a2 United States Patent

Scarlata et al.

US009407636B2

US 9,407,636 B2
Aug. 2, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

METHOD AND APPARATUS FOR SECURELY
SAVING AND RESTORING THE STATE OF A

COMPUTING PLATFORM

Applicant: INTEL CORPORATION, Santa Clara,
CA (US)

Inventors: Vincent Scarlata, Beaverton, OR (US);
Simon Johnson, Beaverton, OR (US);
Carlos Rozas, Portland, OR (US);
Francis McKeen, Portland, OR (US);
Ittai Anati, Haifa (IL); Ilya
Alexandrovich, Haifa (IL); Rebekah
Leslie-Hurd, Portland, OR (US)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/281,651

Filed: May 19, 2014

Prior Publication Data

US 2015/0334114 Al Nov. 19, 2015

Int. CL.

GO6F 21/64 (2013.01)

HO4L 29/06 (2006.01)

GO6F 21/74 (2013.01)

U.S. CL

CPC ........... HO04L 63/0876 (2013.01); GO6F 21/64

(2013.01); GOGF 21/74 (2013.01); HO4L
63/061 (2013.01)
Field of Classification Search
None
See application file for complete search history.

300

315
-——17

(56) References Cited
U.S. PATENT DOCUMENTS

7,165,135 B1* 1/2007 Christie et al. ................ 710/269

8,832,452 B2 9/2014 Johnson et al.

8,972,746 B2 3/2015 Johnson et al.

9,059,855 B2 6/2015 Johnson et al.

9,087,200 B2 7/2015 Mckeen et al.

9,189,411 B2  11/2015 Mckeen et al.

9,276,750 B2 3/2016 Scarlata et al.
2006/0198515 Al* 9/2006 Forehand et al. ............... 380/28
2006/0271796 Al* 112006 Kaimaletal. ...... .. 713/194
2007/0162955 Al* 72007 Zimmeretal. ... 726/2
2007/0226786 Al* 9/2007 Bergeretal. ............... 726/9
2008/0320263 Al* 12/2008 Nemiroff et al. .o 711164
2011/0099392 Al* 4/2011 Conway .......... ... 713/300
2011/0151836 Al* 6/2011 Daduetal. ...... .. 455/411
2014/0082724 Al* 3/2014 Pearsonetal. ................. 726/22
2014/0298061 Al* 10/2014 Volvovskietal. ........... 713/323

* cited by examiner

Primary Examiner — Benjamin Lanier
(74) Attorney, Agent, or Firm — Nicholson De Vos Webster
& Elliott LLP

(57) ABSTRACT

An apparatus and method for securely suspending and resum-
ing the state of a processor. For example, one embodiment of
a method comprises: generating a data structure including at
least the monotonic counter value; generating a message
authentication code (MAC) over the data structure using a
first key; securely providing the data structure and the MAC
to a module executed on the processor; the module verifying
the MAC, comparing the monotonic counter value with a
counter value stored during a previous suspend operation and,
if the counter values match, then loading processor state
required for the resume operation to complete. Another
embodiment of a method comprises: generating a first key by
aprocessor; securely sharing the first key with an off-proces-
sor component; and using the first key to generate a pairing ID
usable to identify a pairing between the processor and the
off-processor component.

17 Claims, 14 Drawing Sheets
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START

SECURITY MODULE GENERATES COUNTER MAC KEY
1001

v

SECURITY MODULE CAUSES PROCESSOR TO SEAL COPY
OF MAC KEY AND STORE IN SECURE STORAGE
1002

v

SECURITY MODULE USES CRYPTOGRAPHIC AUTHENTICATION PROTOCOL TO
ESTABLISH SECURE CHANNEL WITH OFF-PROCESSOR COMPONENT (OPC)
1003

v

SECURITY MODULE SENDS COUNTER MAC KEY
TO OPC OVER SECURE CHANNEL
1004

v

OPC ENCRYPTS ITS COPY OF COUNTER MAC KEY
1005

v

STORE BOTH THE OPC-ENCRYPTED AND PROCESSOR-SEALED
COPIES OF MAC KEY IN NON-VOLATILE STORAGE FOR FUTURE BOOTS
1006

END

FIG. 10
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1
METHOD AND APPARATUS FOR SECURELY
SAVING AND RESTORING THE STATE OF A
COMPUTING PLATFORM

BACKGROUND

1. Field of the Invention

This invention relates generally to the field of computer
processors. More particularly, the invention relates to an
apparatus and method for securely saving and restoring the
state of a computing platform.

2. Description of the Related Art

Many modern processors do not have persistent storage on
the processor in which to store state data that must be kept up
to date and not reused. This is particularly relevant for secu-
rity technologies such as Software Guard Extensions (SGX)
where internal keys and configuration data need to be stored
outside of the processor when suspending and resuming the
platform for power savings.

One prior solution to this problem requires a hardware
interface from the processor directly to trusted storage, which
is solely owned by the processor. Securing this channel
requires a key exchange in a trusted manufacturing facility
protected from malicious observation of the key. This
requires special hardware not typically found in a personal
computing device. In addition, with increases in out-sourced
off-shore manufacturing, gaining this trust is very difficult, if
not impossible. In addition, flash storage may be added to the
processor itself to ensure the security of the data stored during
suspend operations, again resulting in significant additional
manufacturing expense.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained from the following detailed description in conjunc-
tion with the following drawings, in which:

FIG. 1A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention;

FIG. 1B is a block diagram illustrating both an exemplary
embodiment of an in-order architecture core and an exem-
plary register renaming, out-of-order issue/execution archi-
tecture core to be included in a processor according to
embodiments of the invention;

FIG. 2 is a block diagram of a single core processor and a
multicore processor with integrated memory controller and
graphics according to embodiments of the invention;

FIG. 3 illustrates a block diagram of a system in accor-
dance with one embodiment of the present invention;

FIG. 4 illustrates a block diagram of a second system in
accordance with an embodiment of the present invention;

FIG. 5 illustrates a block diagram of a third system in
accordance with an embodiment of the present invention;

FIG. 6 illustrates a block diagram of a system on a chip
(SoC) in accordance with an embodiment of the present
invention;

FIG. 7 illustrates a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention;

FIG. 8 illustrates one embodiment of the invention for
pairing a processor with one or more other computing com-
ponents;

FIG. 9 illustrates one embodiment in which a pairing data
is collected and stored within a database;
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2

FIG. 10 illustrates a one embodiment of a method for
generating a message authentication code (MAC) key;

FIG. 11 illustrates one embodiment of a method for gen-
erating pairing data;

FIG. 12 illustrates techniques for securely restoring a pro-
cessor state using a counter value;

FIG. 13 illustrates techniques for securely suspending a
processor state using a counter value; and

FIG. 14 illustrates how a pairing ID may be injected into
existing keys in accordance with one embodiment of the
invention.

