a2 United States Patent

Nirantar et al.

US009271237B2

US 9,271,237 B2
Feb. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(63)

(60)

(1)

OPTIMIZING KEEPALIVE AND OTHER
BACKGROUND TRAFFIC IN A WIRELESS
NETWORK

Applicant: Seven Networks, Inc., San Carlos, CA
us)

Abhay Nirantar, San Carlos, CA (US);
Andrii Kokhanovskyi, San Carlos, CA
(US); Nariman D. Batlivala, San
Carlos, CA (US); Rami Ali-isawi, San
Carlos, CA (US); Sungwook Yoon, San
Carlos, CA (US); Michael Fleming, San
Carlos, CA (US); Ari Backholm, San
Carlos, CA (US)

Inventors:

Assignee: Seven Networks, LL.C, San Carlos, CA
(US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/494,538

Filed: Sep. 23, 2014

Prior Publication Data

US 2015/0131438 Al May 14, 2015

Related U.S. Application Data

Continuation of application No. PCT/US2014/

036669, filed on May 2, 2014.

Provisional application No. 61/833,838, filed on Jun.
11, 2013, provisional application No. 61/836,095,
filed on Jun. 17, 2013, provisional application No.
61/836,039, filed on Jun. 17, 2013.

Int. Cl.

HO4L /16 (2006.01)

GO6F 15/173 (2006.01)
(Continued)

Mobile Device
150

Network
106

Detect Keepalive 1 {RAT),
keepalive 2 {KA2)
0

Categorize KA1 as unsafe,
KA2 as safe based on
prediction 114

| Unsafe KA1

Block KA2
118

e

(52) US.CL
CPC ... HO4W 52/0251 (2013.01); HO4L 69/16
(2013.01); HO4W 12/00 (2013.01); HO4W
24/02 (2013.01); HO4W 28/0231 (2013.01):

HO4W 76/045 (2013.01); HO4W 88/02

(2013.01)
(58) Field of Classification Search
CPC ... HO04W 52/0251; HO4W 76/046; HO4W
72/048; HO4W 52/0261; HO4L 67/145;
HO4L 69/28; HO4L 41/0893; HO4L 43/12;
HO4L 67/1008
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
8,130,747 B2* 3/2012 Lietal ...ccccooevvrnnne 370/351
8,326,985 B2* 12/2012 Lunaetal. ... 709/224
(Continued)
FOREIGN PATENT DOCUMENTS
WO 2011134495 A1 11/2011
WO 2012121784 A2 9/2012
OTHER PUBLICATIONS

IPRP for Application No. PCT/US2014/036669 dated Sep. 29,2014.
(Continued)

Primary Examiner — Melanie Jagannathan
(74) Attorney, Agent, or Firm — NK Patent Law, PLLC

(57) ABSTRACT

Systems and methods of optimizing network transaction traf-
fic originating at a mobile device are provided. The systems
and methods includes identifying network transaction param-
eters corresponding to an application and utilizing the net-
work transaction parameters to execute a network transaction
in advance of an expected schedule or after a delay to opti-
mize the network transaction traffic.

25 Claims, 27 Drawing Sheets

Mobile Device
150

2

Network
106

Tide >= Tewin

Long-tived C: ion 132-

Detect Radio Turn On

Gget new Kespanve

US 9,271,237 B2

Page 2
(51) Int.CL 2007/0288469 Al 12/2007 Shenfield
HO4W 52/02 (2009.01) 2008/0115152 Al 5/2008 Welingkar et al.
HO4W 24/02 (2009.01) 200010123690 A1 512005 Alseiich stal
HO4W 88/02 (2009.01) 2009/0149203 Al 6/2009 Backholm et al.
HO04W 76/04 (2009.01) 2012/0135726 Al 5/2012 Lunaet al.
HO04L 29/06 (2006.01) 2012/0176968 Al 7/2012 Luna
HO04W 28/02 2009.01 2012/0185597 Al* 7/2012 Lunacccovvvvvievvennnn, 709/225
TH04W 12/00 (2009 01) 2012/0254401 Al 10/2012 Adams et al.
(01) 2013/0132941 Al 5/2013 Lindeman et al.
) 2013/0142050 Al 6/2013 Luna
(56) References Cited 2015/0131453 A1* 5/2015 Tofighbakhsh et al. 370/241
U.S. PATENT DOCUMENTS OTHER PUBLICATIONS
8,731,542 B2~ 5/2014 Tervahauta et al. IPRP for Application No. PCT/US2014/040575 dated Oct. 2, 2014.
g;?ﬁ;ﬁ g% : ;gg}‘s‘ %:)‘g;}fé :ﬁhs'ﬁ'é{éi """"" ;%gﬁ IPRP for Application No. PCT/US2014/042006 dated Oct. 16, 2014
2004/6068’665 Al 4/2004 Fox et al. Non-Final Ofﬁce ACtiOIl mailed Jan. 7, 2015 for U.S. Appl No.
2005/0188098 Al 8/2005 Dunk 14/283,193.
2006/0092841 A1 5/2006 Lloyd
2006/0182141 Al 8/2006 Duggirala et al. * cited by examiner

U.S. Patent Feb. 23,2016 Sheet 1 of 27 US 9,271,237 B2

Mobile Device Network
150 106

Detect keepalive T (KAT),
keepalive 2 (KA2)
102

Categorize KA1 as unsafe,
KA2 as safe based on
prediction 114

Unsafe KA1

A 4

Block KA2
118

FIG. 14-1

U.S. Patent Feb. 23,2016 Sheet 2 of 27 US 9,271,237 B2

Mobile Device Network
150 106
iy

Tiate >= Tounin &L ong-lived Connection 132————

A 4

Detect Radio Turn On
135

Trigger new keepalive

(.._.__.._____.____._____._.._....
=
S
.
~
Y

FIG. 14-2

U.S. Patent Feb. 23,2016 Sheet 3 of 27 US 9,271,237 B2

Mobite Device Network
150 106

iy

Tige >= Xy [«&— 1l ong-lived Connection 143—— >

A 4

Detect KA traffic
145

T>=X, | Identify latest KA |

! transaction !

: 147 !
————————————— KA149-~ - m e e ey

A
Identify latest KA transaction
151

KA 152 »

FIG. 14-3

U.S. Patent Feb. 23,2016 Sheet 4 of 27 US 9,271,237 B2

Mobile Device Network
150 106
Expected
Retry Behavior Background Requests 1, 2———————»

«—No response to background request 1

Tretm«—No response to background request 2
Tretw—Z
————— Background Requests 1 (retry attempt) — — — >
€ — = No response——— =~ =~ — — — — 4
————— Background Requests 1 {retry attempt) — — — »
€~ No responsg— — - — =~ — = — — ~ 4

Intercept background requests 1
and 2 if device state meets delay
condition(s)

160

Start delay timer for background

request 1
162
T Start delay timer for
back d t2
T detag- ac grou1ni4reques

Detect undelay trigger for I
background request 1 Taetay-2
166

} 7 Background Request 1——»

Detect undelay trigger for
background request 2
170

Background Request 2

A 4

FIG. 14-4

U.S. Patent

US 9,271,237 B2

Feb. 23, 2016 Sheet 5 of 27
PN
V2EEREN (Unsafe\
,Unsafe‘ \ KA
KA RN ~N_ -
___// ,Unsafe‘
\ KA / ,\\
TN N7 (Unsafe\
Unsafe KA ——
! ! \ / 7 \
\ KA N {Unsafe)|
£ TN S — ~~ \ KA
,Unsafe\ V4 \ e N N__ s
\ KA (Unsafe\ ,Unsafe‘
TN T TN VKA, KA,
Unsafe Unsafe N s N Ve \
{) \ { Unsafe
\ KA \ KA N \ KA ,
S SN— {Unsate'| ~_ .~
o v KA s
Ve ~ 7 Ve N
{ Unsaft;‘ Unsafe \
\ KA 27 TN v KA
N7 lUnsafe\ N
a \ KA 777N
,Unsafe\‘ ~_ - ,Unsafe\
\ KA 7/ \ KA 7
N N o A~
4
,Unsafe\‘
\ KA /
N
FIG. 14-5
P
PN [Unsafe\‘
,Ur;(s:fe) - \\KA//
e -
__,/ ,Unsafe\\
\ KA / /’\\
s N7 ,Unsafe)
safdrun >3 Unsate, s KAy 77N
\ KA N {Unsafe),
Unsafe R 77 TN S A
{\ KA) ,Unsafe‘ ,Unsafe‘ -
/T NN T TN \ KA v KA, oL
{ Unsafe tUnsafe ~o - ~_ s \
}) ,Unsafe‘
\ KA \ KA ——
/ / y \ \ KA
N~ N~ { Unsafe), ~_ ~
- \ KAy —_—
Ve N Ve N
{ Unsafe\‘ 1 Unsafe \
\ KA PN \ KA
N s ,Unsafe\ N7
/’\ \ KA 7 ’\\
,Unsafe\ \ N ,Unsafe\
\ KAy \ KA
N o7 _//,\\
IUnsafe\
\ KAy
~ ~

FIG. 14-6

U.S. Patent Feb. 23,2016 Sheet 6 of 27 US 9,271,237 B2

P
VAN ,Unsaﬂ:}\
IU“K:fe\ —— \ KAy
/ N
_/’ ,Unsafe\‘
s N=" lUnsafe‘
lUnsafe\ \ KA N
\ KA N { Unsafe),
- - \ KA
e e
,Unsafe\\ ,Unsafe\\ -7
TONN T TN VKA, VKA,
,Unsafe‘ ,Unsafe\ N ~_~- / \
,Unsafe\
\ KA \ KA PRl \ KA
N S {Unsafe'| “~_ -
-~ -0SD > 10000 KA -
Ve N\ N / \
{ Unsafe \ ! Unsafe\
\ KA 7N \ KA
N s ,Unsafe\ N7
/’-\ \ KA / //'\
lUnsafe\\ ~o ,Unsafe\\
\ KA \ KA 4
N N o A -
’ N\
,Unsafe)
\ KAy
N
FIG. 14-7
//\
77 TN ,Unsafe}\
Unsafey \ KA
7 -
_// (Unsafe\‘
sy Y=~ (Unsafe\\
IUnsafe‘ \ KA 4 PN
\ KA N {Unsafe'|
=< _
' A\ - ~~_\ KA
,Unsafe\ 7 N\ e N\ ___//
\ KA 4Unsafe\ ,Unsafe\
T ONS T TN KA, KA,
,Unsafe‘ lUnsafe\ ~_~ N_ {J N
{ nsafe\
v KA \ KA KA
N N \\ //
—~~_0SD > 100090 -
7 /7 \
 Unsafe \ { Unsafe)
\ KA \ KAy
N7 N
/"\ /’\
! Unsafe\\ { Unsafe\‘
\ KA \ KA
.o 2,3,5,6 AM A
7 N\
,Unsafe‘
\ KA
N

FIG. 14-8

U.S. Patent

Feb. 23, 2016 Sheet 7 of 27 US 9,271,237 B2
e
- Unsafe
7 \ { \
,Unsafe‘ s \ KA 4
\ KA I'e N\ N
Unsafe
S TR - Bytes <1000
\ / 7/ \
-~ N ,Unsafe‘
[Unsafe‘ \ KA AN
\ KA N s [Unsafe
~ e
- P L~ \ KA
,Unsaﬂ;\ [Unsafe\\ e
W RA ;KA RN
R e ,Unsafe\
- KA
 Unsafe \ ,/
v KA
\~...
/’“\\ v KA
,Unsafe\ ~N_ -
\ KA / /’\
~N_~ [Unsafe\‘
\ KA
N A -
4
(Unsaﬂ;‘
\ KA
~N e

FIG. 14-9

US 9,271,237 B2

Sheet 8 of 27

Feb. 23, 2016

U.S. Patent

o9
J8sn

Yol

a1 ‘DIAd

S)Ianieg
(s)ioniag (
> uBII0D (s)lom0g py
uodnog-e [EUOROWOIY
OON_\ moﬁ\ <omf\
19M8S (Sv3)
ouAganoy abueyoxy
ayoen JBAIBS
FETVETS (NDD) Bubessapy
> 801 pnoj sjboon
gel $30IAIBS
13410 ‘SHIOMIBU [B190S
JBUBNHUL ‘'S[EMOH
Buibessap
JONIOS Buo ¢
1SoH Ulo "SININ 'SINS
jlews [euosiad
[rewy a1ei0dio

il

001

o:\.

suodno)) ouaIPs|3
JUBIUOD JEUOHOWOIA
JUBWISSIBADY

JOPIAOLd JURIU0D
1oAleg uoneanddy

U.S. Patent

Feb. 23, 2016

Sheet 9 of 27

App Server/
Content Provider

I’HO

Optional

Caching |

Proxy Server !

- —_——— —

Network
108

US 9,271,237 B2

Ad Server(s)

I120A

1208

Promotional
Content

Server(s)

I‘IZOC

e-Coupon

Server(s)

Messaging

Server(s)

I12OD

Host Server

Proxy Server

125

Server Cache

135

I1OO

Short Message
Service Center

(SMSC)
162

FIG. IC

US 9,271,237 B2

Sheet 10 of 27

Feb. 23, 2016

U.S. Patent

Gzl

vii

{Sds)

aoiIneg Buissen0ld
pue sbesoig 6o

A A

oyjesf peziundo

dl ‘Did

olel} pezilindO-uoN

L\
N
i

AXOUd 8pIS-usD

661 Axcid Buyorn
/d3d Aued payL

}@MMZL

Zil SS903Y OlpeY

A 4

oGl

80lAR(Q oo

\\mt\

U.S. Patent Feb. 23,2016 Sheet 11 of 27 US 9,271,237 B2

4 Radio/Battery App App App AppN
Mobile Information 1 2 3 n
oS & 161 163 163 163 163 |
Apps < A A A 7y
165 A\ 4 A 4 A\ 4 y
0S
_ 162
7\ A A A A
-~
A 4 y \ 4 A 4 A
; — - Device State| _ |
{ (- Monitor 121 | !
: | x : Traffic Recognizer
I
i | 122
o !
Ll v !
b !
b !
; : Keepalive :
1 1 | Optimizer !
b 300 '
o — '
L !
o 4 :
CS“%m_ : : L 4 | y
lae < 11| Local Data ! Protocol Optimizer 123
Proxy : ! Cache :
I e
175 N 185 | | TP | [HTTPS| | Other |
Fo
P 0 !
i ¥ : y
o :
F Policy ' | Traffic Scheduler
t 4 Manager » »
: A] T To/From
{ X v ¢ Push Server-
: Client [« Side
-~ > Reporting Agent 126 > 128 Proxy
125
Watch Dog 127 »
.

FIG. IE

US 9,271,237 B2

Sheet 12 of 27

Feb. 23, 2016

U.S. Patent

—_— 0%
v0< FeTvA
90¢ senye o aulbug uonedepy
mEQm\Mw Y OO d/Henyed | [4714 A/t SNS 00T ozrundQ anjedosy (090101 PIEPUEIS
unelsdto BDZ 90BLSIU| MIOMIBN -uoN/Aiereudold
[[|
GIZ aInpopy AIARDY J9sn 797 T
T T0C Jebeuepy Jeaquiesiy 1B[I0IUOD oIpey
I5z4 aulbu3 oz Jsebeurpy uonosuuoD
@ '
suiBug UoNEZRIION] awabeuepy sjelg opey _
|
— — V°r4 95¢
6E¢ I0jBIBuUaL) JA34 sinpoy Buiyoieg anpopy uswubiy
9I10id uoneslddy 101088 (] UsBNEd

Te 1010919 Joineyag uogedlddy

¥4
JaBeuepy uonoesuel | jsenbay

G2 1dv Axoid

GGe aubuzg buideys oiyel)

[5iz4
SINPON SNG

5574
3INPOIN 1000}01d
uoneslddy

Gpe Jabeuepy Aoyjod Buiyorny

\I\

G2z —
AX01d 18007 0ce
uonesyddy
3|IGOIN Diemy-AX0id

0ic

uoneoyddy
SO BJemeuN~AX0id

Gge
ayoe)D

\i\

0S¢ 801naQ BqoN

US 9,271,237 B2

Sheet 13 of 27

Feb. 23, 2016

U.S. Patent

qac¢ ‘Old

el
aJueusuIBN

oiges |
aAlDBIBU|

PI9Z sezuobBaies oujel) uoneoyddy

arve
sulbug
uoioelag
Auteonud au

61T

punoibyoeg

punoibaio

dye Jozuobeyen sigg uoneoyddy

elLye
aulbug
uoneznuotid

o818 biploeg

Tz 1010918(] Joineyeg uoneoyddy

2912 q8i¢
iabeuepy aulbuz
uoneosdxy HondIpald
1280 AUnOY Jssn

BSTe
Jaoel}
AIAIOY JaS()

S1Z eInpo Apagoy Josn

US 9,271,237 B2

Sheet 14 of 27

Feb. 23, 2016

U.S. Patent

555572
BYOBD 8007

IC OIA

787 anpopy Buipossq
[Buipodus [000}01d

§/e ouibue
uonezijewou pue Buiyolew Aeusg

Z3c Jebeurw (suolssas
10 sadA1 Jey)o 4o ‘uoissas
do1 e “6°8) uoissasg

Y4
aubus uoyosiep weled uoyoesuel}

08z Jojeisush
weays a1Aq uoneoddy

77 19zAjeuy j00010id

72 suiius uonoslap UoORSUER |

0Z¢ suibuz uonejdepy [000}0id piepueig-uon/Aiesudoid

US 9,271,237 B2

Sheet 15 of 27

Feb. 23, 2016

U.S. Patent

V€ DIA

81€ weby buoday yIe
uoleziwndQ oaljedesy 18|npayos diyel] saljedasy

91€ Jejnpayog

olel] pUNcIBYOEs Z1T Joooig anjedaay

0C 1030818 anljedasy

00¢ Jeziwndp anjedssy

0l¢

abeioig 51537
[eoon 32YOoeD | o0
uslsISIad

qg¢ ‘Ol

US 9,271,237 B2

JTT 19Z1S8UjUAS anijedasy]

Sheet 16 of 27

Feb. 23, 2016

€EE 3INpon —
Bupjoojgun ealjedesy FARS
SINPOIN UohepileA
uondIpaid
0ce
19y00]g uoneoyddy EyZe Joziiobaie)
I anljedasy)
pPaseq-uoioIpald
8¢¢ J9o0jg Hod
9z¢ @Inpoy Bupjoolg Z2¢
ainpoy Bujuiesy
ayee _
J9zuobeieD aaledeay) 0cg auibug
uonoIpeId snljedesy

Z1¢ Joooig anljedesy

U.S. Patent

US 9,271,237 B2

Sheet 17 of 27

Feb. 23, 2016

U.S. Patent

DE OIA

18Z1IS8UUAS anledasy

8GE aINpoi
Jauw saljedseay

9G¢
Jo}Noaxg aaledesy)

8¥¢ anpop
Jauwil anjedasy)

we
10IN08X 3 anljedas)

¥G¢E SINPON
126611 | Buipuaixy
sAaljedasy]

ZG¢ Jo1081e(]
Jsjouieied
Buipuaixy
anljedesy]

0GE Jopuaixy anljedaay]

9v¢ sinpop
19661 | Buueapy
anjedaa))

Zye Josieg
Jetoweled
Buoueapy
anljedosy]

0P Jeouenpy aaljedosy

FIE J8|npeyog ouel | anljedesy)

US 9,271,237 B2

Sheet 18 of 27

Feb. 23, 2016

U.S. Patent

as¢ Did

0Z€ sInpoiy
Aejopun/Aelsg
1senbay punoibjoeg

¥9¢€
Jabeue Jewiy Aedg

QO¢ JozAjeuy Joineyag 1senbay punoibioeg

ZOT 10108}8(] 90URIR|0 | 1sanbay punoiboeg

99¢ 09¢ J1010818Q
10108183 91elS 90IA8(] 1senbay punoibyoeg

1€ Jonpayos oel | punoibyoeg

US 9,271,237 B2

Sheet 19 of 27

Feb. 23, 2016

U.S. Patent

v
anpopy Buyoey

86V I8y 9By
ebeuep JBI0RUOD 14 FTHeTiTlelg) ooy Jebeuepy
jesquesH -iM/ieuisiu| opey >U:O& OCEONO
CHY +ebeuepy UoHOSULOD
39y

2INPOY J01EPIIBAUL BIEQ

9y
fioysodoy

SOIAIBS NIOMIBN

i
Aonsoday

JOpINoId

UCHRUWLIOJU| 83IAS(]

— I9% oInpow - v

9.V ssaualemy Ajuoud Lyy 1010818
[092010:d |0JU0D Ble(] MaN Kioysodoy

GOy SINPON SSousiemy BIEDEIBIN 1USWODH
S7% subug loneyag/AnAgOY 5% swbug pUe UoIBUU0Y
Buideys aiyea} GOF 40}|041u0D) AX04d SS820V dLiH
gzl
Bneg Axold
| dnsempeo || e _ 411 SWS
B0V @oeusiu] YoMmiaN
i
00¥
JONIBG 1SOH —
(4187 202y g02y VO
19PINOIG 9OINIBS (shenlteg (s)Janiag Juaiuon (S)10A1D
J1OAIeG uoleoyddy uodnon-3 |BUOROWOS 4 SPY

v OIA

US 9,271,237 B2

Sheet 20 of 27

Feb. 23, 2016

U.S. Patent

§ DI

0PC Jomiau sy}
0} oaljedsay ajesun oy} puog

ges
ajesun se onijedeay szuobeey

A 4
A

SOA

025
iBnledasy
1X8U 210J8¢ WEdNS dO1L
3y} Ul DRI dnjedaay
-UOU 10 ALIAIOR 1881
1o91RQ

Gig
£.8Z1S 81AQ JejILUIS IO
suwies sey uonoesue)

usnbasgng SOA

ON

01%

219008 awes ay)
18 DB JOYI0 OU

1818q

00S

TOG enljedssy e peeq

0E%
awy Jo pousd e Joj aaedooy
ayi Bunessusb uoyeoydde ayy
10 pod uoneosidde sy) Bumoojg
Aq enljedosy ajes oy jo0|g

A

Geg
ajes se saljedoasy ezuobsien

SOA

U.S. Patent

Update
determination 835

Feb. 23, 2016

Sheet 21 of 27

Observe keepalive traffic for a
period of time 605

B

i

No

Successiul
prediction?
630

Yes

End

P

A

610

Determine keepalive predictors
and/or rules for predicting a
keepalive as safe or unsafe

US 9,271,237 B2

600

O

A

After blocking event, observe
traffic to validate the prediclion |«

625

»
»

4

Predict whether the
keepalive is safe or unsafe
based on keepalive
predictors 6§15

A 4

FIG. 6

Block the unsafe keepalive
620

U.S. Patent Feb. 23,2016 Sheet 22 of 27 US 9,271,237 B2

700

ldentify keepalive pull-in period
parameter for an application 705

y

Detect that application socket is idle for
a time longer than the pull-in period
710

