US009286035B2

a2 United States Patent

Sundararam

US 9,286,035 B2
Mar. 15, 2016

(10) Patent No.:
(45) Date of Patent:

(54) CODE REMEDIATION

(75) Sudhir Hulikunte Sundararam,

Bangalore (IN)

Inventor:

(73)

")

Assignee: Infosys Limited, Bangalore (IN)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 863 days.

@
(22)

Appl. No.: 13/212,992
Filed: Aug. 18,2011

Prior Publication Data

US 2013/0007701 A1l Jan. 3, 2013

(65)

(30) Foreign Application Priority Data

Jun. 30,2011 (IN) oo 2217/CHE/2011
(51) Int.CL
GOGF 9/44
GOGF 11/36
USS. CL

CPC

(2006.01)

(2006.01)

(52)

GO6F 8/30 (2013.01); GO6F 11/3604
(2013.01)

Field of Classification Search

None

See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

Porchiaccovvevennrne, 717/136
Kobayashi et al. 704/9
Richley 717/121
De Bonetcocveevenne 717/146
Nagel .cooovevivvvinn 717/128
Wigger ...ocoovvvvvvnnenc 717/111
Stoodley

Schoenbaum et al.

Hasan et al.

4,553,205
5,640,576

A 11/1985

A
5,898,872 A

A

A

B

*
* 0 6/1997
* 0 4/1999
*
*
*

5,905,894
6,071,317
6,427,228 Bl
6,611,846 Bl
7,426,474 B2
7,428,494 B2

5/1999
6/2000
7/2002
8/2003
9/2008
9/2008

7,565,364 B1* 7/2009 Darcyetal. 707/999.101

7,617,078 B2 11/2009 Rao et al.

7,716,040 B2 5/2010 Koll et al.

7,725,330 B2 5/2010 Rao etal.

7,752,035 B2 7/2010 Oon

7,801,786 B2 9/2010 Smith et al.

8,265,952 B1* 9/2012 Smithccocovvvriiniiivriinens 705/2

8,407,066 B2 3/2013 Gentry et al.

8,407,071 B2 3/2013 Lesswing et al.

8,620,698 B2 12/2013 Huetal.
2002/0007483 ALl* 12002 LOPEZ .ccooevvvevviviiricenenn 717/3
2004/0194072 ALl* 9/2004 Ventercccccocvvvvernenne 717/140
2005/0223109 Al 10/2005 Mamou et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP 1939785 7/2008
JP 2003 050868 2/2003
OTHER PUBLICATIONS

Infosys, “Infosys Technologies Introduces iTransform Product Suite,
One of Industry’s First End-to-End Solution to Accelerate HIPPA
5010 and ICD-10 Transitions”, Jun. 2009, retrieved from: http://web.
archive.org/web/20100116134207/http://www.infosys.com/news-
room/press-releases/Pages/iTransform-ICD-10.aspx.*

(Continued)

Primary Examiner — Jue Louie
(74) Attorney, Agent, or Firm — Klarquist Sparkman, LL.P

(57) ABSTRACT

Various technologies related to code remediation are pre-
sented. Code to be remediated can be annotated with lan-
guage-independent annotations. From the annotations, reme-
diated code in a particular language can be generated. A wide
variety of change types can be supported. Automatic or cus-
tom remediation can be achieved. Custom remediation can
provide a user with control over the remediation process via
helpful user interfaces. Considerable efficiency improve-
ments can be realized without surrendering control of the
remediation process.

18 Claims, 53 Drawing Sheets

CODE TOBE
REMEDIATED

CODE REMEDIATOR

ANNOTATION ENGINE
160

CODE
180

100

REMEDIATED

US 9,286,035 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2006/0015856 Al* 1/2006 Lottercoven 717/136

2006/0123017 Al* 6/2006 Bergetal. 707/100
2006/0123384 Al* 6/2006 Nickell et al. ... 717/100
2006/0149784 Al 7/2006 Tholl et al.

2007/0044012 Al* 2/2007 Suveretal. ... 715/513
2007/0055966 Al* 3/2007 Waddingtonetal. 717/144
2008/0015896 Al 1/2008 Reynolds

2008/0201166 Al 8/2008 Warner et al.

2008/0275731 Al 11/2008 Rao etal.

2008/0275737 Al 11/2008 Gentry et al.

2009/0048877 Al 2/2009 Binns et al.

2009/0125878 Al* 5/2009 Cullumetal. ... 717/106
2009/0222799 Al* 9/2009 Stewartetal. ... 717/143
2009/0259487 Al 10/2009 Rao et al.

2010/0070301 Al 3/2010 Tolan et al.

2010/0153915 Al* 6/2010 Schneider 717/110
2010/0169263 Al 7/2010 Korpman et al.

2010/0235197 Al 9/2010 Dang

2010/0306135 Al
2010/0306218 Al
2011/0112851 Al
2012/0303383 Al
2013/0006683 Al
2013/0007701 Al
2013/0035947 Al
2013/0073301 Al

OTHER PUBLICATIONS

12/2010 McCallum et al.
12/2010 Bacon
5/2011 Poley
11/2012 Smith
1/2013 Rao
1/2013 Sundararam
2/2013 Sundararam et al.
3/2013 Rao et al.

“Testing Times: Ensuring a Successful HIPAA 5010 Implementa-
tion,” Infosys View Point, Sep. 2010, 8 pages.

“HIPAA 4010 to 5010 and ICD-9 to ICD-10: more than just a con-
version,” http://blogs.datadirect.com/2009/03/hipaa-4010-to-5010-
and-icd-9-to-icd-10.html visited Feb. 24, 2011, 1 page.

““‘Step-Up Step-Down’ Strategies for HIPAA 4010A1 to 5010 Migra-
tion,” http://www.edifecs.com/downloads/Edifecs5010-StepUp-
StepDown.pdf visited Feb. 24, 2011, 12 pages.

“Infosys iTransform: The Smoothest Road to ICD-10 Compliance
for Payers,” www.infosys.com, visited Feb. 24, 2011, 2 pages.
“Infosys iTransform: The Smoothest Road to ICD-10 Compliance
for Providers,” www.infosys.com, visited Feb. 24, 2011, 2 pages.
Bhuttar, “Reducing risks Maximizing Returns from HIPAA 5010
Transition,” www.infosys.com, Sep. 2009, 8 pages.

“Infosys Technologies Introduces iTransform Product Suite, One of
Industry’s First End-To-End Solution to Simplify and Accelerate
HIPAA 5010 and ICD-10 Transitions,” www.infosys.com, visited
Feb. 24,2011, 1 page.

“ICD-10 Transition Services,” www.infosys.com, visited Feb. 24,
2011, 1 page.

“Infosys Technologies Introduces iTransformTM Product Suite,”
Jun. 15, 2009, 2 pages.

iTransformTM ICD-10 Payout Simulator, Infosys Website, archived
by Wayback Machine on May 10, 2011, 3 pages.

3M “3M Advanced Analyzer Software,” May 27, 2011, 2 pages.
Infosys, www.infosys.com/offerings/products-and-platform/pages/
index.aspx, Jun. 17, 2010, 3 pages.

Infosys, “Infosys selected by Blue Cross and Blue Shield Association
(BCBSA) as Vendor for ICD-10 Transition,” Jun. 13, 2011, 2 pages.
Industry Offerings, ICD-10 Transition Services, Infosys Technolo-
gies Limited, printed May 30, 2011, 1 page.

Definition of Diagnosis-related group, en.wikipedia.org/wiki/Diag-
nosis-related__group, printed Jun. 29, 2011, 4 pages.

Anderson, “Top 10 sectors that will benefit from health insurance
exchanges,” Healthcare Payer News.com, Jul. 12, 2011, 2 pages.
Bhuttar, “Crosswalk Options for Legacy Systems: Implementing
Near-Term Tactical Solutions for ICD-10,” Journal of AHIMA 82(6):
pp. 34-37, Jun. 1, 2011, 6 pages.

“Case Study: HIPAA 5010 Impact Analysis for a California-based
Medicaid and Medicare Plan,” Infosys, Nov. 2009, 4 pages.

De, “Financial Neutrality: Address it before the calendar turns
2013°,” ICD-10 Hub Blog, May 23, 2011, 3 pages.

De, “Payment reform with ICD-10: It’s the research time . . .
ICD-10 Hub Blog, Jun. 28, 2011, 2 pages.

“Engaging with digital consumers: Insights from Infosys survey,”
Infosys.com, Jun. 13, 2011, 2 pages.

“Infosys Technologies Introduces iTransform™ Product Suite, One,”
Bloomberg Business Wire, Jun. 15, 2009, 3 pages.

“Infosys Technologies Introduces iTransform Suite,” CXOtoday.
com, Jun. 15, 2009, 2 pages.

Lawrence, “Getting Up to Code,” Healthcare Informatics.com, Oct.
27, 2008, 3 pages.

Mitchell, “The Connection Between ICD-10 and Meaningful Use,”
forthe Record Mag.com, vol. 22, No. 22, p. 20, Dec. 6, 2010, 3 pages.
Yin, “Guest Commentary: The pros and cons of transitioning to
ICD-10 via a tactical approach,” FierceHealthPayer.com, Sep. 24,
2010, 4 pages.

“Infosys iTransform™ Mapping+: A bridge to tomorrow,” Infosys
Technologies Limited, Oct. 2011, 2 pages.

“Infosys iTransform™ ICD-10 Reimbursement Simulator: Achiev-
ing revenue neutrality,” Infosys Technologies Limited, Oct. 2011, 2
pages.

“Infosys iTransform™ ICD-10 Payout Simulator: Achieving revenue
neutrality,” Infosys Technologies Limited, Oct. 2011, 2 pages.
“ITRANSFORM®: ‘The 3-dimensional transition to ICDI10,””
Infosys Technologies Limited, Mar. 2009, 6 pages.

“Infosys iTransform™ ICD-10 Coding Helper: Helping you adjust-
ing to a vast new world,” Infosys Technologies Limited, Oct. 2011, 2
pages.

“Infosys introduces iTransform,” CiOL.com, Jun. 15, 2009, 3 pages.

”

* cited by examiner

U.S. Patent Mar. 15, 2016 Sheet 1 of 53

CODE TO BE
REMEDIATED
110

CODE REMEDIATOR
150

US 9,286,035 B2

— —

_____/

KNOWLEDGE

ANNOTATION ENGINE
160

REMEDIATED
CODE
180

100

BASE
170

N—

FIG. 1

U.S. Patent Mar. 15, 2016 Sheet 2 of 53 US 9,286,035 B2

200

/

RECEIVE CODE TO BE REMEDIATED
210

l

GENERATE LANGUAGE-INDEPENDENT
ANNOTATIONS FOR CODE TO BE
REMEDIATED
220

l

GENERATE REMEDIATED CODE
ACCORDING TO ANNOTATIONS
230

FIG. 2

U.S. Patent Mar. 15, 2016 Sheet 3 of 53 US 9,286,035 B2

CODE TO BE
REMEDIATED

310

ANNOTATION ENGINE
330

LANGUAGE
INDEPENDENT
ANNOTATIONS

340

LANGUAGE-
INDEPENDENT
ANALYSIS ENGINE
360

PRE-
TRANSLATION
ANALYSIS TREE
365

TRANSLATION ENGINE
370

300
REMEDIATED

CODE

=0 FIG. 3

U.S. Patent Mar. 15, 2016 Sheet 4 of 53 US 9,286,035 B2

400

/

RECEIVE CODE TO BE REMEDIATED
410

l

ANNOTATE CODE TO BE REMEDIATED
WITH LANGUAGE-INDEPENDENT
ANNOTATIONS
420

l

GENERATE ANALYSIS TREE BASED ON
ANNOTATIONS
430

BASED ON TREE, GENERATE
REMEDIATED CODE
440

FIG. 4

U.S. Patent

Mar. 15, 2016

Sheet 5 of 53

US 9,286,035 B2

COPIED
SECTION 560A

REMEDIATED
SECTION 560B

COPIED
SECTION 560C

SECTION

SECTION COPY
SECTION 530B REMEDIATE
SECTION 530C copPY {
SECTION 530D REMEDIATE ‘
COPY

REMEDIATED
SECTION 560D

500

COPIED
SECTION 560N

REMEDIATED
CODE
550

FIG. 5

U.S. Patent Mar. 15, 2016 Sheet 6 of 53 US 9,286,035 B2

CODE TO BE
REMEDIATED
610

I —————

ANNOTATION ENGINE
630 <——— REMEDIATION

INTELLIGENCE
620

N

ANNOTATION
640

IN-CODE
TOKEN
645

FIG. 6

U.S. Patent Mar. 15, 2016 Sheet 7 of 53 US 9,286,035 B2

700

/

RECEIVE CODE TO BE REMEDIATED
710

l

LOCATE OCCURRENCES OF TOKEN
SEARCH PATTERNS IN CODE
120

RESPONSIVE TO FINDING LOCATION,

GENERATE ANNOTATION
730

FIG. 7

U.S. Patent Mar. 15, 2016 Sheet 8 of 53 US 9,286,035 B2

ANNOTATION
840

IN-CODE TOKEN 842

CHANGE TYPE 844

STATEMENT TYPE 84

[&)]

IMPACT LOCATION 8

(@]

