US009276932B2

a2 United States Patent 10) Patent No.: US 9,276,932 B2
Hoy et al. (45) Date of Patent: Mar. 1, 2016
(54) FEDERATED IDENTITY MAPPING USING 8,396,466 B2* 3/2013 Sharma ... H04}“5/59/3/102
DELEGATED AUTHORIZATION 8,434,129 B2* 4/2013 Kannappan G06Q 10/10
(71) Applicant: International Business Machines . . 726/22
Corporation, Armonk, NY (US) 8,893,230 B2* 11/2014 Oberheide HO04L 63/702865721
(72) Inventors: Jeffrey Robert Hoy, Southern Pines, NC 9,098,675 Bl: 82015 Roth GOGE 21/00
(US); Jonathan Frederick Brunn, 2006/0190543 Al 82006 Pulver ..oocovvvvve H047L03/12/8g
Logan, UT (US); Jessica Whitley 2012/0072979 Al 3/2012 Chaetal.
Forrester, Raleigh, NC (US); Stephen 583;83;22; i} gggg %GVOOgd |
assael et al.
Carlyle Hess, Durham, NC (US) 2012/0254957 Al 10/2012 Fork et al.
(73) Assignee: International Business Machines 2012/0311676 Al* 12/2012 Ibasco ..ciovnn: G06Q ;% 1/2
Corporation, Armonk, NY (US) 2013/0262984 Al* 10/2013 Mehr ...oocoococee.. GOGF 17/2247
* e H H H H 715/234
(*) Notice: Subject to any disclaimer, the term of this 2014/0032659 AL* 12014 Marinietal ... 709/204
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS
(21) Appl. No.: 14/074,396 Google.com Code, Account APTs, “OAuth for Web Applications™
(22) Filed: Nov. 7, 2013 2010.
(65) Prior Publication Data * cited by examiner
US 2015/0128242 Al May 7, 2015
o Primary Examiner — Linglan Edwards
(51) Int.Cl. (74) Attorney, Agent, or Firm — David B. Woycechowsky;
HO4L 29/06 (2006.01) David H. Tudson
G060 50/00 (2012.01)
(52) US.CL (57) ABSTRACT
CPC HO4L 63/0884 (2013.01); HO4L 63/08 A method for identity manpine across web services uses a
(2013.01); GO6Q 50/01 (2013.01); HO4L entity mapping
63/0815 (2013.01) delegated authorization protocol, such as OAuth. In response
(53) Field of Classification Search ’ to arequest from a first user at a first web service, a connection
)] to a second web service is established using the protocol. The
CPC .. HOAL 63/0884; HOAL 63/08; HOAL 63/0815 second web service responds by sending information associ-
[SJSPC .1......... h.l....f.‘ i I.1..1.1...... 726/279 ated With a Second user Of the ﬁrSt Web Service WhO preVi-
ee application file for complete search history. ously logged into the second web service from the first web
(56) References Cited service using the protocol. The second user may be a “con-

U.S. PATENT DOCUMENTS

7,525,930 B2* 4/2009 Fridman ... HO4W 8/28
370/254
7,814,312 B2* 10/2010 Parham GO06Q 20/3674
713/155

7,849,204 B2 12/2010 Yared et al.
8,214,394 B2* 7/2012 Krishnaprasad .. GO6F 17/30427
707/709
500
‘\
CONTACT EXPORTER
EXAMPLE: Linkedin

1. REQUEST CONTACTS

tact” of the first user. The information received from the
second web service is a access token that was obtained by the
second user during that prior login. The access token is pro-
vided in lieu of data associated with the second user’s account
at the second web service. Thereafter, the first web service
uses the access token it received to map to an identity of the
second user.

21 Claims, 5 Drawing Sheets

502
/

CONTACT IMPORTER
EXAMPLE: w3 Connections

JM

|

2. IDENTIFY CONTACTS THAT

(im@ibm.com)

‘ LOGGED IN FROM OAuth CLIENT | TARA 508
l {tara@ibm.com)
3, SUBSTITUTE DATA (%zcus \
REPRESENTING THE USERS: 510 mrgibm.com
TOKEN 102
TOKEN 103
| 5, TRANSLATE 6 LINK
4, EXPORT CONTACTS TOKENS TO USERS: N
TOKEN 102: MARCUS > g%'f,TfACJ;
TOKEN 103: TARA
sos A cmrroe | soo- (om0

U.S. Patent Mar. 1, 2016 Sheet 1 of 5 US 9,276,932 B2

=
104 %
1011

N

SERVER
112
%
106 an
@ 111
114
SERVER 108 CLIENT
FIG. 2 200
[C-——————————————————— ———-1
| PERSISTENT |
I PROCESSOR UNIT MEMORY STORAGE I
' / N N '
: 204 @ 20\2 @ 206 @ 208 :
|<: :>|
L 210 212 @ 214 |
I N\ / / |
| COMMUNICATIONS INPUT/QUTPUT |
| UNIT UNIT DISPLAY |
.]

COMPUTER
READABLE
MEDIA

PROGRAM
CODE

220

216

U.S. Patent

300
N

USER
I

| 1: REQUIRES ACCESS TO PROTECTED

Mar. 1, 2016 Sheet 2 of 5

302
N

CONSUMER

| RESOURCES ON SERVICE PROVIDER ()

4: REDIRECTS USER TO SERVICE

2: OBTAINS A REQUEST TOKEN ()

US 9,276,932 B2

304
/

SERVICE
PROVIDER
[

|
1

~_ 3: OBTAINS A REQUEST TOKEN ()

P
-

PROVIDER FOR AUTHORIZATION ()

5: AUTHORIZES THE REQUEST TOKEN ()

|
6: REDIRECTS USER BACK TO CONSUMER ()

Yy

7. GOES TO CALLBACKURL () |

)

12: RETURNS PROTECTED
ESOURCES ON SERVICE PROVIDER ()

8: EXCHANGES REQUEST TOKEN
FOR ACCESS TOKEN ()

9: RETURNS ACCESS TOKEN ()

Y

-
had

10: ACCESSES PROTECTED
RESOURCES ()

11: RETURNS PROTECTED
RESOURCES ()

