US009342529B2

United States Patent

(12) 10) Patent No.: US 9,342,529 B2
Lin et al. 45) Date of Patent: May 17, 2016
(54) DIRECTORY-LEVEL REFERRAL METHOD 7,987,161 B2 7/2011 Williams et al.
FOR PARALLEL NFS WITH MULTIPLE 2006/0161518 Al™* 7/2006 Lacapra 707/2
2009/0106255 Al* 4/2009 Lacapraetal. ... 707/10
METADATA SERVERS 2011/0153606 Al 6/2011 Kimet al.
. 2011/0238814 Al* 9/2011 Pittscooveneeeee. GOGF 17/30067
(71) Applicant: HITACHI, LTD., Tokyo (JP) 709/223
2012/0072540 Al* 3/2012 Matsuzawa HO4L 67/1097
(72) Inventors: Wujuan Lin, Singapore (SG); Kaushik 709/219
Mysur, Singapore (SG); Hirokazu 2012/0284317 Al* 11/2012 Dalton GOGF 17/301
) > & . 707/827
Ikeda, Singapore (SG); Kenta Shiga, 2013/0290384 A1* 10/2013 Anderson ... GOGF 17/30091
Kanagawa-Ken (JP) 707/822
(73) Assignee: Hitachi, Ltd., Tokyo (JP) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this))]
patent is extended or adjusted under 35 Primary Examiner — Bai D. Vu
U.S.C. 154(b) by 383 days. (74) Attorney, Agent, or Firm — Mattingly & Malur, PC
(21) Appl. No.: 13/729,256
57 ABSTRACT
(22) Filed: Dec. 28, 2012
An aspect of the invention is directed to a plurality of MDSs
(65) Prior Publication Data (metadata servers) in a distributed storage system which
includes data servers storing file contents, each MDS having
US 2014/0188953 Al Tul. 3, 2014 a processor and a memory and storing file system metadata.
(51) Int.Cl Directories of a file system namespace are distributed to the
G0;$ 1% }7 130 (2006.01) MDSs through referral directories referring to real directories
(52) US.Cl ’ using hash value of inode number of each of the referral
L directories. During a process to create a directory in the file
C.PC s GO6F 17/30203 (2013.01) system namespace, a first MDS dynamically creates a referral
(58) Field of Classification Search directory in the first MDS, and creates a real directory in a
None o . second MDS, the referral directory in the first MDS referring
See application file for complete search history. to the real directory in the second MDS by maintaining loca-
(56) References Cited tion information of the real directory in the second MDS, the

U.S. PATENT DOCUMENTS

6/2008 Brown et al.
3/2009 Coates et al.

7,389,298 B2
7,509,645 B2

0110
MDS_1(192.168.1.10)

Referral-to-path mapping table
Hash Value { Local Path IP Address
0x10 dirt/dir2/dir3 | 192.168.2.20

0250

Referral

real directory in the second MDS containing the file system
metadata for the directory in the file system namespace.

20 Claims, 24 Drawing Sheets

0110
MDS_2 (192.168.2.20)

Referral-to-path mapping table

Hash Value | Local Path P Address
0x20 Adirt 192.168.1.10

1 i
{f) Directary o rotoraldint, 020 _ | o =
Suseess
Su Referral
Directory
Create_referral({/dir1/dir2/dir3, 0x10) - J;"'
el oot e is)
Success et
inode of /dir1 Inode of /dir1/dir2/dir3 &
inode . inode)
Number | JP€ | Mode |FSID Location Number | TYPe | Mode |FSID Location
inode#t |Directory| Referral| [D1 [192.168.2.20:/0x20 Inode#2 | Directory| Referral | D2 [192.168.1.10:/0x10

US 9,342,529 B2

Sheet 1 of 24

May 17, 2016

U.S. Patent

L 'Old
(sa) (s
Janesg eleq 1anieg ere(
(saw) Jlenies | | (SAN) Jenies
\ ejepelopy elepelsi\ \
0L10 0210
NIOMISN
00L0
elo HPEIES)