CHANGE PARAMETER(S) 848

FIG. 8

U.S. Patent Mar. 15, 2016 Sheet 9 of 53

ANNOTATION
940

ANALYSIS ENGINE
960

PRE-TRANSLATION
ANALYSIS TREE 965

PARAM/VALUE PAIR 967A

PARAM/VALUE PAIR 967N

US 9,286,035 B2

FIG. 9

U.S. Patent Mar. 15, 2016 Sheet 10 of 53 US 9,286,035 B2

1000

RECEIVE ANNOTATION
1010

l

FIND PARAMETERS AND VALUES IN
ANNOTATION
1020

|

RESPONSIVE TO FINDING PARAMETERS
AND VALUES, BUILD ANALYSIS TREE
WITH PARAMETERS AND VALUES FOR
CONSUMPTION BY TRANSLATOR
1030

FIG. 10

U.S. Patent Mar. 15, 2016 Sheet 11 of 53 US 9,286,035 B2

PRE-TRANSLATION
ANALYSIS TREE 1165

PARAM/NALUE PAIR
1167A

PARAM/VALUE PAIR
1167N

TRANSLATION ENGINE 1170
CHANGE F() 1175A

CHANGE F() 1175B

CHANGE F() 1175N

REMEDIATED
CODE LINE(S)
1190

FIG. 11

U.S. Patent Mar. 15, 2016 Sheet 12 of 53 US 9,286,035 B2

1200

/

RECEIVE TREE
1210

|

GENERATE REMEDIATED CODE,
APPLYING PARAMETERS AND VALUES IN
TREE TO CHANGE FUNCTION
1220

|

OUTPUT REMEDIATED CODE LINE(S)
1230

FIG. 12

U.S. Patent Mar. 15, 2016 Sheet 13 of 53 US 9,286,035 B2

1300

v

PERFORM SCANNING TASKS
1310

|

PERFORM ANNOTATION TASKS
1320

l

PERFORM ANALYSIS TASKS
1330

PERFORM TRANSLATION TASKS
1340

FIG. 13

U.S. Patent Mar. 15, 2016 Sheet 14 of 53 US 9,286,035 B2

FIG. 14

1400

U.S. Patent Mar. 15, 2016 Sheet 15 of 53 US 9,286,035 B2

FIG. 15

1500

US 9,286,035 B2

Sheet 16 of 53

Mar. 15, 2016

U.S. Patent

“ABTGEED

569050

Shig- diin) oy

BELEHAE) WCTREGLLEL #h) PN BT XEgnd SR by BYy iR

US 9,286,035 B2

Sheet 17 of 53

Mar. 15, 2016

U.S. Patent

US 9,286,035 B2

Sheet 18 of 53

Mar. 15, 2016

U.S. Patent

YRS

Wy

DA TR D

e

e
: s secesn

US 9,286,035 B2

Sheet 19 of 53

Mar. 15, 2016

U.S. Patent

U.S. Patent Mar. 15, 2016 Sheet 20 of 53 US 9,286,035 B2

FIG. 20

‘

& %

4

0y
sy

=

B S

5 TRENEE
AREE 1 JERL

PR NRERAERE 1 Shemgaitet

v

r

ARANITER « (ENGE
% TR BT ¢

LSRN

rpeice RIS o 3%

SRS
ek
i

-
#

2000

US 9,286,035 B2

Sheet 21 of 53

Mar. 15, 2016

U.S. Patent

STE0XDTON0

M TEORDIOPI0 . AMIYA
FOMNIOO-TE-R0N 88 foEnaa
‘ CTHIEORRIBRE 3TN
YanNIOOY-Ty a8
LEanen ETheots We0IIoN
. GIROIBRIN1S-5200 90

U.S. Patent Mar. 15, 2016 Sheet 22 of 53 US 9,286,035 B2

FIG. 22

o

=

e

2
&
|5
1
o
£
I
©

GF CHERE-ATYERALSNID

2200

U.S. Patent Mar. 15, 2016 Sheet 23 of 53 US 9,286,035 B2

FIG. 23

bl

A
S
et
ey
o
et
2
&
&
o
&
A&
=
g
ALy
e
®
[
e
Lo

Lode Anstysis F

2300

e
AN

US 9,286,035 B2

Sheet 24 of 53

Mar. 15, 2016

U.S. Patent

TING GGV Ty B8 £7509%

IETEOROTOPON TR

RS Togong KLY GI-HOTEREIR-LE-SE20 Glpps o LFRIPBLEY

BROD BLGIIURIL A0 DBURON e HTIH DT W EFWIL-MIOWIMN-EEE0 OT
TIX Dld HH-BELL-WIOWIH-RTC 0T

FELL- R IOVEH-SEEG 84
TR D4 O0-BIFO-MECWR-RIES 07

T 08 WH-BIYO-HIGWIN-REEG 6T
ek Bid AASD-BIYO-HIOWIN-SLEG 01
“HAMG-RR0ERR-SE20 G0
RIS -RIOYIH-REE0 19 .
THMLEESE AGOD WPRI8T
TETE0WE MO0 WEZSLE

ASTDOTAN AGOD
WEIUHIAN AGUD

LOWLTEEM RYBLIHEY At
BOPLTYEW SEELPEE] ANOT
GOOLGBOD VICHESZEW, TTIWA (REIXR $4NLNI4 LAMEAHEY 10
IovLTesu THOTLDIE 20WH0 | - BRINEOM
TOVLErGH WOLADAS TS

TORLIELN WOISIAID wivd
THIRANG D F 14

U.S. Patent Mar. 15, 2016 Sheet 25 of 53 US 9,286,035 B2

FIG. 25

2500

US 9,286,035 B2

Sheet 26 of 53

Mar. 15, 2016

U.S. Patent

wousmonEeTAsRY
AR e B)

B IAIERITERY .
T SoRG IS B eeEe Saet b et

U.S. Patent Mar. 15, 2016 Sheet 27 of 53 US 9,286,035 B2

05 ASTR_N3_ID PIC X (30) BBOB23X 88 A1-ADDENDA VALLUE

Val
2700
MPACTED VARIABLE FILE NAME CHANGE TYPE
ASTR N3 ID CBL19089 SIZE_CHANGE
Wl
2710
IMPACTED | FILE NAME NEW FILE NAME CHANGE TYPE

VARIABLE

ASTR_N3_ID | D\GRC\CBL19089.CBL | D:\ DEST\CBL19089.CBL | SIZE_CHANGE

l
2730

FIG. 27

U.S. Patent Mar. 15, 2016 Sheet 28 of 53 US 9,286,035 B2

IMPACTED | FILE NAME ANNOTATION APPLIED
VARIABLE

ASTR_N3_ID | D:\DEST\CBL19089.CBL | :IREM{

CHANGE {
TOKEN: ASTR_N3_ID;
ASTR_N3_ID.PARAMETER : CHANGE_TYPE;
CHANGE_TYPE VALUE : 1001;
ASTR_N3_ID.PARAMETER : STMT_TYPE;
STMT TYPEVALUE: 2001
ASTR N3 IDPARAMETER : IMPACT _LINE;
IMPACT LINE.VALUE:161;
ASTR N3 ID.VARIABLE : NEWSIZE;
NEWSIZEVALUE : 60;

SIZECHANGEINEWSIZE IMPACT_LINEY

2800

FIG. 28

U.S. Patent Mar. 15, 2016

Sheet 29 of 53

ANNOTATION APPLIED

ANALYZEROUTPUT

[EFRERTY
| cHANGE{
TOKEN : ASTRUN3_ID,
| ASTR23_IDPARAMETER: CHANGE TYPE:
| CHANGE. TYPEVALUE. 1001
ASTR_N3_ID PARAMETER : STMT_TYPE,
| STMT_TYPEVALUE : 2001;
| ASTR_N3_ID PARAMETER: IMPACT_LINE
IMPACT _LINE.VALUE:161;
ASTENI_ID.VARIABLE : NEWSIZE,
NEWSIZE VALUE : 60;
| SIZECHANGE(NEWSZE INPACT_LINE)
I
i

parentriormaltext © normaltexts ;
normaliext | plaintext (annotation | plaintext)®;

annotation | {TREM '{ change+ '} -> #(ITREM
change+) ;

change : CHANGE '[block+ '} > ~ CHANGE
block®);

block : blockdlis WS? changetype -> ~{7
changetvpe blockdils)

blockdds

:tokendef WS? paramdef+ ->M(Y
tokendef paramdef+)

tokendef name ' assignedValue ' <> *{(7 name
assignedValue)

paramdef

mame T parameterValue '} name 7
assignedValue 7§ -» 4 parameterValue
assignedValue)

variabledef newsize ' assignedValue ;' > M
name assignedValue)

sizechange

mame Wo? WS text Vet Y o>
{ name text text)

2900

FIG. 29

US 9,286,035 B2

U.S. Patent Mar. 15, 2016 Sheet 30 of 53 US 9,286,035 B2

ANNOTATION APPLIED AWNALYZEROQUTPUT COMPILER
OQUTPUT

TTREST parentnonmaltext | normaltexts ; | 05 ASTE N3 D

I PIC X (60)

CHANGEY normaltext : plaintext (annotation | ponpaaveg Ay

TOKEN : ASTRN3ID: { plantexty” ; ADDENDA

ASTR_N3ID PARALETER, snnotation : TTREM '{ chonge+} | ¥ FUE

CHANGE, TYVPE: -» M TTREM change+ } |

CHANGE _TYPEVALUE: 1001; (hangﬁ; THANGE ‘F Slockd ‘}’ 5

A CHANGE blocks),
ASTRE NI JDPARAMETER STMTTYPE
STAT_TYPEVALUE . 2001, block : tlockdis WS? changetvpe
=» A changetvpe blockdils)

ASTRINIID PARAMETER.:
DRACT UNE

IMPACT_LINE.VALUE:161; blockdtle
ASTR NIIDVARIABLE . NEWSIZE, - tokendef WS?
NEWSIZE VALUE :60; paramdett >4 wokendef

paramdef+)
SIZECHANGEMNEWSZEDPACT LDE:

i
tokendel name ' assignedValue
} e AL name assignedValue)

| paramdef

ame
pasameterValue) name "
 asgignedValue '} -> A
parameterValue assignedValue)

3

variabledef newsimi“:’
assignedValue '/ > A name
assignedValue)

kg

2006 FIG. 30

U.S. Patent Mar. 15, 2016 Sheet 31 of 53 US 9,286,035 B2

OLD source code REMEDIATED source

code

05 ASTR_N3_IDPIC X 05 ASTR_N3_IDPICX

(30) BBOB23X 88 A1- (60) BBOB23X 88 A1-
ADDENDAVALUE.... | ADDENDAVALUE....
A
3100

FIG. 31

U.S. Patent Mar. 15, 2016 Sheet 32 of 53 US 9,286,035 B2

public String identifyQualifier(String strCodeQualifier) {
if (strCodeQualifier.equals("21")) {
return "HIN";

} else if(strCodeQualifier.equals ("AD")) {
return "BCBSAPC";

} else if(strCodeQualifier.equals("FI")) {
return "FT Identification Number";

} else if (strCodeQualifier.equals("NI")) {
return "NAIC Identification";

} else if (strCodeQualifier.equals ("PI")) {
return "PayorIdentification";

} else if(strCodeQualifier.equals ("PP")) {
return "PP Number";

} else if(strCodeQualifier.equals ("XV")) {

return "HCFA National Plan Id";

}
return “UNEKNOWN';

il
3200

FIG. 32

U.S. Patent Mar. 15, 2016 Sheet 33 of 53 US 9,286,035 B2

IMPACTED VARIABLE | FILE NAME CHANGE TYPE
strCodeQualifier L2100REQJAVA CODE_CHANGE
IMPACTED METHOD

public String identifyQualifier(String strCodeQualifier)

2
3300
IMPACTED FILE NAME NEW FILE NAME CHANCGE
VARIABLE TYPE

strCodeQualifier | D:\SRC\L2100REQ.JAVA | D:\DEST\L2100REQ.JAVA | CODE_CHANGE

3310

FIG. 33

U.S. Patent Mar. 15, 2016 Sheet 34 of 53 US 9,286,035 B2

IMPACTED | FILE NAME ANNOTATION APPLIED
VARIABLE

strCodeQualifier | D:\SRC\ ITREM {

L2100REQJAVA CHANGE {

TOKEN : strCodeQualifier;

strCodeQualifier, PARAMETER : CHANGE_TYPE;
CHANGE_TYPE.VALUE : 1009;

strCodeQualifier. PARAMETER ; STMT_TYPE;
STMT_TYPE.VALUE : 2003;

strCodeQualifier PARAMETER : IMPACT_LINE_LST;
IMPACT_LINE_LST.VALUE : 28,29,31,33,35,37,39 41;
strCodeQualifier. VARIABLE : CD_CHG_TYPE;
CD_CHG_TYPE.VALUE : DELETE;
strCodeQualifier VARIABLE : CD_LST;
CD_LST.VALUE : 21,AD FLNLPF;

CODECHANGE(IMPACT_LINE_LST, CD_CHG_TYPE,
CD_LSTY;

3400

FIG. 34

U.S. Patent Mar. 15, 2016 Sheet 35 of 53 US 9,286,035 B2

sirCodeCualifier

2003

—

28 29 31 a3 - 35 37 38 41

} 7
|
- DELETE Sk DELETE & .ed DELETE i C ORETE w»};mmm B ek DELETE v DELETE x ped DELETE
| A
i |
; { |
: ELALEELNG L it AL BN FLALRELNE JLARELNEL L I ALELN TABEN Ay
“*"} o 3{ ““% a % o “““'% #r ‘% Eom ‘} e o
‘ , ~ .