Y

gy

FIG. 3

US 9,276,932 B2

Sheet 3 of 5

Mar. 1, 2016

U.S. Patent

(woo'wqi®erey)
Vavl

207
SUOIJIBULOY EM

-J1dAVX3
H3IWNSNOD
vivad

14014

v "DIA
(woo wqidsopauel) (woo gj@auel)
Nvr (a3zdoHLNY @ﬁ
1ON SYH)
'y
B (woorusw®dh)
B €01 :al NaMOL L
(woowqiBpw) - §§320V (wooooyeA@yew)
SNOYUVIN D 20l ‘I NIOL MAVIN
S$S300V S
0ovy
ujpexUIT
(woo wai@uwif) < . (woo rewb@sawel) T1dAYXT
aIr 10L A NIIOL S3Nvr ¥31ddns
SS300V viva

14417

US 9,276,932 B2

Sheet 4 of 5

Mar. 1, 2016

U.S. Patent

H3AIAOHd UnvO v0S

¢ DIA
INTTO Wnvo |~ 905
VVL ‘€01 NINOL
m_pz%ﬁ,__% J SNOUYI :Z0L NIIOL |
VNS “ :SY3ISNOLSNIMOL [
JLVISNVYL 'S

(woo wai@pw) 0y

SNOYVI

(woo'wqi@ele))

Viv1
809

(woowq@u)

SLOVINOD 1H0dX3 ‘v

€0} NaXol
¢0l NIOL
-S43SN JHL ONILNISTHdI
v1ivaalnisans e

A

AIN3ITO YinYO NO¥4 NI 39901
1VHL S1OVINOD A4ILN3AI ¢

A

wIr

suonosuuo] eM 3 1dVX3
H31H40dNI LOVINOD

A
208

SLOVINOD 1S3Nd3d '}

uipayur :31dINvX3
d3140dX3 LOVINOD

L
005

U.S. Patent

Mar. 1, 2016 Sheet 5 of 5

US 9,276,932 B2

600~ USER LOGS INTO DATA CONSUMER

602~ USER AUTHORIZEt DATA SUPPLIER

604~]" DaTA SUPPLIER GENEiATES ACCESS TOKEN

606 N CONSUMER MAItS TOKEN USER /

608~]" paTA CONSUMER ASSOt)IATES TOKEN TO USER

610 USEREXPORTS CONTAC'#’S FROM DATA SUPPLIER

612 DATA SUPPLIER E)fPORTS CONTACTS /
'

DATA SUPPLIER FILTERS USERS FROM SAME DOMAIN

ANY USERS NO

REMAIN?

DATA SUPPLIER REPLACES IDs WITH ACCESS TOKENS

6201
USERS
HAVE ACCESS >N -
TOKENS?
622 |
NOTHING

624~ SEND EXPORTED CONTACTS TO DATA CONSUMER 10 EXPORT

!)
6261 CONSUMER RECEIVES CONTACTS 618
628/7/ CONSUMER MAPS TOKENS TO USER IDs /
6301 CONSUMER IMPORTS CONTACTS FIG. 6

US 9,276,932 B2

1

FEDERATED IDENTITY MAPPING USING
DELEGATED AUTHORIZATION

BACKGROUND OF THE INVENTION

1. Technical Field

This disclosure relates generally to user authentication
across services operating in a network environment.

2. Background of the Related Art

The problem of mapping identity across web services,
especially social networks, can be very difficult. Several
options are available to enable re-use of identity across
domains. These include protocols such as OpenlD, SAML
and other proprietary login systems provided by web ser-
vices. OpenlD, for example, is an open standard that allows
users to be authenticated by certain co-operating sites (known
asrelying parties using a third party service, which eliminates
the need for webmasters to provide their own ad hoc systems.
With OpenlD, users create accounts with their preferred
OpenlD identity providers, and then use those accounts as the
basis for signing on to any website which accepts OpenlD
authentication. Security Assertion Markup Language
(SAML) is an XML-based standard for exchanging authen-
tication and authorization data between security domains,
that is, between an identity provider (a producer of assertions)
and a service provider (a consumer of assertions). SAML
implements the concepts of Identity Providers (source of
assertions), and Service Providers (consumers of assertions).
The Service Provider (SP) trusts the Identity Provider (IdP) to
authenticate the principal. SAML assumes the principal (of-
ten a user) has enrolled with at least one identity provider.
This identity provider is expected to provide local authenti-
cation services to the principal. At the principal’s request, the
identity provider passes a SAML assertion to the service
provider. On the basis of this assertion, the service provider
makes an access control decision. To facilitate SAML, a
trusted partnership may be set up that comprises IdPs and SPs
exchanging metadata about each other’s SAML implemen-
tation, including keys to encrypt/decrypt the SAML asser-
tions.

While these protocols have advantages, they each depend
on the existence of a central identity provider. Often, how-
ever, there are situations where a centralized identity provider
is insufficient, for example, if a user does not have an identity
with that provider, or if the user does not trust a web service
with his or her centralized identity. In these cases, protocols
for “delegated authorization” are a better choice to the prob-
lem of mapping identity across web services.

One such delegated authorization protocol is OAuth, by
which users can authorize creation of temporary access
tokens to link their accounts between web services without
the need for a centralized identity. OAuth is an open protocol
that enables users to share their private data between different
Web sites along with their credentials but, at the same time,
only expose the data on the original Web site where it is held.
In other words, the OAuth protocol allows users to share
private resources stored on one Web site with other sites
without exposing the users’ credentials—for example, user-
names and passwords—to Web sites other than the one hold-
ing the users’ data.

While OAuth also provides advantages, it does not explic-
itly map identity between domains, and it does not enable
persisting of long-term relationships across services.

BRIEF SUMMARY

This disclosure describes a technique for federated identity
mapping across web services and, in particular, identity map-
ping across OAuth-enabled services.

40

45

55

2

According to one embodiment, a method for identity map-
ping across web services that each uses a delegated authori-
zation protocol (such as OAuth) involves a set of operations
that take place at the first web service. In the context of this
embodiment, the first web service is sometimes referred to as
a data consumer. In particular, and in response to a request
from a first user, a secure connection to a second web service
is established using the delegated authorization protocol. In
the context of this embodiment, the second web service is
sometimes referred to as a data supplier to distinguish it from
the first web service (the data consumer). In response to the
request, given information is then received (at the first web
service), the information being transmitted from the second
web service. In one embodiment, the given information is
associated with a second user of the first web service who
previously logged into the second web service from the first
web service using the delegated authorization protocol. The
second user may be a “contact” of the first user making the
request. Preferably, the given information received from the
second web service is a delegated authorization access token
(e.g., an OAuth token) that was obtained by the second user
during that prior login. The delegated authorization access
token is provided by the second web service to the first web
service in lieu of data associated with the second user’s
account at the second web service. Thereafter, the first web
service uses the delegated authorization access token it
received from the second web service to map to an identity of
the second user.