DETAILED DESCRIPTION

In the following description, for the purposes of explana-
tion, numerous specific details are set forth in order to provide
a thorough understanding of the embodiments of the inven-
tion described below. It will be apparent, however, to one
skilled in the art that the embodiments of the invention may be
practiced without some of these specific details. In other
instances, well-known structures and devices are shown in
block diagram form to avoid obscuring the underlying prin-
ciples of the embodiments of the invention.

Exemplary Processor Architectures and Data Types

FIG. 1A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention. FIG. 1B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and
an exemplary register renaming, out-of-order issue/execution
architecture core to be included in a processor according to
embodiments of the invention. The solid lined boxes in FIGS.
1A-B illustrate the in-order pipeline and in-order core, while
the optional addition of the dashed lined boxes illustrates the
register renaming, out-of-order issue/execution pipeline and
core. Given that the in-order aspect is a subset of the out-of-
order aspect, the out-of-order aspect will be described.

In FIG. 1A, a processor pipeline 100 includes a fetch stage
102, a length decode stage 104, a decode stage 106, an allo-
cation stage 108, a renaming stage 110, a scheduling (also
known as a dispatch or issue) stage 112, a register read/
memory read stage 114, an execute stage 116, a write back/
memory write stage 118, an exception handling stage 122,
and a commit stage 124.

FIG. 1B shows processor core 190 including a front end
unit 130 coupled to an execution engine unit 150, and both are
coupled to amemory unit 170. The core 190 may be a reduced
instruction set computing (RISC) core, a complex instruction
set computing (CISC) core, a very long instruction word
(VLIW) core, or a hybrid or alternative core type. As yet
another option, the core 190 may be a special-purpose core,
such as, for example, a network or communication core,
compression engine, coprocessor core, general purpose com-
puting graphics processing unit (GPGPU) core, graphics
core, or the like.

The front end unit 130 includes a branch prediction unit
132 coupled to an instruction cache unit 134, which is
coupled to an instruction translation lookaside buffer (TLB)
136, which is coupled to an instruction fetch unit 138, which
is coupled to a decode unit 140. The decode unit 140 (or
decoder) may decode instructions, and generate as an output
one or more micro-operations, micro-code entry points,
microinstructions, other instructions, or other control signals,
which are decoded from, or which otherwise reflect, or are
derived from, the original instructions. The decode unit 140
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may be implemented using various different mechanisms.
Examples of suitable mechanisms include, but are not limited
to, look-up tables, hardware implementations, programmable
logic arrays (PL.As), microcode read only memories (ROMs),
etc. In one embodiment, the core 190 includes a microcode
ROM or other medium that stores microcode for certain mac-
roinstructions (e.g., in decode unit 140 or otherwise within
the front end unit 130). The decode unit 140 is coupled to a
rename/allocator unit 152 in the execution engine unit 150.

The execution engine unit 150 includes the rename/alloca-
tor unit 152 coupled to a retirement unit 154 and a set of one
or more scheduler unit(s) 156. The scheduler unit(s) 156
represents any number of different schedulers, including res-
ervations stations, central instruction window, etc. The sched-
uler unit(s) 156 is coupled to the physical register file(s)
unit(s) 158. Each of the physical register file(s) units 158
represents one or more physical register files, different ones
of'which store one or more different data types, such as scalar
integer, scalar floating point, packed integer, packed floating
point, vector integer, vector floating point, status (e.g., an
instruction pointer that is the address of the next instruction to
be executed), etc. In one embodiment, the physical register
file(s) unit 158 comprises a vector registers unit, a write mask
registers unit, and a scalar registers unit. These register units
may provide architectural vector registers, vector mask reg-
isters, and general purpose registers. The physical register
file(s) unit(s) 158 is overlapped by the retirement unit 154 to
illustrate various ways in which register renaming and out-
of-order execution may be implemented (e.g., using a reorder
buffer(s) and a retirement register file(s); using a future file(s),
a history buffer(s), and a retirement register file(s); using a
register maps and a pool of registers; etc.). The retirement unit
154 and the physical register file(s) unit(s) 158 are coupled to
the execution cluster(s) 160. The execution cluster(s) 160
includes a set of one or more execution units 162 and a set of
one or more memory access units 164. The execution units
162 may perform various operations (e.g., shifts, addition,
subtraction, multiplication) and on various types of data (e.g.,
scalar floating point, packed integer, packed floating point,
vector integer, vector floating point). While some embodi-
ments may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments
may include only one execution unit or multiple execution
units that all perform all functions. The scheduler unit(s) 156,
physical register file(s) unit(s) 158, and execution cluster(s)
160 are shown as being possibly plural because certain
embodiments create separate pipelines for certain types of
data/operations (e.g., a scalar integer pipeline, a scalar float-
ing point/packed integer/packed floating point/vector integer/
vector floating point pipeline, and/or a memory access pipe-
line that each have their own scheduler unit, physical register
file(s) unit, and/or execution cluster—and in the case of a
separate memory access pipeline, certain embodiments are
implemented in which only the execution cluster of this pipe-
line has the memory access unit(s) 164). It should also be
understood that where separate pipelines are used, one or
more of these pipelines may be out-of-order issue/execution
and the rest in-order.

The set of memory access units 164 is coupled to the
memory unit 170, which includes a data TLB unit 172
coupled to a data cache unit 174 coupled to a level 2 (L2)
cache unit 176. In one exemplary embodiment, the memory
access units 164 may include a load unit, a store address unit,
and a store data unit, each of which is coupled to the data TL.B
unit 172 in the memory unit 170. The instruction cache unit
134 is further coupled to a level 2 (L.2) cache unit 176 in the
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memory unit 170. The L2 cache unit 176 is coupled to one or
more other levels of cache and eventually to a main memory.