€10

0

US 9,342,529 B2

Sheet 2 of 24

May 17, 2016

U.S. Patent

¢ 9Old
Aelry QQH 10 NVS
% S|ge| UOREWIOjL| PEOPIOAA > ﬂ
V120 alqe]. uoiezinn {) aoejioy] abeloig ™
% Joniag erepelsy ~ha
6220 /omwo
& al|qeL snielg [ellsjay T
8120 51981 Buiddeyy Q%Eow% uogeso)) | |
\w yred-oi-jerisioy i ,WM
~C5¢C0
4420 welibold uonelbip jelisjey m AHV $al0j084ig ™
7 e Rl
920 S ~ 1520
weiboid uonesi) [elsey o " SWN|OA B1EPRION I
GJZ0 weibolid a|npo Juswasbeueyy abelolg // 0520
%\ BULIOIUON PEOIMIOM Sho
/20 Weibolg AHJLV SINPO [090101d SN // 0r20
w Buissesoid jsenbay /V/
170 v A(III.V a0BUSIU| YIOMJBN | Soszo
% 1 weiboid uonezijeniul Sk
2,20 wielbolg Walsks oyl A”v 1088300.1d 02¢0
% Aows alsA AN
WSy W
1420 \ W HHSISAS < (San) 1an1eg elepeldy 0bco
4 I
7
// /
0420 08¢0 0i10

US 9,342,529 B2

Sheet 3 of 24

May 17, 2016

U.S. Patent

¢ Ol

oveo

0€ceo

0¢eo

01€0

Aely QQH 40 NYS

H

aoeslu| abelols

SJUsU0Y 9ji4

c¢eeo
awinjop obeiolg) LEEO

a|npo awsebeuely ebelois

NN

SINPON [030]0id SAN

90BLIS1U| YIOMIBN

(sQ) 1enieg eleQ

0cL0

US 9,342,529 B2

Sheet 4 of 24

May 17, 2016

U.S. Patent

0€ev0

0¢vo

0lv0

v Old

20BLIS)U| YIOM}BN

NN

S[NPO [090]0ld SN

weibold uonesljddy

X

ey

0€L0

US 9,342,529 B2

Sheet 5 of 24

May 17, 2016

U.S. Patent

0650

0vS0

G Old

pud

sio)sibal SO Mau e

usym Jo Ajjesiporiad

8|qe] UoneZijiin JaAIss ejepelow
elepdn pue SN 1S4 WOl uohewliojul
UOIEZI|IN POJEPI|OSUOD SAIS08Y

b

SAIN 1sii4 0] ssaippe d]
191160y

ON

\ 4

SSAIN JaUI0 Sy} 0} UOIEWLIOJUI UOHEZIIIN
pajepliosuod By} }Seapeoiq pue sSAiN
|E WOoJ} UOIJEWIOI UOHBZIfIN 109]|0D

A

0€S0

4

a|ge] uoieZIjIN JaAISs Bjepeisw
azijenu|

N

S3dA
01490

Hels

welboid uoiezijeniu|

¢.L20

0240

US 9,342,529 B2

Sheet 6 of 24

May 17, 2016

U.S. Patent

9 ©Old
%06 0€'¢'891°261
%0¢ 02'2'891¢6lL
%0L 0171891261
uoneziin $SalppPY dl
0290 0190 %mmmo

s|qel UoeZIN Jonies elepeisiy

US 9,342,529 B2

Sheet 7 of 24

May 17, 2016

U.S. Patent

5|qe) uoljeuLojul

N peopjiom ayepdn

0620 .