The foregoing has outlined some of the more pertinent
features of the invention. These features should be construed
to be merely illustrative. Many other beneficial results can be
attained by applying the disclosed invention in a different
manner or by modifying the invention as will be described.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereof, reference is now made to the
following descriptions taken in conjunction with the accom-
panying drawings, in which:

FIG. 1 depicts an exemplary block diagram of a distributed
data processing environment in which exemplary aspects of
the illustrative embodiments may be implemented;

FIG. 2 is an exemplary block diagram of a data processing
system in which exemplary aspects of the illustrative embodi-
ments may be implemented;

FIG. 3 illustrates OAuth delegated authorization;

FIG. 4 illustrates a pair of cooperating web services (e.g.,
social networks) that use the identity mapping technique of
this disclosure to facilitate data sharing;

FIG. 5 illustrates how a user at a first social network can use
the identity mapping technique of this disclosure to obtain the
user’s set of contacts existing at a second social network; and

FIG. 6 is a process flow describing the contact list transfer
functionality in more detail.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

With reference now to the drawings and in particular with
reference to FIGS. 1-2, exemplary diagrams of data process-
ing environments are provided in which illustrative embodi-
ments of the disclosure may be implemented. It should be
appreciated that FIGS. 1-2 are only exemplary and are not
intended to assert or imply any limitation with regard to the
environments in which aspects or embodiments of the dis-
closed subject matter may be implemented. Many modifica-

US 9,276,932 B2

3

tions to the depicted environments may be made without
departing from the spirit and scope of the present invention.
The Client-Server Model

With reference now to the drawings, FIG. 1 depicts a pic-
torial representation of an exemplary distributed data pro-
cessing system in which aspects of the illustrative embodi-
ments may be implemented. Distributed data processing
system 100 may include a network of computers in which
aspects of the illustrative embodiments may be implemented.
The distributed data processing system 100 contains at least
one network 102, which is the medium used to provide com-
munication links between various devices and computers
connected together within distributed data processing system
100. The network 102 may include connections, such as wire,
wireless communication links, or fiber optic cables.

In the depicted example, server 104 and server 106 are
connected to network 102 along with storage unit 108. In
addition, clients 110, 112, and 114 are also connected to
network 102. These clients 110, 112, and 114 may be, for
example, personal computers, network computers, or the like.
In the depicted example, server 104 provides data, such as
boot files, operating system images, and applications to cli-
ents 110, 112, and 114. Clients 110, 112, and 114 are clients
to server 104 in the depicted example. Distributed data pro-
cessing system 100 may include additional servers, clients,
and other devices not shown.

In the depicted example, distributed data processing sys-
tem 100 is the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)
suite of protocols to communicate with one another. At the
heart of the Internet is a backbone of high-speed data com-
munication lines between major nodes or host computers,
consisting of thousands of commercial, governmental, edu-
cational and other computer systems that route data and mes-
sages. Of course, the distributed data processing system 100
may also be implemented to include a number of different
types of networks, such as for example, an intranet, a local
area network (LAN), a wide area network (WAN), or the like.
As stated above, FIG. 1 is intended as an example, not as an
architectural limitation for different embodiments of the dis-
closed subject matter, and therefore, the particular elements
shown in FIG. 1 should not be considered limiting with regard
to the environments in which the illustrative embodiments of
the present invention may be implemented.

With reference now to FIG. 2, a block diagram of a data
processing system is shown in which illustrative embodi-
ments may be implemented. Data processing system 200 is an
example of a computer, such as server 104 or client 110 in
FIG. 1, in which computer-usable program code or instruc-
tions implementing the processes may be located for the
illustrative embodiments. In this illustrative example, data
processing system 200 includes communications fabric 202,
which provides communications between processor unit 204,
memory 206, persistent storage 208, communications unit
210, input/output (I/O) unit 212, and display 214.

Processor unit 204 serves to execute instructions for soft-
ware that may be loaded into memory 206. Processor unit 204
may be a set of one or more processors or may be a multi-
processor core, depending on the particular implementation.
Further, processor unit 204 may be implemented using one or
more heterogeneous processor systems in which a main pro-
cessor is present with secondary processors on a single chip.
As another illustrative example, processor unit 204 may be a
symmetric multi-processor system containing multiple pro-
cessors of the same type.

10

15

20

25

30

35

40

45

55

60

65

4

Memory 206 and persistent storage 208 are examples of
storage devices. A storage device is any piece of hardware that
is capable of storing information either on a temporary basis
and/or a permanent basis. Memory 206, in these examples,
may be, for example, a random access memory or any other
suitable volatile or non-volatile storage device. Persistent
storage 208 may take various forms depending on the par-
ticular implementation. For example, persistent storage 208
may contain one or more components or devices. For
example, persistent storage 208 may be a hard drive, a flash
memory, a rewritable optical disk, a rewritable magnetic tape,
or some combination of the above. The media used by per-
sistent storage 208 also may be removable. For example, a
removable hard drive may be used for persistent storage 208.

Communications unit 210, in these examples, provides for
communications with other data processing systems or
devices. In these examples, communications unit 210 is a
network interface card. Communications unit 210 may pro-
vide communications through the use of either or both physi-
cal and wireless communications links.

Input/output unit 212 allows for input and output of data
with other devices that may be connected to data processing
system 200. For example, input/output unit 212 may provide
a connection for user input through a keyboard and mouse.
Further, input/output unit 212 may send output to a printer.
Display 214 provides a mechanism to display information to
a user.

Instructions for the operating system and applications or
programs are located on persistent storage 208. These instruc-
tions may be loaded into memory 206 for execution by pro-
cessor unit 204. The processes of the different embodiments
may be performed by processor unit 204 using computer
implemented instructions, which may be located in a
memory, such as memory 206. These instructions are referred
to as program code, computer-usable program code, or com-
puter-readable program code that may be read and executed
by a processor in processor unit 204. The program code in the
different embodiments may be embodied on different physi-
cal or tangible computer-readable media, such as memory
206 or persistent storage 208.