By way of example, the exemplary register renaming, out-
of-order issue/execution core architecture may implement the
pipeline 100 as follows: 1) the instruction fetch 138 performs
the fetch and length decoding stages 102 and 104; 2) the
decode unit 140 performs the decode stage 106; 3) the
rename/allocator unit 152 performs the allocation stage 108
and renaming stage 110; 4) the scheduler unit(s) 156 per-
forms the schedule stage 112; 5) the physical register file(s)
unit(s) 158 and the memory unit 170 perform the register
read/memory read stage 114; the execution cluster 160 per-
form the execute stage 116; 6) the memory unit 170 and the
physical register file(s) unit(s) 158 perform the write back/
memory write stage 118; 7) various units may be involved in
the exception handling stage 122; and 8) the retirement unit
154 and the physical register file(s) unit(s) 158 perform the
commit stage 124.

The core 190 may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif.; the ARM instruc-
tion set (with optional additional extensions such as NEON)
of ARM Holdings of Sunnyvale, Calif.), including the
instruction(s) described herein. In one embodiment, the core
190 includes logic to support a packed data instruction set
extension (e.g., AVX1, AVX2, and/or some form of the
generic vector friendly instruction format (U=0 and/or U=1),
described below), thereby allowing the operations used by
many multimedia applications to be performed using packed
data.

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
orthreads), and may do so in a variety of ways including time
sliced multithreading, simultaneous multithreading (where a
single physical core provides a logical core for each of the
threads that physical core is simultaneously multithreading),
or a combination thereof (e.g., time sliced fetching and
decoding and simultaneous multithreading thereafter such as
in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes sepa-
rate instruction and data cache units 134/174 and a shared L2
cache unit 176, alternative embodiments may have a single
internal cache for both instructions and data, such as, for
example, a Level 1 (L1) internal cache, or multiple levels of
internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor. Alter-
natively, all of the cache may be external to the core and/or the
processor.

FIG. 2 is a block diagram of a processor 200 that may have
more than one core, may have an integrated memory control-
ler, and may have integrated graphics according to embodi-
ments of the invention. The solid lined boxes in FIG. 2 illus-
trate a processor 200 with a single core 202A, a system agent
210, a set of one or more bus controller units 216, while the
optional addition of the dashed lined boxes illustrates an
alternative processor 200 with multiple cores 202A-N, asetof
one or more integrated memory controller unit(s) 214 in the
system agent unit 210, and special purpose logic 208.

Thus, different implementations of the processor 200 may
include: 1) a CPU with the special purpose logic 208 being
integrated graphics and/or scientific (throughput) logic
(which may include one or more cores), and the cores
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202A-N being one or more general purpose cores (e.g., gen-
eral purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 202A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (through-
put); and 3) a coprocessor with the cores 202A-N being a
large number of general purpose in-order cores. Thus, the
processor 200 may be a general-purpose processor, coproces-
sor or special-purpose processor, such as, for example, a
network or communication processor, compression engine,
graphics processor, GPGPU (general purpose graphics pro-
cessing unit), a high-throughput many integrated core (MIC)
coprocessor (including 30 or more cores), embedded proces-
sor, or the like. The processor may be implemented on one or
more chips. The processor 200 may be a part of and/or may be
implemented on one or more substrates using any of'a number
of process technologies, such as, for example, BICMOS,
CMOS, or NMOS.

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache units
206, and external memory (not shown) coupled to the set of
integrated memory controller units 214. The set of shared
cache units 206 may include one or more mid-level caches,
such as level 2 (1.2), level 3 (L3), level 4 (1.4), or other levels
of cache, a last level cache (LLC), and/or combinations
thereof. While in one embodiment a ring based interconnect
unit 212 interconnects the integrated graphics logic 208, the
set of shared cache units 206, and the system agent unit
210/integrated memory controller unit(s) 214, alternative
embodiments may use any number of well-known techniques
for interconnecting such units. In one embodiment, coher-
ency is maintained between one or more cache units 206 and
cores 202-A-N.

In some embodiments, one or more of the cores 202A-N
are capable of multi-threading. The system agent 210
includes those components coordinating and operating cores
202A-N. The system agent unit 210 may include for example
a power control unit (PCU) and a display unit. The PCU may
be or include logic and components needed for regulating the
power state of the cores 202A-N and the integrated graphics
logic 208. The display unit is for driving one or more exter-
nally connected displays.

The cores 202A-N may be homogenous or heterogeneous
in terms of architecture instruction set; that is, two or more of
the cores 202A-N may be capable of execution the same
instruction set, while others may be capable of executing only
a subset of that instruction set or a different instruction set. In
one embodiment, the cores 202A-N are heterogeneous and
include both the “small” cores and “big” cores described
below.

FIGS. 3-6 are block diagrams of exemplary computer
architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs, per-
sonal digital assistants, engineering workstations, servers,
network devices, network hubs, switches, embedded proces-
sors, digital signal processors (DSPs), graphics devices,
video game devices, set-top boxes, micro controllers, cell
phones, portable media players, hand held devices, and vari-
ous other electronic devices, are also suitable. In general, a
huge variety of systems or electronic devices capable of
incorporating a processor and/or other execution logic as
disclosed herein are generally suitable.

Referring now to FIG. 3, shown is a block diagram of a
system 300 in accordance with one embodiment of the
present invention. The system 300 may include one or more
processors 310, 315, which are coupled to a controller hub
320. In one embodiment the controller hub 320 includes a
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graphics memory controller hub (GMCH) 390 and an Input/
Output Hub (IOH) 350 (which may be on separate chips); the
GMCH 390 includes memory and graphics controllers to
which are coupled memory 340 and a coprocessor 345; the
IOH 350 is couples input/output (I/O) devices 360 to the
GMCH 390. Alternatively, one or both of the memory and
graphics controllers are integrated within the processor (as
described herein), the memory 340 and the coprocessor 345
are coupled directly to the processor 310, and the controller
hub 320 in a single chip with the IOH 350.

The optional nature of additional processors 315 is denoted
in FIG. 3 with broken lines. Each processor 310, 315 may
include one or more of the processing cores described herein
and may be some version of the processor 200.

The memory 340 may be, for example, dynamic random
access memory (DRAM), phase change memory (PCM), or a
combination of the two. For at least one embodiment, the
controller hub 320 communicates with the processor(s) 310,
315 via a multi-drop bus, such as a frontside bus (FSB),
point-to-point interface such as QuickPath Interconnect
(QPI), or similar connection 395.