Detect the radio turnon 715

Trigger a keepalive 720

y

Executes the keepalive in advance of
the expected schedule to optimize
keepalive traffic 725

FIG. 7

U.S. Patent Feb. 23,2016 Sheet 23 of 27 US 9,271,237 B2

Identify keepalive parameters for an 800

application (first period or pattern,
second period, keepalive period)
805

A 4

Determine that an application
socket is idle for a time longer than
the first period 810

A

Intercept a keepalive transaction
detected after the end of the first
period 815

Y v

Detect the radio turn on after the

keepalive transaction is detected

but before the end of the second
period 820

Detect the end of the second period
measured from the detection of the
keepalive transaction 835

4
hl

A 4

Identify and send the latest
keepalive transaction to the network
825

FIG. 8

U.S. Patent Feb. 23,2016 Sheet 24 of 27 US 9,271,237 B2

Observe patterns of background
requests 905

900

A 4

Determine the longest period during
which an application can wait for a
response to a background request
without displaying an error message or
impact functionality 910

A 4

Determine the longest period beyond
which the application will stop retrying
to establish a connection to the
wireless network 815

A 4

Identify shorter of the two periods as a
tolerance for the background request
associated with the application 320

FIG. 9

US 9,271,237 B2

Sheet 25 of 27

Feb. 23, 2016

U.S. Patent

01 ‘DIA

GE0l euUsilD
Aejap aij) s)o8W 9jels B0IAs(]

%

SOA

0e0l

P01 _usiuO Aejep
Bi} 199 JOU SB0P a1elS adiAa(]

Ul 801A8P BjIqoL

SOA

0004

¢SWd Aq psigeus ON >
ainjes) ay; si
SzZor
SOA: SHO OIpEL 90IASD ON »
ajiqout auy) s
0zot
SOA; £ 40 UBBIIS B0IASD ON >
a|Igow sy s

S epout jualedsuel

ON

[IGOW Uo 80IASpP
aligow ayy s

U.S. Patent Feb. 23,2016 Sheet 26 of 27 US 9,271,237 B2

Identify a background request 1105

1100
Device
state meets the
delay criteria? v
Allow the background
request to go to the network
B > 1107
Yes

Delay the background request for a
period of time that the background
request has tolerance 1110

Detect an undelay trigger 1115

y

Transmit the background request fo the
wireless network 1125

FIG. 11

U.S. Patent Feb. 23,2016 Sheet 27 of 27 US 9,271,237 B2

1200

Processor

Video Display

I Instructions

Alpha-numeric Input Device

Main Memory

Bus

Instructions

I Cursor Control Device

Drive Unit

Machine-readable
(Storage) Medium

Non-volatite Memory

Instructions
Network Interface Device

Signal Generation Device

v

FIG. 12

US 9,271,237 B2

1
OPTIMIZING KEEPALIVE AND OTHER
BACKGROUND TRAFFIC IN A WIRELESS
NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation application of PCT
Patent Application No. PCT/US14/36669 filed on May 2,
2014 entitled “OPTIMIZING KEEPALIVE AND OTHER
BACKGROUND TRAFFIC IN A WIRELESS NETWORK”
which further claims priority to and the benefit of U.S. Pro-
visional Patent Application Ser. No. 61/833,838 titled “KEE-
PALIVE ALGORITHMS FOR SIGNALING OPTIMIZA-
TION IN A WIRELESS NETWORK FOR TRAFFIC
UTILIZING PROPRIETARY AND NON-PROPRIETARY
PROTOCOLS” filed on Jun. 11, 2013; U.S. Provisional
Patent Application Ser. No. 61/836,095 titled “ENGINEER-
ING DELAY IN SENDING BACKGROUND REQUESTS
FOR SIGNALING OPTIMIZATION IN A WIRELESS
NETWORK FOR TRAFFIC UTILIZING PROPRIETARY
AND NON-PROPRIETARY PROTOCOLS” filed on Jun.
17, 2013; and U.S. Provisional Patent Application Ser. No.
61/836,039 titled “IDENTIFICATION AND REPORTING
OF KEEP ALIVE MESSAGES AND OTHER NON-USER
INTERACTIVE TRAFFIC IN A MOBILE NETWORK”
filed on Jun. 17, 2013. The entire content of the aforemen-
tioned applications are expressly incorporated by reference
herein.

BACKGROUND

Many applications on mobile devices utilize long-lived
connections to be able to immediately receive incoming data
from their servers in the network. Examples of such “always-
on” applications can include instant messaging applications
(e.g., SKYPE, VIBER), push email clients and Voice over
Internet Protocol (IP) applications. In order to maintain a
long-lived connection, applications are designed to periodi-
cally send heartbeat messages or keepalive messages (or sim-
ply keepalives or KAs) to their servers.

While the keepalive messages from these always-on appli-
cations allow the applications to receive messages with less
delay, this improvement in latency has associated costs.
These costs include consumption of a significant amount of
energy in mobile devices, additional signaling in the mobile
network and bandwidth consumption. For example, to be able
to send keepalive messages frequently, a mobile device needs
to frequently transition its radio between a high powered state
and an idle state or remain in a high powered state instead of
the idle state for a longer period of time, resulting in fast
draining of battery. These radio transitions also cause addi-
tional signaling in the networks as radio resource control
(RRC) messages need to be exchanged between the mobile
device and base station to establish a radio link. Furthermore,
each keepalive message can be as large as 20-60 bytes in size,
and a large number of such keepalive messages from multiple
apps can add up to consume a substantial chunk of the net-
work bandwidth.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A-1 is an example schematic diagram that depicts
optimization of keepalives by categorizing a keepalive as safe
or unsafe and transmitting an unsafe keepalive from a mobile
device at one end of a connection to another end of the
connection over a network.

25

30

40

45

60

2

FIG. 1A-2 is an example schematic diagram that depicts
optimization of keepalive traffic by advancing a keepalive
from its expected schedule.

FIG. 1A-3 is an example schematic diagram that depicts
optimization of keepalive traffic by delaying a keepalive
beyond the keepalive period.

FIG. 1A-4 is an example schematic diagram that depicts
optimization of background traffic by delaying repeatable
background requests.

FIGS. 1A-5-1A-9 are example diagrams that depict kee-
palive learning algorithms to generate a rule set for isolating
safe keepalives from unsafe keepalives and selectively block-
ing the safe keepalives.

FIG. 1B illustrates an example diagram of a system where
a host server facilitates management of traffic including kee-
palive and other background traffic, content caching, and/or
resource conservation between mobile devices (e.g., wireless
devices), an application server or content provider, or other
servers such as an ad server, promotional content server, or an
e-Coupon server in a wireless network (or broadband net-
work) for resource conservation.

FIG. 1C illustrates an example diagram of a proxy and
cache system distributed between the host server and amobile
device which facilitates network traffic management between
the mobile device, an application server or content provider,
or other servers such as an ad server, promotional content
server, or an e-Coupon server for resource conservation and
content caching.

FIG. 1D illustrates an example diagram of the logical
architecture of a distributed proxy and cache system, includ-
ing a log storage and processing service.

FIG. 1E illustrates an example diagram showing the archi-
tecture of client side components in a distributed proxy and
cache system, including a keepalive optimizer.

FIG. 2A illustrates an example diagram depicting an
example of client-side components in a distributed proxy and
cache system and a keepalive optimizer.

FIG. 2B illustrates an example diagram depicting addi-
tional client-side components in the distributed proxy and
cache system of FIG. 2A.

FIG. 2C illustrates an example diagram depicting addi-
tional components in the proprietary/non-standard protocol
adaptation engine shown in the example of FIG. 2A.

FIG. 3A illustrates an example diagram depicting an
example of components including a keepalive blocker, a kee-
palive traffic scheduler, a background traffic scheduler and a
keepalive optimization reporting agent in the keepalive opti-
mizer of FIG. 2A.

FIG. 3B illustrates an example diagram depicting an
example of components in the keepalive blocker of FIG. 3A.

FIG. 3C illustrates an example diagram depicting an
example of components in the keepalive traffic scheduler of
FIG. 3A.

FIG. 3D illustrates an example diagram depicting an
example of components in the background traffic scheduler of
FIG. 3A.

FIG. 4 illustrates a block diagram depicting an example of
server-side components, in certain embodiments of a distrib-
uted proxy and cache system residing on a host server that
manages traffic in a wireless network (or broadband network)
for resource conservation, content caching, and/or traffic
management.

FIGS. 5-6 illustrate example logic flow diagrams for opti-
mizing keepalives by categorizing a keepalive as safe or
unsafe and transmitting an unsafe keepalive from a mobile
device to the network, while blocking a safe keepalive from
going out to the network.

US 9,271,237 B2

3

FIG. 7 illustrates an example logic flow diagram for opti-
mizing keepalive traffic by advancing a keepalive from its
expected schedule.

FIG. 8 illustrates an example logic flow diagram for opti-
mizing keepalive traffic by delaying a keepalive beyond the
keepalive period.

FIGS. 9-11 illustrate example logic flow diagrams for opti-
mizing background traffic by delaying repeatable back-
ground requests.

FIG. 12 shows a diagrammatic representation of a machine
in the example form of a computer system within which a set
of instructions, for causing the machine to perform any one or
more of the methodologies discussed herein, may be
executed.

DETAILED DESCRIPTION

Embodiments of the present disclosure include systems
and methods for optimizing keepalives and other background
traffic from mobile applications on mobile devices to reduce
energy consumption, bandwidth consumption and signaling
in wireless networks.

The following description and drawings are illustrative and
are not to be construed as limiting. Numerous specific details
are described to provide a thorough understanding of the
disclosure. However, in certain instances, well-known or con-
ventional details are not described in order to avoid obscuring
the description. References to one or an embodiment in the
present disclosure can be, but not necessarily are, references
to the same embodiment; and, such references mean at least
one of the embodiments.

Reference in this specification to “one embodiment” or “an
embodiment” means that a particular feature, structure, or
characteristic described in connection with the embodiment
is included in at least one embodiment of the disclosure. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment, nor are separate or alternative embodi-
ments mutually exclusive of other embodiments. Moreover,
various features are described which may be exhibited by
some embodiments and not by others. Similarly, various
requirements are described which may be requirements for
some embodiments but not other embodiments.

The terms used in this specification generally have their
ordinary meanings in the art, within the context of the disclo-
sure, and in the specific context where each term is used.
Certain terms that are used to describe the disclosure are
discussed below, or elsewhere in the specification, to provide
additional guidance to the practitioner regarding the descrip-
tion of the disclosure. For convenience, certain terms may be
highlighted, for example using italics and/or quotation marks.
The use of highlighting has no influence on the scope and
meaning of a term; the scope and meaning of a term is the
same, in the same context, whether or not it is highlighted. It
will be appreciated that same thing can be said in more than
one way.

Consequently, alternative language and synonyms may be
used for any one or more of the terms discussed herein, nor is
any special significance to be placed upon whether or not a
term is elaborated or discussed herein. Synonyms for certain
terms are provided. A recital of one or more synonyms does
not exclude the use of other synonyms. The use of examples
anywhere in this specification including examples of any
terms discussed herein is illustrative only and is not intended
to further limit the scope and meaning of the disclosure or of
any exemplified term. Likewise, the disclosure is not limited
to various embodiments given in this specification.

15

25

40

45

50

55

4

Without intent to limit the scope of the disclosure,
examples of instruments, apparatus, methods and their
related results according to the embodiments of the present
disclosure are given below. Note that titles or subtitles may be
used in the examples for convenience of a reader, which in no
way should limit the scope of the disclosure. Unless other-
wise defined, all technical and scientific terms used herein
have the same meaning as commonly understood by one of
ordinary skill in the art to which this disclosure pertains. In
the case of conflict, the present document, including defini-
tions, will control.

Various embodiments for optimizing network transactions
or periodic transactions in wireless networks including
mobile networks and wireless local area networks are dis-
closed herein. Network transactions can include keepalive
transactions and other periodic transactions. Network trans-
actions can also include background transactions which can
be periodic. The methodologies and techniques for optimiz-
ing keepalive and other background traffic disclosed herein
can be implemented by a local proxy or client-side proxy
residing on a mobile device in one embodiment. In another
embodiment, an application can implement the keepalive and
other background traffic optimization methodologies and
techniques.

Embodiments of the present disclosure are based on Trans-
port Control Protocol (TCP) streaming optimization. Appli-
cation level protocols such as HTTP (with or without SSL.
encapsulation) are well understood and nonproprietary. How-
ever, an increasing amount of mobile traffic is moving from
the HTTP space to vendor-specific proprietary protocols. For
example, GOOGLE, WHATSAPP, SKYPE, YAHOO MAIL
2.0 and the like use proprietary protocols. The embodiments
of'the present disclosure utilize an architecture that is able to
optimize traffic over both proprietary and nonproprietary pro-
tocols. In one embodiment, TCP stream is passed as a byte
stream from an application to a local proxy (TCP session 1)
and from the local proxy to host/application/content server
(TCP session 2). The application is allowed to establish the
necessary handshakes, and the local proxy observes patterns
within the stream. Instead of, or in addition to, identifying
transactions based on HTTP headers and other protocol
specificity, transactions are identified based on idle periods
between them, without requiring any protocol-specific under-
standing of the binary stream. The content similarity is estab-
lished at basic level by exact binary match, and binary-level
normalizations can be applied to accommodate protocol-
specificities, where they are known.

Embodiments disclosed herein can utilize TCP streaming
optimization to identify transactions within a TCP stream and
can further categorize those transactions as (1) keepalives or
heartbeats, (2) other background (or non-user-interactive) or
(3) user-interactive. The categorization of transactions within
a TCP stream can be used to optimize keepalive and back-
ground traffic in a wireless network to reduce signaling and
conserve resources of the client device and the wireless net-
work to which the client device is connected.

Keepalive transactions are transactions that seem to be
there with no other purpose than to keep a TCP connection
alive. Keepalives can be identified based on a combination of
parameters, including, but not limited to: periodicity, size
thresholds, and similar/repeating content based on the knowl-
edge of'the actual application level protocol or the like. In one
embodiment, keepalives can be detected in real-time for kee-
palive optimization. Various algorithms can be used to detect
keepalives. For example, one example keepalive detection
algorithm leverages traffic reports to perform detection retro-
spectively. Another keepalive detection algorithm can use

US 9,271,237 B2

5

network messages and/or application profiles to detect kee-
palives as they occur and take actions. Various algorithms for
detecting or identifying keepalives are disclosed in a related
application Ser. No. 61/836,039 titled “IDENTIFICATION
AND REPORTING OF KEEP ALIVE MESSAGES AND
OTHER NON-USER INTERACTIVE TRAFFIC IN A
MOBILE NETWORK?” filed on Jun. 17, 2013, which is
expressly incorporated by reference herein.

Other background traffic and user interactive traffic can be
distinguished from each other based on indications or proxies
of'user activity alone or in combination with information such
as status of the application performing the data transfer (e.g.,
foreground/background, active, non-active), status of output
mechanisms, such as screen, audio, notification LED, Blue-
tooth, NFC, RFID, touch sensor, any other types of sensors,
camera, etc., readings from the any other sensors or detectors
of'the device, such as microphone, accelerometer, biosensors,
gyroscope, location sensors, motion sensors, or the like. For
example, arequest that is generated while a screen ofamobile
device is off is an example of a background request because
the request occurred when the mobile device was not being
actively used by a user (i.e., the device was on background
mode). By way of another example, a request that occurs
when there is no user activity and the radio is off (or radio
state is idle) is also a background request. On the other hand,
a request from an application that a user is interacting with is
an example of a user-interactive request.

As used herein, a background request from an application
on a mobile device includes a request that occurs when a user
is not actively using the application (i.e., the application is in
the background mode) or not actively using the mobile device
(i.e., the mobile device is in the background mode). As used
herein, a user-interactive request from an application on a
mobile device includes a request that occurs when a user is
actively interacting with the application or the user is expect-
ing a response to the request.

Embodiments of the present disclosure also include sys-
tems and methods which facilitate management of traffic,
content caching, and/or resource conservation between
mobile devices (e.g., wireless devices) and an application
server or content provider.

In one embodiment, optimizing keepalives includes iden-
tifying and blocking unnecessary keepalives. Keepalives can
be identified or predicted as being “unnecessary” (or safe to
block or simply “safe”) based on various criteria. In one
embodiment, safe keepalives are keepalives whose following
transactions are also the same keepalives (e.g., same/similar
byte sizes). In one embodiment, a keepalive is safe if other
traffic (e.g., from the same or different applications) is occur-
ring on the same socket or any presence of any traffic from the
same application is detected. In one embodiment, necessary
(or unsafe to block or simply “unsafe”) keepalives are kee-
palives whose following transactions are not the same kee-
palives (e.g., byte sizes may be different). For example, a
keepalive may be necessary, if user activity and/or non-kee-
palive data for the given application is detected or anticipated
in the TCP stream before the next keepalive. In this case, if the
first keepalive is eliminated, the connection may not be avail-
able for the non-keepalive data when such dataisto be sent. In
one embodiment, as keepalives themselves may carry pay-
load data, user activity after such a keepalive may be an
indication that a keepalive did carry payload data and was
thus not necessary. In many instances, retrospective observa-
tion of traffic patterns may be used to learn safe/unsafe char-
acteristics of keepalives and use such information to evaluate
subsequent keepalive transactions.

10

15

20

25

30

35

40

45

50

55

60

65

6

In one embodiment, keepalives that are identified as being
safe keepalives can be blocked, while keepalives that are
identified as unsafe keepalives can be allowed to go out to the
network. A flexible parameter can be utilized to adjust the
aggressiveness with which keepalives are identified as safe or
unsafe.

Referring to FIG. 1A-1, an example schematic diagram
depicting optimization of keepalives by categorizing a kee-
palive as safe or unsafe and transmitting an unsafe keepalive
while blocking a safe keepalive is illustrated. A mobile device
150 coupled to a network 106 includes mobile applications,
some of which may utilize keepalives (KAs) to maintain a
long-lived connection. As shown, a keepalive optimizer (e.g.,
keepalive optimizer 300 which can be a component of a local
proxy 175 in the mobile device 150 of FIG. 1C) of the mobile
device 150 detects KA1 and KA2 from application 1 and
application 2 respectively at block 102. The keepalive opti-
mizer categorizes KA1 as unsafe and KA2 as safe based on
prediction (or other criteria) at block 114. Based on such
categorization, the keepalive optimizer allows the unsafe
KA1 to go to the network 106 (i.e., go to its destination server
across the network 106). As for KA2 that was categorized as
safe, the keepalive optimizer blocks it at block 118, prevent-
ing KA2 from reaching its destination server. As illustrated by
this example, by identifying which keepalives are necessary
and which ones are unnecessary, the keepalive optimizer of
the present disclosure can reduce the keepalive traffic and
conserve resources in the mobile device 150 and the network
106.

In addition to some of the methods of categorization or
classification of keepalives as safe or unsafe discussed above,
in one embodiment, the keepalive optimizer can utilize a
predictive method to learn and block safe keepalives. In this
embodiment, “long enough” keepalives, i.e., the long unnec-
essary keepalive chains that out-benefit potential cost of
blocking such as TCP re-establishment, and other unknown
cost due to user inconvenience or application’s behavior can
be detected and/or blocked. Blocking unnecessary keepalives
can include three stages including observing traffic for a
learning period (e.g., either for a single device run-time, or for
multiple devices centrally) to determine factors that can be
used to perform strongest prediction of necessity (i.e., factors
for predicting whether a keepalive is necessary or unneces-
sary). Such factors can include user, application, time-of-the-
day, day-of-the-week, screen state pattern, number of non-
necessary keepalives in the immediate past and a number of
others features and/or parameters. The second stage includes
the execution, where the necessary keepalives are allowed to
go out to the network normally, while the unnecessary kee-
palives are blocked. The third stage involves validation,
where traffic following the blocking event is observed to
determine, for example, whether a keepalive that was pre-
dicted to be unnecessary was actually unnecessary.

In one embodiment, the predictive method for learning and
blocking safe keepalives is based on decision list learning.
The method utilizes predictors listed in Table 1 and confi-
dence parameters listed on Table 2 for determining a rule set
that can isolate safe to block keepalives (i.e., safe KA) from
unsafe to block keepalives (i.e., unsafe KA). The predictors
can be collected for every detected keepalive per user/appli-
cation. “Current” is used herein to describe the keepalive
being detected. These are recorded in an analysis field in the
netlog. These keepalive data can be stored in a persistent local
database storage (e.g., database 310 in FIG. 3A). The stored
keepalive data can be used for learning. Old keepalive data
can be flushed out from time to time.

US 9,271,237 B2

7
TABLE 1

Keepalive Predictors

Parameter
name,
short
Data Acronym
Predictor Type Form Explanation

1 Hour integer F1,H The current keepalive’s transaction
log time’s local hour.

2 AfterOnScreen binary F2,E There was an onscreen activity
between last keepalive detected and
the current keepalive.

3 Saferun integer F3, SR The length of unnecessary
keepalive sequences before the
current keepalive. If this is the first
keepalive in the current TCP
session, this is 0.

4 Intervals integer F4,1 The UNIX epoch difference
between the current keepalive and
last keepalive

5 OnScreenDistance integer F5,08D The UNIX epoch difference
between the current keepalive and
the last on screen activity

6 Bytes integer F6, B The keepalive’s transaction log’s
Fromapp bytes + Fromnet bytes

7 TCP Session integer F7,CO In the current TCP session, the

ORDER order of the current keepalive

8 DayOfWeek integer F8, DW The current keepalive’s log time’s
LOCAL day of week

9 Unnecessary integer F9, UCL This is going to be recorded not

Chain Length when the keepalive is detected but
after the end of successive
unnecessary keepalives; for every
keepalive that belongs to the
current unnecessary keepalives, the
final unnecessary chain length is
recorded.