Program code 216 is located in a functional form on com-
puter-readable media 218 that is selectively removable and
may be loaded onto or transferred to data processing system
200 for execution by processor unit 204. Program code 216
and computer-readable media 218 form computer program
product 220 in these examples. In one example, computer-
readable media 218 may be in a tangible form, such as, for
example, an optical or magnetic disc that is inserted or placed
into a drive or other device that is part of persistent storage
208 for transfer onto a storage device, such as a hard drive that
is part of persistent storage 208. In a tangible form, computer-
readable media 218 also may take the form of a persistent
storage, such as a hard drive, a thumb drive, or a flash memory
that is connected to data processing system 200. The tangible
form of computer-readable media 218 is also referred to as
computer-recordable storage media. In some instances, com-
puter-recordable media 218 may not be removable.

Alternatively, program code 216 may be transferred to data
processing system 200 from computer-readable media 218
through a communications link to communications unit 210
and/or through a connection to input/output unit 212. The
communications link and/or the connection may be physical
or wireless in the illustrative examples. The computer-read-
able media also may take the form of non-tangible media,
such as communications links or wireless transmissions con-
taining the program code. The different components illus-
trated for data processing system 200 are not meant to provide

US 9,276,932 B2

5

architectural limitations to the manner in which different
embodiments may be implemented. The different illustrative
embodiments may be implemented in a data processing sys-
tem including components in addition to or in place of those
illustrated for data processing system 200. Other components
shown in FIG. 2 can be varied from the illustrative examples
shown. As one example, a storage device in data processing
system 200 is any hardware apparatus that may store data.
Memory 206, persistent storage 208, and computer-readable
media 218 are examples of storage devices in a tangible form.

In another example, a bus system may be used to imple-
ment communications fabric 202 and may be comprised of
one or more buses, such as a system bus or an input/output
bus. Of course, the bus system may be implemented using any
suitable type of architecture that provides for a transfer of data
between different components or devices attached to the bus
system. Additionally, a communications unit may include one
or more devices used to transmit and receive data, such as a
modem or a network adapter. Further, a memory may be, for
example, memory 206 or a cache such as found in an interface
and memory controller hub that may be present in communi-
cations fabric 202.

Computer program code for carrying out operations of the
present invention may be written in any combination of one or
more programming languages, including an object-oriented
programming language such as Java, Smalltalk, C++ or the
like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The program code may execute entirely on
the user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer, or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

Those of ordinary skill in the art will appreciate that the
hardware in FIGS. 1-2 may vary depending on the implemen-
tation. Other internal hardware or peripheral devices, such as
flash memory, equivalent non-volatile memory, or optical
disk drives and the like, may be used in addition to or in place
of the hardware depicted in FIGS. 1-2. Also, the processes of
the illustrative embodiments may be applied to a multipro-
cessor data processing system, other than the SMP system
mentioned previously, without departing from the spirit and
scope of the disclosed subject matter.

As will be seen, the techniques described herein may oper-
ate in conjunction within the standard client-server paradigm
such as illustrated in FIG. 1 in which client machines com-
municate with an Internet-accessible Web-based portal
executing on a set of one or more machines. End users operate
Internet-connectable devices (e.g., desktop computers, note-
book computers, Internet-enabled mobile devices, or the like)
that are capable of accessing and interacting with the portal.
Typically, each client or server machine is a data processing
system such as illustrated in FIG. 2 comprising hardware and
software, and these entities communicate with one another
over a network, such as the Internet, an intranet, an extranet,
a private network, or any other communications medium or
link. A data processing system typically includes one or more
processors, an operating system, one or more applications,
and one or more utilities. The applications on the data pro-
cessing system provide native support for Web services
including, without limitation, support for HTTP, SOAP,
XML, WSDL, UDDI, and WSFL, among others. Information

10

15

20

25

30

35

40

45

50

55

60

65

6

regarding SOAP, WSDL, UDDI and WSFL is available from
the World Wide Web Consortium (W3C), which is respon-
sible for developing and maintaining these standards; further
information regarding HTTP and XML is available from
Internet Engineering Task Force (IETF). Familiarity with
these standards is presumed.

The Federation Model

As will be described, the techniques described herein find
utility in the context of a “federated” environment. Thus, the
following background is provided. In general, an enterprise
has its own user registry and maintains relationships with its
own set of users. Each enterprise typically has its own means
of authenticating these users. However, in a federated
scheme, enterprises cooperate in a collective manner such
that users in one enterprise can leverage relationships with a
set of enterprises through an enterprise’s participation in a
federation of enterprises. Users can be granted access to
resources at any of the federated enterprises as if they had a
direct relationship with each enterprise. Users are not
required to register at each business of interest, and users are
not constantly required to identify and authenticate them-
selves. Hence, within this federated environment, an authen-
tication scheme allows for a single-sign-on experience within
the rapidly evolving heterogeneous environments in informa-
tion technology.

As is well-known, a federation is a set of distinct entities,
such as enterprises, logical units within an enterprise, orga-
nizations, institutions, etc., that cooperate to provide a single-
sign-on, ease-of-use experience to a user; a federated envi-
ronment differs from a typical single-sign-on environment in
that two enterprises need not have a direct, pre-established,
relationship defining how and what information to transfer
about a user. Within a federated environment, entities provide
services which deal with authenticating users, accepting
authentication assertions (e.g., authentication tokens) that are
presented by other entities, and providing some form of trans-
lation of the identity of the vouched-for user into one that is
understood within the local entity.

Federation eases the administrative burden on service pro-
viders. A service provider can rely on its trust relationships
with respect to the federation as a whole; the service provider
does not need to manage authentication information, such as
user password information, because it can rely on authenti-
cation that is accomplished by a user’s authentication home
domain or an identity provider. A federated environment
allows a user to authenticate at a first entity, which may act as
an issuing party to issue an authentication assertion about the
user for use at a second entity. The user can then access
protected resources at a second, distinct entity, termed the
relying party, by presenting the authentication assertion that
was issued by the first entity without having to explicitly
re-authenticate at the second entity. Information that is passed
from an issuing party to a relying party is in the form of an
assertion, and this assertion may contain different types of
information in the form of statements. For example, an asser-
tion may be a statement about the authenticated identity of a
user, or it may be a statement about user attribute information
that is associated with a particular user. Furthermore, this
information can be used by a relying party to provide access
to the relying party’s resources, based on the relying party’s
access control rules, identity mapping rules, and possibly
some user attributes that are maintained by the relying party.