3500

FIG. 35

U.S. Patent Mar. 15, 2016 Sheet 36 of 53 US 9,286,035 B2

public String identifyQualifier (String strCodeQualifier) ({

if (strCodeQualifier.equals("PI")) {
return "PayorIdentification";

} else if(strCodeQualifier.equals("XV")) {
return "HCFA National Plan Id";

}
return “UNKNOWN";

3600

FIG. 36

U.S. Patent Mar. 15, 2016 Sheet 37 of 53 US 9,286,035 B2

public String identifyQualifier(String
strCodeQualifier) {

if (strCodeQualifier.equals("21")) {
return "HIN";

} else if (strCodeQualifier.equals ("AD")) ({
return "BCBSAPC";

} else if (strCodeQualifier.equals("FI™)) {
return "FT Identification Number";

} else if (strCodeQualifier.equals ("NI")) {
return "NAIC Identification”;

} else if(strCodeQualifier.equals("PI™)) {
return "PayorIdentification";

} else if (strCodeQualifier.equals("PP")) {
return "PP Number";

} else if (strCodeQualifier.equals("XV")) {

return "HCFA National Plan Id";

}
return “UNKNOWN';

}

3700
public String identifyQualifier (String
strCodeQualifier) {
if (strCodeQualifier.equals("PI")) {
return "PayorlIdentification”;

} else if (strCodeQualifier.equals ("XV")) {
return "HCFA National Plan Id";

}

return “UNKNOWN";

} 3710

FIG. 37

U.S. Patent Mar. 15, 2016 Sheet 38 of 53 US 9,286,035 B2

FIG. 38

o parancterValue |— i f—{name } o I—-—*iés&imﬂalue = -

__,{ m]
3800

par ande f

U.S. Patent Mar. 15, 2016 Sheet 39 of 53 US 9,286,035 B2

Qmpact Point Availa b!e)

/ Preview Remediation / Auto Remediation

[Se!ected Impact Points are copied in remediation table] G’erform Auto Remediation)

/ Cancel Operation
{AH impact points are removed from Rem db)

|

/ Continue With Scanner

Ompact Points for scanning)

! Unselect Impact Point
/?(!mpact Points not selected for scanning]

Qmpact Point selected)

/ Perform Scanning

FIG. 39

U.S. Patent Mar. 15, 2016 Sheet 40 of 53 US 9,286,035 B2

/ Perform

Scanning

(Scanned Impact

Points Available}

/ Continue With Annotation

Ompact Points for annotatiorD

Cancel

Exit

! Unselect Impact Pointi(
/Qmpact Points not selected for annotation]—

(Impact Point selected)

{ Perform Annotation

l

FIG. 40

U.S. Patent Mar. 15, 2016 Sheet 41 of 53 US 9,286,035 B2

/ Perform Annotation

(Annotation Pattern Details Available)

/ Continue With Applying Paiterns Cancel

Gmpact Points for pattems) Exit

/ Unselect Impact Points\(
/Qmpact Points not selected for pattems)————-

Ompact Point selecteca

/ Apply Patterns

FIG. 41

U.S. Patent Mar. 15, 2016 Sheet 42 of 53 US 9,286,035 B2

/ Apply Patterns

Q\nnotation Applied Pattern Details Available)

/ Continue With Analysis Cancel

Gmpact Points for analysis) Exit

/ Unselect Impact Points g
/Klmpact Points not selected for analysis]*

Qmpact Point selected)

/ Perform Analysis

FIG. 42

U.S. Patent Mar. 15, 2016 Sheet 43 of 53 US 9,286,035 B2

/ Perform Analysis

G\nalysed Impact Points Available)

/ Continue With Translation Cancel

Qmpact Points for translation) Exit

/ Unselect Impact Points \(
</ /Qmpact Points not selected for translation}————

(Impact Paint selectecD

/ Perform Translation

FIG. 43

U.S. Patent Mar. 15, 2016 Sheet 44 of 53 US 9,286,035 B2

/ Perform Translation

Cl'ranslated remediation code available)

/ Continue With Remediation Cancel

Empact Points for remediatiorD Exit

/ Unselect Impact PoinE(
</ /Klmpact Points not selected for remediatiotD—

Gmpact Point selectecD

/ Perform Remediation

[File with Remediated Code available]

FIG. 44

U.S. Patent Mar. 15, 2016 Sheet 45 of 53

_ AddNew

__ Annotation Desien Dashboard

US 9,286,035 B2

Annotation Name | Annotation Change Ty Language — Statement| Mapped Variables Mapped Functions Action
[Edit } (Defete.
Table lists all the ~ Click of
available Edit Click of
Sort by the column Annotations details SiSplays Delete
headers inread only mode, ~ 1"® Edit displays the
Double click on the ~ AAnnotatio Delete
row shows the n pop Up Annotation
complete details — pop up ..

FIG. 45

U.S. Patent Mar. 15, 2016 Sheet 46 of 53 US 9,286,035 B2

Add New Annotation
WHEN CONDITION

Change
Type Size Change

Language Type COBOL

Statement % MOVE STATEMENT OR ASSIGNMENT
Type

+ DO THIS ACTION

Execute
Function

| SIZE CHANGE

Preview

iTRem{
CHANGE {

SIZECHANGE(SIZE, IMPACTLINE)

}

[save Annotation - |

FIG. 46

U.S. Patent Mar. 15, 2016 Sheet 47 of 53

| Add New Function

US 9,286,035 B2

{
Function Name | SIZE CHANGE

-~ Function Variable Mapper

Add New ;

Map Variable Position

Action

SIZE

:

% IMPACTLINE

2

SIZECHANGE(SIZE,IMPACTLINE)

Save Function

FIG. 47

U.S. Patent Mar. 15, 2016 Sheet 48 of 53 US 9,286,035 B2

Add New Varisble:

Variable Name

I SIZE

Default Value

Preview

SIZE=0

FIG. 48

U.S. Patent Mar. 15, 2016 Sheet 49 of 53 US 9,286,035 B2

PK |id PK |id
number kbase _transac _id kbase _seg_id
tag lorseg_id elem_id
purpose short_definition short_definition
long _definition long_definition
repeat_time - 1.n type_usage
type_usage data_elem_num
PK |id display_pattern values
n lorseg_type) data_type
src_transac _id parent_lorseg_id length _min
tgt_transac_id seg_postn length _max
src_parent_pk elem_type
src_parent_id repeat _times

tgt_parent_pk

tgt_parent_id -
parent_type PK |id
loops
ent'ioty type kbase_elem _id
src_entity_pk subelem_id
src—enmz“ﬁj short_definition n..1
tgt_entity_pk long__definition
tgt_entity_id gype_ulsage
change_value vzrje—: em_num
change_type
ge_yp data_type
length_min
length _max
repeat _time
ecl_token
¢ id %
name
description eR e Cl__token_set
change_type_cd g i
token_type_cd name
search_type._cd . description
category..cd job_id
tokenset_id - version_id
application_id . parent_id
process_id
token_status
token_status_detail

4900

ecl_token. kbase_change type mapping
¥ id

ecl_token_id

kbase_chénge__type_rmpping_id

FIG. 49

US 9,286,035 B2

Sheet 50 of 53

Mar. 15, 2016

U.S. Patent

0G 'Old

o EECE Y

S1a 3dALIONYHD

T NDLIVNESS] fOud

NOLIVDOTDWOS Tosd
aiieo

@ B

130 NOLIVMNOIINDD

w
:

CERT e BERELYIS |
a b
IdAL 1 AWALIYIS

US 9,286,035 B2

Sheet 51 of 53

Mar. 15, 2016

U.S. Patent

1G "Old

DHENHNTD
Mo T
gralict , ,
IETHEN m
B

BEBE IO00 BT
| QUM D WO
O el MO

@
STEVI3A MITdWOD oo NOWTWRE

i W W M arNeEl NG MUY |
IOOREND, N STV AN
ke BN R W 3
QWM%MMWMW b Sre—— OO N L]

~ OF LS
T NOLIY AP -

- — el s e
S ST oty e s

| @b w

ar g D by
SRR b 110 WLV HOIVIONMY | o Jo
. S T

GBI ERAYNY
W o &
,ﬂ&@n&%ﬁmﬁwﬁm&

US 9,286,035 B2

Sheet 52 of 53

Mar. 15, 2016

U.S. Patent

¢S Ol

Beumen
G T

e : G CHAT 2880
SINMIIG dANINOS EEoi= 4=y
ETE R e B
arksoL
B E e
1O
E el
- | OOV A
Ieasums ELGEE e
a b DN YA
SNIVIS NOIIVIGWITH ETRE 1= e
5 , IXOTNE THEE
m e
LU ot ez Uo
O e e
. AL
ai B a &
O WA NOLYSERBY IHIOd I dWT HOLIVEIIHIN
E TR] e _ =t
@B Sl SNIVIS AJT I2vdWE OIHIE =5

AT HOHVIAIHTY

QT FUWS

U.S. Patent Mar. 15, 2016 Sheet 53 of 53 US 9,286,035 B2

5300

| 5300 COMMUNICATION m
| f e e e CONNECTION(S) 5370

I} 5330 e ™ : |
: : CENTRAL | | INPUT DEVICE(S) 5350 :
|| | PROCESSING | l
I'r] uNITs310 5320 | !| ouTPUT DEVICE(S) t
h : 5360 !
|| | |
I N I l
' : b | 1|77 STORAGE 5340 ||
e X |

S ow— — — — — — ——— i . ot — s fosiss v wmnn wa—n — — —— . e toram s

SOFTWARE 5380

FIG. 53

US 9,286,035 B2

1
CODE REMEDIATION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of Indian Application
No. 2217/CHE/2011, filed in India on Jun. 30, 2011, which is
incorporated herein by reference.

BACKGROUND

A recurring problem plaguing software systems is change.
Software development typically proceeds with a certain set of
requirements and specifications. Although programmers
attempt to anticipate likely changes, it is impossible to accu-
rately predict the future. Inevitably, changes in the outside
world alter the requirements and specifications, rendering the
software obsolete or useless.

A particularly challenging area is the healthcare industry.
Modern healthcare legislation can specity protocols for com-
municating information within the healthcare industry. For
example, Title II (Administrative Simplification provisions)
of the Health Insurance Portability and Accountability Act
(HIPAA), enacted by the U.S. Congress in 1996, requires the
establishment of national standards for electronic healthcare
transactions and national identifiers for providers, health
insurance plans, and employers. After Jul. 1, 2005, most
medical providers that file electronically were required to file
their electronic claims using the HIPAA standards to be paid.

On Jan. 1, 2012, the newest version of HIPAA, version
5010, becomes effective, replacing version 4010. Among
various changes, HIPAA 5010 allows for the larger field size
of'the International Classification of Diseases, 10th Revision,
Clinical Modification (ICD-10-CM), provided by the Centers
for Medicare and Medicaid Services (CMS) and the National
Center for Health Statistics (NCHS), for medical coding and
reporting in the United States. The ICD-10-CM is a morbidity
classification for classifying diagnoses and reasons for visits
in healthcare settings. The ICD-10-CM is based on the ICD-
10, the statistical classification of disease published by the
World Health Organization (WHO), which replaces ICD-9.

Inevitably, there will be further changes to HIPAA and
similar legislation in the future.

SUMMARY

A variety of techniques can be used for code remediation.

A language-independent approach can be used during
remediation to support a plurality of programming languages.
For example, code to be remediated can be annotated with
language-independent annotations.

Analysis can generate a pre-translation analysis tree,
which can be used to translate the code into remediated code.

A wide variety of change types can be supported. So, the
technologies can solve a wide variety of remediation sce-
narios.

Automatic remediation as well as custom remediation can
be supported. Thus, users can take advantage of some of the
technologies described herein without surrendering control
of the remediation process.

Considerable efficiency improvements in the remediation
process can be realized.

As described herein, a variety of other features and advan-
tages can be incorporated into the technologies as desired.

The foregoing and other features and advantages will
become more apparent from the following detailed descrip-

10

40

45

55

2

tion of disclosed embodiments, which proceeds with refer-
ence to the accompanying drawings.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a block diagram of an exemplary system imple-
menting the code remediation technologies described herein.

FIG. 2 is a flowchart of an exemplary method of imple-
menting the code remediation technologies described herein.

FIG. 3 is a block diagram of an exemplary system imple-
menting the code remediation technologies described herein
via an annotation engine and a translation engine.

FIG. 4 is a flowchart of an exemplary method of imple-
menting the code remediation technologies described herein
via language-independent annotations.

FIG. 5 is a block diagram of an exemplary technique of
remediating code by sections.

FIG. 6 is a block diagram of an exemplary system imple-
menting the code remediation technologies described herein
via an annotation engine.

FIG. 7 is a flowchart of an exemplary method of imple-
menting the code remediation technologies described herein
via token search patterns.

FIG. 8 is a block diagram of an exemplary language-inde-
pendent annotation for code remediation.

FIG. 9 is a block diagram of an exemplary analysis engine
for implementing code remediation via an analysis tree.

FIG. 10 is a flowchart of an exemplary method of imple-
menting code remediation via an analysis tree.

FIG. 11 is a block diagram of an exemplary system imple-
menting code remediation via a translation engine with
change functions.

FIG. 12 is a flowchart of an exemplary method of generat-
ing remediated code via change functions.

FIG. 13 is a flowchart of an exemplary method of imple-
menting code remediation tasks in stages.

FIG. 14 is a screen shot of an exemplary user interface for
code remediation setup.

FIG. 15 is a screen shot of an exemplary user interface for
configuring users.

FIG. 16 is a screen shot of an exemplary user interface for
selecting impact points for remediation.

FIG. 17 is a screen shot of an exemplary user interface for
a pre-scanning stage.

