction form having at least one
form field for collecting and/or displaying data corre-
sponding to one of said plurality of transaction data
fields;
obtaining, by the computer, a plurality of task definitions
respectively defining a plurality of tasks that collectively
make up at least a portion of the business process, each
of said plurality of tasks being associated with at least
one of said one or more form definitions;
obtaining, by the computer, a plurality of role designations
respectively designating a plurality of business actor
roles for collectively performing the business process;
obtaining, by the computer, a plurality oftask assignments,
each assigning at least one of said plurality of tasks to be
performed by at least one of said plurality of business
actor roles; and
storing, by the computer to a data store, a reusable business
process definition comprising said one or more form
definitions, said plurality of task definitions, said plural-
ity of role designations, and said plurality of task assign-
ments; and
wherein at least one of said plurality of tasks includes
invoking, via said dynamic web service, said recorded
business transaction to automatically perform at least
one of the following operations:
retrieve data from an Enterprise Application system to
populate said form field;
validate data from said form field against data stored in
said Enterprise Application system; and
store data from said form field into said Enterprise
Application system.
2. The method of claim 1, further comprising obtaining a

sequence definition defining a sequence for said plurality of

tasks when performing the business process; and

wherein said reusable business process definition further
comprises said sequence definition.

3. The method of claim 2 , further comprising:

in response to receiving an indication to perform the busi-
ness process, retrieving said reusable business process
definition from said data store; and

invoking a workflow engine to process each of said plural-
ity of tasks in said sequence defined by said sequence
definition.

5

—_
w

20

25

30

40

45

50

18

4. The method of claim 3, wherein processing a current one
of'said plurality of tasks comprises, when a determined one of
said plurality of business actor roles is assigned to the current
task, said workflow engine:

identifying at least one business actor to fill the determined

business actor role;

notifying the identified at least one business actor to per-

form the current task; and

when the identified at least one business actor has com-

pleted the current task, proceeding to the next task, if
any, in said sequence defined by said sequence defini-
tion.

5. The method of claim 4, wherein identifying said at least
one business actor comprises said workflow engine obtaining
business actor and business actor role data from an enterprise
information portal with which said workflow engine is inte-
grated.

6. The method of claim 3, wherein processing a current one
of said plurality of tasks comprises, when none of said plu-
rality of business actor roles is assigned to the current task,
automatically performing the current task by said workflow
engine.

7. The method of claim 6, wherein said automatically per-
forming the current task by the workflow engine includes said
invoking, via said dynamic web service, said recorded busi-
ness transaction.

8. The method of claim 1, further comprising obtaining an
automatic task assignment assigning at least one of said plu-
rality of tasks to be performed automatically, rather than by
one of said plurality of business actor roles.

9. The method of claim 8, wherein said automatically-
performed task includes said invoking, via said dynamic web
service, said recorded business transaction.

10. The method of claim 1, wherein said transaction form
includes a control that invokes, via said dynamic web service,
said recorded business transaction when said control is acti-
vated by a business actor in one of said plurality of business
actor roles in the course of said business actor’s performing
an assigned one of said plurality of tasks.

11. The method of claim 1, wherein said plurality of busi-
ness actor roles include at least one of a data entry role, a data
review role, a data validation role, and an approval role.

12. The method of claim 1, wherein said Enterprise Appli-
cation system comprises an Enterprise Resource Planning
server.

13. A non-transient computer-readable storage medium
having stored thereon instructions that, when executed by a
processor, perform the method of claim 1.

14. A computing apparatus comprising a processor and a
memory having stored thereon instructions that, when
executed by the processor, perform the method of claim 1.

#* #* #* #* #*