10 Decision binary R1,D: After learning, whether the current
keepalive is blocked or not
11 Probability integer R2,P After learning, the probability for
the Decision
12 Rule formatted R3,R After learning, the rule applied
output (Feature (1-8), Equality (-1<=,0, =,
1>), Value (integer))
TABLE 2
Keepalive Confidence Parameters
Parameter
name,
short
Confidence Acronym
Parameter Datatype Form Explanation
1 Minimal integer P1, MCL The minimally beneficial
Expected unnecessary chain length to cover
Unnecessary the potential cost of TCP
Chain Length reestablishment and other
unknown costs.
2 Confidence integer P2, P The minimal confidence
probability probability of the prediction
3 Training Period integer P3, T Minimal number of keepalives for
the application/local proxy to act
on
4 Data Validity integer P4,V Mazximal days for the
Period application/local proxy to keep the
keepalive data
5 Maximum Block integer P5, X How long can a successive
Length blocking work
6 Keepalive P6, A Applications for which keepalive
Blocking blocking can be applied

Applicable Apps

US 9,271,237 B2

9

After gathering the minimal number ofkeepalives (P3), the
keepalive optimizer implementing a decision list learning and
blocking algorithm initiates rule learning from a collection of
keepalive data having at least some of the features listed in
Table 1 above. From the keepalive data collection, those
keepalives that satisfy FO(UCL)>P1 can be identified as safe
keepalives (i.e., safe KAs), and those keepalives that satisfy
F9(UCL)<=P1 can be identified as unsafe keepalives (i.e.,
unsafe KAs). FIG. 1A-5 shows an example collection of
keepalive data, identified as safe KAs and unsafe KAs, spe-
cific to a user/application and retrieved from a persistent
database storage (e.g., database storage 310 in FIG. 3A). In
one example embodiment, the keepalive optimizer deter-
mines a rule set that covers only safe KAs by applying one or
more constraints. For example, when an initial constraint C1
can be applied to isolate at least some of the safe KAs from
unsafe KAs. In the example of FIG. 1A-6, the constraint
F3(Saferun)>3 has been applied and it covers only safe KAs
as shown. The keepalive optimizer has thus learned the first
rule including the constraint F3(Saferun)>3. The safe KAs
covered by the first rule are then eliminated from the collec-
tion of keepalive data and the process is repeated with remain-
ing data.

For example, as shown in FIG. 1A-7, another constraint
(OSD, >, 10000) has been applied, and it covers not only
some safe KAs but also many unsafe KAs. The keepalive
optimizer then applies another constraint (H, =, 2, 3, 5, 6) in
addition to (O, >, 10000), which isolates the safe KAs from
the unsafe KAs as shown in FIG. 1A-8. All or at least some of
the predictors can be evaluated by the keepalive optimizer in
learning rules. For example, as shown in FIG. 1A-9, the
constraint (Bytes, <, 1000) does not completely isolate the
safe KAs from the unsafe KAs. When no other constraint can
effectively isolate safe KAs from unsafe KAs, the rule learn-
ing process stops. The end decision list in the above example
includes a rule set comprising the following two rules:

Rule 1: (SR, >, 3)
Rule 2: ((OSD, >, 10000, (H, =, 2, 3, 5, 6))

The keepalive optimizer can arrange the learned rules in an
order and sequentially apply the learned rules to a new kee-
palive to determine whether the new keepalive can be
blocked. In one embodiment, the keepalive optimizer calcu-
lates a rule’s probability of success compared to a confidence
probability threshold (P2) to determine whether to allow the
rule set to be applied in categorizing a keepalive as safe or
unsafe.

In one embodiment, the keepalive optimizer can imple-
ment a binary decision learning algorithm to learn and block
a keepalive. For example, long unnecessary keepalive chains
can be learned and as soon as a keepalive is detected, the
disclosed technology can decide if the keepalive is going to be
long or not (e.g., is the unnecessary keepalive chain length
greater than a threshold (e.g., 5)). If the detected keepalive is
going to be longer than the minimal unnecessary keepalive
chain length, the keepalive optimizer decides to block the
keepalive.

In one embodiment, the binary decision learning algorithm
as part of the learning process puts each keepalive train into
bins. Starting with Hour bins (24 bins) for example, the algo-
rithm determines if any of the bins are not homogenous. A bin
is homogenous if every keepalive train in the bin is in the same
category, i.e., necessary or unnecessary. If any of the bins is
not homogenous, the algorithm splits the bin based on split-
ting points such as afteronscreen, bytes (fromapp and from-
net), onscreendistance, intervals, CSM order, weekday, or the
like. When a new keepalive is detected, the binary decision
learning algorithm puts the keepalive into the corresponding

20

25

35

40

45

10

bin (e.g., hour/afteronscreen/bytes>3 bin) and follows the
majority in the bin to determine whether to block or unblock
the keepalive. If there is no clear majority or not enough prior
chains, blocking is prevented.

In one embodiment, optimizing keepalives includes iden-
tifying and blocking keepalives by blocking application. In
one embodiment, keepalives can be identified based on
parameters such as, but not limited to: periodicity, size thresh-
olds, similar/repeating content, knowledge of the actual
application level protocol, applications that are keepalive
heavy (e.g., applications that send keepalives frequently), or
a combination thereof. Applications that exhibit certain kee-
palive behavior can then be blocked using one or more kee-
palive blocking policies which can be managed by a policy
enforcement module. Based on the blocking policies, certain
type of keepalive behavior can be blocked. For example,
applications that are keepalive heavy or exhibits a certain
keepalive behavior can be blocked for a given percent of
keepalive periods. In one embodiment, blocking the applica-
tions to block the keepalives can include blocking specific
ports for the given percent of keepalive periods. In some
instances, this blocking strategy may have a user-impact,
cause additional bytes, and/or cause impacts beyond kee-
palives. The blocking strategy can be refined by using some of
the other keepalive optimization methods described in the
present disclosure.

In one embodiment, keepalives can be optimized by

executing them in advance of their expected schedule as
shown in the example schematic diagram of FIG. 1A-2. In
this embodiment, a keepalive period (T, ,) for an application
Y on a mobile device 150 can be identified and a period
T, 11.i Tor the application Y can be defined, where period
T ,z2.» 15 @ period to pull a keepalive in from its expected
schedule.
T2 can be determined using multiple mechanisms. In
one embodiment, T, , is a value that is selected to mini-
mize the additional time connected (as transmitting more data
even if the radio is already up can slightly increase the length
of'a transaction) and increased battery consumption (as CPU
consumption of more frequent transactions increases
slightly) while also minimizing the number of instances
where radio needs to be turned on (and cause an additional
connection) because the end of the allowed period is reached.
This can be done dynamically by observing the realized traf-
fic pattern on each device and weighting potential negative
time connected/battery probability against probability for
additional connections (which also results in additional time
connected and battery consumption). This can be done on an
ongoing basis using previous X hours as the sample, or learn-
ing over a longer period of time, utilizing, for example, time-
of-the-day, day-of-the-week and screen state as additional
parameters to estimate the probabilities. Alternatively, the
same value can be used for all users, that would optimize the
probability across the entire user base.

After a socket for the applicationY has been idle for longer
than T, Ge., T,4>T,,;,,) and a keepalive optimizer

detects the radio of the mobile device 150 go up at block 135
(i.e., radio turns on or transitions from an idle state to a
connected state, or lower power state to higher power state),
the keepalive optimizer triggers a new keepalive 136 which is
transmitted to the network 106. The new keepalive 136 is
executed before the end of the T, in advance of the next
expected KA 138.

In one embodiment, the new keepalive 136 is triggered by
terminating the connection or dropping the application
socket. When the connection is terminated, application Y
attempts to connect to the network 106 by piggybacking on

US 9,271,237 B2

11

the radio connection that was already established, which
allows for reduction in signaling. When it is time to send the
new keepalive 136, a new handshake would be needed to
establish a connection, which would result in an increase in
bytes transferred. To avoid additional bytes for handshakes,
mechanisms other than dropping the socket can be used to
trigger a new keepalive on a per-application basis. For
example, a synthetic keepalive can be created.

In one embodiment, executing keepalive in advance may
start either after identifying the first keepalive period (Tx,),
or it can start working even before the first successful kee-
palive period is identified. The latter is useful in a case where
the network closes the socket with shorter duration than the
application sends keepalives and the long-lived socket would
keep closing. This would cause user experience issues as the
socket is not available all the time for pushing data to the
mobile device. By sending the keepalives early even without
the application being able to make them successfully, the
keepalive optimizer can keep the long-lived socket alive and
make the user experience better.

In one embodiment, keepalives can be optimized by
extending the keepalive period as shown in the schematic
diagram of FIG. 1A-3.

A period X1 and/or pattern Z, and period X2 for applica-
tion Y can be defined. A long-lived connection 143 may be
established between a socket for application Y and the net-
work 106. After the socket for application Y has been idle for
longer than X1 (i.e., T, ;,>X1), or if traffic matches pattern Z,
the keepalive optimizer of the mobile device 150 does not
send a keepalive detected at block 145 out to the network 108,
until either X2 seconds have passed from the first traffic after
X1. After that, the keepalive optimizer sends the latest trans-
action 152 to the network 106. The latest transaction can be
identified based on a transaction boundary defined by a pause
(e.g., afew second pause) between a data stream at block 151.
Any response from the network is then relayed back to the
application normally. Alternately, when a radio comes up at
block 146 (i.e., radio of the mobile device transitions from a
low power state to a high power state or from an idle state to
a connected state) for other reasons (e.g., detection of user-
interactive traffic, data from a remote server) after period X1,
the keepalive optimizer identifies the latest keepalive trans-
action a block 147 and sends the keepalive 149 to the network
106.

The delay keeps both the application and server connec-
tions healthy and allows for delaying keepalives up to time
period X2. By way of example, for applications such as
SKYPE, the delay can be as long as 10 seconds, and for
applications based on Google Cloud Messaging (GCM), the
delay can be as long as 60 seconds. Extending of the keepalive
period or interval as described herein is beneficial with or
without alignment between different applications. For
example, keepalive period of multiple applications can be
extended by different amounts so that all the keepalives can
be sent when the radio of the mobile device comes up. The
period X1 or pattern Z and period X2 for the applicationY can
be determined based on offline analysis of the application
behavior. The offline analysis can be performed on the mobile
device 150 or a proxy server (e.g., proxy server 125) associ-
ated with a host server (e.g., host server 100).

In one embodiment, signaling in a wireless network can be
optimized by delaying certain types of traffic under certain
conditions. FIG. 1A-4 is an example schematic diagram that
depicts optimization of background traffic by delaying
repeatable background requests on the mobile device 150.

Background traffic generated when an application is in the
background and when the radio is down can be delayed. Such

10

15

20

25

30

35

40

45

50

55

60

65

12

traffic can be delayed until the radio is observed or detected to
come up, or until the known application tolerance is about to
expire (e.g., 2 minute grace period). The background traffic
that is delayed can include different request types (e.g., log
uploads, status updates) as well as keepalive traffic. In one
embodiment, application tolerance is defined as the shorter of
the longest period during which the application will not dis-
play an error message to the user and the longest period
beyond which the application will stop retrying the connec-
tion.

In some instances, different tolerances for different request
types can be identified in determining the length of delay. For
example, “log upload” request type is typically retried for
long periods of time, so it will have a longer tolerance com-
pared to another request type (e.g., status update). In one
embodiment, delaying background requests according to the
tolerance can be more advantageous than normalizing the
delay, as the latter can cause the server to start polling the
application for log uploads. In one embodiment, delaying
certain types of traffic under certain conditions can be gener-
alized beyond per-transaction handling to per-application
handling. For example, any background requests from an
application can be delayed the same amount of time, regard-
less of the background request type. In one embodiment,
delay of background requests can be configured using a
policy

In one embodiment, the background request can be a
repeatable background request, where the application itself
has logic to recover from an unsuccessful transaction. This
recovery logic can be exploited by the keepalive optimizer to
cause background requests to fail on purpose, and force the
application to use the retry logic on the application layer to
eventually execute the background request after a time delay.
An example implementation of delaying background traffic
for an application (e.g., FACEBOOK) by the keepalive opti-
mizer will now be described. It should be noted that the
keepalive optimizer can be the application itself (in this
example the FACEBOOK) or a local proxy (e.g., local proxy
175).

In one embodiment, traffic patterns associated with an
application can be learned or observed during a learning
period. From the observation, it may be determined that the
application resends the same request immediately when a
request does not get a response within a specific time (e.g., 1
minute, 5 minutes). For example, background requests 1 and
2 shown in FIG. 1A-4 are retried after T, , and T, ,
respectively when no response is received from the network.
Based on this observation or information, the keepalive opti-
mizer intercepts and delays the background requests for a
specific time (configurable via a policy management system
(PMS)) until a trigger in the form of an event is detected.

In the example FI1G. 1A-4, the background requests 1 and
2 are intercepted at block 160 when certain conditions are
met. If the background requests 1 and 2 are of different type,
a separate delay timer can be started for each of the request.
For example, a delay timer for background request 1 is started
atblock 162 for a period of T ., , and an independent delay
timer for background request 2 is started at block 164 for a
period of T, ». At block 166, the keepalive optimizer can
detect an undelay trigger for undelaying background request
1 and can then transmit background request 1 to the network
106. Similarly, the keepalive optimizer can detect an undelay
trigger for background request 2 at block 170 and transmit
background request 2 to the network 106.

In one embodiment, intercepting and delaying of the back-
ground requests occur under certain conditions. For example,
a missed request, which is not able to be served from a cache

US 9,271,237 B2

13

with existing logic, is entered into a delay mode if the follow-

ing example conditions are satisfied:

a) the device is on mobile network;

b) the device is not in the transparent mode (i.e., a measure
only or observation only mode, that does not affect the
traffic flow);

¢) the device screen is off;

d) the device radio is off; and

e) the feature is enabled by the Policy Management System
(PMS).

Similarly, the undelaying of the request (or exit from delay
mode) can be triggered when at least one of the conditions
below is satisfied:

a) the screen is on;

b) the radio is up;

¢) network switched to Wi-Fi;

d) delay timer is expired;

e) PMS is disabled; and/or

1) device switch to transparent mode.

In one embodiment, when the background request first gets
delayed, the keepalive optimizer immediately schedules a
timer to indicate a delay cycle has started. During the delay
cycle, any new background requests from the application are
delayed until an undelay event (or an event that causes an exit
from delay mode) is triggered. If there is no trigger other than
delay timer, the keepalive optimizer allows the very first
background request after the delay timer expiration to go out
to the network. On the other hand, any other trigger events can
cancel the scheduled delay timer. When the trigger for unde-
lay is fired, the keepalive optimizer goes through all the
application requests in the delay mode and forces their execu-
tion immediately.

In one embodiment, the keepalive optimizer can allow
some background transactions to time out, in case the appli-
cation associated with the background transaction is observed
to retry the same transaction without impact to functionality
or end user experience. In such a case, the starting point of the
timer (or counter) for the delay is the same for the first back-
ground request and the subsequent background requests.
Alternately, as described with respect to FIG. 1A-4, a separate
timer can be started separately for each background request.

In one embodiment, the keepalive optimizer can delay
background traffic, even if the same session (e.g., TCP
socket) includes user-interactive traffic, or background traffic
that has shorter tolerance for delays (e.g., if 741
and 7,7,,.» in FIG. 1A-4 are different). This allows the kee-
palive optimizer to delay each transaction for a maximum
amount that it has tolerance for, for example, by not sending
out the longer-tolerance traffic if a shorter-tolerance traffic
needs to go out.

In one embodiment, in order to delay the background
requests, DNS requests can be cached to prevent a DNS
request from turning on the radio of the mobile device. In one
embodiment, the hosts to which an application makes the
request can be identified and cached to facilitate background
requests to be delayed.

In one embodiment, the PMS can be configured to enable
or disable delaying of background requests and/or how long
the delay cycle will be applied. A default value can also be
specified (e.g., 300,000 ms, 300 s, 5 minutes). In one embodi-
ment, the keepalive optimizer can report data on request delay
value (i.e., how long the request was delayed by the delay
timer) and radio awareness status when a delayed transaction
was sent to a server (e.g., application server, proxy or host
server). The request delay value can be the amount of time
(e.g., milliseconds) between the Cache Lookup Query (CLQ)

10

15

20

25

30

35

40

45

50

55

60

65

14

and a cache miss or error (i.e., MISS or ERR) response in one

embodiment. The radio awareness status may be:

0—the transaction was not radio-aware and was not delayed;

1—the transaction was radio-aware and was released due to a
radio up event;

2—the transaction was radio-aware but was released due to
the timer expiration;

3—the transaction was radio-aware but was released due to a
screen on event;

4—the transaction was radio-aware but was interrupted
abnormally by the keepalive optimizer, application or local
proxy (typically due to a timeout).

FIG. 1B illustrates an example diagram of a system where
a host server facilitates management of traffic, content cach-
ing, and/or resource conservation between mobile devices
(e.g., wireless devices), an application server or content pro-
vider, or other servers such as an ad server, promotional
content server, an e-coupon server or messaging servers such
as the Google Cloud Messaging (GCM) server and the
Exchange ActiveSync (EAS) server in a wireless network (or
broadband network) for resource conservation. The host
server can further optimize signaling in a wireless network for
traffic utilizing proprietary (non-standard) and nonpropri-
etary (e.g., HT'TP) protocols.

The GCM server allows transfer of data from an applica-
tion server or content provider to user devices using XMPP
(upstream and downstream i.e., device to cloud and cloud to
device). The GCM server can queue messages and deliver the
messages to the target applications on the user device. These
messages can inform the mobile application that there is new
data to be fetched from the content provider or application
server and/or can include actual data (e.g., instant messages).
The EAS server allows for wireless synchronization of
emails, calendars, contacts, and the like between an exchange
server and a mobile device using an XML based protocol over
HTTP or HTTPS. Various other intermediary or messaging
servers that facilitate communication between applications
on client devices and content provider or application servers
are contemplated.

The client devices 150 can be any system and/or device,
and/or any combination of devices/systems that is able to
establish a connection, including wired, wireless, cellular
connections with another device, a base station/cell provider
112, a server and/or other systems such as host server 100
and/or application server/content provider 110. Client
devices 150 will typically include a display and/or other
output functionalities to present information and data
exchanged between among the devices 150 and/or the host
server 100 and/or application server/content provider 110.
The application server/content provider 110 can be any server
including third party servers or service/content providers fur-
ther including advertisement, promotional content, publica-
tion, or electronic coupon servers or services. Similarly, sepa-
rate advertisement servers 120a, promotional content servers
1204, and/or e-Coupon servers 120c¢ as application servers or
content providers are illustrated by way of example.

For example, the client/mobile devices 150 can include
mobile, handheld or portable devices, wireless devices, or
non-portable devices and can be any of, but not limited to, a
server desktop, a desktop computer, a computer cluster, or
portable devices, including a notebook, a laptop computer, a
handheld computer, a palmtop computer, a mobile phone, a
cell phone, a smart phone, a PDA, a Blackberry device, a
Palm device, any tablet, a phablet (a class of smart phones
with larger screen sizes between a typical smart phone and a
tablet), a handheld tablet (e.g., an iPad, the Galaxy series, the
Nexus, the Kindles, Kindle Fires, any Android-based tablets,

US 9,271,237 B2

15

Windows-based tablets, or any other tablet), any portable
readers/reading devices, a hand held console, a hand held
gaming device or console, a head mounted device, a head
mounted display, a thin client or any SuperPhone such as the
iPhone, and/or any other portable, mobile, hand held devices,
or fixed wireless interface such as a M2M device, etc. In one
embodiment, the client devices 150 (or mobile devices 150),
host server 100, and application server 110 are coupled via a
network 106 and/or anetwork 108. In some embodiments, the
devices 150 and host server 100 may be directly connected to
one another.

The input mechanism on client devices 150 can include
touch screen keypad (including single touch, multi-touch,
gesture sensing in 2D or 3D, etc.), a physical keypad, a
mouse, a pointer, a track pad, a stylus, a stylus detector/
sensor/receptor, motion detector/sensor (e.g., including
1-axis, 2-axis, 3-axis accelerometer, etc.), a face detector/
recognizer, a retinal detector/scanner, a light sensor, capaci-
tance sensor, resistance sensor, temperature sensor, proximity
sensor, a piezoelectric device, device orientation detector
(e.g., electronic compass, tilt sensor, rotation sensor, gyro-
scope, accelerometer), or any combination of the above.

Signals received or detected indicating user activity at cli-
ent devices 150 through one or more of the above input
mechanisms, or others, can be used in the disclosed technol-
ogy in acquiring context awareness at the client device 150.
Context awareness at client devices 150 generally includes,
by way of example but not limitation, client device 150 opera-
tion or state acknowledgement, management, user activity/
behavior/interaction awareness, detection, sensing, tracking,
trending, and/or application (e.g., mobile applications) type,
behavior, activity, operating state, etc.

Context awareness in the present disclosure also includes
knowledge and detection of network side contextual data and
can include network information such as network capacity,
bandwidth, traffic, type of network/connectivity, and/or any
other operational state data. Network side contextual data can
be received from and/or queried from network service pro-
viders (e.g., cell provider 112 and/or Internet service provid-
ers) of the network 106 and/or network 108 (e.g., by the host
server and/or devices 150). In addition to application context
awareness as determined from the client 150 side, the appli-
cation context awareness may also be received from or
obtained/queried from the respective application/service pro-
viders 110 (by the host 100 and/or client devices 150).

The host server 100 can use, for example, contextual infor-
mation obtained for client devices 150, networks 106/108,
applications (e.g., mobile applications), application server/
provider 110, or any combination of the above, to manage the
traffic in the system to satisfy data needs of the client devices
150 (e.g., to satisfy application or any other request including
HTTP request). In one embodiment, the traffic is managed by
the host server 100 to satisty data requests made in response
to explicit or non-explicit user 103 requests (e.g., via user
interface 104) and/or device/application maintenance tasks.
The traffic can be managed such that network consumption
(e.g., use of the cellular network) is conserved for effective
and efficient bandwidth utilization. In addition, the host
server 100 can manage and coordinate such traffic in the
system such that use of device 150 side resources (e.g.,
including but not limited to battery power consumption, radio
use, processor/memory use) are optimized with a general
philosophy for resource conservation while still optimizing
performance and user experience. The host server 100 may
also indirectly manage traffic via creation, selection and/or
deployment of traffic blocking policy for implementation on
the mobile device in some embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

16

For example, in context of battery conservation, the device
150 can observe user activity (for example, by observing user
keystrokes, backlight status, or other signals via one or more
input mechanisms, etc.) and alter device 150 behaviors. The
device 150 can also request the host server 100 to alter the
behavior for network resource consumption based on user
activity or behavior.

In one embodiment, the traffic management for resource
conservation and/or keepalive optimization/algorithms for
signaling optimization is performed using a distributed sys-
tem between the host server 100 and client device 150. The
distributed system can include proxy server and cache com-
ponents on the server side 100 and on the device/client side,
for example, as shown by the server cache 135 on the server
100 side and the local cache 185 on the client 150 side. In one
embodiment, the traffic management for reducing signaling
in the network and reducing or alleviating network conges-
tion can be implemented on the mobile device 150 without
any support from the server-side proxy or other network-side
components.

Functions and techniques disclosed for context aware traf-
fic management and keepalive algorithms for resource con-
servation and reducing or optimizing signaling in networks
(e.g., network 106 and/or 108) and devices 150, reside in a
distributed proxy and cache system. The proxy and cache
system can be distributed between, and reside on, a given
client device 150 in part or in whole and/or host server 100 in
part or in whole. The distributed proxy and cache system are
illustrated with further reference to the example diagram
shown in FIG. 1C. Functions and techniques performed by
the proxy and cache components in the client device 150 and
the related components therein are described, respectively, in
detail with further reference to the examples of FIG. 2A.

In one embodiment, client devices 150 communicate with
the host server 100 and/or the application server 110 over
network 106, which can be a cellular network and/or a broad-
band network. To facilitate overall traffic management
between devices 150 and various application servers/content
providers 110 to implement network (bandwidth utilization)
and device resource (e.g., battery consumption), the host
server 100 can communicate with the application server/pro-
viders 110 over the network 108, which can include the Inter-
net (e.g., a broadband network).