$S900ld $8820l1d $$800.d
1senbay-18yl0 Aoyaliq-pesy fioyoalg-ajesid

\ & \ %@CWMWM \ A

0v.0 0€.0 0240

¢ SI8yl0 Jo
‘Bunsixe peey
SELe) ‘Mau ajesl) /

0140

MaU a1eal)

uels welboid
Buissaoold }1sanbay

€4¢0

US 9,342,529 B2

Sheet 8 of 24

May 17, 2016

U.S. Patent

puz

.$S900NS, Uiney

0880

y

8 Ol

0480

Aiojoaup waied o) Alojoaup
MBU 8L} 10} Aljue Aioloalip Hasu|

A

0980

Aiojoouip
MaU 28U Jo} @poul Joniisuc)

Y

¢ SAIN Slowal woly
UOIJEOLIOU ,SS900NS,

0480

3>
g

1
anjeA ysey pue sweu

ured ey} ypm SN 0wl 0} %
1senbal |elidjal 9jeal, puss 0372 1))

t

Aloysip

MBU 8} 10} BPOoUL JONISUOD /
» 0380

UORBZI[IN JOMO] UM
SAN elowsl e 109195 /
0280

Juoiezijnn

1SeMO

S3A
0180

~

0¢.0

US 9,342,529 B2

Sheet 9 of 24

May 17, 2016

U.S. Patent

6 Old
anjen yseys:di #Qi ZIEIE)S| Aoyaug #opou|
uoiesoT] ais4d SpON adAL JaquinN apoui
0S60 0¥60 0¢60 0260 0160

spoul

US 9,342,529 B2

Sheet 10 of 24

May 17, 2016

U.S. Patent

0L Ol

pu3g

,§8900NS, UIN}RY

A

0)40)7

3|ge) uoijelloul peopjiom arepdn

X

0col

1

a|qe) buiddew
Hled-o)-jensjay ayepdn

h

0c¢0l

yjed syeai)

A

uels weiboig
uoneal) jeisjay

0LoL

SYRAY

US 9,342,529 B2

Sheet 11 of 24

May 17, 2016

U.S. Patent

¢l 9Old
001 |e10]
0 cAp/gip/LIp/
JUNOYD $S800Y yied jeoo
0Zel oLl /W\.No
a|ge] UOIIBULIOIU| PEOPOAA
Ll "Old
0C'C'891°¢61 cHip/cAp/Laip/ 01X0
$S3IPPY d yled e007 onjeA yseH
octl ocil 0 :\v /vlwo