In one embodiment, the coprocessor 345 is a special-pur-
pose processor, such as, for example, a high-throughput MIC
processor, a network or communication processor, compres-
sion engine, graphics processor, GPGPU, embedded proces-
sor, or the like. In one embodiment, controller hub 320 may
include an integrated graphics accelerator.

There can be a variety of differences between the physical
resources 310, 315 in terms of a spectrum of metrics of merit
including architectural, microarchitectural, thermal, power
consumption characteristics, and the like.

In one embodiment, the processor 310 executes instruc-
tions that control data processing operations of a general type.
Embedded within the instructions may be coprocessor
instructions. The processor 310 recognizes these coprocessor
instructions as being of a type that should be executed by the
attached coprocessor 345. Accordingly, the processor 310
issues these coprocessor instructions (or control signals rep-
resenting coprocessor instructions) on a coprocessor bus or
other interconnect, to coprocessor 345. Coprocessor(s) 345
accept and execute the received coprocessor instructions.

Referring now to FIG. 4, shown is a block diagram of a first
more specific exemplary system 400 in accordance with an
embodiment of the present invention. As shown in FIG. 4,
multiprocessor system 400 is a point-to-point interconnect
system, and includes a first processor 470 and a second pro-
cessor 480 coupled via a point-to-point interconnect 450.
Each of processors 470 and 480 may be some version of the
processor 200. In one embodiment of the invention, proces-
sors 470 and 480 are respectively processors 310 and 315,
while coprocessor 438 is coprocessor 345. In another
embodiment, processors 470 and 480 are respectively proces-
sor 310 coprocessor 345.

Processors 470 and 480 are shown including integrated
memory controller (IMC) units 472 and 482, respectively.
Processor 470 also includes as part of its bus controller units
point-to-point (P-P) interfaces 476 and 478; similarly, second
processor 480 includes P-P interfaces 486 and 488. Proces-
sors 470, 480 may exchange information via a point-to-point
(P-P) interface 450 using P-P interface circuits 478, 488. As
shown in FIG. 4, IMCs 472 and 482 couple the processors to
respective memories, namely a memory 432 and a memory
434, which may be portions of main memory locally attached
to the respective processors.

Processors 470, 480 may each exchange information with
a chipset 490 via individual P-P interfaces 452, 454 using
point to point interface circuits 476, 494, 486, 498. Chipset
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490 may optionally exchange information with the coproces-
sor 438 via a high-performance interface 439. In one embodi-
ment, the coprocessor 438 is a special-purpose processor,
such as, for example, a high-throughput MIC processor, a
network or communication processor, compression engine,
graphics processor, GPGPU, embedded processor, or the like.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 490 may be coupled to a first bus 416 via an
interface 496. In one embodiment, first bus 416 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present invention is not
so limited.

As shown in FIG. 4, various 1/O devices 414 may be
coupled to first bus 416, along with a bus bridge 418 which
couples first bus 416 to a second bus 420. In one embodiment,
one or more additional processor(s) 415, such as coproces-
sors, high-throughput MIC processors, GPGPU’s, accelera-
tors (such as, e.g., graphics accelerators or digital signal pro-
cessing (DSP) units), field programmable gate arrays, or any
other processor, are coupled to first bus 416. In one embodi-
ment, second bus 420 may be a low pin count (LPC) bus.
Various devices may be coupled to a second bus 420 includ-
ing, for example, a keyboard and/or mouse 422, communica-
tion devices 427 and a storage unit 428 such as a disk drive or
other mass storage device which may include instructions/
code and data 430, in one embodiment. Further, an audio I/O
424 may be coupled to the second bus 420. Note that other
architectures are possible. For example, instead of the point-
to-point architecture of FIG. 4, a system may implement a
multi-drop bus or other such architecture.

Referring now to FIG. 5, shown is a block diagram of a
second more specific exemplary system 500 in accordance
with an embodiment of the present invention. Like elements
in FIGS. 4 and 5 bear like reference numerals, and certain
aspects of FIG. 4 have been omitted from FIG. 5 in order to
avoid obscuring other aspects of FIG. 5.

FIG. 5 illustrates that the processors 470, 480 may include
integrated memory and I/O control logic (“CL”") 472 and 482,
respectively. Thus, the CL 472, 482 include integrated
memory controller units and include I/O control logic. FIG. 5
illustrates that not only are the memories 432, 434 coupled to
the CL 472,482, but also that I/O devices 514 are also coupled
to the control logic 472, 482. Legacy 1/O devices 515 are
coupled to the chipset 490.

Referring now to FIG. 6, shown is a block diagram ofa SoC
600 in accordance with an embodiment of the present inven-
tion. Similar elements in FIG. 2 bear like reference numerals.
Also, dashed lined boxes are optional features on more
advanced SoCs. In FIG. 6, an interconnect unit(s) 602 is
coupled to: an application processor 610 which includes a set
of'one or more cores 202A-N and shared cache unit(s) 206; a
system agent unit 210; a bus controller unit(s) 216; an inte-
grated memory controller unit(s) 214; a set or one or more
coprocessors 620 which may include integrated graphics
logic, an image processor, an audio processor, and a video
processor; an static random access memory (SRAM) unit
630; a direct memory access (DMA) unit 632; and a display
unit 640 for coupling to one or more external displays. In one
embodiment, the coprocessor(s) 620 include a special-pur-
pose processor, such as, for example, a network or commu-
nication processor, compression engine, GPGPU, a high-
throughput MIC processor, embedded processor, or the like.
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Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combina-
tion of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or pro-
gram code executing on programmable systems comprising
at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least
one input device, and at least one output device.

Program code, such as code 430 illustrated in FIG. 4, may
be applied to input instructions to perform the functions
described herein and generate output information. The output
information may be applied to one or more output devices, in
known fashion. For purposes of this application, a processing
system includes any system that has a processor, such as, for
example; a digital signal processor (DSP), a microcontroller,
an application specific integrated circuit (ASIC), or a micro-
processor.