FIG. 18 is a screen shot of an exemplary user interface for
annotation details.

FIG. 19 is a screen shot of an exemplary user interface for
an annotation stage.

FIG. 20 is a screen shot of an exemplary user interface
showing an exemplary annotation.

FIG. 21 is a screen shot of an exemplary user interface for
a translation stage.

FIG. 22 is a screen shot of an exemplary user interface for
editing proposed remediated source code.

FIG. 23 is a screen shot of an exemplary user interface for
indicating remediated files.

FIG. 24 is a screen shot of an exemplary user interface for
navigating through remediated sections of code.

FIG. 25 is a screen shot of an exemplary user interface for
automatic remediation.

FIG. 26 is a screen shot of an exemplary user interface for
showing overall remediation progress.

FIGS. 27, 28,29, 30, and 31 illustrate an exemplary execu-
tion of code remediation technologies.

FIGS. 32, 33, 34, 35, 36, and 37 illustrate another exem-
plary execution of code remediation technologies.

FIG. 38 is a block diagram of an exemplary analysis tree.

US 9,286,035 B2

3

FIGS. 39, 40, 41, 42, 43, and 44 illustrate execution flow
for an exemplary implementation of code remediation.

FIGS. 45,46,47, and 48 are screen shots of exemplary user
interfaces for configuring annotation types.

FIG. 49 is a block diagram showing an exemplary database
design for a remediation knowledge base.

FIGS. 50,51, and 52 are block diagrams showing an exem-
plary database design for a code remediation tool.

FIG. 53 is a block diagram of an exemplary computing
environment suitable for implementing any of the technolo-
gies described herein.

DETAILED DESCRIPTION
Example 1
Exemplary Overview

The technologies described herein can be used for a variety
of code remediation scenarios. The code remediation tech-
nologies can make use of language-independent annotations
as described herein. Automatic and custom (e.g., preview)
remediation can be supported. Adaptation of the technologies
can provide an efficient technique for implementing code
remediation in a variety of fields, including the healthcare
field.

Example 2

Exemplary System Employing a Combination of the
Technologies

FIG. 1 is a block diagram of an exemplary system 100
implementing the code remediation technologies described
herein. In the example, one or more computers in a computing
environment implement a code remediator 150 that accepts as
input code to be remediated 110.

The code remediator 150 can include an annotation engine
160 as described herein operable to generate annotations. The
code remediator 150 is operable to generate remediated code
180 (e.g., via the knowledge base 170).

In practice, the systems shown herein, such as system 100
can be more complicated, with additional functionality, more
complex remediations, and the like.

In any of the examples herein, the inputs, outputs, and
knowledge base 170 can be stored in one or more computer-
readable storage media.

Example 3

Exemplary Method of Applying a Combination of
the Technologies

FIG. 2 is a flowchart of an exemplary method 200 of
implementing the code remediation technologies described
herein and can be implemented, for example, in a system such
as that shown in FIG. 1. The technologies described herein
can be generic to the specifics of operating systems or hard-
ware and can be applied in any variety of environments to take
advantage of the described features.

At 210, code to be remediated can be received. Any of the
examples of code described herein can be used and can
include source code to be remediated in light of a regulation
set affecting logic of the source code. The code can be in any
of a variety of programming languages as described herein.

At 220, language-independent annotations are generated
for the code to be remediated. The annotations can be in any

10

15

20

25

30

35

40

45

50

55

60

65

4

of'avariety of formats, including those described herein. Such
annotations can be applied (e.g., inserted into) the code to be
remediated (e.g., as comments).

At 230, a remediated version of the code is generated
according to the language-independent annotations. Genera-
tion can include outputting lines of remediated source code in
an appropriate (e.g., the same) programming language. Thus,
at some point, the language of the code to be remediated can
be identified. The remediated version compiles with the regu-
lation set.

The method 200 and any of the methods described herein
can be performed by computer-executable instructions stored
in one or more computer-readable media (e.g., storage or
other tangible media) or one or more computer-readable stor-
age devices.

Example 4

Exemplary System Employing a Combination of the
Technologies

FIG. 3 is a block diagram of an exemplary system 300
implementing the code remediation technologies described
herein via an annotation engine and a translation engine. In
the example, one or more computers in a computing environ-
ment implement an annotation engine 330 that accepts as
input code to be remediated 310. Although not shown, a
scanning engine and/or other software (e.g., impact analyzer)
can also be included to handle pre-annotation tasks such as
scanning through the code to find and/or process impact
points, displaying the impact points for consideration by a
user, and the like.

The annotation engine 330 provides language-independent
annotations 340 to a language-independent analysis engine
360, which outputs a pre-translation analysis tree 365, which
comprises an organized form of the annotation.

The translation engine 370 accepts the pre-translation
analysis tree 365 as input and outputs remediated code 390.

Example 5

Exemplary Method of Applying a Combination of
the Technologies

FIG. 4 is a flowchart of an exemplary method 400 of
implementing the code remediation technologies described
herein via language-independent annotations and can be
implemented, for example, in a system such as that shown in
FIG. 3.

At 410, code to be remediated is received.

At 420, the code to be remediated is annotated with lan-
guage-independent annotations.

At 430, a pre-translation analysis tree is generated based on
the annotations.

At 440, based on the tree, remediated code is generated.

Example 6

Exemplary Technique of Remediating Code by
Sections

FIG. 5 isablock diagram of an exemplary technique 500 of
remediating code by sections and can be implemented in any
of'the examples herein. In the example, code to be remediated
510 is modified to generate remediated code 550. Any of the
techniques described herein can be applied on a section-by-
section basis.

US 9,286,035 B2

5

The code to be remediated 510 can comprise a plurality of
sections 530A-N. The sections can be copied or remediated to
generate corresponding sections 560A-N in the remediated
code 550.

In practice, a variety of methods can be implemented to
implement the illustrated technique. For example, the sec-
tions can be copied from the code remediated 510 to the
remediated code 550. Certain of the sections to be remediated
can be annotated. Out of those, at least one of the annotated
sections can be remediated. Annotations can subsequently be
deleted to clean up the code.

Copies of the code to be remediated can be made before
remediation to keep a record of the code as it was before
remediation. If the remediation process does not proceed as
desired, the process can be restarted by copying the original
code to be remediated again.

The shown sections can be lines, statements, loops, or the
like. Typically, the code is stored in files, but code can also be
stored in a variety of other ways (e.g., in a database).

Example 7

Exemplary System Implementing Code Remediation
Via Annotation Engine

FIG. 6 is a block diagram of an exemplary system 600
implementing the code remediation technologies described
herein via an annotation engine. In the example, one or more
computers in a computing environment implement an anno-
tation engine 630 that accepts as input code to be remediated
610. The engine 630 can also make use of remediation intel-
ligence 620 (e.g., token search patterns and the like). Input
can also include a list of impact points generated outside the
annotation engine. The engine 630 can output a language-
independent annotation 640, which includes an in-code token
645 (e.g., an occurrence of a token search pattern in the code
610).

Functionality for finding occurrences of token search pat-
terns and generating the annotations can be separated into
different components of the system if desired.

Example 8
Exemplary Code

In any of the examples herein, the code processed by the
technologies herein can be source code, XML, and the like. In
practice, source code to be remediated can be used as input to
a remediation tool, which outputs remediated source code.
Remediation can be done in place on files, so the output
source code is inserted into the remediated source code files.

An entire application can be remediated by remediating the
source code files, support files, and the like. For example, an
application for hospital claim processing under HIPAA 4010
can be remediated to be HIPAA 5010 compliant via the tech-
nologies described herein. Source code implementing elec-
tronic claim processing logical according to an old version of
healthcare regulations can be remediated to comply with
claim processing in light of'a new version of healthcare regu-
lations.

The remediation technologies described herein can be
applied to the application as a whole by remediating files of
the application, regardless of their language or if they are of
different languages (e.g., a mix of languages).

As described herein, the code can be in any of a variety of
programming languages (e.g., COBOL, JAVA, Visual C,

10

15

20

25

30

35

40

45

50

55

60

65

6
PHP, XML, and the like). The annotations can be imple-
mented as language-independent annotations for remedia-
tion.

Example 9
Exemplary Impact Points

In any of'the examples herein, impact points can be tracked
during code remediation. An impact point can be a location in
code that is impacted by the new regulation set. Impact points
can be represented as an indication of the code location and
further details (e.g., an associated token that matched a token
search pattern, a change type, a transaction set, loop, and the
like). A reference to a place where the code can be retrieved
can also be included.

Such impact points can be stored as impact point records
that indicate a variable name or constant name affected by
migration to the new regulation set and a location in the
source code at which the name occurs. Such points can be
generated responsive to finding an instance of a token search
pattern.

Example 10
Exemplary Knowledge Base

In any of the examples herein, various information for use
during code remediation can be stored in a knowledge base
for use by a code remediation tool, which can be a web or
standalone application.

Results of remediation analysis (e.g., impact points) can be
stored in the knowledge base, or references to another reposi-
tory (e.g., code analysis result repository, impact analysis
repository, impact point repository, or the like) can be placed
in the knowledge base that point to results of remediation
analysis.

For example, if a token search pattern is used and impact
analysis indicates that there are 20 lines of code with the token
search pattern, those lines can be indicated as impact points
and put into the code analysis result repository. Impact points
can be represented in the remediation knowledge base with
references to the repository.

Example 11
Exemplary Remediation Intelligence

In any of the examples herein, remediation intelligence can
be stored (e.g., in a knowledge base) and relied upon during
remediation.

Such intelligence can include token search patterns,
change functions, rules for applying annotations, and the like.
The intelligence can be arranged as stored data, executable
functions, parameter-controlled actions, and the like.

The intelligence can comprise tables that hold conversion
information between the old regulation set and the new regu-
lation set. Changes can be categorized (e.g., as loops, seg-
ments, elements, and sub-elements).

Relationships between the impact points and the changes
can also be stored. So, an indication of how the new regulation
set impacts (e.g., what is the relationship between an impact
and a loop) the code can be represented.

The remediation intelligence can indicate how to map ele-
ments (e.g., variable or constants) and values for such ele-
ments appearing in the code handling the old regulation set to
elements and values for such elements to be included in code

US 9,286,035 B2

7

for the new regulation set. For example, in a migration from
an old regulation set to a new regulation set, it may be known
that a particular disease has a certain disease code under the
old regulation set. For example, if the variable is admit dis-
ease and its value is chosen from old disease codes (e.g., AA,
BB, CC), under the new regulation set, new disease codes
may be involved. So, “AA” may map to “A1” due to migration
from the old regulation set to the new regulation set. The
remediation tool can identify and remediate such changes.

Example 12
Exemplary Remediation Intelligence Categories

In any of the examples herein, changes represented by
remediation intelligence can be placed into categories (e.g.,
loops, segments, elements, and sub-elements). Loops can be
the outer most parts of a claim transaction. For example, in the
case of XML, the final enclosing tag defines a loop. Loops are
typically related to overall information about a particular
transaction.

Within a loop, there can be segments. Segments can carry
individual information for each claim transaction type. For
example, an 837 transaction (e.g., under HIPAA) between a
payer and a provider is a particular transaction type. A loop
will have information about hospital reimbursement, hospital
type, and the like. Segments can drill down further and have
information about the hospital (e.g., hospital ward, number of
beds, etc.).

Within segments there can be elements. Elements can be
implemented as key/value pairs. They can carry the individual
data points and the data information. And, an element can
have a sub-element.

A particular translation (e.g., under HIPAA) can be repre-
sented via such four categories, and the changes from one
version of HIPAA to another can be so categorized. For
example, if there is a change in a loop between HIPAA 4010
to HIPAA 5010, the remediation intelligence can represent
such a change and indicate that it occurs at 837 I, for a
particular loop, and the change is in a particular segment, and
the element value was changed from one particular value to
another particular value. So, the changes can thus be repre-
sented in the knowledge base as remediation intelligence.

Example 13
Exemplary Token Search Patterns

In any of the examples herein, token search patterns can
specify a search pattern against which variables or constants
in the source code are checked. An occurrence of the token
search pattern in the source code (e.g., an in-code token)
indicates an impact point. Such impact points can be found by
the remediation tool or separate software. In addition to vari-
able names and constant names, the token search pattern
technologies can also be applied to numeric codes (e.g., dis-
ease codes), XML tags, and the like.

Token search patterns can be implemented as regular
expressions. Matches to token search patterns can be found as
any variable or constant in the code that contains the regular
expression. In effect, wildcards can be placed at the beginning
and end of the token search pattern to match any variables or
constants that contain the token search pattern.

The token search pattern specifies a pattern that is config-
ured to match variables or constants affected by migration to
the new regulation set. For example, if regulations affect a
constant such as “CLAIM_VERSION,” token search patterns

10

15

20

25

30

35

40

45

50

55

60

65

8
such as “CLM_VERS” “CLAIM_V” “CL\w_VER\W” and
the like can be specified. Upon match, an impact point is
identified, and an appropriate annotation can be generated as
described herein.

Example 14
Exemplary Tokens

In any of the examples herein, a token can be an in-code
occurrence of a token search pattern. To track impact points,
they can be indexed by the token, which is typically a constant
name or variable name appearing in source code. As
described herein, tokens can also be numeric codes (e.g.,
disease codes), XML tags, and the like.