In general, the networks 106 and/or 108, over which the
client devices 150, the host server 100, and/or application
server 110 communicate, may be a cellular network, a broad-
band network, a telephonic network, an open network, such
asthe Internet, or a private network, such as an intranet and/or
the extranet, or any combination thereof. For example, the
Internet can provide file transfer, remote login, email, news,
RSS, cloud-based services, instant messaging, visual voice-
mail, push mail, VoIP, and other services through any known
or convenient protocol, such as, but not limited to the TCP/IP
protocol, UDP, HTTP, DNS, FTP, UPnP, NSF, ISDN, PDH,
RS-232, SDH, SONET, etc.

The networks 106 and/or 108 include any collection of
distinct networks operating wholly or partially in conjunction
to provide connectivity to the client devices 150 and the host
server 100 and may appear as one or more networks to the
serviced systems and devices. In one embodiment, commu-
nications to and from the client devices 150 can be achieved
by an open network, such as the Internet, or a private network
or broadband network, such as an intranet and/or the extranet.
In one embodiment, communications can be achieved by a
secure communications protocol, such as secure sockets layer
(SSL) or transport layer security (TLS).

US 9,271,237 B2

17

In addition, communications can be achieved via one or
more networks, such as, but not limited to, one or more of
WiMazx, a Local Area Network (LAN), Wireless Local Area
Network (WLAN), a Personal area network (PAN), a Campus
area network (CAN), a Metropolitan area network (MAN), a
Wide area network (WAN), a Wireless wide area network
(WWAN), or any broadband network, and further enabled
with technologies such as, by way of example, Global System
for Mobile Communications (GSM), Personal Communica-
tions Service (PCS), Bluetooth, WiFi, Fixed Wireless Data,
2G, 2.5G, 3G (e.g., WCDMA/UMTS-based 3G networks),
4G, IMT-Advanced, pre-4G, LTE Advanced, mobile WiMax,
WiMax 2, WirelessMAN-Advanced networks, enhanced data
rates for GSM evolution (EDGE), General packet radio ser-
vice (GPRS), enhanced GPRS, iBurst, UMTS, HSPDA,
HSUPA, HSPA, HSPA+, UMTS-TDD, 1xRTT, EV-DO, mes-
saging protocols such as, TCP/IP, SMS, MMS, extensible
messaging and presence protocol (XMPP), real time messag-
ing protocol (RTMP), instant messaging and presence proto-
col (IMPP), instant messaging, USSD, IRC, or any other
wireless data networks, broadband networks, or messaging
protocols.

FIG. 1C illustrates an example diagram of a proxy and
cache system distributed between the host server and device
which facilitates network traffic management between a
device, an application server or content provider, or other
servers such as an ad server, promotional content server, an
e-coupon server or messaging servers such as the GCM server
and the EAS server for resource conservation and content
caching. The proxy system distributed among the host server
and the device can further optimize signaling in a wireless
network for traffic utilizing proprietary (non-standard) and
nonproprietary (e.g., HT'TP) protocols.

The distributed proxy and cache system can include, for
example, the proxy server 125 (e.g., remote proxy) and the
server cache 135 components on the server side. The server-
side proxy 125 and cache 135 can, as illustrated, reside inter-
nal to the host server 100. In addition, the proxy server 125
and cache 135 on the server-side can be partially or wholly
external to the host server 100 and in communication via one
or more of the networks 106 and 108. For example, the proxy
server 125 may be external to the host server and the server
cache 135 may be maintained at the host server 100. Alterna-
tively, the proxy server 125 may be within the host server 100
while the server cache 135 is external to the host server 100.
In addition, each of the proxy server 125 and the server cache
135 may be partially internal to the host server 100 and
partially external to the host server 100. The application
server/content provider 110 can be any server including third-
party servers or service/content providers further including
advertisement, promotional content, publication, or elec-
tronic coupon servers or services. Similarly, separate adver-
tisement servers 120A, promotional content servers 120B,
e-Coupon servers 120C, and/or messaging servers (e.g.,
GCM, EAS servers) 120D as application servers or content
providers are illustrated by way of example.

The distributed system can also include, in one embodi-
ment, client-side components, including by way of example
but not limitation, a local proxy 175 (e.g., a mobile client on
a mobile device) and/or a local cache 185, which can, as
illustrated, reside internal to the device 150 (e.g., a mobile
device).

In addition, the client-side proxy 175 and local cache 185
can be partially or wholly external to the device 150 and in
communication via one or more of the networks 106 and 108.
For example, the local proxy 175 may be external to the
device 150 and the local cache 185 may be maintained at the

10

15

20

25

30

35

40

45

50

55

60

65

18

device 150. Alternatively, the local proxy 175 may be within
the device 150 while the local cache 185 is external to the
device 150. In addition, each of the proxy 175 and the cache
185 may be partially internal to the host server 100 and
partially external to the host server 100.

In one embodiment, the distributed system can include an
optional caching proxy server 199. The caching proxy server
199 can be a component which is operated by the application
server/content provider 110, the host server 100, or a network
service provider (e.g., 112), and or any combination of the
above to facilitate network traffic management for network
and device resource conservation. Proxy server 199 can be
used, for example, for caching content to be provided to the
device 150, for example, from one or more of, the application
server/provider 110, host server 100, and/or a network service
provider. Content caching can also be entirely or partially
performed by the remote proxy 125 to satisty application
requests or other data requests at the device 150.

In context-aware traffic management and optimization for
resource conservation and/or keepalive optimization in sig-
naling optimization in a network (e.g., cellular or other wire-
less networks), characteristics of user activity/behavior and/
or application behavior at a mobile device (e.g., any wireless
device) 150 can be tracked by the local proxy 175 and com-
municated over the network 106 to the proxy server 125
component in the host server 100, for example, as connection
metadata. The proxy server 125, which in turn is coupled to
the application server/provider 110, provides content and
data to satisfy requests made at the device 150. The local
proxy 175 can be a protocol-agnostic component that can
identify a pattern within a byte stream and perform a direct
replay of the binary transactions in one embodiment. In
another embodiment, the local proxy 175 can optimize kee-
palives for signaling optimization in a wireless network uti-
lizing proprietary and/or nonproprietary protocols.

In addition, the local proxy 175 can identify and retrieve
mobile device properties, including one or more of battery
level, network that the device is registered on, radio state,
signal strength, cell identifier (i.e., cell ID), location area
code, or whether the mobile device is being used (e.g., inter-
acted with by a user). In some instances, the local proxy 175
can delay, expedite (prefetch), and/or modify data prior to
transmission to the proxy server 125, when appropriate, as
will be further detailed with references to the description
associated with the examples of FIG. 2A.

The local cache 185 can be included in the local proxy 175
or coupled to the local proxy 175 and can be queried for a
locally stored response to the data request prior to the data
request being forwarded on to the proxy server 125. Locally
cached responses can be used by the local proxy 175 to satisfy
certain application requests of the mobile device 150, by
retrieving cached content stored in the cache storage 185,
when the cached content is still valid.

Similarly, the proxy server 125 of the host server 100 can
also delay, expedite, or modify data from the local proxy prior
to transmission to the content sources (e.g., the application
server/content provider 110). In addition, the proxy server
125 uses device properties and connection metadata to gen-
erate rules for satisfying request of applications on the mobile
device 150. The proxy server 125 can gather real time traffic
information about requests of applications for later use in
optimizing similar connections with the mobile device 150 or
other mobile devices.

In general, the local proxy 175 and the proxy server 125 are
transparent to the multiple applications executing on the
mobile device. The local proxy 175 is generally transparent to
the operating system or platform of the mobile device and

US 9,271,237 B2

19

may or may not be specific to device manufacturers. In some
instances, the local proxy 175 is optionally customizable in
part or in whole to be device specific. In some embodiments,
the local proxy 175 may be bundled into a wireless model, a
firewall, and/or a router.

In one embodiment, the host server 100 can in some
instances, utilize the store and forward functions of a short
message service center (SMSC) 162, such as that provided by
the network service provider, in communicating with the
device 150 in achieving network traffic management. Note
that SMSC 162 can also utilize any other type of alternative
channel including USSD or other network control mecha-
nisms. The host server 100 can forward content or HTTP
responses to the SMSC 162 such that it is automatically
forwarded to the device 150 if available and for subsequent
forwarding if the device 150 is not currently available.

In general, the disclosed distributed proxy and cache sys-
tem allows optimization of network usage, for example, by
serving requests from the local cache 185, the local proxy 175
reduces the number of requests that need to be satisfied over
the network 106. Further, the local proxy 175 and the proxy
server 125 may filter irrelevant data from the communicated
data. In addition, the local proxy 175 and the proxy server 125
can also accumulate low priority data and send it in batches to
avoid the protocol overhead of sending individual data frag-
ments. The local proxy 175 and the proxy server 125 can also
compress or transcode the traffic, reducing the amount of data
sent over the network 106 and/or 108. The signaling traffic in
the network 106 and/or 108 can be reduced, as the networks
are now used less often and the network traffic can be syn-
chronized among individual applications.

With respect to the battery life of the mobile device 150, by
serving application or content requests from the local cache
185, the local proxy 175 can reduce the number of times the
radio module is powered up. The local proxy 175 and the
proxy server 125 can work in conjunction to accumulate low
priority data and send it in batches to reduce the number of
times and/or amount of time when the radio is powered up.
The local proxy 175 can synchronize the network use by
performing the batched data transfer for all connections
simultaneously. Furthermore, by preventing the mobile
device from constantly attempting to signal the network that
is congested, and/or allowing selective (e.g., high priority)
traffic towards the network, the local proxy 175 can conserve
battery resources of the mobile device.

FIG. 1D illustrates an example diagram of the logical
architecture of a distributed proxy and cache system. The
distributed system can include, for example the following
components:

Client Side Proxy 175: a component installed in a smart-
phone, mobile device or wireless device 150 that interfaces
with device’s operating system, as well as with data services
and applications installed in the device. The client side proxy
175 is typically compliant with and able to operate with
standard or state of the art networking protocols. Additional
components and features of the client-side proxy 175 are
illustrated with further references to the examples of FIG. 2A.

The server side proxy 125 can include one or more servers
that can interface with third-party application servers (e.g.,
199), mobile operator’s network (which can be proxy 199 or
an additional server that is not illustrated) and/or the client
side proxy 175. In general, the server side proxy 125 can be
compliant with and is generally able to operate with standard
or state of the art networking protocols and/or specifications
for interacting with mobile network elements and/or third-
party servers. In one embodiment, the server-side proxy 125
can utilize the store and forward functions of a short message

10

15

20

25

30

35

40

45

50

55

60

65

20

service center (SMSC) 162 in communicating with the client-
side proxy 175 on the mobile device 150 to optimize network
traffic.

Log Storage and Processing Service (LSPS) 174: The log
storage and processing service, server, system or component
174 can provide reporting and usage analytics services. The
LSPS 174 can collect information (e.g., logs) from the client
side 175 and/or the server side 125 and provide the necessary
tools for producing reports and usage analytics that can be
used for analyzing traffic and signaling data. The client logs
(e.g., logs on the client device 150 aggregated by the local
proxy 175) are stored in the device until a data channel is
activated, and they are then transferred in binary format to the
LSPS 174. In one embodiment, the logs are processed using
log processing tools provided by the LSPS 174. The pro-
cessed logs are subsequently stored in a distributed database.
The logs may be used for reporting as well as for trouble-
shooting issues. For example, analytics from the logs can be
used by the proxy system in managing, reducing or optimiz-
ing network traffic or by the network operator in monitoring
their networks for possible improvements and enhancements.
Note that LSPS 174 as illustrated may be a server separate
from the server-side proxy 125, or it may be a component of
the server-side proxy 125, residing partially or wholly
therein.

In one implementation, the level of logging (e.g., types of
data to be logged, and the like) can be specified using con-
figuration settings in the client-side proxy 175 and/or the
server-side proxy 125. Various data relating to bytes and
transactions, network connectivity, power, subscriber count,
and the like may be logged, and/or processed using default (or
other) settings on a periodic (e.g., hourly, daily, and the like)
basis.

Bytes and Transactions data may include a number of bytes
transacted (both to and from), the total number of transactions
between the client-side proxy 175 and each application, the
client-side proxy 175 and the network (e.g., radio access
network 112), the client-side proxy 175 and its cache, and the
like. Network Connectivity data may include, for example,
total time the device spends in “data connected” state (based
on a two-state connectivity model), total number of transi-
tions into the data connected state, the number of times the
radio transitions into the data connected state due to a network
request that was proxied through the client-side proxy 175,
total time spent in the data connected state due to a network
request that was proxied through the client-side proxy 175,
the number of transitions into data connected mode saved by
the client-side and/or server-side proxy system, the amount of
time in data connected state saved by the client-side and/or
server-side proxy system, simulated values for the previous
four items, as if traffic proxied via client-side and/or server-
side proxy system were the only traffic on the device. Net-
work connectivity data can also include the amount of time
taken to transition from an idle state to connected state (i.e.,
setup time), a baseline or a reference determined from a
sample of setup times, and the like. Power-related data may
include, for example, each one-percent (or any other percent-
age value) change in the battery level, the total time the device
is powered on but not connected to a power source, and the
like. Subscriber count data may include, for example, the
number of new subscribers observed in a period and the
number of active subscribers in the period. This data may be
aggregated by the host server, for example. Reporting of the
above data can be done based on variables such as network
bearer type (e.g., all, mobile or Wi-Fi), category (e.g., all,
device model or application name), time (e.g., hour, day or
month), and the like, or combinations thereof.

US 9,271,237 B2

21

FIG. 1E illustrates an example diagram showing the archi-
tecture of client-side components in a distributed proxy and
cache system having a keepalive optimizer for optimizing
keepalive and other background traffic in a wireless network.

The client-side proxy 175 components can include soft-
ware components or agents installed on the mobile device that
enable traffic optimization and perform the related function-
alities on the client side. Mobile OS and Apps 165 include
components of the client side proxy 175 can operate trans-
parently for end users and applications 163, and interface
with the device’s operating system (OS) 162. The client side
proxy 175 can be installed on mobile devices for optimization
to take place, and it can effectuate changes on the data routes
and/or timing. Once data routing is modified, the client side
proxy 175 can respond to application requests to service
providers or host servers, in addition to or instead of letting
those applications 163 access data network directly. In gen-
eral, applications 163 on the mobile device will not notice that
the client side proxy 175 is responding to their requests.

Some example components of the client side proxy 175 are
described as follows:

Device State Monitor 121: The device state monitor 121
can be responsible for identifying several states and metrics in
the device, such as network status (e.g., radio on/off status,
connected to Wi-Fi, 2G, 3G or other mobile network), display
status, battery level (e.g., via the radio/battery information
161), transparent mode status, etc., such that the remaining
components in the client side proxy 175 can operate and make
decisions according to device state, acting in an optimal way
in each state.

Traffic Recognizer 122: The traffic recognizer 122 ana-
lyzes all traffic between the wireless device applications 163
and their respective host servers in order to identify recurrent
patterns. Supported transport protocols include, for example,
DNS, HTTP and HTTPS, such that traffic through those ports
is directed to the client side proxy 175. While analyzing
traffic, the client side proxy 175 can identify recurring polling
patterns which can be candidates to be performed remotely by
the server side proxy 125, and send to the protocol optimizer
123.

Protocol Optimizer 123: The protocol optimizer 123 can
implement the logic of serving recurrent requests from the
local cache 185 instead of allowing those request go over the
network to the service provider/application host server. One
of its tasks is to eliminate or minimize the need to send
requests to the network, positively affecting network conges-
tion and device battery life.

Local Cache 185: The local cache 185 can store responses
to recurrent requests, and can be used by the Protocol Opti-
mizer 123 to send responses to the applications 163.

Traffic Scheduler 124: The traffic scheduler 124 can tem-
porally move communications to optimize usage of device
resources by unifying keepalive signaling so that some or all
of'the different applications 163 can send keepalive messages
at the same time (traffic pipelining). Traffic scheduler 124
may also decide to delay transmission of data that is not
relevant at a given time (for example, when the device is not
actively used).

The keepalive optimizer 300: The keepalive optimizer 300
can optimize keepalive and other non-user interactive or
background traffic using various methodologies. In one
embodiment, the keepalive optimizer 300 can improve the
efficiency of keepalive transactions and manage long-lived
connections between mobile applications and associated
application/host servers. For example, the keepalive opti-
mizer 300 can manage long-lived connections with fewer
keepalives, utilize radio-awareness, application behavior

10

15

20

25

30

35

40

45

50

55

60

65

22

and/or device state to schedule transmission of keepalives and
other background traffic, and the like. By performing these
optimizations, the keepalive optimizer 300 can reduce unnec-
essary traffic in the mobile network, reduce battery resource
consumption on mobile devices, save on bandwidth resource
consumption and manage long-lived connections among oth-
ers. Various aspects of the keepalive optimizer 300 are
described in detail in FIG. 3A.

Policy Manager 129: The policy manager 129 can store and
enforce traffic optimization and reporting policies provi-
sioned by a Policy Management Server (PMS). At the client
side proxy 175 first start, traffic optimization and reporting
policies (policy profiles) that are to be enforced in a particular
device can be provisioned by the Policy Management Server.
Enforcing traffic management policies at the device’s IP layer
lets an operator manage traffic before it uses radio accessed
network resources. Policy usage can range from creating
highly targeted subscriber plans to proactively and/or reac-
tively managing network congestion. In one implementation,
the conditions for selecting a policy for enforcement, and/or
conditions for dropping an implemented policy, may be man-
aged or coordinated by the policy manager 129. For example,
in some embodiments, the policy manager 129 can manage
and implement keepalive and other background traffic opti-
mization policies such as blocking policies, delaying policies,
transmission policies, and/or the like configured and provi-
sioned by the PMS. For example, the PMS can have two
policy configurations for optimizing background requests:
(1) true to enable the optimization and false to disable the
optimization and (2) length of delay cycle to be applied if
there is no other event triggering undelay. Similarly, the PMS
can provide and the policy manager 129 can implement other
configurations for various components of the keepalive opti-
mizer 300. In one embodiment, the policy manager 129 can
receive and implement a policy configuration from the PMS
to enable or disable the keepalive optimizer 300 at an appli-
cation level or at a user or device level.

Watch Dog 127: The watch dog 127 can monitor the client
side proxy 175 operating availability. In case the client side
proxy 175 is not working due to a failure or because it has
been disabled, the watchdog 127 can reset DNS routing rules
information and can restore original DNS settings for the
device to continue working until the client side proxy 175
service is restored.

Reporting Agent 126: The reporting agent 126 can gather
information (e.g., logs) about the events taking place in the
device and send the information to the log storage and pro-
cessing service 174, which collects and stores client-side
and/or server-side proxy system logs. Event details are stored
temporarily in the device and transferred to log storage and
processing service 174 only when the data channel state is
active. If the client side proxy 175 does not send records
within a period of time (e.g., twenty-four hours), the reporting
agent 126 may, in one embodiment, attempt to open the
connection and send recorded entries or, in case there are no
entries in storage, an empty reporting packet. All reporting
settings may be configured in the policy management server
(PMS). The information in the logs may be used for reporting
and/or troubleshooting, for example.

Push Client 128: The push client 128 can be responsible for
the traffic between the server side proxy 125 and the client
side proxy 175. The push client 128 can send out service
requests like content update requests and policy update
requests, and can receive updates to those requests from the
server side proxy 125. In addition, push client 128 can send
data to a log storage and processing service 174, which may
be internal to or external to the server side proxy 125.

US 9,271,237 B2

23

The proxy server 199 has a wide variety of uses, from
speeding up a web server by caching repeated requests, to
caching web, DNS and other network lookups for a group of
clients sharing network resources. The proxy server 199 is
optional. The distributed proxy and cache system (125 and/or
175) allows for a flexible proxy configuration using either the
proxy 199, additional proxy(s) in operator’s network, or inte-
grating both proxies 199 and an operator’s or other third-
party’s proxy.

FIG. 2A depicts a block diagram illustrating another
example of client-side components in a distributed proxy and
cache system, further including a proprietary/non-standard
protocol adaptation engine and a keepalive optimizer. The
client-side components in a distributed proxy and cache sys-
tem can reside on a mobile device (e.g., wireless device) 250
that manages traffic in a wireless network (or broadband
network) for keepalive optimization, signaling optimization,
resource conservation, content caching, and/or traffic man-
agement. FIG. 2B depicts a block diagram illustrating
examples of additional components shown in the example of
FIG. 2A which is further capable of performing mobile traffic
categorization and management based on application behav-
ior and/or user activity.

The mobile device 250, which can be a device that is
portable or mobile (e.g., any wireless device), such as a por-
table phone, generally includes, for example, a network inter-
face 208, an operating system 204, a context API 206, and
mobile applications which may be proxy-unaware 210 or
proxy-aware 220. Note that while the client device 250 is
specifically illustrated in the example of FIG. 2A as a mobile
device, such depiction is not a limitation, and mobile device
250 may be any wireless, broadband, portable/mobile or non-
portable device able to receive and/or transmit signals to
satisfy data requests over a network including wired or wire-
less networks (e.g., Wi-Fi, cellular, Bluetooth, LAN, WAN,
and the like).

The network interface 208 can be a networking module that
enables the device 250 to mediate data in a network with an
entity that is external to the mobile device 250, through any
known and/or convenient communications protocol sup-
ported by the mobile device and the external entity. The
network interface 208 can include one or more of a network
adaptor card, a wireless network interface card (e.g., SMS
interface, Wi-Fi interface, interfaces for various generations
of mobile communication standards including but not limited
t0 2G, 3G, 3.5G, 4G, LTE, etc.), Bluetooth, or whether or not
the connection is via a router, an access point, a wireless
router, a switch, a multilayer switch, a protocol converter, a
gateway, a bridge, a bridge router, a hub, a digital media
receiver, and/or a repeater.

Device 250 can further include, client-side components of
the distributed proxy and cache system which can include, a
local proxy 275 (e.g., a mobile client of a mobile device) and
acache 285. In one embodiment, the local proxy 275 includes
a user activity module 215, a proxy API 225, a request/
transaction manager 235, a caching policy manager 245 hav-
ing an application protocol module 248, a traffic shaping
engine 255, and/or a connection manager 265. The traffic
shaping engine 255 may further include an alignment module
256 and/or a batching module 257, the connection manager
265 may further include a radio controller 266, a heartbeat
manager 267 and a keepalive optimizer 300. The request/
transaction manager 235 can further include an application
behavior detector 236 having a prioritization engine 241, a
pattern detector 237, an application profile generator 239, a
time criticality detection engine 242, an application state
categorizer 243 and an application traffic categorizer 244. In

10

15

20

25

30

35

40

45

50

55

60

65

24

one embodiment, the local proxy or the device can further
include a proprietary/non-standard protocol adaptation
engine 401 for optimizing traffic in a protocol agnostic man-
ner.

