a2 United States Patent

Meinecke et al.

US009460130B2

10) Patent No.: US 9,460,130 B2

(54) FLEXIBLY PERFORMING REALLOCATIONS
IN DATABASES

(71) Applicants:Johannes Meinecke, Dresden (DE);
Gregor Hackenbroich, Dresden (DE);
Lars Dannecker, Dresden (DE); Dave
Parsons, Knutsford (GB); Paul Binks,
Knutsford (GB); Simon Moscrop,
Knutsford (GB); Jeremie Brunet,
Boulogne-Billancourt (FR)

(72) Johannes Meinecke, Dresden (DE);

Gregor Hackenbroich, Dresden (DE);

Lars Dannecker, Dresden (DE); Dave

Parsons, Knutsford (GB); Paul Binks,

Knutsford (GB); Simon Moscrop,

Knutsford (GB); Jeremie Brunet,

Boulogne-Billancourt (FR)

Inventors:

(73)

")

Assignee: SAP SE, Walldorf (DE)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 220 days.

This patent is subject to a terminal dis-
claimer.

@
(22)

Appl. No.: 14/259,938
Filed: Apr. 23, 2014

Prior Publication Data

US 2015/0154186 Al Jun. 4, 2015

(65)

Related U.S. Application Data

Provisional application No. 61/911,742, filed on Dec.
4, 2013.

(60)

1600 \

45) Date of Patent: *Oct. 4, 2016
(51) Int. CL
GO6F 17/30 (2006.01)
(52) US.CL

CPC ... GO6F 17/303 (2013.01); GO6F 17/30339
(2013.01); GO6F 17/30498 (2013.01); GO6F
17/30507 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

2010/0125565 Al* 5/2010 Burger GO6F 17/30433
707/713
2011/0167033 Al* 7/2011 Strelitz GO6F 17/30312
707/602

* cited by examiner

Primary Examiner — Hung Q Pham
(74) Attorney, Agent, or Firm — Mintz Levin Cohn Ferris
Glovsky and Popeo, P.C.

(57) ABSTRACT

A reallocation processing block including a computing sys-
tem including one or more data processors receives a base
table, a reference table, and at least one assignment path
table. Subsequently, rules from the at least one assignment
path table are applied to the base table and the reference
table by reallocating values between at least two existing
data objects. A results table is generated with the reallocated
values in the at least two existing data objects. A reallocated
value is compared with a threshold value to determine the
need for an iteration. At least one of the activities described
is implemented using at least one data processor. Related
apparatus, systems, techniques and articles are also
described.

17 Claims, 21 Drawing Sheets

1610 \{

RECEIVE A BASE TABLE, A REFERENCE TABLE, AND AN ASSIGNMENT PATH TABLE

|

1620 — |

APPLY RULES FROM THE ASSIGNMENT PATH TABLE TO THE BASE TABLE, AND SPLIT
DATA FROM THE BASE TABLE INTO DIRECT ASSIGNMENT DATA AND DATA REQUIRING
ALLOCATION

APPLY THE ASSIGNMENT PATH RULES TO THE REFERENCE TABLE AND GENERATE A
FILTERED REFERENCE TABLE

1630

|

1640 — |

DISAGGREGATE THE DATA REQUIRING ALLOCATION USING THE FILTERED
REFERENCE TABLE

1650 \

GENERATE ARESULTS TABLE BY COMBINING THE DISAGGREGATED DATA WITH THE
DIRECTLY ASSIGNED DATA

US 9,460,130 B2

Sheet 1 of 21

Oct. 4, 2016

U.S. Patent

L o4
JOVHOLS
vl
N00Td
ONISSIO0Nd HIAYT
NOLVOOTY | 3svaviva JONILSISHId —
. 0et 743 42 ol
ST
ol 0l
N3O INITD

4/ 00l

US 9,460,130 B2

Sheet 2 of 21

Oct. 4, 2016

U.S. Patent

Z ‘Old
A¥Q ‘ov | WA | ao | ‘ov
1INS3y
SH1vd L
LININNDISSY 0l
0€2 320|d

\

yd

A¥a | fov

ao | ‘ov

wc_mmwuol_a uoileoolly

3ON34d343Y

™~

VA

Add

|

!

uonediduwi

Y

Uoj3/puod

ISve d

VA

ao

US 9,460,130 B2

Sheet 3 of 21

Oct. 4, 2016

U.S. Patent

orz /]

€91

TAYQ

1

VA

ao

11

NsS3y

SHivd

IELER

YOOVSIA

/

| NOINA |

ININNDISSY. AdOD EBNVENEEEL
/ 09€
0gg
ada | fov] ao | ‘ov WA | A¥a | ‘ov | ao | ‘ov
, 1 _ e/ 3svd \
! ! 0ze
uoiesyduwi uol}puod
01z /]
WA | go| ‘Tov

US 9,460,130 B2

Sheet 4 of 21

Oct. 4, 2016

U.S. Patent

4

S e wew s Wes eem e wem s wes mem s iy

N2 LOYS JuBWUdissy 10aJiQ

v "OId
ﬁ ﬁ JaALIQ
DR
YOV ‘€0V 20V ‘TOV Aq s150)
Gey Paug T 1 J9ALIQ
DRI
ZOV ‘TOV Aq s1s0)
0t P{4g 1BAuQ

TOV Aq s3s0)

SIDALID
se synsaJ
Suisnay

US 9,460,130 B2

Sheet 5 of 21

Oct. 4, 2016

U.S. Patent

uswiuBisse
%001 122.ip
‘A9AlIp B BSN] UOp
:Busueaw UWINjod
J9AIp U TINN

G ol
SANUAIDE TV $191UB0 dsal |[e
01 93B204{8 'PEIPHIM 10} SaYMEW ‘pIEIPIM
‘Buiueaw uwinod Bujuesw uwnod
OV 188423 Ul TINN uontpuod Ui TINN
uofedl|dui| uol}puo)
i |
A\}
Wno3 peay N unupy TINN saeles
UNOD peaH Suiddiys TINN saiejes
TINN uipy | [BABIL
fowensenug) | faon) | low)
ALY SATADY

0t N0 peaH Buypg seldejes
0g WUNad pesy uiwpy satefes
0s 1UN0J peay Bwddiys sajees

0gs 7

SiQel stjed uonedo|y

0000S

v sailejes

00002

g LR

0c

S a|qeL 8oUBIBIOY

01s / sSajge] Ynsey / asey

US 9,460,130 B2

Sheet 6 of 21

Oct. 4, 2016

U.S. Patent

Implications

9 '9ld

(3o1jduwit Sununod jou)