Example 15
Exemplary Remediation Techniques

In any of the examples herein, automatic or custom (e.g.,
manual, guided, or the like) remediation can be supported. In
custom remediation, a remediation tool can give a user con-
trol over how and what impact points to remediate and allow
the user to step in at different stages (e.g., scanning, annota-
tion, analysis, translation, and the like). The tool can present
an option to step in at different stages, see what is happening
during the remediation process, and accept changes from the
user (e.g., in the case remediation is not happening as desired,
according to the user’s knowledge). The tool can accept input
from a user that specifies approval or rejection of proposed
changes, impact points, and the like. Thus, a user can assert
control over the remediation exercise.

In automatic remediation, the remediation intelligence
decides how to remediate the code and just converts it into
remediated code. The resulting files can be provided for
browsing by a user. Similar stages can be involved, but with-
out user input between the stages.

Example 16

Exemplary Method of Applying a Combination of
the Technologies Via Token Search Patterns

FIG. 7 is a flowchart of an exemplary method 700 of
implementing the code remediation technologies described
herein via token search patterns and can be implemented, for
example, in a system such as that shown in FIG. 6.

At 710, code to be remediated is received. The technolo-
gies can support any of the exemplary code described herein.

At 720, locations of occurrences of token search patterns in
the code are found. For example, the code can be searched for
occurrences (e.g., instances) of token search patterns. Alter-
natively, other software can find such locations, and the anno-
tation engine can navigate to such locations. Such patterns
can indicate a variable name of constant name affected by
migration to a new version of regulations.

At 730, responsive to finding such locations, a language-
independent annotation is generated. The language-indepen-
dent annotation can be based on remediation intelligence in a
knowledge base, the contents of the code to be remediated,
and the like. Generating an annotation can be accomplished
by first generating an impact point record. The annotation can
then be generated to indicate information in the impact point
record. Filtering or other processing can be done on the
impact point record to influence the remediation process.

US 9,286,035 B2

9

Subsequently, a remediated version of the code can be
generated as described herein. For example, parameters can
be applied to change functions. The resulting remediated
code can comply with the new version of regulations.

Example 17
Exemplary Language-Independent Annotations

FIG. 8 is a block diagram of an exemplary language-inde-
pendent annotation 840 for code remediation and can be
implemented in any of the examples herein. The annotation
840 can be associated with a section of the code (e.g., indi-
cated by an impact point) to be remediated and used by the
remediation tool to implement remediation of the code. In
practice, the annotation indicates a modification to be made to
the code so that the code is remediated according to the new
regulation set.

Programming-language-independent annotations (or sim-
ply “language-independent” annotations) can be of a format
that is independent of any programming language. The for-
mat has its own grammar that forms an executable language
of'its own. The executable language can include change func-
tions and associated parameters that result in output of reme-
diated code in a particular language according to the annota-
tion.

The actual format of the annotations can be different from
the format of the annotation 840 shown. For a given change
type and impacted variable, the annotation applied can be the
same irrespective of whether the source code having the
impacted variable is in COBOL, JAVA, or the like. Thus,
language-independence exhibits itself in that the content of
the annotation can be the same for two programming lan-
guages having completely different syntax. For example, a
change function name in an annotation can be the same and
accomplish implementation of the same aspect of a new regu-
lation set for two different languages, but when translated
(e.g., by the change function particular to the programming
language), the annotation will result in different source code.
Although the annotation content is programming-language
independent, the specifics of inserting the annotation may be
particular to the programming language (e.g., using a com-
ment syntax particular to the programming language).

The annotation 840 can include an in-code token 842. For
example, the in-code token 842 can be a constant or variable
name appearing in the code (e.g., at the impacted section) and
corresponding to (e.g., found via) a token search pattern.

The annotation 840 can also include a change type 844
indicating the type of change to be implemented to achieve
remediation of the code to be remediated. Alternatively, or in
addition to the change type 844, a change function can be
indicated (e.g., via name).

The annotation 840 can also include a statement type 845.
For example, the statement type 845 can indicate the type of
statement appearing at the affected section.

The annotation 840 can also include an impact location
846. For example, the impact location 846 can indicate a
location (e.g., section, line number, or the like) at which the
annotation is applied (e.g., at which the section to be reme-
diated via the annotation appears in the code to be remedi-
ated).

The annotation 840 can also include one or more change
parameters 848. The change parameters 848 can be used in
conjunction with the change type 844 or a change function to
achieve remediation. For example, if a change is to be made,
the change parameters 848 can provide details, such as a new
value (e.g., variable size), or the like.

20

25

40

45

55

10

Other information can be included to achieve remediation
via the annotation.

Example 18
Exemplary Rules for Applying Annotations

In any of the examples herein, remediation intelligence can
comprise rules for applying annotations. Based on token
search patterns detected, a rule associated with the token
search pattern can be invoked, and the rule specifies what
annotation is to be applied.

A token search pattern name and token mapping to a
change type (e.g., code change in ‘Benefit Maintenance’
transaction with respect to a Member Relation Code element)
can be stored as Token Search Criteria.

Token Search Results can specify the impact location and
impacted source code details (e.g., statement type, such as IF,
FOR, Declaration, or the like; source code language, such as
Java, Visual Basic, COBOL, or the like). The Token Search
Criteria and the Token Search Results together can provide
sufficient information to trigger rules in the knowledge base
that specify what annotation is to be applied.

Example 19
Exemplary Change Types

The code remediation technologies can support a wide
variety of change types. In addition to the size_change
examples, other types such as the following can be imple-
mented: code_added, code_deleted, element_added,
element_deleted, loop_added, loop_deleted, name_changed,
repeat_count_changed, segment_added, segment_deleted,
subelement_added, subelement_deleted, usage_type_
changed.

Example 20
Exemplary Remediated Code

In any of the examples herein, the remediated version of
code can be implemented as a version of the to-be-remediated
version that has been remediated (e.g., the code has been
changed to comply with a new regulation set).

Example 21

Exemplary System Implementing Code Remediation
Via Analysis Engine

FIG. 9 is a block diagram of an exemplary analysis engine
960 for implementing code remediation via an analysis tree.
In the example, one or more computers in a computing envi-
ronment implement an analysis engine 960 that accepts as
input one or more annotations 940.

As shown in the example, analysis engine 960 can output a
pre-translation analysis tree 965, which includes one or more
parameter/value pairs 967A-N. As described herein, the
parameter/value pairs can be used to generate remediated
lines of code. For example, parameters to change functions
can be implemented as such.

Example 22

Exemplary Method of Applying a Combination of
the Technologies Via Analysis Tree

FIG. 10 is a flowchart of an exemplary method 1000 of
implementing the code remediation technologies described

US 9,286,035 B2

11

herein via an analysis tree and can be implemented, for
example, in a system such as that shown in FIG. 9.
At 1010, a language-independent annotation is received.
At1020, parameters and values are found in the annotation.
At1030, responsive to finding the parameters and values in
the annotation, an analysis tree is built with the parameters
and values for consumption by a translator.

Example 23
Exemplary Analysis Tree

In any of the examples herein, an analysis tree can be
arranged as a hierarchical data structure with nodes for con-
sumption by the translator. Nodes can specity an associated
token for an annotation, a change type for the annotation, a
type of statement for the annotation, and parameters for use in
change functions. For example, parameters such as line num-
ber, operations to be performed on the code, search strings,
and the like can be arranged on the analysis tree.

The analysis tree can be arranged such that specific param-
eters are placed at the leaf nodes, and upper nodes specify
additional parameters or functions to be performed. The lan-
guage-specific change functions can consume the parameters
and then apply the functions when navigating upward through
the tree. In this way, a language-independent analysis tree can
be efficiently converted into source code of a specific pro-
gramming language.

The tree can serve as a stack onto which parameters are
pushed and then consumed (e.g., popped) by the translator at
a later time. The tree can establish relationships between
commands (e.g., change functions) in the tree. The tree can
also establish relationships between commands and associ-
ated parameters.

Example 24

Exemplary System Implementing Code Remediation
Via Translation Engine

FIG. 11 is a block diagram of an exemplary system 1100
implementing the code remediation technologies described
herein via a translation engine 1170. In the example, one or
more computers in a computing environment implement a
translation engine 1170 that accepts as input a pre-translation
analysis tree 1165. As shown, the tree 1165 can comprise one
or more parameter/value pairs 1167A-N.

The translation engine 1170 can implement one or more
change functions 1175A-N to achieve remediation. As
described herein, the change functions 1175A-N can generate
lines of remediated code (e.g., according to the parameter/
values pairs 1167A-N in the tree 1165). In a remediator sup-
porting different programming languages, there can be dif-
ferent change functions for the different languages, or the
change function can determine which language is involved
and function accordingly.

The output of the translation engine 1190 is one or reme-
diated code lines, sections, or the like. Although the annota-
tion and the pre-translation analysis tree can be language
independent, the resulting code lines 1190 are of a particular
programming language (e.g., that of the input source code).

Example 25

Exemplary Method of Applying a Combination of
the Technologies Via Change Functions

FIG. 12 is a flowchart of an exemplary method 1200 of
implementing translation described herein via change func-
tions and can be implemented, for example, in a system such
as that shown in FIG. 11.

10

35

40

45

60

12

At 1210, an analysis tree is received.

At 1220, remediated code is generated, applying param-
eters and values in the tree to a change function.

At 1230, remediated code lines are output. For example,
the code lines can be placed in the program to be remediated
to replace lines that are being remediated. The code lines are
of'the target programming language (e.g., the same program-
ming language of the source code that was annotated). After
translation, the file can be cleared up (e.g., the annotations
deleted).

Example 26
Exemplary Change Functions

In any of the examples herein, change functions can per-
form the actions related to generating remediated source
code. Such actions can include deleting code, adding code,
and modifying code to be syntactically correct in the target
programming language. Annotations can include reference to
such change functions (e.g., by name).

For example, if a change function of type CODECHANGE
for JAVA code is invoked based on an annotation, it can
perform actions such as deleting lines of code. If a conditional
statement (e.g., “if” block) is involved, the change function
can also modify remaining lines to form a syntactically cor-
rect conditional statement in accordance with the JAVA syn-
tax.

A change function can be specified by a language-indepen-
dent change function name, such as “CODECHANGE.”
However, when invoked, the remediation tool will determine
the appropriate change function logic to execute based on the
target language. There can be different change function
implementations of the same change function name for dif-
ferent languages.

Thus, generating the remediated version of source code can
comprise generating source code according to the syntax of a
particular programming language (e.g., the programming
language of the code to be remediated) with a change function
indicated by a language-independent change function name.

Example 27
Exemplary IT-Impacting Regulations

In any of the examples herein, code can be remediated to
comply with IT-impacting regulations. Such regulations can
include legislation, administrative rule-making, and the like,
typically implemented on a national scale in such areas as
healthcare. A regulation set can include one or more such
regulations. Such regulations can be new regulations imple-
menting a migration from an old regulation set to the new
regulations.

Such regulations can impact various aspects of information
technology, such as information collection, reporting require-
ments, communication format requirements, and the like.
Compliance with such regulations is typically not voluntary,
and failure to comply can result in strict penalties. Thus, such
regulations can impact the logic of source code associated
with processing information affected by the regulations.

An area in which regulation changes have become pressing
is in the healthcare arena. Changes from HIPAA 4010 to
HIPAA 5010 and changes from ICD 9to ICD 10 are examples
of new regulation sets that can require code remediation for
compliance. Failure to comply can result in nonpayment of
claims (e.g., claims for reimbursement by a healthcare pro-
vider, insurance company, and the like).

US 9,286,035 B2

13

So, for example, the token search patterns described herein
can indicate a variable name or constant name affected by
claim processing migration to a new version of healthcare
regulations. Similarly, impact points (e.g., in the form of an
impact point record) can indicate a variable name or constant
name affected by claim processing migration to a new version
of healthcare regulations and a location in the source code at
which the name occurs.

Language-independent annotations can indicate the vari-
able name or constant name affected by claim processing
migration to the new version of healthcare regulations, the
location in the source code at which the name occurs, a
change function, and one or more parameters associated with
the change function.

Generating a remediated version of source code can com-
prise applying such parameters to the change function. The
change function can generate source code in the appropriate
programming language based on the source code to be reme-
diated, and such generated source code can comply with
claim processing in light of the new version of healthcare
regulations according to the language-independent annota-
tion.

Example 28

Exemplary Representations of Candidate
Remediations

During a preview process that implements manual reme-
diation, candidate or proposed remediations can be shown for
consideration by a user. For example, candidate remediations
can take the form of a list with a name of impacted variable/
constant, a list of proposed code changes, a list of proposed
new code, or the like. Individual candidate remediations can
be specified (e.g., selected for further processing) via a user
interface.

Indication (e.g., de-selection) that the candidate remedia-
tion is not be processed can be received. Not processing can
comprise not annotating, not changing the code, and the like.
Responsive to receiving an indication that the candidate
remediation in not to be processed, further remediation pro-
cessing for the candidate remediation can be omitted (e.g.,
halting remediation processing for the candidate remedia-
tion).

A user can be given an option to edit proposed code, pro-
posed remediated code, and the like. Responsive to receiving
a modification, the source code can be remediated according
to the modification (e.g., immediately or in later stages of
manual remediation).

Example 29
Exemplary Stages

FIG. 13 is a flowchart of an exemplary method of imple-
menting code remediation tasks in stages implemented by an
exemplary remediation tool. Although four stages are shown,
the functionality can be arranged in one or more stages in any
number of other ways.

Some work can be performed (e.g., pre-scanning tasks) by
another tool, or such work can be incorporated into the tool.
Exemplary pre-scanning tasks can include identifying impact
points and the like.