Additional or less components/modules/engines can be
included in the local proxy 275 and each illustrated compo-
nent.

As used herein, a “module,” “manager,” “handler,” “detec-
tor,” “optimizer,” “interface,” “controller,” “normalizer,”
“generator,” “invalidator,” or “engine” includes a general pur-
pose, dedicated or shared processor and, typically, firmware
or software modules that are executed by the processor.
Depending upon implementation-specific or other consider-
ations, the module, manager, handler, detector, optimizer,
interface, controller, normalizer, generator, invalidator, or
engine can be centralized or its functionality distributed. The
module, manager, handler, detector, optimizer, interface, con-
troller, normalizer, generator, invalidator, or engine can
include general or special purpose hardware, firmware, or
software embodied in a computer-readable (storage) medium
for execution by the processor.

Asused herein, a computer-readable medium or computer-
readable storage medium is intended to include all mediums
that are statutory (e.g., in the United States, under 35 U.S.C.
101), and to specifically exclude all mediums that are non-
statutory in nature to the extent that the exclusion is necessary
for a claim that includes the computer-readable (storage)
medium to be valid. Known statutory computer-readable
mediums include hardware (e.g., registers, random access
memory (RAM), non-volatile (NV) storage, to name a few),
but may or may not be limited to hardware.

In one embodiment, a portion of the distributed proxy and
cache system for mobile traffic management resides in or is in
communication with the mobile device 250, including local
proxy 275 (mobile client) and/or cache 285. The local proxy
275 can provide an interface on the mobile device 250 for
users to access device applications and services including
email, IM, voice mail, visual voicemail, feeds, Internet,
games, productivity tools, or other applications, etc.

The local proxy 275 is generally application independent
and can be used by applications (e.g., both proxy-aware and
proxy-unaware applications 210 and 220 and other mobile
applications) to open TCP (Transport Control Protocol) or
other protocol based connections to a remote server (e.g., the
server 100 in the examples of FIG. 1B-1C and/or server proxy
125 shown in the examples of FIG. 1B). In some instances,
the local proxy 275 includes a proxy API 225 which can be
optionally used to interface with proxy-aware applications
220 (or applications (e.g., mobile applications) on a mobile
device (e.g., any wireless device)).

The applications 210 and 220 can generally include any
user application, widgets, software, HT'TP-based application,
web browsers, video or other multimedia streaming or down-
loading application, video games, social network applica-
tions, email clients, RSS management applications, applica-
tion stores, document management applications, productivity
enhancement applications, and the like. The applications can
be provided with the device OS, by the device manufacturer,
by the network service provider, downloaded by the user, or
provided by others.

One embodiment of the local proxy 275 includes or is
coupled to a context API 206, as shown. The context AP1 206
may be a part of the operating system 204 or device platform
or independent of the operating system 204, as illustrated.
The operating system 204 can include any operating system
including but not limited to, any previous, current, and/or

29 <

2 <

US 9,271,237 B2

25
future versions/releases of, Windows Mobile, 10S, Android,
Symbian, Palm OS, Brew MP, Java 2 Micro Edition (J2ME),
Blackberry, etc.

The context API 206 may be a plug-in to the operating
system 204 or a particular client/application on the device
250. The context AP1 206 can detect signals indicative of user
or device activity, for example, sensing motion, gesture,
device location, changes in device location, device backlight,
keystrokes, clicks, activated touch screen, mouse click or
detection of other pointer devices. The context AP1206 canbe
coupled to input devices or sensors on the device 250 to
identify these signals. Such signals can generally include
input received in response to explicit user input at an input
device/mechanism at the device 250 and/or collected from
ambient signals/contextual cues detected at or in the vicinity
of the device 250 (e.g., light, motion, piezoelectric, etc.).

In one embodiment, the user activity module 215 interacts
with the context API 206 to identify, determine, infer, detect,
compute, predict, and/or anticipate, characteristics of user
activity on the device 250. Various inputs collected by the
context API 206 can be aggregated by the user activity mod-
ule 215 to generate a profile for characteristics of user activity.
Such a profile can be generated by the user activity module
215 with various temporal characteristics. For instance, user
activity profile can be generated in real-time for a given
instant to provide a view of what the user is doing or not doing
at a given time (e.g., defined by a time window, in the last
minute, in the last 30 seconds, etc.), a user activity profile can
also be generated for a ‘session’ defined by an application or
web page that describes the characteristics of user behavior
with respect to a specific task they are engaged in on the
mobile device 250, or for a specific time period (e.g., for the
last 2 hours, for the last 5 hours).

Additionally, characteristic profiles can be generated by
the user activity module 215 to depict a historical trend for
user activity and behavior (e.g., 1 week, 1 mo., 2 mo., etc.).
Such historical profiles can also be used to deduce trends of
user behavior, for example, access frequency at different
times of day, trends for certain days of the week (weekends or
week days), user activity trends based on location data (e.g.,
1P address, GPS, or cell tower coordinate data) or changes in
location data (e.g., user activity based on user location, or user
activity based on whether the user is on the go, or traveling
outside a home region, etc.) to obtain user activity character-
istics.

In one embodiment, user activity module 215 can detect
and track user activity with respect to applications, docu-
ments, files, windows, icons, and folders on the device 250.
For example, the user activity module 215 can detect when an
application or window (e.g., a web browser or any other type
of application) has been exited, closed, minimized, maxi-
mized, opened, moved into the foreground or into the back-
ground, multimedia content playback, etc.

In one embodiment, characteristics of the user activity on
the device 250 can be used to locally adjust behavior of the
device (e.g., mobile device or any wireless device) to opti-
mize its resource consumption such as battery/power con-
sumption and more generally, consumption of other device
resources including memory, storage, and processing power,
and/or further optimize signaling in the network. In one
embodiment, the use of a radio on a device can be adjusted
based on characteristics of user behavior (e.g., by the radio
controller 266 of the connection manager 265) coupled to the
user activity module 215. For example, the radio controller
266 can turn the radio on or off, based on characteristics of the
user activity on the device 250. In addition, the radio control-
ler 266 can adjust the power mode of the radio (e.g., to be in
a higher power mode or lower power mode) depending on
characteristics of user activity.

20

25

40

45

50

26

In one embodiment, characteristics of the user activity on
device 250 can also be used to cause another device (e.g.,
other computers, a mobile device, a wireless device, or a
non-portable device) or server (e.g., host server 100 in the
examples of FIG. 1B-1C) which can communicate (e.g., via a
cellular or other network) with the device 250 to modify its
communication frequency with the device 250. The local
proxy 275 can use the characteristics information of user
behavior determined by the user activity module 215 to
instruct the remote device as to how to modulate its commu-
nication frequency (e.g., decreasing communication fre-
quency, such as data push frequency if the user is idle,
requesting that the remote device notify the device 250 if new
data, changed, data, or data of a certain level of importance
becomes available, etc.).

In one embodiment, the user activity module 215 can, in
response to determining that user activity characteristics indi-
cate that a user is active after a period of inactivity, request
that a remote device (e.g., server host server 100 or the net-
work-side proxy 125 in the examples of FIG. 1B-1C) send the
data that was buffered as a result of the previously decreased
communication frequency.

In addition, or in alternative, the local proxy 275 can com-
municate the characteristics of user activity at the device 250
to the remote device (e.g., host server 100 or the network-side
proxy 125 in the examples of FIG. 1B-1C) and the remote
device determines how to alter its own communication fre-
quency with the device 250 for network resource conserva-
tion and conservation of resources of the mobile device 250.

One embodiment of the local proxy 275 further includes a
request/transaction manager 235, which can detect, identify,
intercept, process and manage data requests initiated on the
device 250, for example, by applications 210 and/or 220,
and/or directly/indirectly by a user request. The request/trans-
action manager 235 can determine how and when to process
a given request or transaction, or a set of requests/transac-
tions, based on transaction characteristics.

The request/transaction manager 235 can prioritize
requests or transactions made by applications and/or users at
the device 250, for example by the prioritization engine 241.
Importance or priority of requests/transactions can be deter-
mined by the request/transaction manager 235 by applying a
rule set, for example, according to time sensitivity of the
transaction, time sensitivity of the content in the transaction,
time criticality of the transaction, time criticality of the data
transmitted in the transaction, and/or time criticality or
importance of an application making the request.

In addition, transaction characteristics can also depend on
whether the transaction was a result of user-interaction or
other user-initiated action on the device (e.g., user interaction
with an application (e.g., a mobile application)). In general, a
time critical transaction can include a transaction resulting
from a user-initiated data transfer, and can be prioritized as
such. Transaction characteristics can also depend on the
amount of data that will be transferred or is anticipated to be
transferred as a result of the requested transaction. For
example, the connection manager 265 can adjust the radio
mode (e.g., high power or low power mode via the radio
controller 266) based on the amount of data that will need to
be transferred.

In addition, the radio controller 266/connection manager
265 can adjust the radio power mode (high or low) based on
time criticality/sensitivity of the transaction. The radio con-
troller 266 can trigger the use of high power radio mode when
atime-critical transaction (e.g., a transaction resulting from a
user-initiated data transfer, an application running in the fore-
ground, any other event meeting a certain criteria) is initiated
or detected.

In general, the priorities can be set by default, for example,
based on device platform, device manufacturer, operating

US 9,271,237 B2

27

system, etc. Priorities can alternatively or additionally be set
by the particular application; for example, the Facebook
application (e.g., a mobile application) can set its own priori-
ties for various transactions (e.g., a status update can be of
higher priority than an add friend request or a poke request; a
message send request can be ofhigher priority than a message
delete request), or an email client or IM chat client may have
its own configurations for priority. The prioritization engine
241 may include set of rules for assigning priority.

The prioritization engine 241 can also track network pro-
vider limitations or specifications on application or transac-
tion priority in determining an overall priority status for a
request/transaction. Furthermore, priority can in part or in
whole be determined by user preferences, either explicit or
implicit. A user can in general set priorities at different tiers,
such as, specific priorities for sessions, or types, or applica-
tions (e.g., comparing a browsing session, a gaming session,
and an IM chat session, the user may set a gaming session to
always have higher priority than an IM chat session, which
may have higher priority than web-browsing session). A user
can set application-specific priorities, (e.g., a user may set
Facebook-related transactions to have a higher priority than
LinkedIn-related transactions), for specific transaction types
(e.g., for all send message requests across all applications to
have higher priority than message delete requests, for all
calendar-related events to have a high priority, etc.), and/or
for specific folders.

The prioritization engine 241 can track and resolve con-
flicts in priorities set by different entities. For example,
manual settings specified by the user may take precedence
over device OS settings, network provider parameters/limi-
tations (e.g., set in default for a network service area, geo-
graphic locale, set for a specific time of day, or set based on
service/fee type) may limit any user-specified settings and/or
application-set priorities. In some instances, a manual syn-
chronization request received from a user can override some,
most, or all priority settings in that the requested synchroni-
zation is performed when requested, regardless of the indi-
vidually assigned priority or an overall priority ranking for
the requested action.

Priority can be specified and tracked internally in any
known and/or convenient manner, including but not limited
to, a binary representation, a multi-valued representation, a
graded representation and all are considered to be within the
scope of the disclosed technology.

20

25

40

28

Table 3 above shows, for illustration purposes, some
examples of transactions with examples of assigned priorities
in a binary representation scheme. Additional assignments
are possible for additional types of events, requests, transac-
tions, and as previously described, priority assignments can
be made at more or less granular levels, e.g., at the session
level or at the application level, etc.

As shown by way of example in the above table, in general,
lower priority requests/transactions can include updating
message status as being read, unread, deleting of messages,
deletion of contacts; higher priority requests/transactions
can, in some instances include, status updates, new IM chat
message, new email, calendar event update/cancellation/de-
letion, an event in a mobile gaming session, or other enter-
tainment related events, a purchase confirmation through a
web purchase or online, request to load additional or down-
load content, contact book related events, a transaction to
change a device setting, location-aware or location-based
events/transactions, or any other events/request/transactions
initiated by a user or where the user is known to be, expected
to be, or suspected to be waiting for a response, etc.

Inbox pruning events (e.g., email, or any other types of
messages) are generally considered low priority and, absent
other impending events, generally will not trigger use of the
radio on the device 250. Specifically, pruning events to
remove old email or other content can be ‘piggy backed’ with
other communications if the radio is not otherwise on, at the
time of a scheduled pruning event. For example, if the user
has preferences set to ‘keep messages for 7 days old,” then
instead of powering on the device radio to initiate deletion of
the message from the device 250 the moment that the message
has exceeded 7 days old, the message is deleted when the
radio is powered on next. If the radio is already on, then
pruning may occur as regularly scheduled.

The request/transaction manager 235 can use the priorities
for requests (e.g., by the prioritization engine 241) to manage
outgoing traffic from the device 250 for resource optimization
(e.g., to utilize the device radio more efficiently for battery
conservation). For example, transactions/requests below a
certain priority ranking may not trigger use of the radio on the
device 250 if the radio is not already switched on, as con-
trolled by the connection manager 265. In contrast, the radio

TABLE 3
Change Change
(initiated on device) Priority (initiated on server) Priority
Send email High Receive email High
Delete email Low Edit email Often not
(Un)read email Low possible to sync
(Low if
possible)
Move message Low New email in deleted items Low
Read more High
Download High Delete an email Low
attachment (Un)Read an email Low
New Calendar event High Move messages Low
Edit/change Calendar High Any calendar change High
event Any contact change High
Add a contact High Wipe/lock device High
Edit a contact High Settings change High
Search contacts High Any folder change High
Change a setting High Connector restart High (if no
Manual send/receive High changes nothing
is sent)
IM status change Medium Social Network Status Updates ~ Medium
Auction outbid or change High Severe Weather Alerts High
notification
Weather Updates Low News Updates Low

US 9,271,237 B2

29

controller 266 can turn on the radio such that a request can be
sent when a request for a transaction is detected to be over a
certain priority level.

In one embodiment, priority assignments (such as that
determined by the local proxy 275 or another device/entity)
can be used to cause a remote device to modify its commu-
nication with the frequency with the mobile device or wire-
less device. For example, the remote device can be configured
to send notifications to the device 250 when data of higher
importance is available to be sent to the mobile device or
wireless device.

In one embodiment, transaction priority can be used in
conjunction with characteristics of user activity in shaping or
managing traffic, for example, by the traffic shaping engine
255. For example, the traffic shaping engine 255 can, in
response to detecting that a user is dormant or inactive, wait to
send low priority transactions from the device 250, for a
period of time. In addition, the traffic shaping engine 255 can
allow multiple low priority transactions to accumulate for
batch transferring from the device 250 (e.g., via the batching
module 257). In one embodiment, the priorities can be set,
configured, or readjusted by a user. For example, content
depicted in Table 3 in the same or similar form can be acces-
sible in a user interface on the device 250 and for example,
used by the user to adjust or view the priorities.

The batching module 257 can initiate batch transfer based
on certain criteria. For example, batch transfer (e.g., of mul-
tiple occurrences of events, some of which occurred at differ-
ent instances in time) may occur after a certain number of low
priority events have been detected, or after an amount of time
elapsed after the first of the low priority event was initiated. In
addition, the batching module 257 can initiate batch transfer
of'the accumulated low priority events when a higher priority
event is initiated or detected at the device 250. Batch transfer
can otherwise be initiated when radio use is triggered for
another reason (e.g., to receive data from a remote device
such as host server 100, server-side proxy 125). In one
embodiment, an impending pruning event (pruning of an
inbox), or any other low priority events, can be executed when
a batch transfer occurs.

In general, the batching capability can be disabled or
enabled at the event/transaction level, application level, or
session level, based on any one or combination of the follow-
ing: user configuration, device limitations/settings, manufac-
turer specification, network provider parameters/limitations,
platform-specific limitations/settings, device OS settings,
etc. In one embodiment, batch transfer can be initiated when
an application/window/file is closed out, exited, or moved
into the background; users can optionally be prompted before
initiating a batch transfer; users can also manually trigger
batch transfers.

In one embodiment, the local proxy 275 locally adjusts
radio use on the device 250 by caching data in the cache 285.
When requests or transactions from the device 250 can be
satisfied by content stored in the cache 285, the radio control-
ler 266 need not activate the radio to send the request to a
remote entity (e.g., the host server 100 as shown in FIG. 1B,
the host server 500 as shown in FIG. 5A or a content provider/
application server such as the server/provider 110 shown in
the examples of FIGS. 1B-1C). As such, the local proxy 275
can use the local cache 285 and the cache policy manager 245
to locally store data for satisfying data requests to eliminate or
reduce the use of the device radio for conservation of network
resources and device battery consumption.

In leveraging the local cache, once the request/transaction
manager 235 intercepts a data request by an application on the
device 250, the local cache repository 285 can be queried to

10

15

20

25

30

40

45

55

60

30

determine if there is any locally stored response, and also
determine whether the response is valid. When a valid
response is available in the local cache 285, the response can
be provided to the application on the device 250 without the
device 250 needing to access the cellular network or wireless
broadband network.

If a valid response is not available, the local proxy 275 can
query a remote proxy (e.g., the server proxy 125 of FIG. 4) to
determine whether a remotely stored response is valid. If so,
the remotely stored response (e.g., which may be stored on
the server cache 135 or optional caching server 199 shown in
the example of FIG. 1C) can be provided to the mobile device,
possibly without the mobile device 250 needing to access the
cellular network, thus relieving consumption of network
resources.

If a valid cache response is not available, or if cache
responses are unavailable for the intercepted data request, the
local proxy 275, for example, can send the data request to a
remote proxy (e.g., server proxy 125 of FIG. 4) which for-
wards the data request to a content source (e.g., application
server/content provider 110 of FIG. 1B), and a response from
the content source can be provided through the remote proxy,
as will be further described in the description associated with
the example host server 500 of FIG. 4. The cache policy
manager 245 can manage or process requests that use a vari-
ety of protocols, including but not limited to HTTP, HTTPS,
IMAP, POP, SMTP, XMPP, and/or ActiveSync. The caching
policy manager 245 can locally store responses for data
requests in the local database 285 as cache entries, for subse-
quent use in satisfying same or similar data requests.

The caching policy manager 245 can request that the
remote proxy monitor responses for the data request and the
remote proxy can notify the device 250 when an unexpected
response to the data request is detected. In such an event, the
cache policy manager 245 can erase or replace the locally
stored response(s) on the device 250 when notified of the
unexpected response (e.g., new data, changed data, additional
data, etc.) to the data request. In one embodiment, the caching
policy manager 245 is able to detect or identify the protocol
used for a specific request, including but not limited to HTTP,
HTTPS, IMAP, POP, SMTP, XMPP, and/or ActiveSync. In
one embodiment, application specific handlers (e.g., via the
application protocol module 248 of the caching policy man-
ager 245) on the local proxy 275 allows for optimization of
any protocol that can be port mapped to a handler in the
distributed proxy (e.g., port mapped on the proxy server 125
in the example of FIG. 4).

In one embodiment, the local proxy 275 notifies the remote
proxy such that the remote proxy can monitor responses
received for the data request from the content source for
changed results prior to returning the result to the device 250,
for example, when the data request to the content source has
yielded same results to be returned to the mobile device. In
general, the local proxy 275 can simulate application server
responses for applications on the device 250, using locally
cached content. This can prevent utilization of the cellular
network for transactions where new/changed data is not avail-
able, thus freeing up network resources and preventing net-
work congestion.

In one embodiment, the local proxy 275 includes an appli-
cation behavior detector 236 to track, detect, observe, and/or
monitor applications (e.g., proxy-aware and/or unaware
applications 210 and 220) accessed or installed on the device
250. Application behaviors or patterns in detected behaviors
(e.g., via the pattern detector 237) of one or more applications
accessed on the device 250 can be used by the local proxy 275

US 9,271,237 B2

31

to optimize traffic in a wireless network needed to satisfy the
data needs of these applications.

For example, based on detected behavior of multiple appli-
cations, the traffic shaping engine 255 can align content
requests made by at least some of the applications over the
network (wireless network) (e.g., via the alignment module
256). The alignment module 256 can delay or expedite some
earlier received requests to achieve alignment. When requests
are aligned, the traffic shaping engine 255 can utilize the
connection manager to poll over the network to satisfy appli-
cation data requests. Content requests for multiple applica-
tions can be aligned based on behavior patterns or rules/
settings including, for example, content types requested by
the multiple applications (audio, video, text, etc.), device
(e.g., mobile or wireless device) parameters, and/or network
parameters/traffic conditions, network service provider con-
straints/specifications, etc.

In one embodiment, the pattern detector 237 can detect
recurrences in application requests made by the multiple
applications, for example, by tracking patterns in application
behavior. A tracked pattern can include, detecting that certain
applications, as a background process, poll an application
server regularly, at certain times of day, on certain days of the
week, periodically in a predictable fashion, with a certain
frequency, with a certain frequency in response to a certain
type of event, in response to a certain type user query, fre-
quency that requested content is the same, frequency with
which a same request is made, interval between requests,
applications making a request, or any combination of the
above, for example.

Such recurrences can be used by traffic shaping engine 255
to offload polling of content from a content source (e.g., from
an application server/content provider 110 of FIG. 1A) that
would result from the application requests that would be
performed at the mobile device or wireless device 250 to be
performed instead by a proxy server (e.g., proxy server 125 of
FIG. 1C) remote from the device 250. Traffic shaping engine
255 can decide to offload the polling when the recurrences
match a rule. For example, there are multiple occurrences or
requests for the same resource that have exactly the same
content, or returned value, or based on detection of repeatable
time periods between requests and responses such as a
resource that is requested at specific times during the day. The
offloading of the polling can decrease the amount of band-
width consumption needed by the mobile device 250 to estab-
lish a wireless (cellular or other wireless broadband) connec-
tion with the content source for repetitive content polls.

As a result of the offloading of the polling, locally cached
content stored in the local cache 285 can be provided to
satisfy data requests at the device 250 when content change is
not detected in the polling of the content sources. As such,
when data has not changed, application data needs can be
satisfied without needing to enable radio use or occupying
cellular bandwidth in a wireless network. When data has
changed and/or new data has been received, the remote entity
(e.g., the host server) to which polling is offloaded, can notity
the device 250.

In one embodiment, the local proxy 275 can mitigate the
need/use of periodic keepalive messages (heartbeat mes-
sages) to maintain TCP/IP connections, which can consume
significant amounts of power thus having detrimental impacts
on mobile device battery life. The connection manager 265 in
the local proxy (e.g., the heartbeat manager 267) can detect,
identify, and intercept any or all heartbeat (keepalive) mes-
sages being sent from applications.

The heartbeat manager 267 can prevent any or all of these
heartbeat messages from being sent over the cellular, or other

20

25

30

40

45

65

32

network, and instead rely on the server component of the
distributed proxy system (e.g., shown in FIG. 1C) to generate
and send the heartbeat messages to maintain a connection
with the backend (e.g., application server/provider 110 in the
example of FIG. 1B).