The program code may be implemented in a high level
procedural or object oriented programming language to com-
municate with a processing system. The program code may
also be implemented in assembly or machine language, if
desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the logic
O Processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type of
disk including floppy disks, optical disks, compact disk read-
only memories (CD-ROMs), compact disk rewritable’s (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), phase change memory (PCM), mag-
netic or optical cards, or any other type of media suitable for
storing electronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, cir-
cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a target
instruction set. For example, the instruction converter may
translate (e.g., using static binary translation, dynamic binary
translation including dynamic compilation), morph, emulate,
or otherwise convert an instruction to one or more other
instructions to be processed by the core. The instruction con-
verter may be implemented in software, hardware, firmware,
ora combination thereof. The instruction converter may be on
processor, off processor, or part on and part off processor.
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FIG. 7 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention. In the illustrated
embodiment, the instruction converter is a software instruc-
tion converter, although alternatively the instruction con-
verter may be implemented in software, firmware, hardware,
or various combinations thereof. FIG. 7 shows a program in a
high level language 702 may be compiled using an x86 com-
piler 704 to generate x86 binary code 706 that may be natively
executed by a processor with at least one x86 instruction set
core 716. The processor with at least one x86 instruction set
core 716 represents any processor that can perform substan-
tially the same functions as an Intel processor with at least one
x86 instruction set core by compatibly executing or otherwise
processing (1) a substantial portion of the instruction set of
the Intel x86 instruction set core or (2) object code versions of
applications or other software targeted to run on an Intel
processor with at least one x86 instruction set core, in order to
achieve substantially the same result as an Intel processor
with at least one x86 instruction set core. The x86 compiler
704 represents a compiler that is operable to generate x86
binary code 706 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor
with at least one x86 instruction set core 716. Similarly, FI1G.
7 shows the program in the high level language 702 may be
compiled using an alternative instruction set compiler 708 to
generate alternative instruction set binary code 710 that may
be natively executed by a processor without at least one x86
instruction set core 714 (e.g., a processor with cores that
execute the MIPS instruction set of MIPS Technologies of
Sunnyvale, Calif. and/or that execute the ARM instruction set
of ARM Holdings of Sunnyvale, Calif.). The instruction con-
verter 712 is used to convert the x86 binary code 706 into code
that may be natively executed by the processor without an x86
instruction set core 714. This converted code is not likely to be
the same as the alternative instruction set binary code 710
because an instruction converter capable of this is difficult to
make; however, the converted code will accomplish the gen-
eral operation and be made up of instructions from the alter-
native instruction set. Thus, the instruction converter 712
represents software, firmware, hardware, or a combination
thereof that, through emulation, simulation or any other pro-
cess, allows a processor or other electronic device that does
not have an x86 instruction set processor or core to execute
the x86 binary code 706.

Apparatus and Method for Securely Saving and
Restoring the State of a Computing Platform

One embodiment of the invention uses trusted software
during manufacturing to establish a secure channel between
the processor and an off-processor component, such as a
microcontroller, which controls an increasing monotonic
counter. The secure channel results in an authentication key
encrypted and stored by both devices. In one embodiment, the
monotonic counter is used as a version counter for suspend/
resume operations where the structure containing the current
counter must be the newest (representing the most recent
suspend operation), and each exported processor state
includes an indication of the current counter.

In one embodiment, the pairing between the processor and
off-processor component(s) is assigned a unique ID, which is
registered in a database (e.g., a database maintained by the
original equipment manufacturer (OEM)). The unique ID
may be generated using the authentication keys generated and
maintained by the paired devices. In addition, the unique ID
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may be used to support an additional layer of security in
existing computing platforms. For example, in a Software
Guard Extensions (SGX) implementation, the unique ID may
be injected into all SGX keys used in the system. Conse-
quently, if an unauthorized pairing occurs, old SGX keys
become inaccessible, and the OEM will not provision new
keys to the unauthorized pairing.

In one embodiment, after deployment, when restoring an
exported state, the processor verifies a message from the
off-processor component (e.g., the microcontroller) authen-
ticated with the key, and ensures that the state includes the
newest counter. If the counter authenticates and the state
matches, the state is restored. When the machine is to be
suspended, the operating system (OS) (or other software
component) may call a machine status register (MSR) to
output the current state along with the current counter (from
boot). The SGX implementation is disabled and the OS can
then power down.

FIG. 8 illustrates one embodiment of a system architecture
which includes a pairing enclave 805 executed on a processor
801 and a chipset manageability engine (CSME) 813 which
operate together to securely share a counter message authen-
tication code (MAC) key 822. In one embodiment, counter
MAC key generation logic 802 in the pairing enclave 805
randomly generates the counter MAC key 822. For example,
it may generate the counter MAC key 822 using a digital
random number generator (DRNG) provided by the proces-
sor 801. However, the underlying principles of the invention
are not limited to a randomly-generated key or any particular
mechanism for generating a random number. The principles
are also not limited to generating the counter MAC key on the
computing platform. For example, in one embodiment, the
counter MAC key is generated elsewhere, such as on a server,
and then delivered to Pairing Enclave 805.

In one embodiment, the counter MAC key 822 is sealed
(e.g., encrypted using a secret known only by the processor
801) and the sealed counter MAC key 825 is then stored
within secure storage 820 accessible by the processor 801. In
addition, in one embodiment, a copy of the counter MAC key
822 is transmitted over a bus 840 to the CSME 813. In one
embodiment, cryptographic authentication protocol modules
804 and 806 in the pairing enclave 805 and CSME 813,
respectively, establish a secure communication channel over
the bus 840 (which, as indicated, may be an insecure bus such
as a host embedded controller interface (HECI) bus). In one
embodiment, the cryptographic authentication protocol com-
prises an Enhanced Privacy ID (EPID)-based key exchange
protocol such as direct anonymous attestation (DAA)
SIGMA protocol (as specified by ISO 20009-2). However,
the underlying principles of the invention are not limited to
any particular cryptographic authentication protocol. In one
embodiment, once received, encryption logic 808 in the
CSME encrypts the counter MAC key 822 and stores the
encrypted counter MAC key 835 in secure storage 830.

In one embodiment, a single physical secure storage device
is used to implement both secure storage 830 and secure
storage 820 shown in FIG. 8. For example, both secure stor-
ages 820, 830 may be implemented by a Flash memory device
integrated on the computing platform which may be used to
store other information such as the computing system BIOS,
chipset images, etc. In this embodiment, the sealed counter
MAC key 825 may be securely transmitted over the bus 840 to
the CSME 813, which may then store the sealed counter MAC
key 825 in the secure storage 830 on behalf of the processor
801. The underlying principles of the invention are not lim-
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ited to any particular type of storage device or mechanism for
storing the sealed counter MAC key 825 and encrypted
counter MAC key 835.