SUOIIPUO2 4O TS

SUOINIPUOD OV T3

SaYNLRW-, IPLIIAO
sanjea oiy1dads

A

YUM $8UDIEUI 18AS]
3U0 UIYNA, 3nbiun

SEMIES)
‘dsoy

wondu

029

TINN ¥ 1npodd

TN

TINN Z19npoid

TN 1 19nposd

yled juawusissy 10} yoeosddy aviL

US 9,460,130 B2

Sheet 7 of 21

Oct. 4, 2016

U.S. Patent

4 91d

SINS3Y 1V

51{N58. 199107 'g

SHINS3d SH1NS3H
3INDISSV | { d3LVO0T11V
>I—l—lumm_o : DR IRRRRRRRRRRRRRRRD

IDNIYI4IY |

B ERNIE

SOV
13DYVL H1vVd

SH1vd
INIINNOISSY

08 S

sdt H1vd
‘SYIAINQ + 3SVd

Pl Y

3ouateyal 03 syied Ajddy ¢

FONIY343H

01z |

\

0z¢

US 9,460,130 B2

Sheet 8 of 21

Oct. 4, 2016

U.S. Patent

SOV
1394V1 Hivd

Hlvd
INININDISSY

0eZ S

8 '9id

SINS3d 11V

SHNS3J 193107 '9

SI1NS3d
QINDISSY
A1L23dId

CSIURIUBISSE 1B w%cmx N H

S11NS3d
ailvoonv

ESIVELEEER
CENERNIE|

SAl Hivd +
JONJH343Y

W 20UB49)24 01 syled Ajddy g

FONIH343Y

sdl H1vd
‘SYIAIMQA + ISVE

\

0ze

0z |

Co_umucwEm_Qrc_ pP=a1eAllOW-a3uellO)ad

US 9,460,130 B2

Sheet 9 of 21

Oct. 4, 2016

U.S. Patent

6 Ol

SITNS3d 11V

= JON3d343d

- -

MIAIG 404 € pue T 3onpoud
031 81NgLISIP Ajuo am
¥ w 51502 Bunjg 4oy ng

43INOLSND

OV 1394Vl

JONID B S S19p40
30 J3quuiny ayi Buish
‘MING 10} sponpoud jje

03 painguisip Ajjlewiou
ade $1500 8ug

ANALG 40§ T 10NpOId
o1 paudisse Ajpoaap
Q4B g Ul 150D WWpY

13NAaoyd
OV 1394Vl

SH1Vd INJINNDISSV

svd

US 9,460,130 B2

Sheet 10 of 21

Oct. 4, 2016

U.S. Patent

0L "Oid

0L

sAl Hlvd ‘SY3AIYQ + 3ISve

SH1vd INJWNNDISSY sve
aseq 01 syled Ajddy - T uonelad(Q jo ajdwexy

US 9,460,130 B2

Sheet 11 of 21

Oct. 4, 2016

U.S. Patent

L "OId

SEINS3H AINDISSY A1LD3HId

4INOLSND
OV 1394Vl

12Naoud SAl Hivd "SH3IARQ + 3Svd

OV 11D4VL syuswugisse 19241p sjpueH — z uonesadQ jo ajdwexy

US 9,460,130 B2

Sheet 12 of 21

Oct. 4, 2016

U.S. Patent

ZL "old

0€e

\ {1 Hivd +} FONIYI4Y
0z

SH1Vd INJANDISSY
92uU343jaJ 03 syled Juswusdisse Ajddy — ¢ uoniesadQ jo sjdwexy

US 9,460,130 B2

Sheet 13 of 21

Oct. 4, 2016

U.S. Patent

geer/ ANOLSND

OV 13DVl

oge’ LONAOYHd
OV 1394Vl

€l 'oid

) IDNIYIAIN G3¥IE / AL HIvd + 3DNIH3I43Y

SOV 19848] 10} SanjeA JaALIp Ja)j14 — H uoneladQ Jo ajdwex]

US 9,460,130 B2

Sheet 14 of 21

Oct. 4, 2016

U.S. Patent

vi "o

EBVENELENREDETHIE B

NS3d A3Lvo0Tv

S

SQI H1vd ‘SY3AIYA + 3Sve
93e8au38es|g — § uolesadQ Jo ajdwex]

US 9,460,130 B2

Sheet 15 of 21

Oct. 4, 2016

U.S. Patent

0ve

Si "o

SIINS3d 1Y

SH1NS3Y A3tvOOoTIv

— SHINS3d A3INODISSY A1L334dId

S}jNsad 109)j0) — 9 da1s WiyHJIod}y Jo ajdwex]

US 9,460,130 B2

Sheet 16 of 21

Oct. 4, 2016

U.S. Patent

91 "Old

V1VQ d3NSISSY A11034id
dH1 HLMVLIYQ G31vO3HO0VSIA IHL ONINIGWOO A8 F78V1 S1INSTH V FIVHINTD

A

A78VL JONIH343
3343474 3HL ONISN NOILYOOTIV ONIMINDF VIVA IHL 31VvO3FHOOVSIa

/

318v1 FONFHI43Y 34314114
V 3LVEINTO ANV 318VL 30NTH343Y 3HL OL STTNY HIVd INFWNOISSY IHL AlddV

X

NOILYOOTIV
ONIHINOZY V1VA ANV VLVYQA INJWNOISSY LOFId OLNI 378VL 3SVE IHL WO VIVQ
1I7dS GNV ‘379VL 3SYE IHL OL 378VL HLVd LINFWNDISSY IHL WOM STTNY AlddV

K

318VL H1Vd INFWNOISSY Nv ONV ‘J78VL JONIHIITY ¥ '319VL ISVYE YV IAIZ0TY

US 9,460,130 B2

Sheet 17 of 21

Oct. 4, 2016

U.S. Patent

1L Ol
F1gvL 11NS3y
OvLL %
pest)
¢ sYied 5ETT
wstuBissy
i/ mumwwm,wmm
Tsied | Ly
awusissy | (e oz’
o’ TN
S
8024 TavL
3svY
o’
“ 0041

193ys juswaoe|day

US 9,460,130 B2

Sheet 18 of 21

Oct. 4, 2016

U.S. Patent

81 "OId

¢ #001g-gns

Z syjed yuswubissy

| syjed juswubissy

1 uoneoojeay

™
I %¥00[g-qns

uonEo||eaYy

¢ A00[9-gns

Z sSyied juswubissy

L syied juswiubissy

Z syled juswubissy

| eoualajoy

uoneoojesy

N
L %901g-gns

uoijeosojjeay

| @ouaIBjaYy

CSm o ploneiay

¢ 00[g-gns

S
cell L syled juswubissy

uoneoo|esy

i
I 3o0ig-gns

omt\

uoneoojjeey

| 9oualaloy

804} \

US 9,460,130 B2

Sheet 19 of 21

Oct. 4, 2016

U.S. Patent

6L "OId

T %20|g-gns 3uissadoad uoiledo)jeal '

Z Y20|g-qns uolledo|jeal 'z

US 9,460,130 B2

Sheet 20 of 21

Oct. 4, 2016

U.S. Patent

0Z 'Oli4

0

665

669

c

¥r0c W

d

0

d

v

D pue ‘g ‘v 01 g JO S1S00 atnquisig — Z)20jg-gns

oz |9 | 465 | 169 | O
a 0 d v
d pue D ‘g 01V 3O S1500 81nqi4lsiqg — T ¥20{g-gns
opoz/ € UoneRH
oz | O | 65 | 269 | S
a 9) d v