In some embodiments, the radio state management engine
203 can perform the management and/or policy management
of mobile device radio state promotion or demotion based on
buffer, activity and/or device state monitoring. The radio state
management engine 203 can determine what user activity
and/or data activity should justify a radio state promotion and
communicate the information to the network to be imple-
mented as a single session, multi-session, or global policy.
This policy can be used to execute the appropriate level of
throttling to prevent the radio from going to higher powered
states when unjustified based on dynamic conditions (e.g.,
network status, traffic, congestion, user expectations, user
behavior, other activity, and the like.).

The local proxy 275 generally represents any one or a
portion of the functions described for the individual manag-
ers, modules, and/or engines. The local proxy 275 and device
250 can include additional or less components; more or less
functions can be included, in whole or in part, without devi-
ating from the novel art of the disclosure.

FIG. 2B illustrates a block diagram depicting additional
components in a user activity module and an application
behavior detector shown in the example of FIG. 2A.

One embodiment of the local proxy 175 includes the user
activity module 215, which further includes one or more of; a
user activity detector/tracker 215a, a user activity prediction
engine 2155, and/or a user expectation manager 215¢. The
application behavior detector 236 can further include a pri-
oritization engine 241q, a time criticality detection engine
241b, an application state categorizer 241¢, and/or an appli-
cation traffic categorizer 241d. The local proxy 175 can fur-
ther include a backlight detector 219.

In one embodiment, the application behavior detector 236
may detect, determine, identify, or infer the activity state of an
application on the mobile device 250 from which traffic has
originated or is directed to, for example, via the application
state categorizer 241¢ and/or the application traffic catego-
rizer 241d. The activity state can be determined based on
whether the application is in a foreground or background state
on the mobile device (via the application state categorizer
241c¢) since the traffic for a foreground application versus a
background application may be handled differently.

In one embodiment, the activity state can be determined,
detected, identified, or inferred with a level of certainty of
heuristics, based on the backlight status of the mobile device
250 (e.g., by the backlight detector 219) or other software
agents or hardware sensors on the mobile device, including
but not limited to, resistive sensors, capacitive sensors, ambi-
ent light sensors, motion sensors, touch sensors, and the like.
In general, if the backlight is on, the traffic can be treated as
being or determined to be generated from an application that
is active or in the foreground, or the traffic is interactive. In
addition, if the backlight is on, the traffic can be treated as
being or determined to be traffic from user interaction or user
activity, or traffic containing data that the user is expecting
within some time frame.

In one embodiment, the activity state is determined based
on whether the traffic is interactive traffic or maintenance
traffic. Interactive traffic can include transactions from
responses and requests generated directly from user activity/
interaction with an application, and can include content or
data that a user is waiting or expecting to receive. Mainte-
nance traffic may be used to support the functionality of an

US 9,271,237 B2

33

application which is not directly detected by a user. Mainte-
nance traffic can also include actions or transactions that may
take place in response to a user action, but the user is not
actively waiting for or expecting a response.

For example, a mail or message delete action at a mobile
device 250 generates a request to delete the corresponding
mail or message at the server, but the user typically is not
waiting for a response. Thus, such a request may be catego-
rized as maintenance traffic, or traffic having a lower priority
(e.g., by the prioritization engine 241a) and/or is not time-
critical (e.g., by the time criticality detection engine 2415).

Contrastingly, a mail ‘read’ or message ‘read’ request ini-
tiated by a user at the mobile device 250, can be categorized
as ‘interactive traffic’ since the user generally is waiting to
access content or data when they request to read a message or
mail. Similarly, such a request can be categorized as having
higher priority (e.g., by the prioritization engine 241a) and/or
as being time critical/time sensitive (e.g., by the time critical-
ity detection engine 2415).

The time criticality detection engine 2415 can generally
determine, identify, infer the time sensitivity of data con-
tained in traffic sent from the mobile device 250 or to the
mobile device from a host server (e.g., host 300) or applica-
tion server (e.g., app server/content source 110). For example,
time sensitive data can include, status updates, stock infor-
mation updates, IM presence information, email messages or
other messages, actions generated from mobile gaming appli-
cations, webpage requests, location updates, etc. Data that is
not time sensitive or time critical, by nature of the content or
request, can include requests to delete messages, mark-as-
read or edited actions, application-specific actions such as an
add-friend or delete-friend request, certain types of messages,
or other information which does not frequently change in
nature, etc. In some instances when the data is not time
critical, the timing with which to allow the traffic to pass
through is set based on when additional data needs to be sent
from the mobile device 250. For example, traffic shaping
engine 255 can align the traffic with one or more subsequent
transactions to be sent together in a single power-on event of
the mobile device radio (e.g., using the alignment module 256
and/or the batching module 257). The alignment module 256
can also align polling requests occurring close in time
directed to the same host server, since these requests are likely
to be responded to with the same data. In some instances, the
timing for withholding or delaying traffic and timing for
allowing any delayed or new traffic to the network can be
based on traffic management policies.

In the alternate or in combination, the activity state can be
determined from assessing, determining, evaluating, infer-
ring, identifying user activity at the mobile device 250 (e.g.,
via the user activity module 215). For example, user activity
can be directly detected and tracked using the user activity
tracker 215a. The traffic resulting therefrom can then be cat-
egorized appropriately for subsequent processing to deter-
mine the policy for handling. Furthermore, user activity can
be predicted or anticipated by the user activity prediction
engine 215b. By predicting user activity or anticipating user
activity, the traffic thus occurring after the prediction can be
treated as resulting from user activity and categorized appro-
priately to determine the transmission policy.

In addition, the user activity module 215 can also manage
user expectations (e.g., via the user expectation manager 215¢
and/or in conjunction with the activity tracker 2154 and/or the
prediction engine 215b) to ensure that traffic is categorized
appropriately such that user expectations are generally met.
For example, a user-initiated action should be analyzed (e.g.,
by the expectation manager 215¢) to determine or infer

30

40

45

60

34

whether the user would be waiting for a response. If so, such
traffic should be handled under a policy such that the user
does not experience an unpleasant delay in receiving such a
response or action.

In one embodiment, an advanced generation wireless stan-
dard network is selected for use in sending traffic between a
mobile device and a host server in the wireless network based
onthe activity state of the application on the mobile device for
which traffic is originated from or directed to. An advanced
technology standard such as the 3G, 3.5G, 3G+, 4G, or LTE
network can be selected for handling traffic generated as a
result of user interaction, user activity, or traffic containing
data that the user is expecting or waiting for. Advanced gen-
eration wireless standard networks can also be selected to
transmit data contained in traffic directed to the mobile device
which responds to foreground activities.

In categorizing traffic and defining a transmission policy
for mobile traffic, a network configuration can be selected for
use (e.g., by a network configuration selection engine) on the
mobile device 250 in sending traffic between the mobile
device and a proxy server and/or an application server (e.g.,
app server/host 110). The network configuration that is
selected can be determined based on information gathered by
the application behavior module 236 regarding application
activity state (e.g., background or foreground traffic), appli-
cation traffic category (e.g., interactive or maintenance traf-
fic), any priorities of the data/content, time sensitivity/criti-
cality.

In one embodiment, the keepalive optimizer 300 which is
described in detail with respect to FIGS. 3A-3D can also
detect, identify and intercept keepalives or heartbeat mes-
sages and other background traffic using various optimization
methods to reduce keepalive and other background traffic in
the mobile network.

FIG. 2C depicts a block diagram illustrating additional
components in the proprietary/non-standard protocol adapta-
tion engine 401 shown in the example of FIG. 2A. In one
embodiment, the proprietary/non-standard protocol adapta-
tion engine 401 can be a part of the local proxy 275. Alter-
nately, the proprietary/non-standard protocol adaptation
engine 401 can be implemented separately outside of the
local proxy 275.

The proprietary/non-standard protocol adaptation engine
401 can include, for example, a transaction detection engine
272 having a protocol analyzer 274, a transaction pattern
detection engine 276, a binary matching and normalization
engine 278, an application byte stream generator 280, a TCP
session manager 282 and/or a protocol encoding/decoding
module 284. Additional or less modules/engines can be
included. The various components of the proprietary/non-
standard protocol adaptation engine 401 on the mobile device
or user equipment (UE) 250 can singularly or in any combi-
nation perform the following functions and features related to
signaling optimization in a wireless network for traffic utiliz-
ing proprietary and nonproprietary protocols.

In one embodiment, the local proxy 275 or the proprietary/
non-standard protocol adaptation engine 401 captures the
TCP stream from an application and passes it on as a byte
stream via a byte stream interface provided by the application
byte stream generator 280. A byte stream can be read from or
can be written to by an application without having to account
for protocol-specific formatting, sizing, and other details.

The TCP session manager 282 can, in one embodiment,
manage TCP sessions including establishing of TCP sessions
with a proxy server (e.g., proxy server 125) and/or the content
server (e.g., content server 110) and tearing down or termi-
nation of TCP sessions. Although the discussion is with

US 9,271,237 B2

35

respect to TCP sessions, other similar or session-based pro-
tocols may be implemented. In one implementation, the TCP
session manager 282 can establish a first TCP session
between an application and the local proxy 275 or the propri-
etary/non-standard protocol adaptation engine 270. The TCP
session manager 282 can also establish a TCP session
between the local proxy 275 (or the proprietary/non-standard
protocol adaptation engine 270) and a server (e.g., proxy
server 125, an application or content server 110). Byte
streams from the application can be passed over the first TCP
session to the keepalive optimizer 300, which can then be sent
over to the server over the second TCP session. The TCP
session manager 282 may also allow the application to estab-
lish the necessary handshakes.

In one embodiment, the transaction detection engine 272
can detect and identify transactions based on analysis of the
protocol headers and other protocol peculiarities. Such pro-
tocol specific analysis can be performed by a protocol ana-
lyzer 274. For example, the protocol analyzer 274 can detect
transactions in HTTP protocol based on HTTP header, for-
matting, encoding, and the like.

In another embodiment, the transaction detection engine
272 can be protocol agnostic, and can detect and/or identify
transactions without knowing or understanding details of the
underlying protocols. For example, the transaction detection
engine 272 can directly monitor byte streams captured from
applications (e.g., by the application byte stream generator
280 interface) and detect and/or identify transactions based
on observed and/or extracted patterns of byte streams and/or
matching or determining content in byte streams. In one
implementation, for example, the transaction pattern detec-
tion engine 276 can monitor, detect and/or extract various
patterns embedded in byte streams corresponding to transac-
tions from applications. One such pattern can be idle time
between transactions. The pattern detection engine 276 can
monitor byte streams from an application over time, and
detect an idle time of two minutes occurring in between
transactions, without knowing or understanding the details of
the protocol used by the application. Other patterns that can
be identified or extracted can resemble those identified by the
distributed proxy system (e.g., the local proxy 275 and/or the
proxy server 125) for HTTP or other standard protocols.

In one embodiment, the proprietary/non-standard protocol
adaptation engine 401 can include a protocol encoding/de-
coding module 284. In implementations where a binary
stream is encapsulated within a security and/or encryption
protocol such as Transport Layer Security (TLS), Secure
Sockets Layer (SSL), and the like, the encoding/decoding
module may include capabilities for decoding such protocols
to extract the binary stream.

FIG. 3A illustrates an example diagram depicting an
example of components in the keepalive optimizer 300 of
FIG. 2A.

In optimizing signaling in a wireless network, managing
long-lived network connections, managing mobile device
power usage and/or bandwidth consumption, one or more
keepalive and other background traffic optimization strate-
gies can be implemented. For example, the keepalive opti-
mizer 300 can detect, intercept and categorize keepalives or
other non-interactive or background traffic as safe or unsafe
based on predicted or known impact on user experience or
other functionality and selectively block the safe keepalives
from going out to the network, thereby reducing the keepalive
traffic in the network and conserving bandwidth and power
resources. Similarly, the keepalive optimizer 300 can execute
keepalives in advance of their expected schedules to maintain
long-lived connections or extend keepalive periods to mini-

30

40

45

50

36

mize the number of times the radio of a mobile device needs
to turn on and off and/or the frequency or interval at which
keepalives and other background traffic is sent to the network.
These keepalive optimization strategies can be used alone or
in combination to facilitate management of keepalive and
other background traffic, management of connection and
resource conservation in mobile networks.

In one embodiment, the keepalive optimizer 300 can reside
in the local proxy 275 and operate as part of the local proxy
275. In another embodiment, the keepalive optimizer 300 can
be included in the operating system (OS) (e.g., as a back-
ground service or application that is transparent to the end
user) by OS manufacturers or mobile device manufacturers
(e.g., part of the Android OS, part of the customized Android
OS in SAMSUNG smart phones). In yet another embodi-
ment, an application (e.g., 210, 220) on the mobile device
may include the keepalive optimizer 300. For example, the
keepalive optimizer 300 can be the application itself. As an
example, a messaging application can have a configuration
mode that uses keepalives to maintain an always-on IP con-
nection to the server. The keepalive optimizer 300 in the
messaging application can then optimize the keepalive traffic
while maintaining the always-on IP connection to the server
when the configuration mode is enabled. In other embodi-
ments, a keepalive optimizer 300 on a mobile device 250 can
be provided by network service providers (e.g., Verizon,
AT&T, T-Mobile) to optimize keepalive or other background
traffic in their mobile networks or may be downloaded by a
user (e.g., from an app store) to reduce bandwidth and power
usage.

In one embodiment, the keepalive optimizer 300 can
include a keepalive detector 305, a keepalive blocker 312, a
keepalive traffic scheduler 314, a background traffic sched-
uler 316 and/or a keepalive optimization reporting agent 318.
In some embodiments, one or more of these components can
be optional. For example, one embodiment of the keepalive
optimizer 300 can include the keepalive detector 305, the
keepalive blocker 312 and the keepalive optimization report-
ing agent 318. F1G. 3B illustrates an example diagram depict-
ing an example of components in the keepalive blocker 312 of
FIG. 3A.FIG. 3C illustrates an example diagram depicting an
example of components in the keepalive traffic scheduler 314
of FIG. 3A. FIG. 3D illustrates an example diagram depicting
an example of components in the background traffic sched-
uler 316 of FIG. 3A.

In one embodiment, the keepalive detector 305 detects or
identifies keepalives. The keepalive detector 305 can detect
keepalives based on one or more parameters, such as but not
limited to: periodicity, size thresholds, similar/repeating con-
tent, and/or based on knowledge of the actual application
level protocol. In one embodiment, the keepalive detector 305
can analyze timeout detection and recovery messages or
socket level network communication log (netlog) data to
identify keepalives from data streams. These and other meth-
ods of keepalive detection are disclosed in related application
Ser. No. 61/836,039 titled “IDENTIFICATION AND
REPORTING OF KEEP ALIVE MESSAGES AND OTHER
NON-USER INTERACTIVE TRAFFIC IN A MOBILE
NETWORK™ filed on Jun. 17, 2013, which is expressly incor-
porated by reference herein.

Referring to FIG. 3B and as described in reference to FIG.
1A-1, in one embodiment, the keepalive blocker 312 opti-
mizes keepalives originating at a mobile device by blocking
keepalives based on whether they are necessary or unneces-
sary. In one embodiment, the keepalive blocker 312 catego-
rizes a keepalive from an application as a safe keepalive or an
unsafe keepalive, in which a safe keepalive is a candidate for

US 9,271,237 B2

37

keepalive optimization. The keepalive optimization can
include blocking the safe keepalive without causing an
impact on the health of a connection between the application
and a server to which the keepalive is directed. In one embodi-
ment, the keepalive categorizer 3245 can categorize a kee-
palive (e.g., detected by the heartbeat manager 267 of FIG.
2A) as a safe keepalive when no other traffic is detected at the
same socket where the keepalive is detected. In another
embodiment, the keepalive categorizer 3245 can categorize a
keepalive as a safe keepalive when transactions following the
keepalive have same or similar byte size. In yet another
embodiment, the keepalive categorizer 3245 can categorize a
keepalive as an unsafe keepalive when an indication of user
activity (e.g., from the user activity module 215 of FIGS.
2A-2B) or non-keepalive traffic (e.g., from application traffic
categorizer 241d/application behavior detector 236 from
FIG. 2A-2B) is detected in the same TCP stream that includes
the keepalive.

Once a keepalive is categorized as safe or unsafe by the
keepalive categorizer 3245, the keepalive blocker 312 allows
the unsafe keepalive to go to the server (by not blocking) in
order to maintain the health of the connection between the
application and the server or blocks the safe keepalive from
going out to the server (via blocking module 326). By block-
ing at least some of the safe or unnecessary keepalives, the
radio can be turned on and off less frequently, thereby reduc-
ing unnecessary signaling in the mobile network.

In one embodiment, the keepalive blocker 312 includes a
keepalive prediction engine 320 having a learning module
322, a prediction-based keepalive categorizer 324a and a
prediction validation module. The keepalive prediction
engine 320 (e.g., via the learning module 322) observes kee-
palive traffic for a period of time to identify one or more
factors for predicting whether a keepalive is a safe or unsafe
keepalive. Such factors or predictors can include, but are not
limited to: user, application, hour of the day, day of the week,
keepalive interval, keepalive byte size, on screen activity or
number of consecutive safe keepalives. In one embodiment,
the learning module 322 can be used to generate a rule set for
identifying safe keepalives from unsafe keepalives. Based on
one or more of the predictors and/or the rule set for keepalive
categorization or classification, the keepalive blocker 312
(e.g., via the prediction-based keepalive categorizer 324a)
categorizes the keepalive as a safe or unsafe keepalive based
on the one or more factors. As before, once the keepalive is
categorized or classified as safe or unsafe, the keepalive
blocker 312 (e.g., via the blocking module 326) optimizes the
keepalive by blocking the safe keepalive from going out to the
server. In one embodiment, the decision list learning and
blocking algorithm and binary list learning and blocking
algorithm described in the present disclosure can be used to
categorize a keepalive as safe or unsafe and selectively block
the safe keepalive while allowing the unsafe keepalive to be
transmitted normally.

The blocking module 326 can block specific keepalives by
blocking the ports used by applications that sent the kee-
palives (e.g., via the port blocker 328) or by blocking the
applications themselves (e.g., via the application blocker
330) for a duration of time that can be defined by the PMS or
the application. In one embodiment, the unblocking can occur
after the end of the defined duration of time, or after an
unblocking event occurs. The keepalive unblocking module
333 can detect the end of the blocking period or other
unblocking events such as the screen turning on or change in
other external parameters representing start of active usage of
the application or the device by the user (i.e., indication of
user activity), or deviation from the predicted pattern. Other

35

40

45

50

55

60

38

unblocking events can include, for example, a push message
coming in through a parallel push channel, indicating that
there is a time-critical message for the application, switching
to a network that is not configured for optimization (e.g.,
Wi-Fi), or the like.

In one embodiment, the prediction validation module 332
can observe traffic after the blocking of the safe keepalive or
after the unblocking event to validate whether the prediction
was successful (i.e., no necessary keepalive traffic was incor-
rectly categorized as unnecessary and blocked) or not (i.e.,
necessary keepalive traffic missed because it was incorrectly
categorized as unnecessary). The prediction validation mod-
ule 332 can observe the initial data transfer in establishing a
socket to determine whether the prediction was successful or
not. For example, if the prediction validation module 332
detects that a traffic pattern in establishing a socket after the
blocking event is different than a traffic pattern in establishing
a socket without any pending data, such difference in traffic
patterns can indicate that a data transfer was prevented
because of miscategorization of an unsafe keepalive as safe
keepalive. If the prediction failed, the learning module 322 is
triggered to update its observation and analysis to improve the
prediction capability of the prediction-based keepalive cat-
egorizer 324a. For example, analysis for determining the
keepalive predictors can be updated, a new rule set can be
generated, thresholds or other parameters can be adjusted,
and/or the like.

In one embodiment, instead of blocking the safe keepalive
by blocking the application or the port for a duration of time,
a response to the safe keepalive can be provided by the kee-
palive synthesizer 334. The keepalive synthesizer 334 can
synthesize, create or generate a keepalive (or a synthetic
keepalive) based on knowledge of the previous keepalive
responses or acknowledgements, by a piori knowledge of the
application protocol, or the like. For example, for a GCM
messaging application, the keepalive synthesizer 334 can
provide a synthesized response to a keepalive using the
knowledge of the protocol and avoid the risk from blocking
the application or the port which would also prevent the
application from sending out other data as well as the kee-
palive.

Referring to FIG. 3C, in one embodiment, the keepalive
traffic scheduler 314 of the keepalive optimizer 300 includes
a keepalive advancer 340 and/or a keepalive extender 350.
The keepalive advancer 340 can include a keepalive advanc-
ing parameter detector 342, a keepalive advancing trigger
module 346, a keepalive executor 344 and a keepalive timer
module 348. As described in reference to FIG. 1A-2, the
keepalive advancer 340 executes a keepalive (i.e., sends a
keepalive) opportunistically, earlier than when an application
would normally send it out. In one embodiment, the keepalive
advancing parameter detector 342 detects keepalive param-
eters corresponding to an application. Such keepalive param-
eters can include a keepalive period (or interval between
keepalives) and/or a keepalive pull-in period, which is a
threshold for advancement of keepalives defined in order to
ensure that keepalives are not sent more frequently than sta-
tistically necessary. The pull-in parameter can be configured
by the PMS, by the application or determined at run time.

In one embodiment, the keepalive advancing trigger mod-
ule 346 detects the radio of the mobile device turning on after
a socket for the application has been idle for longer than the
keepalive pull-in period (e.g., tracked by the keepalive timer
module 348) and in response, triggers a new keepalive for
execution (e.g., via the keepalive executor 344) in advance of
the expected schedule. The keepalive advancing trigger mod-
ule 346 can trigger a new keepalive by dropping the applica-

US 9,271,237 B2

39

tion socket which would cause the application to piggyback
on the radio that is already on to establish a new socket.
Alternately, instead of dropping the socket, a new keepalive
can be synthesized by the keepalive synthesizer 345. In one
embodiment, the keepalive synthesizer 345 can synthesize a
keepalive based on an analysis of previous keepalives at run
time or based on knowledge or information obtained from
offline analysis of keepalives of an application (or using the
methods described with respect to keepalive synthesizer
345). The keepalive executor 344 then executes the
“advanced” keepalive or the “synthesized” keepalive by
transmitting or sending the keepalive to the server.

In some instances, using synthesized keepalives may cause
decoupling of the application-side socket (e.g., between
application and the local proxy 275) from the network-side
socket (e.g., between the local proxy 275 and a server such as
the host server 125 or the application server) because check-
sums between the two sockets may be mismatched. In this
instance, data from the network socket to the application
socket may get rejected by the application. The rejection,
however, would cause the application to re-establish the con-
nection and because the servers are designed to retry sending
data in the event of failure, there will be no data loss, with the
data reaching the application after a slight delay.