At 1310, scanning tasks are performed. Due to the number
of'tasks during scanning, the tasks can be implemented in the
background. A copy of the actual source file (e.g., for reme-
diation) can be created during scanning. Scanning can exam-

10

15

20

25

30

35

40

45

50

55

60

65

14

ine code to find exceptions and determine which impact
points are to be annotated. In the case of custom remediation,
a list of impact points can be presented for consideration and
selection by a user as described herein. Such a list can be
organized by type (e.g., conditional, loop construct, etc.).

At 1320, annotation tasks are performed. Language-inde-
pendent annotations can be generated for the code. Although
an implementation can have separate annotation, in the
example, annotation comprises placing annotations into the
code itself.

At 1330, analysis tasks are performed. Analysis can
include analysis of the annotations and construction of an
analysis tree.

At 1340, translation tasks are performed. Such tasks are
sometimes called “compilation,” although they need not
involve conventional source code compilation. Instead, the
annotations (e.g., as represented in the analysis tree) are trans-
lated into the specific programming language of the code.
Actual remediated code is created (e.g., from annotation
details) and is ready for inclusion into the remediation file
(e.g., a copy of the source file).

The stages are helpful for design, illustration, and organi-
zational purposes, but functionality can be rearranged into
different stages without affecting the usefulness of the tech-
nologies.

Example 30
Exemplary User Interface

In any of the examples herein, various user interfaces can
be presented to guide a user through the remediation process.
Automation level can vary from automatic to custom (e.g.,
manual) remediation. Previewing can also be supported to
implement custom remediation.

In the case of previewing, a user interface can be used to
control scope of the remediation tasks. The tasks can be
performed iteratively until remediation reaches a satisfactory
level. For example, some token search patterns can be applied
first, others later, and so forth.

During different stages of the remediation, user interfaces
can be used to further control scope. For example, token
search pattern matches can be listed, and the user interface
can be used to receive an indication of which token search
pattern matches should be selected for annotation. Only the
selected token search pattern matches (e.g., impacted vari-
ables) are then annotated. A list of impact points can be
presented, and remediation limited to those impact points that
are selected via the user interface.

The user interface can present detected impact points of the
source code to be remediated in a list comprising user inter-
face elements for indicating respective of the impact points of
the source code as to be omitted from further remediation
processing. Further remediation processing is halted accord-
ing to the user interface elements (e.g., if a user deselects an
impact point).

At the tree building and translation stages, a list of anno-
tations can be presented. Only the selected annotations will
have a tree built and translated code (e.g., proposed remedi-
ated code) generated. A list of annotations can be presented,
and translation limited to those annotations that are selected
via the user interface.

Finally, a list of proposed remediated code lines can be
presented, and remediation can be limited to those code lines
that are selected via the user interface. Only the selected code

US 9,286,035 B2

15

will be remediated in the code to be remediated. At such a
stage, the proposed remediated code can be manually edited
if desired.

After the changes are implemented, a list of remediated
files can be presented. Files in the list can be selected to open
the file and see the remediation changes. A code browser can
jump to remediated points (e.g., and highlight them) seriatim.

Progress for various impact points can be tracked sepa-
rately. Thus, remediation can be performed in parts. Status of
the impact points can be displayed to assist a user in deter-
mining whether further work need be performed. Remedia-
tion can be restarted if desired.

Example 31
Exemplary User Interface Implementation

FIGS. 14-26 are screenshots of exemplary user interfaces
for an implementation of code remediation technologies and
can be applied to any of the examples described herein. The
examples can be applied to the ICD 9 to ICD 10 migration
remediation, HIPAA 4010 to HIPAA 5010 migration reme-
diation or other migration remediations. User interface func-
tionality can be arranged into categories of setup, code analy-
sis results, and remediated tokens (e.g., remediation
progress).

As shown in the examples, the user interfaces can be imple-
mented as web pages for display in a web browser. The user
interfaces can be presented by a user interface orchestrator.
Alternatively, remediation can be implemented by a stand
alone tool.

Example 32
Exemplary User Interface: Setup

FIG. 14 is a screen shot of an exemplary user interface 1400
for code remediation setup. Setup can be restricted to admin-
istrative users.

The interface 1400 can include a user interface element for
entering the code base source (e.g., the folder in which the
code to be remediated resides). A destination folder can be
specified where the remediated code will be stored. Such an
approach helps prevent direct editing of the source code and
prevents unforeseen errors due to remediation. The language
of the code to be remediated can be identified during setup
(e.g., based on file names, contents of the files, or the like) or
when encountering specific files (e.g., if the files are of dif-
ferent languages).

A click of a “Config Folder” button on a setup page can be
received.

The destination folder for remediation can be received.

Remediation can then proceed according to the specified
information.

Example 33
Exemplary User Interface: Users

FIG.15is ascreen shot of an exemplary user interface 1500
for configuring users of the remediation tool. New users can
be created or existing users can be modified.

In the interface 1500, a new user can be created by receiv-
ing “Create User” from a drop down menu.

An existing user can be created by receiving “Modify
User” from the drop down menu and receiving the user name.

5

10

15

20

25

30

35

40

45

50

55

60

65

16
Example 34

Exemplary User Interface: Impact Points

FIG. 16 is a screen shot of an exemplary user interface 1600
for selecting impact points for remediation. The interface
1600 can serve as a landing page after an initial code analysis
is performed.

Selections of version, job, token set, and token can be
received. A selection of one or more impact points for reme-
diation can be received.

Activation of a particular impact point (e.g., via double
clicking) can show details regarding the impact point (e.g., in
a pop up window). Details can include a token summary
showing the token name and token set name; location infor-
mation including the file name, line number, column, source
code type, and a source code snippet; and transaction set
information, showing a transaction set, change type, and loop
& segment information.

Navigation to the code analysis results landing page can be
achieved (e.g., automatically after analysis, by selection of
the “code analysis tab,” or the like).

Token search pattern matches can be listed as impact
points, and the user interface can be used to receive an indi-
cation of which impact points should be selected for annota-
tion. Only the selected impact points (e.g., impacted vari-
ables) will be annotated. Remediation can thus be limited to
those impact points that are selected via the user interface. In
the example, a checkbox is used to select impact points for
remediation.

Previewing can be achieved via the interface 1600 (e.g., by
selecting “Preview And Remediate™). Or, automatic remedia-
tion can be achieved via the interface 1600 (e.g., by selecting
“Start Auto Remediation™).

In manual remediation, remediation stages of scanning,
annotating, and compiling are broken up and displayed (e.g.,
shown to the user) in a step by step manner. The interface
allows cancelation of the process anytime or changes to be
made in addition to the remediation performed by the tool.

Manual remediation can be accomplished by receiving a
selection of impact points and receiving selection of the “Pre-
view And Remediate” button. The specified impact points
will be further processed for remediation.

A wizard-like popup can open which contains the selected
points. The wizard can take the user through the process from
beginning to end. FIG. 17 is a screen shot of an exemplary
user interface for a pre-scanning stage (e.g., part ofthe wizard
that displays selected impact points) by which remediation
can be previewed.

An impacted variable, file name, and change time are dis-
played in a list of impacted variables. A selection for proceed-
ing further in the process (e.g., scanning) can be accepted for
the listed impacted variables. Deselecting an impacted vari-
able will inhibit further remediation on impact points associ-
ated with the impacted variables in the file listed (e.g., accord-
ing to change type). Per-impacted-variable remediation, per-
impacted-file remediation, or per-impacted-variable-per-file
remediation can thus be achieved.

The scanning stage can be initiated via selection of the
“Continue with Scanning” button.

Criteria for remediation can be set via selection of the “Set
Criteria for Remediation” button. For example, criteria can
specify a file, change type, or both. Impact points can be
filtered according to the criteria.

US 9,286,035 B2

17
Example 35

Exemplary User Interface: Scanning

FIG. 18 is a screen shot of an exemplary user interface 1800
for a scanning stage. In the example, impacted variables, file
names, change types, and status are displayed for respective
impact points. Scanning can raise exceptions (e.g., detected
problems or code that cannot be remediated by the tool logic).
A displayed status can indicate whether there were any excep-
tions for a respective impact point from previous processing.
Thetool can restrict further remediation for impact points that
have exceptions. Color coding can be used (e.g., green for no
exceptions, red for any exceptions, and the like).

In the list of impact points, an indication of selection of one
or more points can be received (e.g., from a user). Selection
can be by default. If an impact point is deselected, further
processing is not performed on the impact point.

In the example, the “Hide annotation details” box is
selected. Responsive to deselection of the box, annotation
details will be shown when progressing to the next interface.

Example 36
Exemplary User Interface: Annotation Details

FIG.19is ascreen shot of an exemplary user interface 1900
for annotation details. In the example, the details of annota-
tions are shown under the “Patterns Identified” column. In the
list of annotations, individual annotations can be selected for
further remediation processing (e.g., “select for applying pat-
terns”).

Upon receiving selection (e.g., double clicking) of a par-
ticular annotation, user interface 2000 in FIG. 20 for editing
the annotation is displayed. In the example, editing adheres to
a predefined format (e.g., label/value pairs).

Example 37
Exemplary User Interface: Translation

FIG. 21is ascreen shot of an exemplary user interface 2100
for a translation stage. In the example, a list of impacted
variables, file names, proposed remediated code, and status
are shown for respective impact points. A selection per impact
point can be received to indicate whether remediation should
continue. Selection can be by default. Only those impact
points that are selected will be remediated. Thus, a user can
control, per impact point, whether remediation takes place.
Those that are deselected will not be remediated.

Upon receipt of a selection (e.g., double click) of an impact
point, a display of the old source code (e.g., original, before
remediation) and the proposed remediated source code can be
displayed in a user interface 2200 of FIG. 22. The interface
2200 can support editing of the proposed remediated source
code.

Responsive to receiving selection of the “Perform
Changes” button in the interface 2100, the selected remedia-
tions can be made (e.g., including any user modifications to
the remediations) to the source code. The interface for indi-
cating remediated files can next be displayed as described
herein.

Example 38
Exemplary User Interface: Remediated Files

FIG. 23 is ascreen shot of an exemplary user interface 2300
for indicating remediated files. The list of files in which

10

15

20

25

30

35

40

45

50

55

60

65

18

remediation has been done is shown. Upon receipt of a selec-
tion (e.g., double click) of a listed file, an interface for navi-
gating through remediated sections of code can be shown as
described herein.

Example 39

Exemplary User Interface: Navigating Remediated
Code

FIG. 24 is a screen shot of an exemplary user interface 2400
for navigating through remediated sections of code. The user
interface 2400 can serve as a code browser that can jump to
remediated points seriatim (e.g., one after the other in a serial
sequence). Upon completion, the remediated file list of FIG.
23 can be shown again.

Example 40
Exemplary User Interface: Automatic Remediation

FIG. 25 is a screen shot of an exemplary user interface 2500
for automatic remediation. Automatic remediation can pro-
ceed the same as manual remediation, but user input concern-
ing various steps is not solicited. Instead, the process can
proceed directly to the remediated files list (e.g., FIG. 23). A
user can thus still be directed to the sections of code impacted
by remediation.

Example 41
Exemplary User Interface: Remediation Progress

FIG. 26 is a screen shot of an exemplary user interface 2600
for showing overall remediation progress. In the interface
2600, the tokens that have been remediated are shown. A log
of the token showing remediation status of the impact point
and changed source code can be shown.

A “Restart Remediation” option can be provided by which
the user can restart the entire remediation process. Existing
changes can be lost. A user can make a back up of the reme-
diation file to refer to prior changes.

Navigation to the remediation progress interface 2600 can
be achieved by selection of a user interface element on the
landing page 1600 of FIG. 16 (e.g., “the Remediated Tokens”
tab).

Example 42

Exemplary Execution of Remediation Technologies:
Size Change

FIGS. 27-31 illustrate an exemplary execution of code
remediation technologies. In the example, four stages are
illustrated as performed by four components (e.g., scanner,
annotator, analyzer, and translator). The example shows
COBOL code, but the technologies can be applied to other
languages.

In the example, an exemplary token search pattern is
“STR_N3” The token search pattern is used because new
regulations indicate that elements represented by N3 can now
have a maximum length of 60. Accordingly, a size change
function is used during remediation.

FIG. 2700 shows an impact point 2700 (e.g., source point)
in a declaration statement of the COBOL program CBL. 19089

US 9,286,035 B2

19

that has been found via a token search pattern. The variable
“ASTR_N3_ID” is matched to the token search pattern
“STR_N3”

An impacted variables list 2710 can be generated that list
the impacted variables, files affected, and the change type.
The list can be done before the scanning stage.

During scanning, copies of the impacted files can be made.
Remediation can be done on the copied files. Such an opera-
tion can be based on the configuration setup for the source and
destination. In the example, the tool has received a selection
of'the “Quick Auto Copy” method (e.g., from a user) to select
the source folder and has specified a default destination (e.g.,
“DADEST”) for new files generated. Results are shown in the
table 2730.

Annotations can be created at run time and applied on the
code. Annotations are sometimes called “patterns” and are
written in a format that is programming language-indepen-
dent. The format has its own grammar. For a given change
type and impacted variable, the annotation applied is the same
irrespective of whether the source code where the impacted
variable is in COBOL, JAVA, or the like.

FIG. 28 shows an example table 2800 including an exem-
plary annotation. The variable is a memory storage unit. It can
store a value of any type (e.g., string, numeric, etc.).

PARAMETER is a defined variable. The PARAMETERs
used in the exemplary annotation are CHANGE_TYPE,
STMT_TYPE, and IMPACT_LINE.