FIG. 8 illustrates a direct connection between the pairing
enclave 805 and the CSME 813. In an alternate embodiment,
one or more intermediate modules may be used to establish
the secure connection over the bus 840. For example, in one
embodiment, the CSME establishes a first secure connection
with a platform services enclave (PSE) (not shown), which
then establishes a second secure connection with the pairing
enclave 805 (and potentially one or more other secure
enclaves). In one embodiment, the PSE and CSME establish
a secure connection using an EPID-based pairing as dis-
cussed above (e.g., using the DAA SIGMA protocol) and the
PSE and pairing enclave establish a secure connection using
EREPORT-based authentication. Specifically, the pairing
enclave may execute the SGX instruction ERPORT to create
a cryptographic report which it then transmits to authenticate
with the PSE. However, as previously mentioned, the under-
lying principles of the invention are not limited to any par-
ticular techniques for establishing the secure connection
between the pairing enclave and CSME.

In one embodiment, the CSME 813 includes or is provided
secure access to a replay protected monotonic counter
(RPMC) 810. In one embodiment, the RPMC 810 serves as a
version counter where, upon entering into a resume (or sus-
pend) state, the processor (or software executing on the pro-
cessor) sends an INCREMENT command to the CSME 813
which causes the counter to increment. Upon restoring the
suspended processor state during a resume operation, the
counter value stored with the suspended processor state
(which may be different from the current processor state) is
compared against the current counter value provided from the
CSME 813 (retrieved from the RPMC 810). If the values
match, then the suspended processor state is successfully
restored (assuming that other security checks discussed
below are also passed). In one embodiment, the RPMC 810 is
implemented in a secure Flash memory, which may (or may
not) be the same Flash memory used for secure storage 820
and 830. Additional details related to the RPMC 810 are
provided below.

As mentioned above, in one embodiment, each pairing
between processors and other system components is provided
with an identity that is bound cryptographically to these
devices. This identity is referred to herein as a “Pairing 1D,”
which is computed as a cryptographic hash or MAC of the
MAC Key 822. During manufacturing, the Pairing ID in each
platform may be registered in a database. Only platforms with
a registered pairing are recognized and will have attestation
keys provisioned.

FIG. 9 illustrates one embodiment in which pairing ID
generation logic 902 in the pairing enclave 805 generates a
Pairing ID 904 using the counter MAC key 822. In one
embodiment, this is accomplished using a private key to gen-
erate the hash or MAC over the counter MAC key 822. The
resulting pairing ID 904 comprises a non-sensitive version of
the counter MAC key 822. That is, the pairing ID 904 is a
unique code based on the unique counter MAC key 822 but
the counter MAC key 822 is kept secret and cannot be derived
from the pairing 1D 904.

In one embodiment, additional pairing data may be col-
lected by the pairing enclave and used for registration. This
may include, for example, attestation data related to the
CSME 813 such as an Enhanced Privacy ID (EPID) assigned
to the CSME. EPID is a digital signature scheme in which one
group public key corresponds to multiple private keys, one of
which may be assigned to the CSMA. Each unique EPID
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private key can be used to generate a signature which may
then be verified using the group public key. Thus, if EPIDs are
used, the EPID info may be collected and used for registra-
tion. Various additional data may be used for registration such
as measurements of the pairing enclave 805 (e.g., configura-
tion data or identity data unique to the pairing enclave 805).

In one embodiment, registration logic 905 in the pairing
enclave 805 registers the pairing ID and any other pairing data
906 (e.g., the EPID info described above) in a manufacturing
platform database 950. The manufacturing platform database
950 may then be accessed to ensure that the pairing between
the processor and other components remains consistent. If a
change is detected (e.g., a new/unpaired component is intro-
duced into the system), then in one embodiment, attestation
keys (e.g., SGX keys) will not be provisioned and/or will be
made unavailable.

FIG. 10 illustrates one embodiment of a method for pairing
and registering components of a computing system. The
method may be implemented within the context of the sys-
tems shown in FIGS. 8-9, but is not limited to any particular
system implementation.

At1001, a security module (e.g., the pairing enclave 805 in
one embodiment) generates the counter MAC key (some-
times simply referred to herein as the “MAC key”). For
example, as mentioned, it may generate the counter MAC key
822 using a digital random number generator (DRNG) pro-
vided on the computing platform.

At 1002, the security module seals the counter MAC key
and stores the sealed MAC key in secure storage. “Sealing,” in
one embodiment, means encrypting the MAC key using a
secret key known only by the entity which performs the seal
operation (e.g., the processor), and in a manner which can
only be decrypted by that entity.

At 1003, the security module implements a cryptographic
authentication protocol to establish a secure communication
channel with an off-processor component. In certain embodi-
ments discussed herein, the off-processor component is the
chipset manageability engine (CSME). Any secure commu-
nication protocol may be used to establish the secure connec-
tion. For example, as mentioned, the cryptographic authenti-
cation protocol may comprise an Enhanced Privacy ID
(EPID)-based key exchange protocol such as direct anony-
mous attestation (DAA) SIGMA protocol (as specified by
ISO 20009-2). However, the underlying principles of the
invention are not limited to any particular cryptographic
authentication protocol.

At 1004, once a secure channel is established, the security
module sends the counter MAC key to the off-processor
component (OPC) and, at 1005, the OPC encrypts its copy of
the counter MAC key. At 1006, both the OPC-encrypted and
processor-sealed copies of the counter MAC key are stored in
secure non-volatile storage for future suspend/resume opera-
tions. As mentioned, the processor may utilize a separate
secure storage from the off-processor component, or both the
processor and off-processor component may use the same
secure storage (e.g., secure Flash). In the latter case, the
processor sends its sealed copy of the counter MAC key to the
off-processor component, which performs the storage opera-
tion. In the former case, the processor saves its copy of the
counter MAC key to its secure storage.

FIG. 11 illustrates one embodiment of a method for regis-
tering components of a computing system. The method may
be implemented within the context of the systems shown in
FIGS. 8-9, but is not limited to any particular system imple-
mentation.