An identity provider (IdP) is a specific type of service that
provides identity information as a service to other entities
within a federated computing environment. With respect to
most federated transactions, an issuing party for an authenti-
cation assertion would usually be an identity provider; any

US 9,276,932 B2

7

other entity can be distinguished from the identity provider.
Any other entity that provides a service within the federated
computing environment can be categorized as a service pro-
vider. Once a user has authenticated to the identity provider,
other entities or enterprises in the federation may be regarded
as merely service providers for the duration of a given feder-
ated session or a given federated transaction.

Although it may be possible that there could be multiple
enterprises within a federated environment that may act as
identity providers, e.g., because there may be multiple enter-
prises that have the ability to generate and validate a user’s
authentication credentials, etc., a federated transaction usu-
ally involves only a single identity provider. If there is only a
single federated entity that is able to authenticate a user, e.g.,
because there is one and only one entity within the federation
with which the user has performed a federated enrollment or
registration operation, then it would be expected that this
entity would act as the user’s identity provider in order to
support the user’s transactions throughout the federated envi-
ronment.

By way of additional background, OAuth is an open pro-
tocol which enables users to share their private data between
different Web sites along with their credentials, but only
expose the data on the original Web site where it is held. As
described briefly above, the OAuth protocol allows users to
share private resources stored on one Web site with other sites
without exposing the users’ credentials—for example, user-
names and passwords—to Web sites other than the one hold-
ing the users’ data. A Web site adopting OAuth as one of its
authentication protocols enhances the privacy and security
for users.

The use of OAuth is shown in FIG. 3 with respect to a
consumer-facing website. As illustrated in FIG. 3, in this
embodiment there are three (3) players in OAuth: a user 300,
a consumer 302, and a service provider 304. A typical OAuth
interaction scenario can be described as follows. By way of
background, it is assumed that the service provider 304 is a
photo sharing website that holds or stores some private photos
for the user 300. It is also assumed that the site, however, does
not provide a print service. Thus, when the user 300 wants to
print his or her photos, he or she can go to another site, such
as a photo printing site, which is represented by the consumer
302, which in this example scenario provides a print service.
The printer site (consumer 302), however, does not have the
user’s photos and must obtain the desired photos from the
photo sharing site (service provider 304). Therefore, there
must exist an appropriate data flow from photo sharing site
304 to photo printing site 302. OAuth facilitates this process.
In particular, if the photo sharing site 304 allows authentica-
tion using OAuth, then when the user 300 wants to print
photos (held on the printing site 302), site 302 redirects the
user 300 to site 304 to grant it (site 302) access to the user’s
photos. The user also may be prompted to give permission to
site 302 for reading the photos, or permission may be pre-set
so this step can be skipped. When this is done, the user is
redirected to the printer site 302. Now, the printer site 302 has
permission to read the user’s photos from the photo sharing
site 304 and will be able to print that user’s photos on demand.
In all the steps, the printer site 302 does not know the user’s
credentials for logging into the photo sharing site 304. In this
manner, the user’s privacy is better protected.

FIG. 3 illustrates the above process in a simplified
sequence flow diagram. Atstep 1, a user issues arequest to the
printing site 302. This request may be made using a conven-
tional web browser. The request indicates a desire of the user
to access one or more protected resources on the service
provider, namely, on photo sharing site 304. At step 2, the

20

25

40

45

8

printing site 302 makes a request to the photo sharing site 304
to obtain an OAuth request token. The service provider
responds at step 3 by returning the request token. At step 4, the
printing site 302 issues to the user’s browser an HTTP redi-
rect. The redirect causes the browser to initiate step 5, by
which the browser makes a request to the service provider 304
to authorize the request token. At step 6, the service provider
issues a redirect back to the user. This redirect, however,
causes the browser to initiate step 7, by which the browser
issues a callback URL to the printer site 302. At step 8, the
printer site 302 exchanges the request token for an OAuth
access token. Because the printer site has established its
rights, the service provider responds by returning the access
token to the printer site 302. This is step 9. At step 10, the
printer site 302 makes the request to the service provider to
access the protected resources originally requested by the
user (in step 1). The protected resources are then returned
from the service provider to the printing site at step 11
because the printing site has established that is has permission
to read the user’s photos. At step 12, the printing site returns
to the requesting user the protected resources. This completes
the process.

The following discussion assumes the reader’s familiarity
with the principles of OAuth 2.0 (Internet Request for Com-
ment 6749).

Federated Identity Mapping Using Delegated Authorization

With the above as background, the subject matter of this
disclosure is now described.

The federated identity mapping techniques herein are
operative across cooperating (e.g., at least first and second)
web services that each uses a same delegated authorization
protocol, such as OAuth 2.0. As is well-known, a typical web
service is a network-accessible (e.g., via HTTP or HTTPS)
server that supports a web site or web application (or some
combination thereof). End user clients (operating browsers or
mobile apps) may access the individual web services in a
conventional manner (e.g., by navigating to a URL or
domain). In addition, a particular web service is assumed to
have the capability to access the other web service (or vice
versa), typically using the delegated authorization protocol.
As is well-known, an OAuth interaction typically involves an
OAuth client component, and an OAuth server (provider)
component. It is further assumed that users authorize a web
service using OAuth in the known manner. As such, the
OAuth server component generates the access tokens, and the
OAuth client stores the access tokens. When first and second
web services interact with one another using OAuth accord-
ing to this disclosure, typically they do so over secure (e.g.,
SSL, TLS) connections operating over one or more public
and/or private, wireline and/or wireless networks

When an OAuth provider (such as the OAuth provider
operating at a web service) generates an access token, it is
assumed that the provider associates that token with the user
account that the token authorizes. Likewise, when receiving
the access token, the OAuth client associates the token with a
user account. As a result, both the OAuth provider and the
OAuth client have a unique, agreed-upon “client<sprovider
identity” for the user. As will be described, this identity can be
persisted independently of the access token, and the mapping
remains valid even if the token’s access right expires. The
federated identity mapping technique of this disclosure
exploits this property by using the access tokens (in lieu of
user account information) to share information across web
services via the delegated authorization protocol.