3 pue ‘g ‘v 01 (JO 53502 SINGLASIA — Z M20|g-gns

2e0eg

144

LLG

LL9

0

W

d

0

g

Y

@ pue D ‘g 01 ¥ JO S31503 31nqiisiq — T %20iq-gns

omom\

7 uoielay

0

£es

€e9

el

veoe

N @

O

d

v

D pue ‘g 'y 01 @ J0 53500 INGLASIQ — Z %20/9-qNS

00v | 00F | 009 0
[AAVA N 3 a »
d pue D ‘g 01 v/ JO 53502 BINQLISIA — T %20|9-gns
0702 S/ T uoneisy
00c | 00c | 00t | 009
d 0 g v
ov0z” UOHENHS |IHUY

hN 0002

US 9,460,130 B2

Sheet 21 of 21

Oct. 4, 2016

U.S. Patent

L2 "OHd

NOILVHALI NV 404 033N
JHL ANINGF.L30 OL 3NTVA QTOHSTHHL V HLIM 3NTVA A31vO0TIVId ¥V ONIIVAINOD

A

$193rg0 vivad ONILSIXd OML
1SV3T 1V IHL NI SFNTVA A31vD0TIV3Y 3HL HLIM F718VL SLINS3H V ONILVEENTD

A

$103rd0 Vivad ONILSIX3 OML
L1SV3T 1V N33M1L3g SINTVA ONILVOOTIVIY A 319VL JONIH343H IHL ANV 318Vl
3Svd 3HL O1 318Vl Hivd INJNNOISSY 3INO LSV3T 1V 3HL WOH4 STNY AlddV

A

J1avl
HLYd INFWNDISSY INO LSYHT LV ANV ‘F18VL JONIFHI43Y V 'F19v1 3ISvE vV IAIF03Y

US 9,460,130 B2

1
FLEXIBLY PERFORMING REALLOCATIONS
IN DATABASES

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority to U.S. Patent Application
Ser. No. 61/911,742 filed on Dec. 4, 2013, entitled “Flex-
ibility Performing Allocations in Databases”, the contents of
which are incorporated by reference herewith in its entirety.

TECHNICAL FIELD

The subject matter described herein relates to reallocation
processes, and specifically to data being distributed within
database environments.

BACKGROUND

In a database environment, reallocation is the process of
re-distributing values between previously existing data
objects, which already have values assigned to them. A
typical example for reallocation is the re-distribution of
indirect costs assigned to a service department to other
(productive) departments. Reallocation methods today
require that specific data types and steps within the reallo-
cation process are hardcoded and limited to a predefined
number of, or sequence of steps.

SUMMARY

In one aspect, a reallocation processing block including
computing system including one or more data processors
receives a base table, a reference table, and at least one
assignment path table. Subsequently, rules from the at least
one assignment path table are applied to the base table and
the reference table by reallocating values between at least
two existing data objects. A results table is generated with
the reallocated values in the at least two existing data
objects. A reallocated value is compared with a threshold
value to determine the need for an iteration. At least one of
the activities described is implemented using at least one
data processor.

When the threshold value is not reached, the reallocation
processing block received the results table, the reference
table, and the at least one assignment path table as part of an
iteration. When the threshold value is not reached, the rules
from the at least one assignment path table are re-applied to
the results table and the reference table by reallocating
values between the at least two existing data objects. The
results table is re-generated with the reallocated values in the
at least two existing data objects. At least one of the
activities described is implemented using at least one data
processor.

The reallocation processing block can include at least one
reallocation processing sub-block.

The reallocation processing block provides the base table,
the reference table, and a first assignment path table to a first
reallocation processing sub-block. The first reallocation pro-
cessing sub-block can apply rules from the assignment path
table to the base table, and the reference table and can
generate the results table. At least one of the activities
described is implemented using at least one data processor.

The reallocation processing block provides the results
table generated by a previous reallocation processing sub-
block, the reference table, and a subsequent assignment path
table, to a subsequent reallocation processing sub-block. The

25

30

40

45

2

subsequent reallocation processing sub-block use the results
table generated by a previous reallocation processing sub-
block instead of the base table, the subsequent assignment
path table, and the reference table to apply rules from the
assignment path table and to generate a new results table. At
least one of the activities described is implemented using at
least one data processor.

The first reallocation processing sub-block can receive the
base table, the reference table, and the first assignment path
table. Subsequently, the first reallocation processing sub-
block can applying rules from the first assignment path table
to the base table by splitting data from the base table into
data requiring direct assignment and data requiring alloca-
tion. Furthermore, the first reallocation processing sub-block
can apply rules from the first assignment path table to the
reference table and generate a filtered reference table. Fur-
thermore, the first reallocation processing sub-block can
reallocate the data requiring reallocation using the filtered
reference table, and can generate a results table by combin-
ing the reallocated data with the data requiring direct assign-
ment. At least one of the activities described is implemented
using at least one data processor.

The subsequent reallocation processing sub-block can
receive the results table generated by the previous realloca-
tion processing sub-block, the reference table, and the
subsequent assignment path table. Subsequently, the subse-
quent reallocation processing sub-block can apply rules
from the subsequent assignment path table to the received
results, by splitting data from the received results into data
requiring direct assignment and data requiring reallocation.
Furthermore, the subsequent reallocation processing sub-
block can apply rules from the subsequent assignment path
table to the reference table and can generate a filtered
reference table. Furthermore, the subsequent reallocation
processing sub-block can reallocate the data requiring real-
location using the filtered reference table; and can generat-
ing the results table by combining the reallocated data with
the data requiring direct assignment. At least one of the
activities described is implemented using at least one data
processor.

Reallocation within a database environment can be per-
formed by processing a sequence of steps, each of which is
described by a reallocation processing block. The realloca-
tion processing block can receive a base table, a reference
table, and one, or more, assignment path tables and can
compute a result. This result can act as the input for another
iteration of the reallocation the processing block either until
the remaining result is sufficiently small to be below a
defined threshold, or based on a fixed number of iterations.
Related apparatus, systems, techniques and articles are also
described.

Non-transitory computer program products (i.e., physi-
cally embodied computer program products) are also
described that can store instructions, which when executed
one or more data processors of one or more computing
systems, can cause at least one data processor to perform
operations herein. Similarly, computer systems are also
described that may include one or more data processors and
memory coupled to the one or more data processors. The
memory may temporarily or permanently store instructions
that cause at least one processor to perform one or more of
the operations described herein. In addition, methods can be
implemented by one or more data processors either within a
single computing system or distributed among two or more
computing systems. Such computing systems can be con-
nected and can exchange data and/or commands or other
instructions or the like via one or more connections, includ-

US 9,460,130 B2

3

ing but not limited to a connection over a network (e.g. the
Internet, a wireless wide area network, a local area network,
a wide area network, a wired network, or the like), via a
direct connection between one or more of the multiple
computing systems, etc.

The subject matter described herein provides many
advantages. For example, the current subject matter allows
for an arbitrary number of reallocation steps. Moreover,
dimensions that comprise the tables/views can be flexibly
chosen. As such, the method can generalize approaches used
in state-of-the-art cost allocation solutions which are typi-
cally restricted to specific allocation models (e.g. activity-
based costing) and which restrict the number and type of
dimensions using in allocation.