At 1101, the counter MAC key is used to generate a pairing
ID. For example, in one embodiment, this is accomplished by
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the security module, which performs a cryptographic hash or
MAC of the counter MAC key (e.g., using a secret key).

At 1102, other pairing information is optionally gathered.
This information may include, for example, attestation data
related to the off-processor component such as an Enhanced
Privacy ID (EPID). In addition, as mentioned, information
related to the security module may also be used for registra-
tion.

At 1103, the pairing ID is registered in a manufacturing
platform database, potentially along with other pairing. The
manufacturing platform database may then be accessed to
ensure that the pairing between the processor and other com-
ponents remains consistent. If a change is detected (e.g., a
new/unpaired component is introduced into the system), then
in one embodiment, attestation keys (e.g., SGX keys) will not
be provisioned and/or will be made unavailable.

FIG. 12 illustrates a sequence of operations and architec-
ture employed in one embodiment of the invention during a
resume operation (e.g., when the system is waking from a
suspended state). In the particular embodiment shown in FIG.
12, a secure suspend/resume (SSR) module 1200 causes the
processor (not shown) to execute a series of operations in
combination with a chipset manageability engine (CSME)
813 to ensure that a valid processor state is loaded.

A nonce generator 1201, which may comprise a GETS-
NONCE instruction, is executed to generate a cryptographic
nonce 1202. As understood by those of skill in the art a
cryptographic nonce is an arbitrary number used only once
during cryptographic communication. The SSR module 1200
then transmits the nonce 1202 with an INCREMENT com-
mand to the CSME 813. In one embodiment, the INCRE-
MENT command and nonce are transmitted over an insecure
bus (e.g., an HECI bus). In another embodiment, the SSR
1200 may implement a cryptographic authentication protocol
with the CSME 813 to establish a secure communication
channel over the bus.

In response to the INCREMENT command, the CSME
causes the RPMC 810 to increment. In one embodiment, a
counter structure generator 1205 generates a COUNTER-
_STRUCTURE 1206 including the nonce and the current
counter value read from the RPMC 810. In one embodiment
a MAC generation module 1210 generates a MAC (or other
hash operation) over the COUNTER_STRUCTURE using
the MAC key 822. The resulting COUNTER_STRUCTURE
and MAC 1212 are then transmitted back to the SSR module
1200, as illustrated.

The SSR 1200 then executes a LOADSTATE instruction
1220 which includes a pointer to: (1) the SEALED_COUN-
TER_MAC_KEY structure 825 created by the pairing
enclave (see FIGS. 8 and 10 and associated text); (2) the
COUNTER_STRUCTURE 1206 returned by the CSME 813;
and (3) the PROCESSOR_STATE 1225 which includes the
previous internal processor state values (prior to the suspend
operation) and the correct counter.

In one embodiment, the LOADSTATE instruction decrypts
the counter MAC key 825, verifying that it was created on this
processor. [t uses the counter MAC key 825 to verify the MAC
generated on the COUNTER_STRUCTURE by the CSME
813. It verifies that the nonce in the COUNTER_STRUC-
TURE is the same that was provided by the nonce generator
1201. It then decrypts and checks the integrity of the PRO-
CESSOR_STATE 1225. Finally, it verifies that the PROCES-
SOR_STATE 1225 is the newest state by verifying that the
current counter in the COUNTER_STRUCTURE 1206 is the
same as the counter in the PROCESSOR_STATE 1225. If
they match, then this is the newest state. If all security checks
pass, then the PROCESSOR_STATE is loaded and executed.
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FIG. 13 illustrates a sequence of operations which may be
performed by the SSR module 1200 when a processor is
suspended (e.g., enters into an S3 or S4 state as defined by the
Advanced Configuration and Power Interface (ACPI) speci-
fication). In response to a suspend indication 1301, an
EXPORT_PROCESSOR_STATE instruction 1302 is
executed. In one embodiment, the EXPORT_PROCES-
SOR_STATE instruction 1302 exports a new PROCES-
SOR__ STATE structure 1225 that contains the current pro-
cessor state and the next counter value 1304, which is the
counter the next boot will expect. The current processor state
may include any state information such as the architectural
state of the processor, paging key data used by Software
Guard Extensions (SGX) (e.g., paging crypto metadata
(PCMD)), or any other data needed to successfully resume
operation of the computing system. If an additional resume
and suspend is performed, this counter will be less than the
current one, and will be detected as an old PROCES-
SOR_STATE. In one embodiment, following the export of
the PROCESSOR_STATE structure 1225, the operating sys-
tem powers down and the system enters a suspended state
(e.g., an S3 or S4 state).

In one embodiment, all keys used by the system must be
bound to the pairing of system components and must be
changed after any re-pairing event. This is important to pre-
vent exposing the keys to a maliciously-initiated pairing that
may use untrustworthy hardware. To accomplish the binding
between all keys and the pairing, in one embodiment, the
pairing ID 904 is injected into all keys.

If the pairing environment is more secure than the runtime
boot environment, the pairing ID 904 may be added after the
secure key is derived, such as by using the following:

SuspendableKey=CMAC (PairingEnvironmentKey,
PairingID)

FIG. 14 illustrates one embodiment in which key injection
module 1401 injects the pairing ID 904 into each of a set of
existing keys 1401-1403, resulting in PID-injected keys
1411-1413. In one embodiment, the key injection module
1401 computes the runtime PID-injected keys 1411-1413 by
generating a hash over the keys 1401-1403 and the pairing ID
904 using the counter MAC key 822. In one embodiment, the
key injection module 1401 is executed during the pairing
environment, and has its data available in the runtime envi-
ronment. It acquires the keys 1401-1403 using the GETKEY
instruction (e.g., to acquire each secure PairingEnvironment-
Key). It then computes the runtime keys 1411-1413 available
in the suspendable environment by performing the counter
MAC key operation on the keys returned by the instruction
and the pairing 1D 904.

By using trusted software as described above, a secure
authenticated key exchange can be conducted between the
components in a computing system, which is too complex for
the processor logic to support itself. This allows the pairing to
take place in an insecure manufacturing facility. Moreover,
the system can reuse an existing, multipurpose bus (e.g., an
HECI bus) to securely read the value of the counter from the
CSME 813 without any storage on the processor. The system
supports refurbishing without compromising security,
because re-pairing with malicious hardware destroys all of
the keys. When done in an authorized environment, the envi-
ronment can register the new pairing with provisioning ser-
vices to get new keys provisioned to the platform, restoring it
to a trustworthy state.