CHANGE_TYPE defines the change difference between
the two versions of the code (e.g., unremediated v. remedi-
ated). In the example, 1001 means it is a size change.

STMT_TYPE defines the program statement type where
the impact has occurred. In the example, 2001 means that it is
a declaration statement.

IMPACT_LINE defines the line number of the program
where the impact has occurred.

The annotations are broken down to a set of patterns and
sequentially arranged for translation.

FIG. 29 shows an example 2900 in which analyzer output
is shown for the annotation of FIG. 28 (the same annotation as
that shown in FIG. 28). The output includes regular expres-
sions that can be applied against the annotation to generate an
analysis tree, which can be subsequently translated into reme-
diated code.

FIG. 30 shows an example 3000 in which translation (e.g.,
“compiler”) output is shown for the analyzer output of FIG.
29 (which is the same as that shown in FIG. 29). The anno-
tation is the same as that of FIG. 28). The annotation is
converted to the shown source code. In the example, the
impact was found in COBOL code, so the translator converts
the analyzer output to the COBOL source code format.

FIG. 31 shows the difference between the old (e.g., origi-
nal, unremediated) source code and the remediated source
code. The 30 has been changed to a 60 in the COBOL decla-
ration statement.

Example 43

Exemplary Execution of Remediation Technologies:
Code Change

FIGS. 32-37 illustrate an exemplary execution of code
remediation technologies. In the example, four stages are
illustrated as performed by four components (e.g., scanner,
annotator, analyzer, and translator). The example shows
JAVA code, but the technologies can be applied to other
languages.

10

15

20

25

30

35

40

45

50

55

60

65

20

In the example, an exemplary token search pattern is
“WwCodeQual\w.” “\w” is a regular expression and stands for
any alphanumeric character (e.g., [a-zA-Z0-9]). The token
search pattern is used because new regulations indicate that
there is a code change for the element represented by Cod-
eQual. The old values were 21, AD, FI, NI, PI, PP, and XV.
The new allowed values are PI and XV. Accordingly, a code
change function is used during remediation.

FIG. 32 shows a source code snippet 3200 with a plurality
of' impact points (e.g., source points) in an if statement of the
JAVA program [.2100REQ.JAVA that have been found via the
token search pattern. Lines 28-45 are shown. Lines 28,29, 31,
33, 35, 37, 39, and 41 are identified as impact points. The
variable “strCodeQualifier” is matched to the token search
pattern “wCodeQual\w.”

FIG. 33 shows an impacted variables list 3300 that can be
generated and lists the impacted variables, files affected, and
the change type. The impacted method is also listed. The list
can be done before the scanning stage.

During scanning, copies of the impacted files can be made.
Remediation can be done on the copied files. Such an opera-
tion can be based on the configuration setup for the source and
destination. In the example, the tool has received a selection
of “Quick Auto Copy” method (e.g., from a user) to select the
source folder and has specified a default destination (e.g.,
“DADEST”) for new files generated. Results are shown in the
table 3310.

Annotations can be created at run time and applied on the
code. Annotations are sometimes called “patterns” and are
written in a format that is programming language-indepen-
dent. The format has its own grammar. For a given change
type and impacted variable, the annotation applied is the same
irrespective of whether the source code where the impacted
variable is in COBOL, JAVA, or the like.

FIG. 34 shows an example table 3400 including an exem-
plary annotation. The variable is a memory storage unit. It can
store a value of any type (e.g., string, numeric, etc.). In the
example, CD_CHG_TYPE is a variable used to define the
type of change required in the code. The value specified is
DELETE. CD_LST isavariable used to define a list of values.
The values specified are 21, AD, FI, NI, and PP.

PARAMETER is a defined variable. The PARAMETERSs
used in the exemplary annotation are CHANGE_TYPE,
STMT_TYPE, and IMPACT_LINE_LST.

CHANGE_TYPE defines the change difference between
the two versions of the code (e.g., unremediated v. remedi-
ated). In the example, 1009 means it is a code change.

STMT_TYPE defines the program statement type where
the impact has occurred. In the example, 2003 means that it is
an if block statement.

IMPACT_LINE_LST defines the list of impact point line
numbers.

The functions can be action performers. The functions can
be predefined. The function in the above example is
CODECHANGE, which takes three parameters: impacted
lines, type of change, and list of values. In the above example,
the ‘type of change’ specified is ‘DELETE’ and the list of
values are ‘21, AD, FI, NI, PP’ So, the CODE CHANGE
function will check on the type of change. Because it is
‘DELETE” in the example, it will delete lines in the condi-
tional statement containing references to the values present in
the list per the variable CD_LST. The remaining lines are
rearranged to form a syntactically correct IF Block.

The annotations are broken down to a set of patterns and
sequentially arranged for translation. FIG. 35 is a graphical
illustration of how the analysis patterns are formed for con-
sumption by the translator. In the example, an analysis tree

US 9,286,035 B2

21

3500 contains a code change node with 8 children indicating
the sections (e.g., line numbers) at which the code change
function is to be executed. When processed, the ‘delete’ nodes
result in deletion of the specified sections. Like the annota-
tions, the analysis tree 3500 is also language-independent in
that a same format can be used to represent code changes in a
variety of programming languages (e.g., JAVA, COBOL,
etc.).

FIG. 36 shows an example remediated code snippet 3600 in
which translation (e.g., “compiler”) output is shown for the
analysis tree 3500. The remediated code 3600 is based on the
annotation shown in FIG. 34. The annotation is converted to
the shown source code. In the example, the impact was found
in JAVA code, so the translator converts the analyzer output to
the JAVA source code format.

FIG. 37 shows the difference between the old (e.g., origi-
nal, unremediated) source code 3700 and the remediated
source code 3710. Lines having the obsolete code values have
been deleted, and a syntactically correct “if” block has been
formed.

As a result of the remediation, a test case was applied:
Invoke identifyQualifier method by sending “NI” as the
method parameter. The results under the old source code were
“NAIC Identification.” Under the new source code, the results
were “UNKNOWN.” Accordingly, the new source code com-
piles with the new regulations because “NI” is not a permitted
code value.

Example 44
Exemplary Analysis Tree Details

FIG. 38 is a block diagram of an exemplary pre-translation
analysis tree 3800 for use in any of the examples herein. In the
example, the tree has only one branch, but in other situations
(e.g., involving conditional statements), multiple branches
can be present.

The tree 3800 implements a parameter definition and con-
tains name/value pairs separated by semicolons. The names
and values are separated by colons. When processed during
translation, the tree results in the parameter of name “param-
eterValue” being assigned the value “assignedValue.”

Thus, the analysis tree can thus accomplish assignment of
parameters to values during execution of change functions
that generate language-specific remediated code.

Example 45
Exemplary Change Function: Sizechange

A sizechange change function can be implemented to
remediate code containing variables declared to be a certain

10

15

20

25

30

35

40

45

22

size. So, the function can be defined so that if a new size and
impact line are provided, it will create a new declaration
statement at the impact line with the new size that is provided.
So, determining that the statement type is a declaration
statement, the sizechange change function can replace a dec-
laration statement with a new declaration statement. So, inthe
case of COBOL, it can use the “PIC” declaration statement to
declare a variable with the name of the token and of the size
indicated by the new size provided to the change function.

Example 46
Exemplary Execution Flow

FIGS. 39-44 illustrate execution flow for an exemplary
implementation of code remediation. Execution is shown
from the time that an impact point is available. Various points
at which a user can influence execution in a custom (e.g.,
“preview”) remediation are shown.

Example 47
Exemplary Annotation Configuration

FIGS. 45-48 are screen shots of exemplary user interfaces
for configuring annotation types. As described herein, anno-
tations can be derived from rule conditions based on the
Token Search Criteria and Token Search Results. The user
interfaces for configuration annotation types can provide a
dashboard to help in defining rule conditions.

The user interface features include Add New Annotation,
Edit Existing Annotation, and Delete Existing Annotation
from the dashboard.

As shown in FIG. 46, the Add New Annotation user inter-
face can define when the annotation is applied and the action
to be taken (e.g., rule conditions) and a preview box to view
the annotation being created. Upon activation of “Save Anno-
tation,” a new annotation is saved.

Annotations can comprise functions and associated vari-
ables. The Add New Function user interface shown in FIG. 47
can create functions. The Add New Variable user interface
show in in FIG. 48 can create an associated variable.

Example 48
Exemplary Remediation Knowledge Base Design
FIG. 49 is a block diagram showing an exemplary database
design for a remediation knowledge base applied to a HIPAA

4010 to HIPAA 5010 remediation. A description of illustrated
tables is as follows:

Entity (Table) name

Entity (Table)

description Example

kbase_ transac

kbase_ lorseg

Defines the business
purpose and the properties
of the HIPPA transaction
Defines the business
details of the first layer of
the transaction. This is
also commonly called the

loops or segments.

270 (number), v4010(tag),
Eligibility Enquiry
(purpose)

2100B(short definition),
Receiver Name(long
definition),
multiple(repeat time),
mandatory(type_ usage)
and loop(lorseg_type)

US 9,286,035 B2

-continued
Entity (Table)
Entity (Table) name description Example
kbase__elem Defines the business NM104(short
details of the second layer definition), First
of the transaction. This is Name(long definition),

also commonly called the
elements.

single(repeat time),
optional(type__usage),

characters(data_ type),
1(length__min) and
90(length__max)

Defines the business
details of the third layer of
the transaction. This is
also commonly called the
sub-elements.

Defines the changes
identified at any business
layer. The changes are
between the two versions
of the business transaction.
The src__* columns
contains the details for the
previous version and the
tgt_* columns contains the
details for the new version.
Defines the groups which
contain the tokens. The
groups are created for a
particular code base
analysis.

Defines the search patterns
to search for code base
impacts. These code base
impacts are the source
points for the remediation.

kbase__subelem

kbase_ change

ecl__token_ set

ecl__token

NM104 has a maximum
length change.

Elg 2000_set (name),
eligibility search
group(description)

Str_ N3 (name), Pattern
to search impact points for
the size based change
occurring in the address
information(description),

size(change_ type_cd),
wildcard(search__type)

Defines the mapping
between the tokens and the
kbase tables. Useful to
map the code analysis
results to the particular
kbase change.

ecl_token_kbase_ change type_ mapping

Example 49
Exemplary Database Design

FIGS. 50-52 are block diagrams showing an exemplary
database design for a code remediation tool. Such tables can
store transactional data of the remediation process. Data
results from stages of the remediation process for a token
(e.g., scanner, annotator, analyzer, and translator) can be
stored in the tables.

For example, in FIG. 51, the ANNOTATOR_DETAILS
table can store the results of the annotation process. In FIG.
52, the SCANNER_DETAILS table can store the results of
the scanning process.

The tables can thus store results for the different stages of
the remediation process for the token that have been put for
remediation.

Example 50
Exemplary Call Flows

The code remediation tool can be implemented according
to any of a number of architectures and developed in any of a
number of programming languages. A possible language for
development is the Java programming language. Model view
controller (MVC) techniques can be used.

40

45

50

55

60

65

The view can be implemented as the user interface, and the
controller can be implemented as an orchestrator (e.g., an
orchestrate impact analysis results function call). Calls can
come in from a user interface layer (e.g., triggered by actions
of'auser), to the orchestrator (e.g., the controller). The orches-
trator can make corresponding method calls on business ser-
vices, which performs business logic. The business logic can
then call the DAO layer which interacts with the database
(e.g., knowledge base). The DAO layer can interact with the
database to retrieve results of an impact analysis (e.g., impact
points). When it returns back, the user can see the results (e.g.,
impact points) displayed. Other functions can be similarly
implemented.

Example 51
Exemplary Token Search Patterns

In any of the examples herein, token search patterns can be
specified by regular expressions. Exemplary token search
patterns include the following:

ST_VERSION_IDO1*
BPR-TRANS_HANDLG-CODE\
BPR-ORIG-COMP[0-9]
PER-PAYER-COMM-NBR
REF-PAYEE-ID
LX-ASSNG-NB\w

US 9,286,035 B2

25

TS3FACLTYCD\
REF-RECVR-ID
[a-zA-z]PER-PAYER-COM\d
CLP-CLM-STATUS-CD
CLM-IND
CLM-FILNG
PAYOR-CNTL-NBR
NM1-PATNM-ID
NM1-CORPT
APER-PAYER-COM

Regular expressions supported can include the following:
\d=to allow any digit
\w=to allow A-Z,a-z,0-9
*=any preceding character zero or multiples
[]=match anything inside the brackets

Example 52
Exemplary Computing Environment

The techniques and solutions described herein can be per-
formed by software, hardware, or both of a computing envi-
ronment, such as one or more computing devices. For
example, computing devices include server computers, desk-
top computers, laptop computers, notebook computers, net-
books, tablet devices, mobile devices, and other types of
computing devices.