The details of one or more variations of the subject matter
described herein are set forth in the accompanying drawings
and the description below. Other features and advantages of
the subject matter described herein will be apparent from the
description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a system diagram illustrating a computing
environment including a database having an allocation pro-
cessing block;

FIG. 2 is a diagram illustrating an allocation processing
block 130 that receives three inputs and computes an allo-
cation result;

FIG. 3 is diagram illustrating an example of a sequence of
activities within the allocation processing block;

FIG. 4 is a diagram illustrating the allocation processing
block used twice to further disaggregate an allocation value
by other allocation object parameters;

FIG. 5 is a diagram illustrating a base/result table, a
reference table, and an allocation paths table;

FIG. 6 is a diagram illustrating a tree approach for
interpreting assignment path rules, especially how to handle
NULL values in the assignment path table;

FIG. 7 is a process flow diagram illustrating a sequence of
steps performed by the allocation processing block;

FIG. 8 is a process flow diagram similar to FIG. 7, with
an adapted performance motivated step;

FIG. 9 is a diagram illustrating an example of the results
of the allocation process implemented on data populated
base, resource, assignment paths and results tables;

FIGS. 10-15 are diagrams, each illustrating a step or
sub-step of the allocation process using data populated
tables;

FIG. 16 is a process flow diagram illustrating a sequence
of activities for performing data allocation;

FIG. 17 is a diagram illustrating a reallocation module
that receives inputs and computes a reallocation result;

FIG. 18 is a diagram illustrating a reallocation processing
module performing three iterations of reallocation process-
ing block;

FIG. 19 is a diagram illustrating an example of the
reallocation process;

FIG. 20 is a diagram illustrating intermediary results
during the reallocation process; and

FIG. 21 is a process flow diagram illustrating a sequence
of activities for performing data reallocation.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

FIG. 1 shows an example of a system 100 in which a
computing system 115, can include one or more program-

20

40

45

50

55

60

65

4

mable processors that can be collocated, linked over one or
more networks, etc., executes one or more modules, soft-
ware components, or the like of a database 120. The data-
base 120 can include one or more of a database, an enterprise
resource program, a distributed storage system (e.g. NetApp
Filer available from NetApp of Sunnyvale, Calif.), or the
like.

The one or more modules, software components, or the
like can be accessible to local users of the computing system
115 as well as to remote users accessing the computing
system 115 from one or more client machines 110 over a
network connection 105. One or more user interface screens
produced by the one or more first modules can be displayed
to a user, either via a local display or via a display associated
with one of the client machines 110. Data units of the
database 120 can be transiently stored in a persistence layer
125 (e.g. a page buffer or other type of temporary persis-
tency layer), which can write the data, in the form of storage
pages, to one or more storages 140, for example via an
input/output component 135. The one or more storages 140
can include one or more physical storage media or devices
(e.g. hard disk drives, persistent flash memory, random
access memory, optical media, magnetic media, and the like)
configured for writing data for longer term storage. It should
be noted that the storage 140 and the input/output compo-
nent 135 can be included in the computing system 115
despite their being shown as external to the computing
system 115 in FIG. 1.

Data retained at the longer term storage 140 can be
organized in pages, each of which has allocated to it a
defined amount of storage space. In some implementations,
the amount of storage space allocated to each page can be
constant and fixed. However, other implementations in
which the amount of storage space allocated to each page
can vary are also within the scope of the current subject
matter.

The database 120 can include an allocation processing
block 130. The current subject matter describes methods,
systems, and computer program products for performing
allocation within a database using the allocation processing
block 130. Allocation is the process of copying, splitting
and/or disaggregating values obtained from source data into
one or multiple values and storing them in target data. For
example, in order to generate accurate financial statements
broken down to the department level, one can allocate the
cost of rent in an organization by splitting the total rent
across departments, based on how much floor space they
occupy. Organizations can use allocation calculations to
analyze operational data and to provide insight and infor-
mation on performance management, shared services cost-
ing, planning and budgeting cycles, cost reduction initia-
tives, sales and marketing strategies, product mix
simulations, regulatory reporting, and the economic perfor-
mance of organization units.

The current subject matter is not restricted to costs, and
may also be used to allocate values representing e.g. volume,
mass, energy-content, etc. The current subject matter is thus
not restricted to business scenarios related to profitability
and costing, but can also be used in industrial scenarios
requiring resource and material allocation (e.g. in oil and gas
scenarios).

Activity-based costing is a standard methodology in prof-
itability and cost analysis. In activity-based costing, costs
are usually allocated from line items to activities, and then
from activities to cost objects. The current subject matter can

US 9,460,130 B2

5

support activity-based costing, which may include models
where costs are allocated through an arbitrary number of
steps.

FIG. 2 is a diagram illustrating an allocation processing
block 130 that can receive three inputs and can compute an
allocation result 240. The three inputs can include a base
210, a reference 220, and an assignment paths table 230, and
they can provide data to the allocation processing block 130
in the form of input tables or input views. The base 210 can
be the primary or source input table, which the allocation
processing block 130 copies, splits and/or aggregates with
the additional use of the reference table 220 and the assign-
ment paths table 230. The base table 210 can list costs by
line items, which may need to be broken down by the
processing block. The reference table 220 can provide key
relative parameters within an organization that can be used
as weights for allocation, for example activities performed
by different departments, or activities performed to sell
different products, headcount distributed with the organiza-
tion, or resource consumption in different builds. These
weights can be called drivers, and are used to breakdown
according to the driver proportions the parameters that may
require allocation from the base table 210. When there are
more than one driver, the assignment paths table 230 can be
used to facilitate the allocation. The reference table 220 can
contain additional parameters that can be used when the
assignment paths are evaluated. The assignment paths table
230 can be a set of rules that the allocation processing block
130 applies to the base table 210 and the reference table 220,
in order to know which parameters to choose for the
classifying, copying, splitting, and/or disaggregating activi-
ties that it performs. For example, rent costs for the year to
date can be allocated to warehouses B and C, and they can
be distributed according to the square footage measurement
of the respective warehouses.

In an example embodiment, allocation models can be
created to determine how costs are apportioned across an
organization. The basic building block of an allocation
model is the allocation processing block 130.

FIG. 3 is a diagram illustrating an example of a sequence
of activities within the allocation processing block 130. This
example illustrates how the allocation processing block 130
can differentiate between data requiring disaggregation, and
data not requiring disaggregation. In the cases where data
may not require disaggregation, the entire allocation value
can be assigned to a specific allocation object. The allocation
processing block 130 can receive data from the base table
210, then can copy this data, and split the data based on rules
from the assignment paths table 230. The splitting activity
can yield two paths, namely a disaggregation path 350, and
a direct assignment path 360. In the disaggregation path 350
the rules from the assignment path table can be applied to the
data requiring allocation, as shown by the lookup activity,
and then the data can be disaggregated. In the direct assign-
ment path 360, the data from the base table 210 can be
copied and combined with the disaggregated data. The
combined data results can then be fed into the results table
240.

The base table 210, reference table 220, allocation paths
table 230 and results table 240 can include parameters of
different data types, which can include allocation objects,
dimensions, values, and drivers, as defined below.

Allocation Object (AO)—An allocation object represents
a business entity to which values can be allocated. For
example, line items, activities, and cost objects. In alloca-
tion, the source and target objects are called allocation
objects.

10

15

20

25

30

35

40

45

50

55

60

65

6

Allocation value (VAL)—An allocation value is the actual
numeric value to be allocated. For example, in the example
about rent, the source allocation object is the Rent item, and
the allocation value is the numeric value of the rent, say
$10,000. The allocation value is usually a cost, but it can
also be revenue, or other value parameters.