Embodiments of the invention may include various steps,
which have been described above. The steps may be embod-
ied in machine-executable instructions which may be used to
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cause a general-purpose or special-purpose processor to per-
form the steps. Alternatively, these steps may be performed
by specific hardware components that contain hardwired
logic for performing the steps, or by any combination of
programmed computer components and custom hardware
components.

As described herein, instructions may refer to specific con-
figurations of hardware such as application specific inte-
grated circuits (ASICs) configured to perform certain opera-

5

tions or having a predetermined functionality or software 10

instructions stored in memory embodied in a non-transitory
computer readable medium. Thus, the techniques shown in
the figures can be implemented using code and data stored
and executed on one or more electronic devices (e.g., an end
station, a network element, etc.). Such electronic devices
store and communicate (internally and/or with other elec-
tronic devices over a network) code and data using computer
machine-readable media, such as non-transitory computer
machine-readable storage media (e.g., magnetic disks; opti-
cal disks; random access memory; read only memory; flash
memory devices; phase-change memory) and transitory com-
puter machine-readable communication media (e.g., electri-
cal, optical, acoustical or other form of propagated signals—
such as carrier waves, infrared signals, digital signals, etc.). In
addition, such electronic devices typically include a setofone
or more processors coupled to one or more other components,
such as one or more storage devices (non-transitory machine-
readable storage media), user input/output devices (e.g., a
keyboard, a touchscreen, and/or a display), and network con-
nections. The coupling of the set of processors and other
components is typically through one or more busses and
bridges (also termed as bus controllers). The storage device
and signals carrying the network traffic respectively represent
one or more machine-readable storage media and machine-
readable communication media. Thus, the storage device of a
given electronic device typically stores code and/or data for
execution on the set of one or more processors of that elec-
tronic device. Of course, one or more parts of an embodiment
of the invention may be implemented using different combi-
nations of software, firmware, and/or hardware. Throughout
this detailed description, for the purposes of explanation,
numerous specific details were set forth in order to provide a
thorough understanding of the present invention. It will be
apparent, however, to one skilled in the art that the invention
may be practiced without some of these specific details. In
certain instances, well known structures and functions were
not described in elaborate detail in order to avoid obscuring
the subject matter of the present invention. Accordingly, the
scope and spirit of the invention should be judged in terms of
the claims which follow.
What is claimed is:
1. A method comprising:
reading a monotonic counter value in response to detecting
a processor resume operation;
generating a data structure including at least the monotonic
counter value;
generating a message authentication code (MAC) over the
data structure using a first key;
securely providing the data structure and the MAC to a
module executed on the processor;
the module verifying the MAC, comparing the monotonic
counter value with a counter value stored during a pre-
vious suspend operation and, if the counter values
match, then loading processor state required for the
resume operation to complete;
implementing a cryptographic protocol to establish a
secure connection between the processor and an off-
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processor component, wherein the off-processor com-
ponent comprises a chipset manageability engine
(CSME);

generating the first key by the processor; and

transmitting the first key from the processor to the off-

processor component over the secure connection.

2. The method as in claim 1 wherein verifying the MAC
comprises using the first key to generate a MAC over the data
structure and confirming that the generated MAC is the same
as the provided MAC.

3. The method as in claim 1 further comprising:

transmitting an increment command from the module to

cause the monotonic counter to increment in response to
a suspend or resume operation.

4. The method as in claim 3 further comprising:

generating a nonce by the module, and transmitting the

nonce to the off-processor component;
the off-processor component generating the data structure
using both the monotonic counter value and the nonce;

wherein the module compares the generated nonce with the
nonce received in the data structure, wherein the proces-
sor state is loaded for the resume operation only if the
nonces match.

5. The method as in claim 4 wherein the module further
decrypts and checks integrity of the processor state prior to
loading the processor state.

6. The method as in claim 4 wherein the module comprises
suspend/resume program code executed by the processor.

7. The method as in claim 1 wherein the cryptographic
protocol comprises an Enhanced Privacy 1D (EPID)-based
key exchange protocol.

8. The method as in claim 1 wherein generating the first key
comprises using a digital random number generator (DRNG)
to generate a random number to be used for the first key.

9. The method as in claim 1 wherein both the processor and
the off-processor component encrypt copies of the first key
and store the first key in secure storage.

10. A processor comprising:

first logic to execute at least one instruction for loading a

state of a processor upon a resume operation following a
suspend operation;

the at least one instruction to cause the processor to verify

a message authentication code (MAC) generated over a
data structure with a first key, the data structure contain-
ing a first monotonic counter value, the at least one
instruction causing the processor to compare the first
monotonic counter value with a second counter value
stored during the suspend operation and to load proces-
sor state required for the resume operation if the first
monotonic counter value matches the second counter
value;

wherein the processor is to implement a cryptographic

protocol to establish a secure connection between the
processor and an off-processor component; to generate
the first key; and to transmit the first key from the pro-
cessor to the off-processor component over the secure
connection; wherein the off-processor component com-
prises a chipset manageability engine (CSME).

11. The processor as in claim 10 wherein to verify the
MAC, the processor is to use the first key to generate a MAC
over the data structure and is to confirm that the generated
MAC is the same as the provided MAC.

12. The processor as in claim 10 wherein the processor is to
transmit an increment command to the off-processor compo-
nent to cause the monotonic counter to increment in response
to a suspend or resume operation.
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13. The processor as in claim 12 wherein the processor is to
generate a nonce, and transmit the nonce to the off-processor
component; the off-processor component generating the data
structure using both the monotonic counter value and the
nonce; wherein the processor is to compare the generated
nonce with the nonce received in the data structure, wherein
the processor state is loaded for the resume operation only if
the nonces match.

14. The processor as in claim 13 wherein the processor
further decrypts and checks integrity of the processor state
prior to loading the processor state.

15. The processor as in claim 10 wherein the cryptographic
protocol comprises an Enhanced Privacy ID (EPID)-based
key exchange protocol.

16. The processor as in claim 10 wherein generating the
first key comprises using a digital random number generator
(DRNGQG) to generate a random number to be used for the first
key.

17. The processor as in claim 10 wherein both the processor
and the off-processor component encrypt copies of the first
key and store the first key in secure storage.
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