FIG. 4 illustrates a pair of cooperating web services (e.g.,
social networks) that use the identity mapping technique of
this disclosure to facilitate data sharing (e.g., data about users,

US 9,276,932 B2

9

a user’s “contacts” or “contact list,” or the like). While the
following discussion illustrates the techniques of this disclo-
sure in the context of sharing user contact data, this is not a
limitation, as the approach may be generalized and used for
sharing other types of data. An underlying assumption of the
identity mapping approach is that an entity requesting the
data is authorized to receive it. For convenience, this disclo-
sure omits details regarding any user authentication/authori-
zation and assumes that the data sharing is permitted.

In particular, and for purposes of illustration only, FIG. 4
depicts a pair of social networks 400 and 402. The example of
using social networks is for convenience only, as the tech-
niques herein may be implemented irrespective of the nature
of the web service provided by the cooperating services. As
used herein, the word “cooperating” is also a short-hand for
an indication that the web services are interacting with one
another using the delegated authorization protocol (in this
case OAuth). It is also assumed that an end user that initiates
a data sharing operation (as will be described) is or has been
authenticated to each of the cooperating web services (e.g.,
and thus has a user account at each such web service). The end
user’s identity at each web service, however, may differ.

In this example, a first one of the social networks 400 is a
“data supplier,” while the other of the social networks 402 is
a “data consumer.” The identification of one of the networks
as a supplier and the other as a consumer is arbitrary and of
course depends on the nature and direction of the data trans-
fer. In this example, the data supplier is LinkedIn (ww-
w.linkedin.com), and the data consumer is IBM® Connec-
tions, a social software platform. Of course, these are just
representative social networks in which the disclosed subject
matter may be implemented. In this example, a user desires to
import his or her certain contacts from LinkedIn (the data
supplier) to a new social network, namely IBM Connections
(the data consumer). More specifically, it is assumed that end
user “Jim” 404 is starting as a new employee at IBM; he has
a large network of contacts 406 on LinkedIn, and his goal is
import his colleagues on LinkedIn that are also working at
IBM. The ability to export/import between social networks is
generally not possible unless the networks share a global
identifier, such as a Jim’s e-mail address. In this example
scenario, it is assumed that no such identifier exists and that
the federated identity mapping technique of this disclosure is
implemented to address this deficiency. As illustrated, in
LinkedIn, Jim uses the userID “James” 408 and the e-mail
address james(@gmail.com, although in Connections he uses
“Jim” and jim@ibm.com. LinkedIn contacts 406 include
Mark (mark@yahoo.com), T.J. (fj@msn.com), and Jane
(jane@fb.com).

FIG. 5 illustrates how James, as the user at a first social
network 402, can use the identity mapping technique of this
disclosure to obtain his set of contacts existing at the second
social network 400. Referring now to FIG. 5, a specific
example is shown wherein Jim imports his contacts from the
data supplier’s social network using a system based on fed-
erated identity mapping that leverages delegated authorized
access tokens according to this disclosure. The interaction
begins when Jim logs into the data consumer, in this example
IBM Connections 502. Jim then uses the data consumer’s
OAuth client 506 to connect to the OAuth provider 504 of the
data supplier, in this example LinkedIn 500, using his
“James” account. At step (1) as shown, James makes a request
for his contacts. As will be seen, this operation leverages
OAuth and the federated identity mapping technique of this
disclosure to export these contacts from the data supplier. At
step (2) as shown, the data supplier identifies all contacts of
James that have previously logged in from the data consum-

10

15

20

25

30

35

40

45

50

55

60

65

10
er’s domain using OAuth. Token ID: 102 (Mark) and Token
1D: 103 (T.J.) are identified. At step (3), the data supplier 500
replaces the data supplier’s user identifiers (e.g., name,
e-mail) with the access tokens originally generated for each of
those users and then transmits (to the requesting web service
500) the tokens in lieu of the user account information. At step
(4), the data consumer site 502 receives the exported list of
users and their access tokens. At step (5), the data consumer
finds the users associated with those access tokens, and this
operation can be done without the data consumer ever know-
ing Jim’s account ID on the data supplier’s domain. At step
(6), the data consumer links Jim’s profile with the users
exported from the data supplier.

The result ofthis linkage (the identity mapping) is shown in
FIG. 4. In this example, the contact Mark at LinkedIn is now
Marcus 508, at mrt@ibm.com; the contact T.J. at LinkedIn is
now Tara 510, at tara@ibm.com. Jim’s friend Jane could also
be a contact in the new domain (because she was in Jim’s
network of contacts at LinkedIn), however, because Jane has
never logged into the data supplier from the data consumer
using OAuth, she is not automatically imported as a contact.
If and when Jane later does log into the data supplier’s service
from the data consumer using OAuth, the data supplier may
then notify James and Jane that they should get associated on
the data consumer’s domain. This completes the identity
mapping example.

The identity mapping functionality described above may
be implemented in the OAuth client or OAuth provider com-
ponent, as the case may be. In an alternative implementation,
the identity mapping functionality is code that is accessible
(callable) by the respective OAuth component. Thus, e.g., the
function may be implemented in a linked library, as a plug-in,
or in some other similar manner.