Dimension or other dimension (OD)—A dimension is a
collection of related data members that represent an aspect
of a business, such as products, accounts, or currency.
Dimensions can be allocation objects or other dimensions.
Whereas an allocation object represents a business entity to
which a value can be allocated, an other dimension (OD) is
a dimension by which the allocated value should be ana-
lyzed, but which is not considered as an allocation object in
that it does not represent an entity that carries costs, for
example time. Other dimensions are hierarchical attributes
that are used to specity allocation objects in more detail.

Driver (DRV)—A driver is a measure used to split an
allocation value across allocation objects. It is a ratio used
as a weighted distribution to apply for the disaggregation of
data. For example, if the total cost of rent for an organization
was apportioned to departments according to how much
floor space they occupy, the driver in this case would be the
square meters measurement of the different departments
relative to each other.

The above-defined parameter types can be stored in
corresponding columns types. As shown in FIG. 3, the base
table 210, reference table 220, assignment path table 230,
and results table 240 can include columns AO1, OD, VAL,
AO2, DRV to store the corresponding allocation object,
other dimension, value, and driver parameters. It is under-
stood that the list columns are provided as an example, and
that the list is not limited to the number, or type of columns
described.

It is understood that described subject manner can be
intended for flexible design thereby allowing for an arbitrary
number of Allocation Objects (AO) columns, Other Dimen-
sion (OD) columns or drivers, and that the data types
described can span over many different industries.

FIG. 4 is a diagram illustrating the allocation processing
block used twice to further disaggregate an allocation value
by other allocation object parameters. The first instance of
the allocation processing block 430 can receive an allocation
value associated with an allocation object AO1. Using a
driver and a second allocation object AO2 (provided by a
reference table) and rules (provided by an assignment paths
table), the value associated with AO1 can be disaggregated,
generating a results table with the AO1, AO2, the disaggre-
gated values and the driver. The second instance of the
allocation processing block 435 can reuse the results from
the prior step as an input driver, along with additional two
additional allocation objects AO3 and AO4. The initial
allocation value that was associated with the allocation
object AO1 can be further disaggregated based on the new
driver and allocation objects AO3 and AO4. This macro-
view illustrates an ordered sequence of steps where an
allocation processing block can be implemented as a black
box, where each level can add one or more allocation object
dimensions. This example requires that an additional allo-
cation object dimension can be provided, and that a new
reference table can be provided within the sequence. It is
noted that data that can be directly assigned, hence not
requiring disaggregation can optionally skip direct assign-
ment steps within a sequence of allocation processing block
activities, and can be directly assigned to a final results table
at the end of the sequence described.

US 9,460,130 B2

7

FIG. 5 is a diagram illustrating a base/result table 510, a
reference table 520, and an allocation paths table 530. The
base/result table 510 can include the Allocation Object
(AO), Other Dimension (OD) and Allocation value (VAL)
column types. The allocation value can be the primary input
for the allocation process, and it can be split by allocation
objects and other dimensions. All subsequent allocation
steps can use the results of the previous step as base data or
reference data. A base table can contain the values to be
allocated (usually costs) listed by the objects to which they
already have been allocated and possibly by other dimen-
sions. For example, the base table 510 with costs broken
down by line items “travel” and “salaries.” The parameters
in the other dimensions column are hierarchical attributes
that can be used to specify allocation objects in more detail.
They should be kept in the final results table for reporting.

The reference table 520 can include Driver Name, and
Driver Value columns as weights to be used for allocation.
Reference table 520 can also include one or more Allocation
Object (AO) columns, and may optionally include Other
Dimension (OD) columns. The driver values in the Driver
Value columns are split across, and using the values con-
tained in the Allocation Object (AO) columns and Other
Dimension (OD) columns. The driver name column in this
example contains the “head count” parameter, and the driver
value column contains the numeric value used as a weight.
The reference table 520 can be used as an input for the
allocation process, and the values of all relevant drivers can
be used as weights for allocating the allocation values (e.g.
costs), listed by various dimensions.

The assignment paths table 530 is an ordered list of
“rules” specifying, based on a given combination of dimen-
sion values (the condition), which driver to choose to
disaggregate to which AOs, or to which AOs to directly
assign to the results table, or optionally which OD assign-
ments to change. The assignment paths table 530 can include
one or more condition columns defining dimensions, shown
as a source allocation object (SAO) and a source other
dimension (SOD) column. The assignment paths table 530
can also include a driver name column, one or more target
allocation object columns (TAO), and zero or more target
other dimension columns (TOD).

Source columns can refer to where the AO or OD values
come from, and can contain these values before an allocation
activity is performed. For example source columns can
contain the dimension values in the base table, and the
condition values in the assignment paths table. Target col-
umns refer to AO or OD values where the costs can go after
an allocation activity is performed. For example, target
columns can contain the dimension values in the reference
table and the implication values in the assignment paths
table.

NULL values in source and target columns of the alloca-
tion paths table 530 can act like wildcards, meaning that any
value could be considered in the NULL fields. Contrarily, a
NULL in the driver name column means that a driver should
not be used, and that the data in the record should be directly
assigned one single dimension combination, and does not
require any allocation or driver-based disaggregation, as was
described with reference to paths 350 and 360 in FIG. 3.

FIG. 6 is a diagram illustrating a tree approach for
interpreting assignment path rules, especially how to handle
NULL values in the assignment path table. Understanding
this approach is necessary for understanding the sequence of
steps and substeps that the allocation processing block 130
can implement in performing allocation, as will be described
in FIGS. 7-16. Assignment path table 610 contains NULL

30

40

45

8

values in the SAO, SOD, and driver name columns. The tree
diagram shows the four potential paths due to the NULL
values in assignment path table 610. However, an additional
rule dictates that within each level, matches with specific
values can override wildcard matches. Hence, the wildcard
can apply only to values that have not already been
accounted for by a unique match. Following this rule, as
illustrated in this example, path 620 is the correct path, since
it is the path with the most unique matches defined.

FIG. 7 is a process flow diagram illustrating a sequence of
steps (e.g. implemented as relational database operations
like JOIN, UNION, vendor-specific extended operations
etc.) that can be performed by the allocation processing
block 130. FIG. 8 is a process flow diagram similar to FIG.
7, with an adapted performance motivated step. FIG. 9 is a
diagram illustrating an example of the results of the alloca-
tion process that can be implemented on data populated
base, resource, assignment paths and results tables. Note that
Assignment paths table in FIG. 9 includes the Target AO
Product, and the Target AO Customer tables, even though
they are shown as separate tables. This illustrates that the
assignment paths table can include multiple target allocation
objects. In a single allocation step, values can be split to a
single target AO or to multiple target AOs. FIGS. 10-15 are
diagrams, each illustrating a step or sub-step of FIG. 7 to
achieve the result shown in FIG. 9, performed by the
allocation processing block 130.