As described in reference to FIG. 1A-3, in one embodi-
ment, the keepalive extender 350 optimizes keepalive traffic
originating at a mobile device by identifying keepalive
parameters corresponding to an application (e.g., via the kee-
palive extending parameter detector 352) and utilizing the
keepalive parameters to execute a keepalive after a delay to
optimize the keepalive traffic. In one embodiment, the kee-
palive parameters utilized in executing the keepalive after a
delay include a first period or a pattern, a second period and
the keepalive period. In one embodiment, the keepalive
extending trigger module 354 detects a first keepalive after a
socket for the application has been idle for longer than the first
period (e.g., as tracked by the keepalive timer module 358)
and delays the keepalive until the radio turns on or the second
period from the detecting of the first keepalive elapses. The
keepalive extending trigger module 354 then triggers the
keepalive executor 356 to execute the keepalive. Because the
keepalive is delayed until the radio turns on or until a second
period of time from the detecting of the first keepalive
elapses, the keepalive period can be extended up to the time
corresponding to the second period.

Referring to FIG. 3D and as described in reference to FIG.
1A-4, in one embodiment, the background traffic scheduler
316 can optimize background traffic originating at a mobile
device by identifying a background request from an applica-
tion that can be delayed for transmission to a wireless network
(e.g., via the background request detector 360). The back-
ground request detector 360 can characterize a request from
an application as a background request based on an indication
of'alack of user interaction with the application or the mobile
device or the lack of user interaction with the application/
device in combination with other information relating to sta-
tus of the application or status of the mobile device (e.g.,
status of input/output mechanisms of the mobile device). The
background traffic scheduler 316 then delays the background
request for a period of time when a state of the mobile device
meets a delay criteria. In one embodiment, the delay criteria
is met when the state of the mobile device is characterized by
the mobile device as being connected to a mobile network,
being in a transparent mode, having a screen turned off and
having a radio turned off. The state of the mobile device can
be determined and tracked by the device state detector 366.

10

15

20

25

30

35

40

45

50

55

60

65

40

In one embodiment, the background request tolerance
detector 362 of the background traffic scheduler 316 identi-
fies, detects or determines a tolerance for a background
request which can be used to determine the period of time for
which the background request is delayed. A background
request’s tolerance is the shorter of the longest period during
which an application that generated the background request
will not display an error message to a user of the mobile
device and the longest period beyond which the application
will stop retrying to establish a connection to the wireless
network. The background request tolerance detector 362 via
the background request behavior analyzer 368 can observe
patterns of background requests comprising the background
traffic which can be used to identity a tolerance for a back-
ground request. For example, the background request behav-
ior analyzer 368 can gradually increase the delay for each
type of background request and observe the application’s
behavior. Different applications or background request types
can exhibit different behavior in response to delay in receiv-
ing a response to a background request. One application may
time out and close the socket when a response to a given type
of background request is not received within a given time
(e.g., 15 seconds), while another may retry the same back-
ground request multiple times before finally timing out (e.g.,
retry the background request every 30 seconds, 45 seconds
and 1 minute and then time out when no response is received
after the fourth attempt). Yet another application may behave
erratically when aresponse is not received within a given time
that can impact the user experience with the application,
while other applications may not exhibit any behavior that
can disrupt or impact the user experience. For example, a
background request for a “log upload” from one mobile appli-
cation may tolerate a longer delay because the request type is
not time critical, while a background request for data/status
updates from the same application may have a shorter toler-
ance for delay. The background request behavior analyzer
368 can, based on observation of background traffic and/or
application behavior, identify a background request that has
no impact on functionality or user experience on the mobile
device. The background request tolerance detector 362 can
then utilize such information to set a predefined or default
tolerance for such background request with significantly
large tolerance.

Because different types of background requests and/or
applications can have different tolerances and can thus be
delayed for different periods of time, the background request
delay/undelay module 370 can use or instantiate different
timers (or counters via the delay timer manager 364) to delay
background requests of different types. For example, back-
ground data traffic associated with a log upload can be
delayed for 5 minutes (i.e., its tolerance detected by the tol-
erance detector 362) using a timer Timer, while a background
request for data update (e.g., score update for ESPN applica-
tion) can be delayed for 3 minutes (i.e., its tolerance detected
by the tolerance detector 362) using timer Timer,. Thus, in
one embodiment, each background request can be delayed for
the maximum period of time that it has tolerance for. Alter-
nately, in another embodiment, the background request delay/
undelay module 370 can identify and delay a first background
request and a subsequent or second background request using
the same counter/timer when the subsequent background
request is determined to have no impact on functionality or
user experience on the mobile device (e.g., via background
request behavior analyzer 368). For example, a first back-
ground request received at time T, having a tolerance of 120
seconds and a subsequent background request received at
time T,+40 seconds that is determined to have no impact on

US 9,271,237 B2

41

the functionality/user experience can both be delayed until
time T,+120 seconds using the same timer.

In one embodiment, a TCP session that includes a back-
ground request may also include a user-interactive request. In
this instance, the user-interactive request can be transmitted
to the wireless network without delay, while the background
request is delayed by the background request delay/undelay
module 370 for a period of time allowed by its tolerance. In
another embodiment, a TCP session that includes the back-
ground request may include another background request hav-
ing a longer or shorter tolerance than that of the background
request; and wherein each background request is delayed for
the maximum period of time allowed by the associated toler-
ance.

The device state detector 366 can detect a change in the
state of the mobile device. The change in the state (or device
state) of the mobile device can be triggered by any one of: a
screen of the mobile device turning on, a radio of the mobile
device turning on, the mobile device connecting to Wi-Fi, the
mobile device switching to a transparent mode or disabling of
the optimization of the background traffic. The delay timer
manager 364 can detect expiration of a delay timer tracking
the period of time that a background request is being delayed.
The background request delay/undelay module 370 can, in
response to the change in the state of the mobile device and/or
detection of the expiration of the period of time, undelay the
background request and schedule its transmission to the wire-
less network.

In one embodiment, a DNS module 249 of the caching
policy manager 245 depicted in FIG. 2A can cache a DNS
request associated with the background request to prevent the
DNS request from changing the state of the mobile device and
causing the mobile device to transmit the background request
to the wireless network before the end of the period of time.

In one embodiment, the background request can be a
repeatable background request, and such repeatable back-
ground request can also be detected or observed by the back-
ground request detector 360. The background request delay/
undelay module 370 can then delay the repeatable
background request for a period of time beyond the tolerance.
In one embodiment, the background request tolerance detec-
tor 362 can extend the tolerance of the application by modi-
fying system timers (e.g., application specific timers, proto-
col-specific timers such as HTTP timers, network stack
timers such as TCP stack timers), alarms or other means to
cause the application to execute slower, such that the back-
ground request is delayed for a period of time corresponding
to the extended tolerance.

In one embodiment, the keepalive optimization reporting
agent 318 of the keepalive optimizer 300 depicted in FIG. 3A
logs data relating to optimizations performed and state of the
device and/or application when the optimizations were per-
formed. For example, the keepalive optimization reporting
agent 318 can record each background transaction for the
FACEBOOK application that that occurred and the delay
state of the mobile device when the transaction occurred. The
delay state can, for example, indicate whether the transaction
entered a delay mode (i.e., was delayed for a period of time),
whether the screen was on, whether the radio was on, whether
the undelay trigger was expiration of the delay timer, whether
the optimization was enabled, and the like. Similarly, other
keepalive and background traffic transactions can be recorded
in a log and reported periodically to a host server (e.g., host
server 100 or application servers).

FIG. 4 depicts a block diagram illustrating an example of
server-side components, in certain embodiments of a distrib-
uted proxy and cache system residing on a host server 400 that

25

30

40

45

50

42

manages traffic in a wireless network (or broadband network)
for resource conservation, content caching, and/or traffic
management. In some embodiments, the server-side proxy
(or proxy server 125) can further categorize mobile traffic
and/or deploy and/or implement policies such as traffic man-
agement and delivery policies based on device state, applica-
tion behavior, content priority, user activity, and/or user
expectations.

The host server 400 generally includes, for example, a
network interface 408 and/or one or more repositories 412,
414, and 416. Note that server 400 may be any portable/
mobile or non-portable device, server, cluster of computers
and/or other types of processing units (e.g., any number of a
machine shown in the example of FIG. 1B) able to receive or
transmit signals to satisfy data requests over a network
including any wired or wireless networks (e.g., Wi-Fi, cellu-
lar, Bluetooth, etc.).

The network interface 408 can include networking
module(s) or devices(s) that enable the server 400 to mediate
data in a network with an entity that is external to the host
server 400, through any known and/or convenient communi-
cations protocol supported by the host and the external entity.
Specifically, the network interface 408 allows the server 400
to communicate with multiple devices including mobile
phone devices 450 and/or one or more application servers/
content providers 410.

The host server 400 can store information about connec-
tions (e.g., network characteristics, conditions, types of con-
nections, etc.) with devices in the connection metadata
repository 412. Additionally, any information about third-
party applications or content providers can also be stored in
the repository 412. The host server 400 can store information
about devices (e.g., hardware capability, properties, device
settings, device language, network capability, manufacturer,
device model, OS, OS version, etc.) in the device information
repository 414. Additionally, the host server 400 can store
information about network providers and the various network
service areas in the network service provider repository 416.

The communication enabled by network interface 408
allows for simultaneous connections (e.g., including cellular
connections) with devices 450 and/or connections (e.g.,
including wired/wireless, HTTP, Internet connections, LAN,
WiF1i, etc.) with content servers/providers 410 to manage the
traffic between devices 450 and content providers 410, for
optimizing network resource utilization and/or to conserver
power (battery) consumption on the serviced devices 450.
The host server 400 can communicate with mobile devices
450 serviced by different network service providers and/or in
the same/different network service areas. The host server 400
can operate and is compatible with devices 450 with varying
types or levels of mobile capabilities, including by way of
example but not limitation, 1G, 2G, 2G transitional (2.5G,
2.75G), 3G (IMT-2000), 3G transitional (3.5G, 3.75G, 3.9G),
5G (IMT-advanced), etc.

In general, the network interface 408 can include one or
more of a network adaptor card, a wireless network interface
card (e.g., SMS interface, WiFi interface, interfaces for vari-
ous generations of mobile communication standards includ-
ing but not limited to 1G, 2G, 3G, 3.5G, 5G type networks
such as LTE, WiIMAX, etc.), Bluetooth, WiFi, or any other
network whether or not connected via a router, an access
point, a wireless router, a switch, a multilayer switch, a pro-
tocol converter, a gateway, a bridge, a bridge router, a hub, a
digital media receiver, and/or a repeater.

The host server 400 can further include server-side com-
ponents of the distributed proxy and cache system which can
include a proxy server 125 and a server cache 435. In some

US 9,271,237 B2

43

embodiments, the proxy server 125 can include an HTTP
access engine 445, a caching policy manager 455, a proxy
controller 465, a traffic shaping engine 475, a new data detec-
tor 447 and/or a connection manager 495.

The HTTP access engine 445 may further include a heart-
beat manager 498; the proxy controller 465 may further
include a data invalidator module 468; the traffic shaping
engine 475 may further include a control protocol 476 and a
batching module 477. Additional or less components/mod-
ules/engines can be included in the proxy server 125 and each
illustrated component.

In the example of a device (e.g., mobile device 450) mak-
ing an application or content request to an application server
or content provider 410, the request may be intercepted and
routed to the proxy server 125 which is coupled to the device
450 and the application server/content provider 410. Specifi-
cally, the proxy server is able to communicate with the local
proxy (e.g., proxy 175 of the examples of FIG. 1C) of the
mobile device 450, the local proxy forwards the data request
to the proxy server 125 in some instances for further process-
ing and, if needed, for transmission to the application server/
content server 410 for a response to the data request.

In such a configuration, the host 400, or the proxy server
125 in the host server 400 can utilize intelligent information
provided by the local proxy in adjusting its communication
with the device in such a manner that optimizes use of net-
work and device resources. For example, the proxy server 125
can identify characteristics of user activity on the device 450
to modify its communication frequency. The characteristics
of user activity can be determined by, for example, the activ-
ity/behavior awareness module 466 in the proxy controller
465 via information collected by the local proxy on the device
450.

In some embodiments, communication frequency can be
controlled by the connection manager 495 of the proxy server
125, for example, to adjust push frequency of content or
updates to the device 450. For instance, push frequency canbe
decreased by the connection manager 495 when characteris-
tics of the user activity indicate that the user is inactive. In
some embodiments, when the characteristics of the user
activity indicate that the user is subsequently active after a
period of inactivity, the connection manager 495 can adjust
the communication frequency with the device 450 to send
data that was buffered as a result of decreased communication
frequency to the device 450.

In addition, the proxy server 125 includes priority aware-
ness of various requests, transactions, sessions, applications,
and/or specific events. Such awareness can be determined by
the local proxy on the device 450 and provided to the proxy
server 125. The priority awareness module 467 of the proxy
server 125 can generally assess the priority (e.g., including
time-criticality, time-sensitivity, etc.) of various events or
applications; additionally, the priority awareness module 467
can track priorities determined by local proxies of devices
450.

In some embodiments, through priority awareness, the
connection manager 495 can further modify communication
frequency (e.g., use or radio as controlled by the radio con-
troller 496, Internet/ Wi-Fi Controller 497) of the server 400
with the devices 450. For example, the server 400 can notify
the device 450, thus requesting use of the radio if it is not
already in use when data or updates of an importance/priority
level which meets a criteria becomes available to be sent.

In some embodiments, the proxy server 125 can detect
multiple occurrences of events (e.g., transactions, content,
data received from server/provider 410) and allow the events
to accumulate for batch transfer to device 450. Batch transfer

10

15

20

25

30

35

40

45

50

55

60

65

44

can be cumulated and transfer of events can be delayed based
on priority awareness and/or user activity/application behav-
ior awareness as tracked by modules 467 and/or 466. For
example, batch transfer of multiple events (of a lower prior-
ity) to the device 450 can be initiated by the batching module
477 when an event of a higher priority (meeting a threshold or
criteria) is detected at the server 400. In addition, batch trans-
fer from the server 400 can be triggered when the server
receives data from the device 450, indicating that the device
radio is already in use and is thus on. In some embodiments,
the proxy server 125 can order the each messages/packets in
a batch for transmission based on event/transaction priority
such that higher priority content can be sent first in case
connection is lost or the battery dies, etc.

In some embodiments, the server 400 caches data (e.g., as
managed by the caching policy manager 455) such that com-
munication frequency over a network (e.g., cellular network)
with the device 450 can be modified (e.g., decreased). The
data can be cached, for example, in the server cache 435 for
subsequent retrieval or batch sending to the device 450 to
potentially decrease the need to turn on the device 450 radio.
The server cache 435 can be partially or wholly internal to the
host server 400, although in the example of FIG. 4 it is shown
as being external to the host 400. In some instances, the server
cache 435 may be the same as and/or integrated in part or in
whole with another cache managed by another entity (e.g., the
optional caching proxy server 199 shown in the example of
FIG. 1C), such as being managed by an application server/
content provider 410, a network service provider, or another
third party.

In some embodiments, content caching is performed
locally on the device 450 with the assistance of host server
400. For example, proxy server 125 in the host server 400 can
query the application server/provider 410 with requests and
monitor changes in responses. When changed or new
responses are detected (e.g., by the new data detector 447),
the proxy server 125 can notify the mobile device 450 such
that the local proxy on the device 450 can make the decision
to invalidate (e.g., indicated as outdated) the relevant cache
entries stored as any responses in its local cache. Alterna-
tively, the data invalidator module 468 can automatically
instruct the local proxy of the device 450 to invalidate certain
cached data, based on received responses from the applica-
tion server/provider 410. The cached data is marked as
invalid, and can get replaced or deleted when new content is
received from the content server 410.

Note that data change can be detected by the detector 447
in one or more ways. For example, the server/provider 410
can notity the host server 400 upon a change. The change can
also be detected at the host server 400 in response to a direct
poll of the source server/provider 410. In some instances, the
proxy server 125 can, in addition, pre-load the local cache on
the device 450 with the new/updated data. This can be per-
formed when the host server 400 detects that the radio on the
mobile device is already in use, or when the server 400 has
additional content/data to be sent to the device 450.

One or more the above mechanisms can be implemented
simultaneously or adjusted/configured based on application
(e.g., different policies for different servers/providers 410). In
some instances, the source provider/server 410 may notify the
host 400 for certain types of events (e.g., events meeting a
priority threshold level). In addition, the provider/server 410
may be configured to notify the host 400 at specific time
intervals, regardless of event priority.

In some embodiments, the proxy server 125 of the host 400
can monitor/track responses received for the data request
from the content source for changed results prior to returning

US 9,271,237 B2

45

the result to the mobile device; such monitoring may be
suitable when data request to the content source has yielded
same results to be returned to the mobile device, thus prevent-
ing network/power consumption from being used when no
new changes are made to a particular requested. The local
proxy of the device 450 can instruct the proxy server 125 to
perform such monitoring or the proxy server 125 can auto-
matically initiate such a process upon receiving a certain
number of the same responses (e.g., or a number of the same
responses in a period of time) for a particular request.

In some embodiments, the server 400, through the activity/
behavior awareness module 466, is able to identify or detect
user activity at a device that is separate from the mobile
device 450. For example, the module 466 may detect that a
user’s message inbox (e.g., email or types of inbox) is being
accessed. This can indicate that the user is interacting with
his/her application using a device other than the mobile
device 450 and may not need frequent updates, if at all.

The server 400, in this instance, can thus decrease the
frequency with which new or updated content is sent to the
mobile device 450, or eliminate all communication for as
long as the user is detected to be using another device for
access. Such frequency decrease may be application specific
(e.g., for the application with which the user is interacting on
another device), or it may be a general frequency decrease
(e.g., since the user is detected to be interacting with one
server or one application via another device, he/she could also
use it to access other services) to the mobile device 450.

In some embodiments, the host server 400 is able to poll
content sources 410 on behalf of devices 450 to conserve
power or battery consumption on devices 450. For example,
certain applications on the mobile device 450 can poll its
respective server 410 in a predictable recurring fashion. Such
recurrence or other types of application behaviors can be
tracked by the activity/behavior module 466 in the proxy
controller 465. The host server 400 can thus poll content
sources 410 for applications on the mobile device 450 that
would otherwise be performed by the device 450 through a
wireless (e.g., including cellular connectivity). The host
server can poll the sources 410 for new or changed data by
way of the HTTP access engine 445 to establish HTTP con-
nection or by way of radio controller 496 to connect to the
source 410 over the cellular network. When new or changed
data is detected, the new data detector 447 can notify the
device 450 that such data is available and/or provide the
new/changed data to the device 450.

In some embodiments, the connection manager 495 deter-
mines that the mobile device 450 is unavailable (e.g., the
radio is turned off) and utilizes SMS to transmit content to the
device 450, for instance, via the SMSC 162 shown in the
example of FIG. 1C. SMS is used to transmit invalidation
messages, batches of invalidation messages, or even content
in the case where the content is small enough to fit into just a
few (usually one or two) SMS messages. This avoids the need
to access the radio channel to send overhead information. The
host server 400 can use SMS for certain transactions or
responses having a priority level above a threshold or other-
wise meeting a criteria. The server 400 can also utilize SMS
as an out-of-band trigger to maintain or wake-up an IP con-
nection as an alternative to maintaining an always-on IP con-
nection.

In some embodiments, the connection manager 495 in the
proxy server 125 (e.g., the heartbeat manager 498) can gen-
erate and/or transmit heartbeat messages on behalf of con-
nected devices 450 to maintain a backend connection with a
provider 410 for applications running on devices 450.

10

15

20

25

30

35

40

45

50

55

60

65

46

For example, in the distributed proxy system, local cache
on the device 450 can prevent any or all heartbeat messages
needed to maintain TCP/IP connections required for applica-
tions from being sent over the cellular, or other, network and
instead rely on the proxy server 125 on the host server 400 to
generate and/or send the heartbeat messages to maintain a
connection with the backend (e.g., application server/pro-
vider 110 in the example of FIG. 1B). The proxy server can
generate the keepalive (heartbeat) messages independent of
the operations of the local proxy on the mobile device.

The repositories 412, 414, and/or 416 can additionally
store software, descriptive data, images, system information,
drivers, and/or any other data item utilized by other compo-
nents of the host server 400 and/or any other servers for
operation. The repositories may be managed by a database
management system (DBMS), for example, which may be but
is not limited to Oracle, DB2, Microsoft Access, Microsoft
SQL Server, PostgreSQL, MySQL, FileMaker, etc.

The repositories can be implemented via object-oriented
technology and/or via text files and can be managed by a
distributed database management system, an object-oriented
database management system (OODBMS) (e.g., Concept-
Base, FastDB Main Memory Database Management System,
JDOlnstruments, ObjectDB, etc.), an object-relational data-
base management system (ORDBMS) (e.g., Informix, Open-
Link Virtuoso, VMDS, etc.), a file system, and/or any other
convenient or known database management package.

FIGS. 5-6 illustrate example logic flow diagrams for opti-
mizing keepalives by categorizing a keepalive as safe or
unsafe and transmitting an unsafe keepalive from a mobile
device to the network, while blocking a safe keepalive from
going out to the network.

Referring to the method 500 described in FIG. 5, the kee-
palive optimizer 300 detects a keepalive at block 505. One or
more determinations are made at decision blocks 510, 515
and 520 to categorize the keepalive as safe or unsafe. For
example, at decision block 510, if the keepalive optimizer
detects no other traffic at the same socket where the keepalive
is detected, the keepalive is categorized as safe at block 525,
otherwise the keepalive is categorized as unsafe at block 535.
Similarly, at decision block 515, if a transaction subsequent to
the keepalive transaction has the same or similar byte size,
then the keepalive optimizer 300 can categorize the keepalive
as safe at block 525, otherwise the keepalive is categorized as
unsafe at block 535. By way of another example, if the kee-
palive optimizer 300 detects user activity or non-keepalive
traffic in the TCP stream before the next keepalive, the kee-
palive is categorized as unsafe at block 535, because the user
activity or non-keepalive traffic is an indication that eliminat-
ing the keepalive may prevent the transmission of user-inter-
active traffic to the network. When the keepalive is catego-
rized as safe at block 525, the keepalive optimizer 300 at
block 530 blocks the safe keepalive by blocking the applica-
tion from which the keepalive originated or the application
port for a period of time. When the keepalive is categorized as
unsafe at block 535, the keepalive optimizer 300 can send the
unsafe keepalive to the network at block 540.

In one embodiment, after detecting the keepalive at block
505, the process flow continues to method 600 at block 615 in
FIG. 6 where the keepalive optimizer 300 predicts whether
the keepalive is safe or unsafe based on keepalive predictors
or factors that can be used to predict whether the keepalive is
safe or unsafe. In one embodiment, the keepalive optimizer
300 observes keepalive traffic for a period of time at block 605
and determines keepalive predictors and/or rules for predict-
ing or classifying a keepalive as safe or unsafe at block 610.
These predictors can include, for example, hours of the day,

US 9,271,237 B2

47

days of the week, keepalive interval, keepalive byte size,
on-screen activity, time between last on-screen activity and
current keepalive, and/or number of consecutive safe kee-
palives. At block 620, the keepalive optimizer 300 can block
the unsafe keepalive by blocking the application port or the
application itself for a duration of time.