FIG. 53 illustrates a generalized example of a suitable
computing environment 5300 in which the described tech-
nologies can be implemented. The computing environment
5300 is not intended to suggest any limitation as to scope of
use or functionality, as the technologies may be implemented
in diverse general-purpose or special-purpose computing
environments. For example, the disclosed technology may be
implemented using a computing device (e.g., a server, desk-
top, laptop, hand-held device, mobile device, PDA, etc.) com-
prising a processing unit, memory, and storage storing com-
puter-executable instructions implementing the code
remediation described herein. The disclosed technology may
also be implemented with other computer system configura-
tions, including hand held devices, multiprocessor systems,
microprocessor-based or programmable consumer electron-
ics, network PCs, minicomputers, mainframe computers, a
collection of client/server systems, and the like. The disclosed
technology may also be practiced in distributed computing
environments where tasks are performed by remote process-
ing devices that are linked through a communications net-
work. In a distributed computing environment, program mod-
ules may be located in both local and remote memory storage
devices

With reference to FIG. 53, the computing environment
5300 includes at least one processing unit 5310 coupled to
memory 5320. In FIG. 53, this basic configuration 5330 is
included within a dashed line. The processing unit 5310
executes computer-executable instructions and may be a real
or a virtual processor (e.g., ultimately executed on a real
processor). Ina multi-processing system, multiple processing
units execute computer-executable instructions to increase
processing power. The memory 5320 may be volatile memory
(e.g., registers, cache, RAM), non-volatile memory (e.g.,
ROM, EEPROM, flash memory, etc.), or some combination
of'the two. The memory 5320 can store software 5380 imple-
menting any of the technologies described herein.

A computing environment may have additional features.
For example, the computing environment 5300 includes stor-
age 5340, one or more input devices 5350, one or more output
devices 5360, and one or more communication connections

10

15

20

30

35

40

45

50

26

5370. An interconnection mechanism (not shown) such as a
bus, controller, or network interconnects the components of
the computing environment 5300. Typically, operating sys-
tem software (not shown) provides an operating environment
for other software executing in the computing environment
5300, and coordinates activities of the components of the
computing environment 5300.

The storage 5340 may be removable or non-removable,
and includes magnetic disks, magnetic tapes or cassettes,
optical media, CD-ROMs, CD-RWs, DVDs, or any other
computer-readable media which can be used to store infor-
mation and which can be accessed within the computing
environment 5300. The storage 5340 can store software 5380
containing instructions for any of the technologies described
herein.

The input device(s) 5350 may be a touch input device such
as a keyboard, mouse, pen, or trackball, a voice input device,
a scanning device, or another device that provides input to the
computing environment 5300. For audio, the input device(s)
5350 may be a sound card or similar device that accepts audio
input in analog or digital form, or a CD-ROM reader that
provides audio samples to the computing environment. The
output device(s) 5360 may be a display, printer, speaker,
CD-writer, or another device that provides output from the
computing environment 5300.

The communication connection(s) 5370 enable communi-
cation over a communication mechanism to another comput-
ing entity. The communication mechanism conveys informa-
tion such as computer-executable instructions, audio/video or
other information, or other data. By way of example, and not
limitation, communication mechanisms include wired or
wireless techniques implemented with an electrical, optical,
RF, infrared, acoustic, or other carrier.

The techniques herein can be described in the general
context of computer-executable instructions, such as those
included in program modules, being executed in a computing
environment on a target real or virtual processor. Generally,
program modules include routines, programs, libraries,
objects, classes, components, data structures, etc., that per-
form particular tasks or implement particular abstract data
types. The functionality of the program modules may be
combined or split between program modules as desired in
various embodiments. Computer-executable instructions for
program modules may be executed within a local or distrib-
uted computing environment.

Storing in Computer-Readable Media

Any of the storing actions described herein can be imple-
mented by storing in one or more computer-readable media
(e.g., computer-readable storage media or other tangible
media).

Any of the things described as stored can be stored in one
or more computer-readable media (e.g., computer-readable
storage media or other tangible media).

Methods in Computer-Readable Media

Any of the methods described herein can be implemented
by computer-executable instructions in (e.g., encoded on) one
or more computer-readable media (e.g., computer-readable
storage media or other tangible media). Such instructions can
cause a computer to perform the method. The technologies
described herein can be implemented in a variety of program-
ming languages.

US 9,286,035 B2

27

Storing in Non-Transitory Computer-Readable
Media

Any of the computer-readable media herein can be non-
transitory (e.g., memory, hard disk or other magnetic media,
optical media, CD-ROM, CD-RW, DVD, or the like).

Methods in Computer-Readable Storage Devices

Any of the methods described herein can be implemented
by computer-executable instructions stored in one or more
computer-readable storage devices (e.g., memory, hard disk
or other magnetic media, optical media, CD-ROM, CD-RW,
DVD, or the like). Such instructions can cause a computer to
perform the method.

Alternatives

The technologies from any example can be combined with
the technologies described in any one or more of the other
examples. In view of the many possible embodiments to
which the principles of the disclosed technology may be
applied, it should be recognized that the illustrated embodi-
ments are examples of the disclosed technology and should
not be taken as a limitation on the scope of the disclosed
technology. Rather, the scope of the disclosed technology
includes what is covered by the following claims. I therefore
claim as my invention all that comes within the scope and
spirit of these claims.

I claim:

1. A method implemented at least in part by a computing

device, the method comprising:

(a) receiving source code to be remediated in light of a
regulation set affecting logic of the source code, wherein
the source code is of a programming language;

(b) generating a plurality of language-independent anno-
tations for the source code to be remediated, wherein the
language-independent annotations are of a format hav-
ing a grammar that forms an executable language and
wherein the executable language comprises at least one
change function and one or more parameters for the
change function, wherein the annotations comprise:
an indication of a token representing a constant or a

variable name appearing in the source code;
parameters comprising an indication of a change type
associated with the token, an indication of a statement
type associated with the token, and an indication of an
impact location associated with the token; and
an indication of a new value associated with the token;

(c) based on the language-independent annotations, out-
putting a language-independent analysis tree compris-
ing breaking down the annotations into a set of patterns
and sequentially arranging the patterns for translation,
wherein the analysis tree comprises nodes specifying the
indication of the token and the parameters; and

(d) generating a remediated version of the source code,
wherein generating the remediated version comprises
translating the annotations, wherein the translating com-
prises consuming the parameters of the analysis tree, and
applying the parameters from the annotations to the
change function indicated in the annotations, wherein
the change function generates source code comprising
the new value associated with the token complying with
the regulation set in the programming language of the
source code and outputting lines of remediated source
code in the programming language of the source code

5

10

15

20

25

30

35

40

45

50

55

60

65

28

according to the plurality of language-independent
annotations, wherein the remediated version complies
with the regulation set.

2. The method of claim 1 further comprising:

inserting the plurality of language-independent annota-

tions into the source code to be remediated as comments
according to syntax of the programming language.

3. The method of claim 1 wherein generating the plurality
of language-independent annotations comprises generating a
language-independent annotation specifying a language-in-
dependent change function name.

4. The method of claim 3 wherein:

generating the remediated version of the source code com-

prises generating, with a change function indicated by
the language-independent change function name, source
code according to syntax of the programming language.

5. The method of claim 1 further comprising:

in a remediation tool, detecting code that cannot be reme-

diated by logic of the remediation tool;

responsive to detecting code that cannot be remediated,

raising an exception for an impact point at which the
code that cannot be remediated appears; and
displaying an indication of the exception.

6. The method of claim 1, wherein the indication of the
change function comprises a language-independent change
function name, and the method further comprises:

deleting some lines of code in a conditional statement; and

modifying remaining lines to form a syntactically correct

conditional statement.

7. The method of claim 1, further comprising:

in a user interface, displaying a representation of a candi-

date remediation to the source code;

receiving, via the user interface, an indication of whether

the candidate remediation is to be processed; and
responsive to receiving an indication that the candidate

remediation is not to be processed, omitting to further

process the candidate remediation for remediation.

8. The method of claim 1, further comprising:

in a user interface, displaying a representation of a candi-

date remediation to the source code as proposed reme-
diated source code;

receiving, via the user interface, modification of the pro-

posed remediated source code; and

responsive to receiving the modification, remediating the

source code according to the modification.

9. The method of claim 1 further comprising:

identifying, via a token search pattern, an impact point at a

location in the source code at which a program variable
or constant affected by the regulation set appears in the
source code; and

wherein generating the plurality of language-independent

annotations comprises generating a language-indepen-
dent annotation for the impact point.

10. The method of claim 9, further comprising:

in a user interface, displaying a representation of the

impact point; and

receiving, via the user interface, an indication of whether

the impact point is to be processed.

11. The method of claim 1 further comprising:

scanning the source code to be remediated, wherein the

scanning identifies one or more portions to be modified
based on token search patterns matching variables or
constants in the source code to be remediated.

12. The method of claim 1 wherein:

the regulation set specifies a field size associated with

International Classification of Diseases, 10th Revision,
Clinical Modification; and

US 9,286,035 B2

29 30

at least one of the plurality of language-independent anno- annotations into a set of patterns and sequentially
tations specifies the field size. arranging the patterns for translation, and wherein the
13. One or more non-transitory computer-readable storage analysis tree comprises nodes specifying the indication

devices comprising computer-executable instructions that of the token and the parameters; and
when executed cause a computer to perform a method com- 5 a translation engine configured to generate remediated
prising: code in the programming language according to the
(a) receiving source code to be remediated in light of a programming-language-independent annotations as

regulation set affecting logic of the source code, wherein
the source code is of a programming language;

(b) generating a plurality of language-independent anno-
tations for the source code to be remediated, wherein the
language-independent annotations are of a format hav-
ing a grammar that forms an executable language and
wherein the executable language comprises at least one
change function and one or more parameters for the
change function, wherein the annotations comprise:
an indication of a token representing a constant or a

variable name appearing in the source code;
parameters comprising an indication of a change type
associated with the token, an indication of a statement
type associated with the token, and an indication of an
impact location associated with the token; and
an indication of a new value associated with the token;

(c) based on the language-independent annotations, out-
putting a language-independent analysis tree compris-
ing breaking down the annotations into a set of patterns
and sequentially arranging the patterns for translation,
wherein the analysis tree comprises nodes specifying the
indication of the token and the parameters; and

(d) generating a remediated version of the source code,
wherein generating the remediated version comprises
translating the annotations wherein the translating com-
prises consuming the parameters of the analysis tree, for
applying the parameters from the annotations to the
change function indicated in the annotations, wherein
the change function generates source code comprising
the new value associated with the token complying with
the regulation set in the programming language of the
source code and outputting lines of remediated source
code in the programming language of the source code
according to the plurality of language-independent
annotations, wherein the remediated version complies
with the regulation set.

14. A system comprising:

one or more processors coupled to memory;
an annotation engine configured to generate program-

ming-language-independent annotations based on
source code to be remediated of a programming lan-
guage, wherein the programming-language-indepen-
dent annotations are of a format having a grammar
that forms an executable language and wherein the
executable language comprises at least one change
function and one or more parameters for the change
function, wherein the annotations comprise:
an indication of a token representing a constant or a
variable name appearing in the source code;
parameters comprising an indication of a change type
associated with the token, an indication of a state-
ment type associated with the token, and an indi-
cation of an impact location associated with the
token; and
anindication of anew value associated with the token;
alanguage-independent analysis engine configured to gen-
erate a language-independent pre-translation analysis
tree data structure based on the programming-language-
independent annotations, wherein the language-inde-
pendent analysis tree comprises breaking down the

10

15

20

25

30

35

40

45

50

55

60

65

represented by the pre-translation analysis tree data
structure, comprising consuming the parameters of the
analysis tree data structure and applying the one or more
parameters from the annotations to the change function
indicated in the annotations, wherein the change func-
tion generates source code comprising the new value
associated with the token complying with the regulation
set in the programming language of the source code.

15. The system of claim 14, further comprising:

auser interface orchestrator configured to present detected
impact points of the source code to be remediated in a list
comprising user interface elements for indicating
respective of the detected impact points of the source
code as to be omitted from further remediation process-
ing, wherein further remediation processing is halted
according to the user interface elements.

16. The system of claim 14 further comprising a knowledge

base comprising remediation intelligence.

17. The system of claim 14 further comprising a code
analysis results repository comprising tokens representing
sets of references to impact points within the source code to
be remediated.

18. One or more non-transitory computer-readable storage
media comprising computer-executable instructions causing
a computer to perform a method comprising:

(a) receiving source code implementing electronic claim
processing logic according to an old version of health-
care regulations, wherein the source code is to be reme-
diated to comply with claim processing in light of a new
version of healthcare regulations, and the source code is
of a programming language out of a plurality of possible
programming languages;

(b) searching the source code for one or more instances of
a token search pattern indicative of a variable name or
constant name affected by claim processing migration to
the new version of healthcare regulations;

(c) responsive to finding the one or more instances of the
token search pattern, generating an impact point record,
wherein the impact point record indicates the variable
name or constant name affected by claim processing
migration to the new version of healthcare regulations
and a location in the source code at which the variable
name or constant name occurs;

(d) generating a language-independent annotation for the
source code, wherein the language-independent annota-
tion is of a format having a grammar that forms an
executable language, wherein the annotation comprises:
atoken that indicates the variable name or constant name
affected by claim processing migration to the new ver-
sion of healthcare regulations, the location in the source
code at which the variable name or constant name
occurs, a change function, and one or more parameters
associated with the change function, wherein the param-
eters associated with the change function comprise an
indication of a change type associated with the token, an
indication of a statement type associated with the token,
and an indication of an impact location associated with
the token;

(e) based on the language-independent annotation, output-
ting a language-independent analysis tree comprising

US 9,286,035 B2

31

breaking down the annotations into a set of patterns and
sequentially arranging the patterns for translation,
wherein the analysis tree comprises nodes specifying the
indication of the token and the parameters; and

(f) generating a remediated version of the source code,
wherein generating the remediated version comprises
translating the annotation, wherein the translating com-
prises consuming the parameters of the analysis tree and
applying the one or more parameters to the change func-
tion, wherein the change function generates source code
in the programming language based on the source code
to be remediated comprising the new value associated
with the token and complying with claim processing in
light of the new version of healthcare regulations
according to the language-independent annotation.

#* #* #* #* #*

10

15

32