Referring to FIG. 7, the allocation processing block 130
can receive base table 210, reference table 220, and assign-
ment path table 230. Note that the assignment path table 230
may include a separate path target table. The assignment
paths table 230 can be applied to the base table 210 and can
generate and intermediary base table 710. FIG. 10 illustrates
this step with data populated tables. The assignment paths
table can be joined to the base table on all condition
columns, and adds the Path ID and Driver Name columns.
This join takes into account wildcard-semantic of NULL as
previously described. Therefore, path 3 overrides path 2,
because path 3 is more specific. The NULL value in the
Driver Name column of the intermediary 710 identifies the
data records that should be directly assigned to the results
table, without need for disaggregation.

Referring back to FIG. 7, the allocation processing block
130 can use the NULL value to split the data from the base
table 210 accordingly into data requiring disaggregation
350, and data requiring to be directly assigned 360. The
allocation processing block 130 can direct the data requiring
direct assignment 360 to the results table via a first inter-
mediary results table 740. FIG. 11 illustrates this step with
data populated tables. For all target Allocation Object col-
umns of the assignment paths table, the allocation process-
ing block 130 can join the target AO (one per base row) to
those rows of the extended base table that have no driver
name specified, but instead have “NULL” specified. Essen-
tially copying the all records that contain the “NULL” driver
name directly to the results table.

Referring back to FIG. 7, the allocation processing block
130 can apply assignment paths table 230 to reference table
220, and can generate intermediary reference table 720. FIG.
12 illustrates this step with data populated tables. The
allocation processing block 130 can join the assignment
paths table 230 to the reference table 220 on all condition
columns and on the driver name, and can add the Path ID.
This step can effectively filter out unneeded AO-OD-Driver
combinations. The join is a path-join, which means that it
can take into account the wildcard-semantic of NULL values

US 9,460,130 B2

9

as previously discussed. Therefore, path id 3 overrides path
id 2, because path id 3 is more specific.

Referring back to FIG. 7, the allocation processing block
130 can further apply assignment paths table 230 to refer-
ence table 220, and can generate a filtered reference table
725. FIG. 13 illustrates this step with data populated tables.
Note that the Target AO Product table 1330 and the Target
AO Customer table 1335 are a part of the assignment paths
table (not shown), even though they are shown as separate
tables. The allocation processing block 130 can filter out
driver values that belong to target AOs which the rules
identify should not be disaggregated. This step can effec-
tively be performed by joining the target AO tables 1330 and
1335 of the assignment paths to the reference table 725,
based on the target AO and the Path ID columns. For
example, the Target AO Customer table 1335 does not
contain a path ID of value 2 with Customer VW, therefore
the last line of the intermediary reference table 725 can be
filtered out. As discussed above, during the join, the wild-
card-semantic of NULL can be taken into account, and the
more unique path 3 overrides the less unique path 2.

Referring back to FIG. 7, the allocation processing block
130 can disaggregate the data requiring allocation, using the
filtered reference table 725. The disaggregated results can be
placed in a second intermediary results table 745. FIG. 14
illustrates this step of generating a second intermediary
results table 745, with data populated tables. The allocation
processing block 130 can disaggregate the allocation value
from the intermediary base table 710, using the driver values
from the filtered reference table 725. The driver values can
provide the weights, or the proportions/ratios into which the
allocation processing block 130 can disaggregate the allo-
cation value.

Referring back to FIG. 7, the allocation processing block
130 can combine the disaggregated data from the second
intermediary results table 745, with the directly assigned
data from the first intermediary results table 740, and can
generate a results table 240. FIG. 15 illustrates this step with
data populated tables. The allocation processing block 130
can perform a union of the disaggregated results and the
directly assigned results, forming the results table 240. The
results table produced can include the allocated values,
(potentially) all allocation objects—both source and target,
any other dimensions, as well as the drivers.

Referring to FIG. 8, the allocation processing block 130
can optionally improve performance by joining, 810, the
intermediary base table 710 with the reference table 220.
This is an alternative method of applying the rules from the
assignment path table 230 to the reference table 220, and is
technically feasible because the intermediary base table 710
contains the same information, but already filtered and
without wildcards, which is better for performance.

The join logic, as described in individual examples, can
be summarized in the following manner. In general, two
dimension columns types can be used as join attributes,
specifically if they refer to the same dimension, or they have
the same role in their table (e.g. both refer to the allocation
source). In the base table, all dimensions can be considered
to be source dimensions. In the assignment paths table,
condition tables are generally source dimension columns
and implications columns are generally target dimension
columns. If a dimension only appears as a condition, then it
can be considered to be both in source and target role
(because in that case the assignment to this AO and OD does
not change). In the reference table, dimensions are target
dimension columns.

10

15

20

25

30

40

45

50

55

60

65

10

FIG. 16 is a process flow diagram 1600 in which, at 1610
the allocation processing block can receive a base table, a
reference table, and an assignment path table. Subsequently,
at 1620, the allocation processing block can apply rules from
the assignment path table to the base table, and can split data
from the base table into direct assignment data and data
requiring allocation. Subsequently, at 1630, the allocation
processing block can apply the assignment path rules to the
reference table and can generate a filtered reference table.
Subsequently, at 1640, the allocation processing block can
disaggregate the data requiring allocation using the filtered
reference table. Subsequently, at 1650, the allocation pro-
cessing block can generate a results table by combining the
disaggregated data with the directly assigned data.

FIG. 17 is a diagram 1700 illustrating a reallocation
processing module 1708 that receives inputs and computes
a reallocation result 1740. Reallocation can use a variation
of the allocation processing block described in FIG. 2.
Reallocation does not break down the allocation value to
new target allocation objects as in allocation, but rather it
can redistribute costs, or other values, between allocation
objects that the cost has already been assigned to. A typical
example for reallocation can be the redistribution of indirect
costs assigned to a service department to other (productive)
departments.

The reallocation module 1708 can receive base table
1710, reference table 1720, and assignment paths tables
1730 and 1732. It is understood that a different number of
assignment paths can be used in other implementations, for
example assignment paths tables 1734 is shown as optional.
A user can provide any number of assignment path tables.
The reallocation module 1708 can use the received tables to
reallocate data values originating from the base table
between data objects as defined by the reference table and
the rules of the assignment paths tables. Results table 1740
can then be generated containing the reallocated values in
the existing data objects.

The reallocation module 1708 can contain a reallocation
processing block 1706, which the reallocation module 1708
can use in one iteration, or in as many iterations 1707 as is
required, in order to reach the desired reallocation results.
The reallocation module 1708 can provide the input tables
that it received to the reallocation processing block 1706, in
order for the reallocation processing block 1706 to perform
each iteration. The same reference table 1720, and the
assignment paths tables 1730 and 1732 can be provided to
the reallocation processing block 1706 in each iteration,
while the result table 1740 from a previous iteration can be
fed back to the reallocation processing block 1706, instead
of the base table 1710. The number of iterations to be
performed can be determined manually by a user, or auto-
matically by requiring the iterations to continue until a
reallocated value reaches, or surpasses a threshold value.