FIG. 6 illustrates a process flow describing a contact list
transfer function, which is one representative example of how
identity mapping may be carried out according to this disclo-
sure. For convenience of illustration, the process flow com-
bines various operations, some of which take place at the data
consumer service, while other operations take place at the
data supplier site. The routine begins with a set of operations
at the data consumer web service. The routine begins at step
600 when the user logs into the data consumer. At step 602,
the user authorizes the data supplier via OAuth. At step 604,
the data supplier generates and provides an access token. The
routine then continues with a set of operations that occur at
the data consumer. In particular, at step 606, the data con-
sumer maps the token to the user. The routine then continues
at step 608 with the data consumer associating the token to the
user. At step 610, the user then makes a request to export his
or her contacts from the data supplier. At this point, control
moves back to the data supplier. In particular, the data sup-
plier exports the contacts at step 612 using a set of sub-steps
(steps 614, 616, 620, 622 and 624). In particular, the data
supplier filters users from the same domain at step 614. At
step 616, the data supplier tests to determine whether any
users remain. If not, the routine branches and ends at step 618
(as there are no contacts to export). If, however, the outcome
of'the test at step 616 indicates that users remain, the routine
continues at step 620 with the data supplier replacing identi-
fiers with access tokens. The routine then continues at step
622 by the data supplier testing whether the users have access
tokens. If not, the routine again branches to step 618 and ends.
If there are users with access tokens, the routine continues at
step 624 with the data supplier sending exported contacts to
the data consumer. This completes the set of sub-steps. Con-
trol then returns back to the data consumer. The data con-
sumer receives the contacts at step 626. At step 628, the data

US 9,276,932 B2

11

consumer maps the tokens to user identifiers in the domain.
The data consumer then imports the contacts at step 630 to
complete the process.

As one of ordinary skill in the art will appreciate, the
mapped identity is useful primarily to identify other users in
the same system, although this is not a limitation.

An optional extension is now described. In some cases the
OAuth access tokens may be undesirable to be used as the
identity map. For example, if the “export contacts™ cannot be
exported securely (using SSL or TLS), in which case “fake”
tokens may be generated between the OAuth provider and
client. These fake tokens have no authorized access but which
are used solely for identity mapping. Such tokens could be
generated without changing the OAuth 2.0 protocol, for
example, by specifying an authorization scope of “none.” The
OAuth protocol also could be modified or extended in a way
understood by the client and the provider to generate addi-
tional unique identity mapping tokens during the OAuth
interaction.

The token sharing and identity mapping techniques of this
disclosure enable a set of (at least two or more) web services
to cooperate between and among each other to facilitate data
sharing. For example, if the Connections OAuth client were
connected to an OAuth provider on LinkedIn, LinkedIn could
export its users that are Connections users. Upon such export,
LinkedIn would replace user identities with authorization
tokens. Connections would then lookup the tokens when the
exported users are received, and then accurately map identi-
ties between systems. LinkedIn could also export contacts of
a given user that also uses Connections, with the same alter-
ations to the user identities. A Connections user can then
import their LinkedIn contacts on Connections, with the addi-
tional mapping run by Connections. As another alternative,
Connections could export contacts of a given user that uses
LinkedIn. Connections would replace the Connections-spe-
cific user identifiers with the user access tokens. Upon receiv-
ing the user list, LinkedIn can then map the access tokens to
users. In each of the cases, the federated identity mapping
may not be complete, as only users that have connected
between the two services would have unique identifiers
across the services. This is sometimes referred to as a “partial
identity mapping” of users. There is no guarantee that all
users have connected, nevertheless, typically the complete-
ness would grow over time, and even an incomplete map is
useful in certain circumstances. Of course, the above are
merely representative data sharing examples that may benefit
from the identity mapping scheme.

The functionality described above may be implemented as
a standalone approach, e.g., a software-based function
executed by a processor, or it may be available as a managed
service (including as a web service via a SOAP/XML inter-
face). The particular hardware and software implementation
details described herein are merely for illustrative purposes
are not meant to limit the scope of the described subject
matter.

The particular deployment scenario described above is not
a limitation of this disclosure. The techniques described
herein may be used in any deployment scenario (including,
without limitation, for providing mobile access to web and
other social network-based resources).

More generally, computing devices within the context of
the disclosed invention are each a data processing system
(such as shown in FIG. 2) comprising hardware and software,
and these entities communicate with one another over a net-
work, such as the Internet, an intranet, an extranet, a private
network, or any other communications medium or link. The
applications on the data processing system provide native

25

40

45

55

60

12

support for Web and other known services and protocols
including, without limitation, support for HTTP, FTP, SMTP,
SOAP, XML, WSDL, SAML, Liberty, Shibboleth, OpenlID,
WS-Federation, Cardspace, WS-Trust, UDDI, and WSFL,
among others. Information regarding SOAP, WSDL, UDDI
and WSFL is available from the World Wide Web Consortium
(W3C), which is responsible for developing and maintaining
these standards; further information regarding HTTP, FTP,
SMTP and XML is available from Internet Engineering Task
Force (IETF). Familiarity with these known standards and
protocols is presumed.

As has been described, the scheme described herein may be
implemented in or in conjunction with various server-side
architectures other than cloud-based infrastructures. These
include, without limitation, simple n-tier architectures, web
portals, federated systems, and the like.

Still more generally, the subject matter described herein
can take the form of an entirely hardware embodiment, an
entirely software embodiment or an embodiment containing
both hardware and software elements. In a preferred embodi-
ment, the layered logout function is implemented in software,
which includes but is not limited to firmware, resident soft-
ware, microcode, and the like. The data can be configured into
a data structure (e.g., an array, a linked list, etc.) and stored in
a data store, such as computer memory. Furthermore, as noted
above, the functionality described herein can take the form of
a computer program product accessible from a computer-
usable or computer-readable medium providing program
code for use by or in connection with a computer or any
instruction execution system. For the purposes of this
description, a computer-usable or computer readable medium
can be any apparatus that can contain or store the program for
use by or in connection with the instruction execution system,
apparatus, or device. The medium can be an electronic, mag-
netic, optical, electromagnetic, infrared, or a semiconductor
system (or apparatus or device). Examples of a computer-
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), aread-only memory (ROM),
arigid magnetic disk and an optical disk. Current examples of
optical disks include compact disk-read only memory (CD-
ROM), compact disk-read/write (CD-R/W) and DVD. The
computer-readable medium is a tangible item.

The computer program product may be a product having
program instructions (or program code) to implement one or
more of the described functions. Those instructions or code
may be stored in a computer readable storage medium in a
data processing system after being downloaded over a net-
work from a remote data processing system. Or, those instruc-
tions or code may be stored in a computer readable storage
medium in a server data processing system and adapted to be
downloaded over a network to a remote data processing sys-
tem for use in a computer readable storage medium within the
remote system.

In a representative embodiment, the service provider com-
ponents are implemented in a special purpose computer, pref-
erably in software executed by one or more processors. The
associated catalog configuration is stored in an associated
data store. The software also is maintained in one or more data
stores or memories associated with the one or more proces-
sors, and the software may be implemented as one or more
computer programs.