In one embodiment, after the blocking event, the keepalive
optimizer 300 can observe the traffic to validate the prediction
(i.e., whether the prediction was successful or not) at block
625. For example, the keepalive optimizer 300 can observe
that atraffic pattern after establishing a socket after a blocking
event is different from the traffic pattern after establishing a
socket with no pending data to transfer, indicating that an
unsafe keepalive was missed which prevented the pending
data from being transferred to the network. At block 630, if
the prediction was successful, the prediction model is not
modified. However, if the prediction was not successful, the
prediction model is updated to update the determination of
keepalive predictors and/or rules for predicting a keepalive as
safe or unsafe at block 635.

FIG. 7 illustrates an example logic flow diagram for opti-
mizing keepalive traffic by advancing a keepalive from its
expected schedule. As illustrated in the example method 700,
the keepalive optimizer 300 determines, identifies or retrieves
a keepalive pull-in parameter for an application at block 705
based on which a keepalive is pulled in or advanced from its
expected schedule. At block 710, the keepalive optimizer 300
detects or determines that the application socket is idle for a
time longer than the pull-in period. After the application
socket has been idle for a time longer than the pull-in period,
the keepalive optimizer 300 detects the radio turn on at block
715. In response, the keepalive optimizer 300 triggers a new
keepalive at block 720. Triggering the new keepalive can
include synthesizing a new keepalive or terminating the con-
nection. Terminating the connection when the radio is on
allows the application to send a new keepalive piggybacking
on the radio that is already on. At block 725, the keepalive
optimizer 300 executes the keepalive by sending the kee-
palive to the network in advance of the expected schedule. In
some embodiments, the keepalive can be executed in
advance, i.e., it can occur after identifying a first keepalive
period or even before. For example, when the network closes
the socket after 2 minutes of inactivity while an application
performs keepalive every 3 minutes, the application socket
would keep closing the socket causing user experience issues
with the application. In this instance, by triggering a new
keepalive before the network closes the socket (e.g., after 110
seconds), the keepalive optimizer 300 can keep the long-lived
connection alive and improve the user experience.

FIG. 8 illustrates an example logic flow diagram for opti-
mizing keepalive traffic by delaying a keepalive beyond the
keepalive period. In the example method 800, the keepalive
optimizer 300 identifies keepalive parameters for an applica-
tion at block 805. Such parameters can include a first period
(X,) or pattern, a second period (X,) and/or a keepalive
interval. At block 810, the keepalive optimizer 300 deter-
mines or detects that a socket for the application has been idle
for atime longer than the first period. The keepalive optimizer
300 intercepts any keepalive transactions detected after the
end of the first period at block 815. When the keepalive
optimizer 300 detects the mobile device radio turn on at block
820 after the first period but before the second period from the
detection of a keepalive transaction elapses, the keepalive
optimizer 300 identifies and sends the latest keepalive trans-
action to the network at block 825. Alternately, if the second
period from the detection of a keepalive transaction elapses at
block 835 before the radio turns on, the keepalive optimizer

10

20

25

30

35

40

45

50

55

60

65

48

300 can identify and send the latest keepalive transaction to
the network. Thus, by using the method 700, a keepalive
interval of T, can be extended by up to X, to T,+X,.

FIGS. 9-11 illustrate example logic flow diagrams for opti-
mizing background traffic by delaying repeatable back-
ground requests.

The example method 900 of FIG. 9 shows the determina-
tion of application tolerance for a background request. At
block 905, the keepalive optimizer 300 observes patterns of
the background request. In one embodiment, the observation
is related to the behavior of the application(s) from where the
background request originates. From the observation, the
keepalive optimizer 300 determines the longest period during
which an application can wait for a response to a background
request without displaying an error message, impacting the
functionality of the application or the user experience at block
910. Atblock 915, the keepalive optimizer 300 determines the
longest period beyond which the application will stop retry-
ing to establish a connection to the wireless network. At block
920, the keepalive optimizer 300 determines or identifies the
shorter of the two periods from blocks 910 and 915 as the
tolerance for the background request at block 920. For
example, the keepalive optimizer 300 may observe that the
WEATHER mobile application waits for a period of 150 s to
receive a response to the “weather update” background
request from the WEATHER application server before dis-
playing an error message to the user and that the application
retries the request rapidly in intervals of 10 s, 60 s and 120 s
before stopping the retry attempts. In this example, the back-
ground request has a tolerance of 120 s.

Referring to the example method 1000 in FIG. 10, the
keepalive optimizer 300 collects data characterizing the
device state of the mobile device to determine if the device
state meets the delay criteria. In one embodiment, the kee-
palive optimizer 300 determines that the device state meets
the delay criteria at block 1035 if the mobile device is on the
mobile network (at decision block 1010), the mobile device is
not in transparent mode (at decision block 1015), the mobile
device has screen off (at decision block 1020), the mobile
device has radio off (at decision block 1025) and the optimi-
zation is enabled by the PMS (at decision block 1030). Alter-
nately, if the mobile device is not on the mobile network (at
decision block 1010), the mobile device is in transparent
mode (at decision block 1015), the mobile device has screen
on (at decision block 1020), the mobile device has radio on (at
decision block 1025) or the optimization is disabled by the
PMS (at decision block 1030), at block 1040, the keepalive
optimizer 300 determines that the device state does not meet
the delay criteria.

Referring to the example method 1100 of FIG. 11, the
keepalive optimizer 300 identifies a background request at
block 1105 determines whether the device state meets the
delay criteria at decision block 1106, Ifthe device state meets
the delay criteria, the keepalive optimizer 300 delays the
background request for a period of time that the background
request has tolerance for (e.g., based on information item B
from FIG. 9) at block 1110. Conversely, if the device state
fails to meet the delay criteria, the background request is not
delayed, and is instead allowed to go to the network at block
1107. At block 1115, the keepalive optimizer 300 detects an
undelay trigger. The undelay trigger can be a change in the
device state of the mobile device (or the device state meeting
the undelay criteria) or expiration of a period of time. For
example, if the mobile device switches from mobile network
to Wi-Fi, the mobile device switches to transparent mode, the
mobile device screen turns on, the mobile device radio turns
on, the optimization is disabled or turned off or a delay timer

US 9,271,237 B2

49

tracking the period of time ends, the undelay criteria is met
and the background request can be allowed to go to the
network. The keepalive optimizer 300 then transmits the
background request to the wireless network at block 1125.

FIG. 12 shows a diagrammatic representation of a machine
in the example form of a computer system within which a set
of instructions, for causing the machine to perform any one or
more of the methodologies discussed herein, may be
executed.

In the example of FIG. 12, the computer system 1200
includes a processor, memory, non-volatile memory, and an
interface device. Various common components (e.g., cache
memory) are omitted for illustrative simplicity. The computer
system 1200 is intended to illustrate a hardware device on
which any of the components depicted in the example of
FIGS. 2A-2C (and any other components described in this
specification) can be implemented. The computer system
1200 can be of any applicable known or convenient type. The
components of the computer system 1200 can be coupled
together via a bus or through some other known or convenient
device.

The processor may be, for example, a conventional micro-
processor such as an Intel Pentium microprocessor or
Motorola power PC microprocessor. One of skill in the rel-
evant art will recognize that the terms “machine-readable
(storage) medium” or “computer-readable (storage)
medium” include any type of device that is accessible by the
processor.

The memory is coupled to the processor by, for example, a
bus. The memory can include, by way of example but not
limitation, random access memory (RAM), such as dynamic
RAM (DRAM) and static RAM (SRAM). The memory can
be local, remote, or distributed.

The bus also couples the processor to the non-volatile
memory and drive unit. The non-volatile memory is often a
magnetic floppy or hard disk, a magnetic-optical disk, an
optical disk, a read-only memory (ROM), such as a CD-
ROM, EPROM, or EEPROM, a magnetic or optical card, or
another form of storage for large amounts of data. Some of
this data is often written, by a direct memory access process,
into memory during execution of software in the computer
1200. The non-volatile storage can be local, remote, or dis-
tributed. The non-volatile memory is optional because sys-
tems can be created with all applicable data available in
memory. A typical computer system will usually include at
least a processor, memory, and a device (e.g., a bus) coupling
the memory to the processor.

Software is typically stored in the non-volatile memory
and/or the drive unit. Indeed, for large programs, it may not
even be possible to store the entire program in the memory.
Nevertheless, it should be understood that for software to run,
if necessary, it is moved to a computer readable location
appropriate for processing, and for illustrative purposes, that
location is referred to as the memory in this paper. Even when
software is moved to the memory for execution, the processor
will typically make use of hardware registers to store values
associated with the software, and local cache that, ideally,
serves to speed up execution. As used herein, a software
program is assumed to be stored at any known or convenient
location (from non-volatile storage to hardware registers)
when the software program is referred to as “implemented in
a computer-readable medium.” A processor is considered to
be “configured to execute a program” when at least one value
associated with the program is stored in a register readable by
the processor.

The bus also couples the processor to the network interface
device. The interface can include one or more of a modem or

35

40

45

50

55

65

50

network interface. It will be appreciated that a modem or
network interface can be considered to be part of the com-
puter system. The interface can include an analog modem,
ISDN modem, cable modem, token ring interface, satellite
transmission interface (e.g. “direct PC”), or other interfaces
for coupling a computer system to other computer systems.
The interface can include one or more input and/or output
devices. The I/O devices can include, by way of example but
not limitation, a keyboard, a mouse or other pointing device,
disk drives, printers, a scanner, and other input and/or output
devices, including a display device. The display device can
include, by way of example but not limitation, a cathode ray
tube (CRT), liquid crystal display (LCD), or some other
applicable known or convenient display device. For simplic-
ity, it is assumed that controllers of any devices not depicted
in the example of FIG. 12 reside in the interface.

In operation, the computer system 1200 can be controlled
by operating system software that includes a file management
system, such as a disk operating system. One example of
operating system software with associated file management
system software is the family of operating systems known as
Windows® from Microsoft Corporation of Redmond, Wash.,
and their associated file management systems. Another
example of operating system software with its associated file
management system software is the Linux operating system
and its associated file management system. The file manage-
ment system is typically stored in the non-volatile memory
and/or drive unit and causes the processor to execute the
various acts required by the operating system to input and
output data and to store data in the memory, including storing
files on the non-volatile memory and/or drive unit.

Some portions of the detailed description may be presented
in terms of algorithms and symbolic representations of opera-
tions on data bits within a computer memory. These algorith-
mic descriptions and representations are the means used by
those skilled in the data processing arts to most effectively
convey the substance of their work to others skilled in the art.
An algorithm is here, and generally, conceived to be a self-
consistent sequence of operations leading to a desired result.
The operations are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing” or “computing” or “calculating” or “deter-
mining” or “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct more specialized apparatus to per-

US 9,271,237 B2

51

form the methods of some embodiments. The required struc-
ture for a variety of these systems will appear from the
description below. In addition, the techniques are not
described with reference to any particular programming lan-
guage, and various embodiments may thus be implemented
using a variety of programming languages.

In alternative embodiments, the machine operates as a
standalone device or may be connected (e.g., networked) to
other machines. In a networked deployment, the machine
may operate in the capacity of a server or a client machine in
a client-server network environment, or as a peer machine in
a peer-to-peer (or distributed) network environment.

The machine may be a server computer, a client computer,
a personal computer (PC), a tablet PC, a laptop computer, a
set-top box (STB), a personal digital assistant (PDA), a cel-
Iular telephone, an iPhone, a Blackberry, a processor, a tele-
phone, a web appliance, a network router, switch or bridge, or
any machine capable of executing a set of instructions (se-
quential or otherwise) that specify actions to be taken by that
machine.

While the machine-readable medium or machine-readable
storage medium is shown in an exemplary embodiment to be
a single medium, the term “machine-readable medium” and
“machine-readable storage medium” should be taken to
include a single medium or multiple media (e.g., a centralized
or distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“machine-readable medium” and “machine-readable storage
medium” shall also be taken to include any medium that is
capable of storing, encoding or carrying a set of instructions
for execution by the machine and that cause the machine to
perform any one or more of the methodologies of the pres-
ently disclosed technique and innovation.

In general, the routines executed to implement the embodi-
ments of the disclosure, may be implemented as part of an
operating system or a specific application, component, pro-
gram, object, module or sequence of instructions referred to
as “computer programs.” The computer programs typically
comprise one or more instructions set at various times in
various memory and storage devices in a computer, and that,
when read and executed by one or more processing units or
processors in a computer, cause the computer to perform
operations to execute elements involving the various aspects
of the disclosure.

Moreover, while embodiments have been described in the
context of fully functioning computers and computer sys-
tems, those skilled in the art will appreciate that the various
embodiments are capable of being distributed as a program
product in a variety of forms, and that the disclosure applies
equally regardless of the particular type of machine or com-
puter-readable media used to actually effect the distribution.

Further examples of machine-readable storage media,
machine-readable media, or computer-readable (storage)
media include but are not limited to recordable type media
such as volatile and non-volatile memory devices, floppy and
other removable disks, hard disk drives, optical disks (e.g.,
Compact Disk Read-Only Memory (CD ROMS), Digital Ver-
satile Disks, (DVDs), etc.), among others, and transmission
type media such as digital and analog communication links.

Unless the context clearly requires otherwise, throughout
the description and the claims, the words “comprise,” “com-
prising,” and the like are to be construed in an inclusive sense,
as opposed to an exclusive or exhaustive sense; that is to say,
in the sense of “including, but not limited to.” As used herein,
the terms “connected,” “coupled,” or any variant thereof,
means any connection or coupling, either direct or indirect,
between two or more elements; the coupling of connection

10

15

20

25

30

35

40

45

50

55

60

65

52

between the elements can be physical, logical, or a combina-
tion thereof. Additionally, the words “herein,” “above,”
“below,” and words of similar import, when used in this
application, shall refer to this application as a whole and not
to any particular portions of this application. Where the con-
text permits, words in the above Detailed Description using
the singular or plural number may also include the plural or
singular number respectively. The word “or” in reference to a
list of two or more items, covers all of the following interpre-
tations of the word: any of'the items in the list, all of the items
in the list, and any combination of the items in the list.

The above detailed description of embodiments of the dis-
closure is not intended to be exhaustive or to limit the teach-
ings to the precise form disclosed above. While specific
embodiments of, and examples for, the disclosure are
described above for illustrative purposes, various equivalent
modifications are possible within the scope of the disclosure,
as those skilled in the relevant art will recognize. For
example, while processes or blocks are presented in a given
order, alternative embodiments may perform routines having
steps, or employ systems having blocks, in a different order,
and some processes or blocks may be deleted, moved, added,
subdivided, combined, and/or modified to provide alternative
or subcombinations. Each of these processes or blocks may
be implemented in a variety of different ways. Also, while
processes or blocks are at times shown as being performed in
series, these processes or blocks may instead be performed in
parallel, or may be performed at different times. Further any
specific numbers noted herein are only examples: alternative
implementations may employ differing values or ranges.

The teachings of the disclosure provided herein can be
applied to other systems, not necessarily the system described
above. The elements and acts of the various embodiments
described above can be combined to provide further embodi-
ments.

Any patents and applications and other references noted
above, including any that may be listed in accompanying
filing papers, are incorporated herein by reference. Aspects of
the disclosure can be modified, if necessary, to employ the
systems, functions, and concepts of the various references
described above to provide yet further embodiments of the
disclosure.

These and other changes can be made to the disclosure in
light of the above Detailed Description. While the above
description describes certain embodiments of the disclosure,
and describes the best mode contemplated, no matter how
detailed the above appears in text, the teachings can be prac-
ticed in many ways. Details of the system may vary consid-
erably in its implementation details, while still being encom-
passed by the subject matter disclosed herein. As noted above,
particular terminology used when describing certain features
or aspects of the disclosure should not be taken to imply that
the terminology is being redefined herein to be restricted to
any specific characteristics, features, or aspects of the disclo-
sure with which that terminology is associated. In general, the
terms used in the following claims should not be construed to
limit the disclosure to the specific embodiments disclosed in
the specification, unless the above Detailed Description sec-
tion explicitly defines such terms. Accordingly, the actual
scope of the disclosure encompasses not only the disclosed
embodiments, but also all equivalent ways of practicing or
implementing the disclosure under the claims.

While certain aspects of the disclosure are presented below
in certain claim forms, the inventors contemplate the various
aspects of the disclosure in any number of claim forms. For
example, while only one aspect of the disclosure is recited as
a means-plus-function claim under 35 U.S.C. §112, 96, other

US 9,271,237 B2

53

aspects may likewise be embodied as a means-plus-function
claim, or in other forms, such as being embodied in a com-
puter-readable medium. (Any claims intended to be treated
under 35 U.S.C. §112, 6 will begin with the words “means
for”.) Accordingly, the applicant reserves the right to add
additional claims after filing the application to pursue such
additional claim forms for other aspects of the disclosure.

What is claimed is:

1. A method of optimizing network transaction traffic
originating at a mobile device, comprising:

identifying network transaction parameters corresponding

to an application;

utilizing the network transaction parameters to execute a

network transaction in advance of an expected schedule
or after a delay to optimize the network transaction
traffic,

wherein execution of the network transaction in advance of

the expected schedule is triggered in response to detect-
ing a radio state of the mobile device transitioning from
an idle state to a connected state after a socket for the
application has been idle for longer a pull in period.

2. The method of claim 1, wherein the network transaction
parameters utilized in executing the network transaction in
advance of the expected schedule includes the pull in period
and a network transaction period.

3. The method of claim 2, wherein the network transaction
that is executed in advance of the expected schedule is trig-
gered by terminating a connection for the application.

4. The method of claim 1, wherein the network transaction
parameters utilized in executing the network transaction after
adelay includes a first period or a pattern, a second period and
the network transaction period.

5. The method of claim 4, further comprising:

detecting the network transaction after a socket for the

application has been idle for longer than the first period,
wherein execution of the network transaction is trig-
gered when either one of a radio state of the mobile
device transitions from an idle state to a connected state
or a time corresponding to the second period from the
detection of the network transaction elapses.

6. The method of claim 1, wherein a local proxy on the
mobile device optimizes the network transaction traffic asso-
ciated with multiple applications by executing network trans-
actions from each of the multiple applications in advance of
an expected schedule or after a delay.

7. The method of claim 1, wherein the application opti-
mizes the network transaction traffic by executing a network
transaction in advance of an expected schedule or after a
delay.

8. A mobile device optimizing network transaction traffic,
comprising:

a radio and a processor;

the processor configured to identify network transaction

parameters corresponding to an application;

the processor further configured to utilize the network

transaction parameters to execute a network transaction
in advance of an expected schedule or after a delay to
optimize the network transaction traffic,

wherein execution of the network transaction in advance of

the expected schedule is triggered in response to detect-
ing a radio state of the mobile device transitioning from
an idle state to a connected state after a socket for the
application has been idle for longer than a pull in period.

9. The mobile device of claim 8, wherein the network
transaction parameters utilized in executing the network
transaction in advance of the expected schedule includes the
pull in period and the network transaction period.

10

25

40

45

54

10. The mobile device of claim 9, wherein the network
transaction that is executed in advance of the expected sched-
ule is triggered by terminating a connection for the applica-
tion.

11. The mobile device of claim 8, wherein the network
transaction parameters utilized in executing the network
transaction after a delay includes a first period or a pattern, a
second period and the network transaction period.

12. The mobile device of claim 11, wherein the processor is
further configured to:

detect the network transaction after a socket for the appli-

cation has been idle for longer than the first period,
wherein execution of the network transaction is trig-
gered when either one of the radio state of the mobile
device transitions from an idle state to a connected state
or a time corresponding to the second period from the
detection of the network transaction elapses.

13. The mobile device of claim 8, further comprising a
local proxy that optimizes the network transaction traffic
associated with multiple applications by executing network
transactions from each of the multiple applications in advance
of an expected schedule or after a delay.

14. The mobile device of claim 8, wherein the application
optimizes the network transaction traffic by executing a net-
work transaction in advance of an expected schedule or after
a delay.

15. A system for optimizing network transaction traffic
originating at a mobile device, comprising:

means for identifying network transaction parameters cor-

responding to an application; and

means for utilizing the network transaction parameters to

execute a network transaction in advance of an expected
schedule or after a delay to optimize the network trans-
action traffic,

wherein execution of the network transaction in advance of

the expected schedule is triggered in response to detect-
ing a radio state of the mobile device transitioning from
an idle state to a connected state after a socket for the
application has been idle for longer than a pull in period.

16. The system of claim 15, wherein the network transac-
tion parameters utilized in executing the network transaction
in advance of the expected schedule includes the pull in
period and the network transaction period.

17. The system of claim 16, wherein the network transac-
tion that is executed in advance of the expected schedule is
triggered by terminating a connection for the application or
generation of a synthetic network transaction.

18. The system of claim 16, wherein the network transac-
tion parameters utilized in executing the network transaction
after a delay includes a first period or a pattern, a second
period and the network transaction period.

19. The system of claim 18, further comprising:

means for detecting the network transaction after a socket

for the application has been idle for longer than the first
period, wherein execution of the network transaction is
triggered when either one of a radio state of the mobile
device transitions from an idle state to a connected state
or a time corresponding to the second period from the
detection of the network transaction elapses.

20. The system of claim 16, further comprising a means for
optimizing the network transaction traffic associated with
multiple applications by executing network transactions from
each of the multiple applications in advance of an expected
schedule or after a delay.

21. A non-transitory computer-readable storage medium
storing instructions that when executed by a processor, causes
the processor to:

US 9,271,237 B2

55

identify network transaction parameters corresponding to
an application;
utilize the network transaction parameters to execute a
network transaction in advance of an expected schedule
or after a delay to optimize the network transaction
traffic,
wherein execution of the network transaction in advance of
the expected schedule is triggered in response to detect-
ing a radio state of the mobile device transitioning from
an idle state to a connected state after a socket for the
application has been idle for longer than a pull in period.
22. The non-transitory computer-readable storage medium
of claim 21, wherein the network transaction parameters uti-
lized in executing the network transaction in advance of the
expected schedule includes the pull in period and a network
transaction period.
23. The non-transitory computer-readable storage medium
of claim 22, wherein the network transaction that is executed

56

in advance of the expected schedule is triggered by terminat-
ing a connection for the application.

24. The non-transitory computer-readable storage medium
of claim 22, wherein the network transaction parameters uti-
lized in executing the network transaction after a delay
includes a first period or a pattern, a second period and the
network transaction period.

25. The non-transitory computer-readable storage medium
of claim 24, further comprising:

detecting the network transaction after a socket for the

application has been idle for longer than the first period,
wherein execution of the network transaction is trig-
gered when either one of a radio state of the mobile
device transitions from an idle state to a connected state
or a time corresponding to the second period from the
detection of the network transaction elapses.

#* #* #* #* #*