FIG. 18 is a diagram 1800 illustrating the reallocation
processing module 1708 of FIG. 17 performing three itera-
tions of reallocation processing block labeled 1706 A, 17068
and 1706C, respectively. Each reallocation processing block
iteration can include at least one reallocation processing
sub-block 1830, which is a variation of an allocation pro-
cessing block 130 from FIG. 2, and can be considered as a
black box receiving input tables. Different from allocation
steps described earlier, the reallocation processing sub-block
works with reference and assignment path tables, in which
the target allocation object(s) are already present in the base
table (e.g. activity). The reallocation processing sub-blocks
share the same reference table and the same assignment path
table format. Since reallocation processing sub-block 1830

US 9,460,130 B2

11

can receive one assignment paths table 1730, applying the
rules from a second or more assignment paths tables 1732,
requires having a second or more correspondingly realloca-
tion processing sub-blocks 1830. Therefore, the number of
reallocation processing sub-blocks 1830 can be automati-
cally inferred from the number of assignment path tables
received.

FIG. 19 is a diagram 1900 illustrating an example of the
reallocation process. A, B, C and D can be allocation objects
as described in FIG. 2. Department A can be an IT depart-
ment providing services to departments B, C, and D. Depart-
ment D can be a human resource department providing
services to departments A, B, and C. The goal is for the costs
from both service departments, A and D, to be completely
reallocated to the production departments, B and C. There-
fore, the desired reallocation result can be to distribute the
costs such that there will be zero costs, or below a threshold
value remaining in the A and D service departments. A first
allocation path table can define the rule stating that costs
from A can be reallocated to B, C, and D, and can be
implemented by reallocation processing sub-block 1. Simi-
larly, a second allocation paths table can define the rule
stating that costs from D can be reallocated to A, B, and C,
and can be implemented by reallocation processing sub-
block 2. As can be seen in the displayed example, assign-
ment paths in a reallocation typically contain cycles. They
cannot be evaluated all simultaneously, as the result depends
on the order of evaluation. Hence, they are separated into
different assignment path tables evaluated by different real-
location processing sub-blocks in a sequential manner.

FIG. 20 is a diagram 2000 illustrating intermediary results
during the reallocation process. The initial costs in depart-
ments A, B, C and D are shown in the initial situation table
2010. A first iteration 2020 of the reallocation processing
block is shown to contain the processing of a first sub-block
2022, and second sub-block 2024. The first sub-block 2022
can evenly distribute costs of A to B, C, and D. Then the
second sub-block 2024 can evenly distribute costs of D to A,
B, and C.

At the end of processing the first iteration 2020, A, in table
2024 still has a cost of 133. In this case the threshold value
is 2, so at least another iteration 2030 is required. In a similar
manner to the previous iteration, the second iteration 2030
can include for processing a first sub-block 2032, and second
sub-block 2034.

In this way, the costs of A and D can be reduced over and
over. The process can continue until all costs from A and D
are completely reallocated, meaning that a certain accept-
able threshold is deceeded. The threshold can be a security
guard to avoid running through an endless loop. Alterna-
tively, the number of iterations of running the reallocation
processing block can be set manually.

At the end of processing the second iteration 2030, A, in
table 2034 still has a cost of 15, which is higher than the
threshold value of 2. Therefore, at least another iteration
2040 can be required. In a similar manner to the previous
iteration, the third iteration 2040 can include for processing
a first sub-block 2042, and second sub-block 2044. Follow-
ing the processing of sub-block 2044, A has a remaining cost
of 2. Since the defined threshold is 2 the process can be
stopped after three iterations, and the reallocation module
can provide the output of the third iteration 2040, as the final
result.

It is understood that the example provided is only one
example of reallocation, and that in other examples, any
number of allocation objects can reallocate values to any
number of allocation objects.

20

30

35

40

45

12

In some implementations, reallocation can follow an
allocation. In such cases the reference table from the pre-
vious allocation process can be used for reallocation as well.

FIG. 21 is a process flow diagram 2100 in which, at 2110
the reallocation processing block can receive a base table, a
reference table, and at least on assignment path table.
Subsequently, at 2120, the reallocation processing block can
apply rules from the at least one assignment path table to the
base table and the reference table by reallocating values
between at least two existing data objects. Subsequently, at
2130, the reallocation processing block can generate a
results table with the reallocated values in the at least two
existing data objects. Optionally, the reallocation processing
block can perform the above described steps for each
assignment path table with a different reallocation process-
ing sub-block instance. Subsequently, at 2140, the realloca-
tion processing block can compare a reallocated value with
a threshold value to determine the need for an iteration.

To increase the performance of the allocation algorithm,
the operations in allocation can be performed close to the
data and in-memory (as part of an in-memory database
platform). In one implementation, allocations can be
executed by running operations within, for example, the
EPM platform of the SAP HANA database platform.

One or more aspects or features of the subject matter
described herein may be realized in digital electronic cir-
cuitry, integrated circuitry, specially designed ASICs (appli-
cation specific integrated circuits), computer hardware,
firmware, software, and/or combinations thereof. These
various implementations may include implementation in one
or more computer programs that are executable and/or
interpretable on a programmable system including at least
one programmable processor, which may be special or
general purpose, coupled to receive data and instructions
from, and to transmit data and instructions to, a storage
system, at least one input device (e.g., mouse, touch screen,
etc.), and at least one output device.

These computer programs, which can also be referred to
as programs, software, software applications, applications,
components, or code, include machine instructions for a
programmable processor, and can be implemented in a
high-level procedural language, an object-oriented program-
ming language, a functional programming language, a logi-
cal programming language, and/or in assembly/machine
language. As used herein, the term “machine-readable
medium” (sometimes referred to as a computer program
product) refers to physically embodied apparatus and/or
device, such as for example magnetic discs, optical disks,
memory, and Programmable Logic Devices (PLDs), used to
provide machine instructions and/or data to a programmable
data processor, including a machine-readable medium that
receives machine instructions as a machine-readable signal.
The term “machine-readable signal” refers to any signal
used to provide machine instructions and/or data to a pro-
grammable data processor. The machine-readable medium
can store such machine instructions non-transitorily, such as
for example as would a non-transient solid state memory or
a magnetic hard drive or any equivalent storage medium.
The machine-readable medium can alternatively or addition-
ally store such machine instructions in a transient manner,
such as for example as would a processor cache or other
random access memory associated with one or more physi-
cal processor cores.

To provide for interaction with a user, the subject matter
described herein can be implemented on a computer having
a display device, such as for example a cathode ray tube
(CRT) or a liquid crystal display (LCD) monitor for dis-

US 9,460,130 B2

13

playing information to the user and a keyboard and a
pointing device, such as for example a mouse or a trackball,
by which the user may provide input to the computer. Other
kinds of devices can be used to provide for interaction with
a user as well. For example, feedback provided to the user
can be any form of sensory feedback, such as for example
visual feedback, auditory feedback, or tactile feedback; and
input from the user may be received in any form, including,
but not limited to, acoustic, speech, or tactile input. Other
possible input devices include, but are not limited to, touch
screens or other touch-sensitive devices such as single or
multi-point resistive or capacitive trackpads, voice recogni-
tion hardware and software, optical scanners, optical point-
ers, digital image capture devices and associated interpre-
tation software, and the like.

The subject matter described herein may be implemented
in a computing system that includes a back-end component
(e.g., as a data server), or that includes a middleware
component (e.g., an application server), or that includes a
front-end component (e.g., a client computer having a
graphical user interface or a Web browser through which a
user may interact with an implementation of the subject
matter described herein), or any combination of such back-
end, middleware, or front-end components. The components
of'the system may be interconnected by any form or medium
of digital data communication (e.g., a communication net-
work). Examples of communication networks include a
local area network (“LAN”), a wide area network (“WAN™),
and the Internet.