a|qe| buiddey yied-oi-jelisjey

US 9,342,529 B2

Sheet 12 of 24

May 17, 2016

¢l old
L zes L
Cedip
m Al AVO
Aiopalg zip 0co | TTTee-l. // \
aild Zi3 A AT

9|4 a2 L0

odA| sweN |Jequnuepoul | __.---7" T / \\

U.S. Patent

7 7 7 e
ocel 0cel OLEL
aoedsauwleN WoisAg 9ji4

US 9,342,529 B2

Sheet 13 of 24

May 17, 2016

U.S. Patent

vl Old

04¥L

09vL

pug

A10joalip 8y} jo elepRIaW
Ulim 1sanbai ay) anieg

A

|

3|qge) snieys [esiajel ajepdn %
4 0svi

I1ES Od¥ ¥ L1V1ID juenbasans
10§ JUSI|D 0] UoHBWIOjUI

uoneoo] pue (iS4 uiniay %
7y ovvl

e Od¥Y HA139 4043ua1D
0} AFIAOW HYIFSAN, wmsy [y

oerl

¢Aoyoallp

ajqe} buiddew yyed-o}-jellalal il
punoj A1010811p |B00} 0} |9AR] Uled

2

ON

EIEIEN

ocrl

¢9|qe} buiddew
yyed-o}-jersjal

S3A

ul punoy Aijug
oivi

B

0€40

US 9,342,529 B2

Sheet 14 of 24

May 17, 2016

U.S. Patent

Gl Old
[eWION 1100X0 0EX0
snjejs anusio ais4
0€S1 0Z51 0L}

o|qel snielg |elialey

N

8220

US 9,342,529 B2

Sheet 15 of 24

May 17, 2016

U.S. Patent

g} Old
0LX0/:0L°L'891L'Z6Y| 2al |lelsjoy |Aiopaiq} z#epou 02X0/:02'2'89L°26L) LAl |leusjey [Aiopalig| Lgopou
JaquinN FERTIGIN]
uopeoo apo adA uoieoso apo adA
1Jedo] aisd pop L opoul 112007 aisd PO L opoul
-7 €4IP/ZAip/Laip/ Jo apoul L41p/ 40 Bpou|
= iz
L&)
P IlIlIllIIIImemu:blIIJrIIII
A Eg (01X0 ‘eltp/zap/Liip/) LRl sjesI) e
Bowo_\m:o il /
N ey e X
Ll $ROMS L o)= = = 7 T = - IR
M s [[I\r - ‘@‘@-p\mwww.vo _\\\ E
WP [—~ (070 ‘LApPDEHR fopeia (|
|eliglay
] L
0§20 0520
01189126 Laipy 0ZX0 0Z'Z2'891°Z6L | €lp/zip/Lip/ 0LX0
SSBIPPY d] yled (8007 | enjeA yseH $S8IPPY dI yled [esoT | anjea ysey
sjgey buiddew yied-oj-|eiisjey a|gel buiddew yjed-oj-jeiajay
(0z'z'891°261) 7 SAW (oL°1g9izel) L saAw
oo orio

US 9,342,529 B2

Sheet 16 of 24

May 17, 2016

U.S. Patent

oLt

Ll "Old

pug

I Ag Aspus punoj ay)
JO JUNOD SS800E 8} 9Sealou|

&

¥

| Aq Jejol, Ajue
JO JUNOD SSB00E BU} BSEBIOU| AN

ovll

Zo|qe) uoiewIoUl

S3A peopiiom u yied

0cli

Aioyoauip/ally
posseooe a8y} 0 Yjed [eoo] sy} uelqo /

0LZL

0640

US 9,342,529 B2

Sheet 17 of 24

May 17, 2016

U.S. Patent

|

8|qe] uonezijin
Janies eiepelowt ayepdn

088l

%

4

weiboid
uonesbiw [eliajel oinoaxg

0481

palelBiul aq ueo A0JoSTIp

leiisjel e o) Buipuodsaiico Aiojailip

jeal e jo 8a5-gng

098l

8l Old

puz

psjelBil 8q ued S9558008
40 Joquinu ajenoboN ~.
0G81

Ziploysal]
> UORBZIHN Yym

ZiploysaiLy

v

< uoneznn

0esl

8[gB} UOHEZI|IIN JBAISS BleprlawW ajepdn

pue SaIA 1sit4 Woll sSaw sui (e Jo /
LOIBLLIOLUI UONEZINN PalepIoSU0D WIeldO
0Z8l

%

SAW 1511} BU} O} UOELLIO]
UOHEZIN PUSS PUE UOREZIIN S1BNo[ED) |

4 0181

vels weiboid
BULONUO PEOPIIOAA

¥.20

US 9,342,529 B2

Sheet 18 of 24

May 17, 2016

U.S. Patent

pug

o|ge) UoiBeULIOJUl pEOpIOM Slepd)

X

)

0461

s|ge; Buiddew yred-oy-jelislel
oy ut Aius s181eQ

X

0961

%

pajelbil 8213-gns a1 9191e(d

¢ SN 92iN0S W0l
UOI}BoIIoU SS3D0NS,

0v6i

SN @21n0s 0}
AI010811p (B8l 8y} 4O uoieIBIW WIOU

N

t

0c6l

SAiN 1eb1e1 mau 0} 9jqe] uonewoiul
peopIOM pue ajqe) buiddew
Yred-or-jensial ul Aijua ay) pusg