While the above describes a particular order of operations
performed by certain embodiments of the invention, it should
be understood that such order is exemplary, as alternative
embodiments may perform the operations in a different order,
combine certain operations, overlap certain operations, or the

US 9,276,932 B2

13

like. References in the specification to a given embodiment
indicate that the embodiment described may include a par-
ticular feature, structure, or characteristic, but every embodi-
ment may not necessarily include the particular feature, struc-
ture, or characteristic.

Finally, while given components of the system have been
described separately, one of ordinary skill will appreciate that
some of the functions may be combined or shared in given
instructions, program sequences, code portions, and the like.

As used herein, the “client-side” application should be
broadly construed to refer to an application, a page associated
with that application, or some other resource or function
invoked by a client-side request to the application. A
“browser” as used herein is not intended to refer to any
specific browser (e.g., Internet Explorer, Safari, Firefox, or
the like), but should be broadly construed to refer to any
client-side rendering engine that can access and display Inter-
net-accessible resources. Further, while typically the client-
server interactions occur using HTTP, this is not a limitation
either. The client server interaction may be formatted to con-
form to the Simple Object Access Protocol (SOAP) and travel
over HTTP (over the public Internet), FTP, or any other reli-
able transport mechanism (such as IBM® MQSeries® tech-
nologies and CORBA, for transport over an enterprise intra-
net) may be used. Any application or functionality described
herein may be implemented as native code, by providing
hooks into another application, by facilitating use of the
mechanism as a plug-in, by linking to the mechanism, and the
like.

As used herein, the delegated authorization protocol is
preferably OAuth, but other such protocols may be used as
well.

Of course, the identification of any commercial product
herein is not meant to be taken to limit the disclosed subject
matter.

Having described our invention, what we now claim is as
follows.

The invention claimed is:

1. A method, comprising:

connecting a first web service that uses a delegated autho-

rization access protocol to a second web service that
uses the delegated authorization protocol;

receiving, by the first web service, a request from a first

user;

in response to receipt of the request, requesting and receiv-

ing, by the first web service and from the second web
service, information about a second user of the first web
service that previously logged into the second web ser-
vice from the first web service using the delegated autho-
rization protocol, the information including a delegated
authorization access token obtained by the second user
during that prior login; and

mapping, by the first web service, the delegated authoriza-

tion access token to an identity of the second user in the
first web service to accomplish identity mapping across
the first and second web services.

2. The method as described in claim 1 wherein the del-
egated authorization protocol is OAuth.

3. The method as described in claim 2 wherein the del-
egated authorization access token is an OAuth access token
generated by the first web service and that has been substi-
tuted for a user identifier of the second user.

4. The method as described in claim 1 wherein the second
user is a contact of the first user at the first web service.

10

15

20

25

30

35

40

45

50

55

60

65

14

5. The method as described in claim 4 wherein, by virtue of
the mapping of the delegated authorization access token, the
second user becomes a contact of the first user at the second
web service.

6. The method as described in claim 1 further including
transmitting to the second web service information associated
with at least one contact associated with the first user.

7. The method as described in claim 6 wherein the infor-
mation transmitted to the second web service is a delegated
authorization access token that replaces a user identifier asso-
ciated with the at least one contact.

8. Apparatus, comprising:

a processor;

computer memory holding computer program instructions

that when executed by the processor performs identity

mapping by:

connecting a first web service that uses a delegated
authorization access protocol to a second web service
that uses the delegated authorization protocol;

receiving, by the first web service, a request from a first
user;

in response to receipt of the request, requesting and
receiving, by the first web service and from the second
web service, information about a second user of the
first web service that previously logged into the sec-
ond web service from the first web service using the
delegated authorization protocol, the information
including a delegated authorization access token
obtained by the second user during that prior login;
and

mapping, by the first web service, the delegated autho-
rization access token to an identity of the second user
in the first web service to accomplish identity map-
ping across the first and second web services.

9. The apparatus as described in claim 8 wherein the del-
egated authorization protocol is OAuth.

10. The apparatus as described in claim 9 wherein the
delegated authorization access token is an OAuth access
token generated by the first web service and that has been
substituted for a user identifier of the second user.

11. The apparatus as described in claim 8 wherein the
second user is a contact of the first user at the first web service.

12. The apparatus as described in claim 11 wherein, by
virtue of the mapping of the delegated authorization access
token, the second user becomes a contact of the first user at the
second web service.

13. The apparatus as described in claim 8 further including
transmitting to the second web service information associated
with at least one contact associated with the first user.

14. The apparatus as described in claim 13 wherein the
information transmitted to the second web service is a del-
egated authorization access token that replaces a user identi-
fier associated with the at least one contact.

15. A computer program product in a non-transitory com-
puter-readable storage medium for use in a data processing
system, the computer program product holding computer
program instructions which, when executed by the data pro-
cessing system, perform a method, the method comprising:

connecting a first web service that uses a delegated autho-

rization access protocol to a second web service that
uses the delegated authorization protocol;

receiving, by the first web service, a request from a first

user;

inresponse to receipt of the request, requesting and receiv-

ing, by the first web service and from the second web
service, information about a second user of the first web
service that previously logged into the second web ser-

US 9,276,932 B2

15

vice from the first web service using the delegated autho-
rization protocol, the information including a delegated
authorization access token obtained by the second user
during that prior login; and

mapping, by the first web service, the delegated authoriza-

tion access token to an identity of the second user in the
first web service to accomplish identity mapping across
the first and second web services.

16. The computer program product as described in claim
15 wherein the delegated authorization protocol is OAuth.

17. The computer program product as described in claim
16 wherein the delegated authorization access token is an
OAuth access token generated by the first web service and
that has been substituted for a user identifier of the second
user.

18. The computer program product as described in claim
15 wherein the second user is a contact of the first user at the
first web service.

19. The computer program product as described in claim
18 wherein, by virtue of the mapping of the delegated autho-
rization access token, the second user becomes a contact of
the first user at the second web service.

20. The computer program product as described in claim
15 further including transmitting to the second web service
information associated with at least one contact associated
with the first user.

21. The computer program product as described in claim
20 wherein the information transmitted to the second web
service is a delegated authorization access token that replaces
a user identifier associated with the at least one contact.

#* #* #* #* #*

10

15

20

25

30

16