The computing system may include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

The subject matter described herein can be embodied in
systems, apparatus, methods, and/or articles depending on
the desired configuration. The implementations set forth in
the foregoing description do not represent all implementa-
tions consistent with the subject matter described herein.
Instead, they are merely some examples consistent with
aspects related to the described subject matter. Although a
few variations have been described in detail above, other
modifications or additions are possible. In particular, further
features and/or variations can be provided in addition to
those set forth herein. For example, the implementations
described above can be directed to various combinations and
subcombinations of the disclosed features and/or combina-
tions and subcombinations of several further features dis-
closed above. In addition, the logic flow(s) depicted in the
accompanying figures and/or described herein do not nec-
essarily require the particular order shown, or sequential
order, to achieve desirable results. Other implementations
may be within the scope of the following claims.

What is claimed is:

1. A method for implementation by one or more data
processors forming part of at least one computing system,
the method comprising:

receiving, by a re-allocation processing block, a base

table, a reference table, and at least one assignment
path table;
applying rules from the at least one assignment path table
to the base table and the reference table by re-allocating
values between at least two existing data objects;

generating a results table with the re-allocated values in
the at least two existing data objects; and

w

10

—

5

20

25

30

35

40

45

50

55

60

65

14

iterating the generation of the results table to reach a
desired re-allocation result, the iterating comprising
one or more iterations, each iteration of the one or more
iterations comprising:

re-applying the rules from the at least one assignment path
table to the generated results table and the reference
table by newly re-allocating values between the at least
two existing data objects, and re-generating the results
table with the new re-allocated values in the at least two
existing data objects;

wherein at least one of the receiving, applying, generat-
ing, or iterating is implemented by at least one data
processor.

2. The method as in claim 1, wherein the re-allocation
processing block further comprises at least one re-allocation
processing sub-block.

3. The method as in claim 2, further comprising:

providing, by the re-allocation processing block to a first
re-allocation processing sub-block, the base table, the
reference table, and a first assignment path table;

wherein the first re-allocation processing sub-block per-
forms the applying rules, and the generating the results
table, using the base table, the first assignment path
table, and the reference table; and

wherein the providing is implemented by at least one data
processor.

4. The method as in claim 3, further comprising:

providing, by the re-allocation processing block to a
subsequent re-allocation processing sub-block, the
results table generated by a previous re-allocation pro-
cessing sub-block, the reference table, and a subsequent
assignment path table;

wherein the subsequent re-allocation processing sub-
block performs the applying the rules, and the gener-
ating the results table, using the results table generated
by the previous re-allocation processing sub-block
instead of the base table, the subsequent assignment
path table, and the reference table; and

wherein the providing is implemented by at least one data
processor.

5. The method as in claim 1, wherein the iterating
comprises comparing the re-allocated values or the new
re-allocated values with a threshold value.

6. The method as in claim 1, the operations further
comprising:

receiving user-generated input defining the number of
iterations to perform.

7. A non-transitory computer program product storing
instructions which, when executed by at least one data
processor forming part of at least one computing system,
result in operations comprising:

receiving, by a re-allocation processing block, a base
table, a reference table, and at least one assignment
path table;

applying rules from the at least one assignment path table
to the base table and the reference table by re-allocating
values between at least two existing data objects;

generating a results table with the re-allocated values in
the at least two existing data objects; and

iterating the generation of the results table to reach a desired
re-allocation result, the iterating comprising one or more
iterations, each iteration of the one or more iterations
comprising:

re-applying the rules from the at least one assignment path
table to the results table and the reference table by
newly re-allocating values between the at least two
existing data objects, and

US 9,460,130 B2

15

re-generating the results table with the new re-allocated
values in the at least two existing data objects;

wherein at least one of the receiving, applying, generat-
ing, or iterating is implemented by at least one data
processor.
8. The non-transitory computer program product as in
claim 7, wherein the re-allocation processing block further
comprises at least one re-allocation processing sub-block.
9. The non-transitory computer program product as in
claim 8, the operations further comprising:
providing, by the re-allocation processing block to a first
re-allocation processing sub-block, the base table, the
reference table, and a first assignment path table;

wherein the first re-allocation processing sub-block per-
forms the applying rules, and the generating the results
table, using the base table, the first assignment path
table, and the reference table; and

wherein the providing is implemented by at least one data

processor.

10. The non-transitory computer program product as in
claim 9, the operations further comprising:

providing, by the re-allocation processing block to a

subsequent re-allocation processing sub-block, the
results table generated by a previous re-allocation pro-
cessing sub-block, the reference table, and a subsequent
assignment path table;

wherein the subsequent re-allocation processing sub-

block performs the applying the rules, and the gener-
ating the results table, using the results table generated
by the previous re-allocation processing sub-block
instead of the base table, the subsequent assignment
path table, and the reference table; and

wherein the providing is implemented by at least one data

processor.

11. The non-transitory computer program product as in
claim 7, wherein the iterating comprises comparing the
re-allocated values or the new re-allocated values with a
threshold value.

12. The non-transitory computer program product as in
claim 7, the operations further comprising:

receiving user-generated input defining the number of

iterations to perform.

13. A system comprising:

at least one data processor; and

memory storing instructions which, when executed by the

at least one data processor, result in operations com-
prising:

receiving, by a re-allocation processing block, a base

table, a reference table, and at least one assignment
path table;

10

15

20

30

40

45

16

applying rules from the at least one assignment path table
to the base table and the reference table by re-allocating
values between at least two existing data objects;
generating a results table with the re-allocated values in
the at least two existing data objects; and
iterating the generation of the results table to reach a desired
re-allocation result, the iterating comprising one or more
iterations, each iteration of the one or more iterations
comprising:
re-applying the rules from the at least one assignment path
table to the results table and the reference table by
newly re-allocating values between the at least two
existing data objects, and re-generating the results table
with the new re-allocated values in the at least two
existing data objects;
wherein at least one of the receiving, applying, generating,
or iterating is implemented by at least one data processor.
14. The system as in claim 13, wherein the re-allocation
processing block further comprises at least one re-allocation
processing sub-block.
15. The system as in claim 14, further comprising:
providing, by the re-allocation processing block to a first
re-allocation processing sub-block, the base table, the
reference table, and a first assignment path table;
wherein the first re-allocation processing sub-block per-
forms the applying rules, and the generating the results
table, using the base table, the first assignment path
table, and the reference table; and
wherein the providing is implemented by at least one data
processor.
16. The system as in claim 15, further comprising:
providing, by the re-allocation processing block to a
subsequent re-allocation processing sub-block, the
results table generated by a previous re-allocation pro-
cessing sub-block, the reference table, and a subsequent
assignment path table;
wherein the subsequent re-allocation processing sub-
block performs the applying the rules, and the gener-
ating the results table, using the results table generated
by the previous re-allocation processing sub-block
instead of the base table, the subsequent assignment
path table, and the reference table; and
wherein the providing is implemented by at least one data
processor.
17. The system as in claim 13, the operations further
comprising:
comparing the re-allocated values or the new re-allocated
values with a threshold value; and
receiving user-generated input defining the number of
iterations to perform.

#* #* #* #* #*