[

0ce6l

4,

SO 18bley mau 0y
Aioanp jeistal e oy Buipuocdseriod
Riopeip |eal a8y} jo aal-gns AdoD

S

0i64

»
uelg weiboid

uonelBip leusjey J

9420

61 "Old

US 9,342,529 B2

Sheet 19 of 24

May 17, 2016

U.S. Patent

pud

0¢ Old

_SS900Ng,, uInjay

SdA

¢{/BWION, O} %oeq
pebueyo snieis ay} Iy

060¢

y 0v0¢e
Aoyalip jelssial syl
JO UONBD0| MBU By} SJUSI[D uIoju| /
t 0c0e
a|qe]} sniels jeusal ul iSH @yl UM seijus
auy Joj pajelbip, o} sniejs ey} sbueyd /
* 0202
SN 1eb1e) mau 0}
opoul Ul ssaIppe d} 9y} sbueyd /
010¢

US 9,342,529 B2

Sheet 20 of 24

May 17, 2016

U.S. Patent

0

l¢ Old

pu3 <
JusI| 0} ,SS800NG, UIN}oY usid o1
T ’ (J3IAOW ISVAT SNIVLIS vOIS, uiniey |\
& .
\ S3A
vz
; pajelBip, sisnie
OZ AEU H. ._2: H u. ww

0cic

¢aisd aul

Yim jusi|D ey} Joy Aiue sey
9|ge] snjels [elisjey

ON
oLLe

0c0c

ocLe

US 9,342,529 B2

Sheet 21 of 24

May 17, 2016

U.S. Patent

¢¢ 9ld

ISI-SAnN

Junon

uonedoT

aisd

apon

adAL

laguinp spoul

7

0l¢c

7

09¢¢e

Z

0660

7

060

7

0€60

7

0¢60

7

0160

apoul

US 9,342,529 B2

Sheet 22 of 24

May 17, 2016

U.S. Patent

0880 d&1s ~ 0980 dels

oveZ S3A

éesy

ON
06¢¢

1SIT-SAN 84} woy
uoneZIN 1SSMO| UM SAIN & 109[eS

%

» 0880 dels ~ 080 dais /

4 0/£2

SQQW pappe Ajmau oy} wolj
ucnHezijn 1ssmo| yim Sa e 109jeg /

a 09¢e?d

ISIT-San
8y} 0] SSAW (JUNOD-LWNN) PPy /
0s€2

08¢

ppioysalyl s LWNN > JUNeH
ON

ovee

mzoﬁméx %285.,5%@»5
WP N1 SSAN #
= LWNN 8jeinojen

J

oeee

N

1
eproysery], | | mde@ g
— X
| WmpIm .:.QA% # SSAN#
= LWnNy ajenoed 0z¢ee

S3A

ieploysalyl =

ON jualed jo yydap Atojosig

olLec

US 9,342,529 B2

Sheet 23 of 24

May 17, 2016

U.S. Patent

¥c Old

ON

S 824nos
ui Aoyosup waled /
JO IsIT-SAN s¥epdn ogyrz

1

0881 dsis ~ 0.8l deis
‘2al}-gns yoes 1o

¢ pajelbiw aq ueo
qaled swes ay] Y)IM S81I0JOTHR
lesiges 0} Buipuodseilod

ON

088l dais ~ 0/8l deis

¢ISI7-Sain ul
QN 1eb1es map

.

08v¢

04Lve

$e1l0)0alIp [eal Jo
gon-gns

QAW @21nos wol) Alosiip
uated jo 1sIT-SAW UIEIN0

z 1

pu3g
h
/ palelblw aq
ued Aoloauip [eusjel e
o1 Buipuodsaiiod Aloioalip

eal e JO 9a1-gn
g a 0sve

peieibiu aq ued
S9ss8208E JO Jaquinu ajenobaN N

Ovve

ZIploysaly) > uoneziiy

yum Saw Auy ON

oere

0ove

éLproysalyy

A\

< uoneziin

0zve

0z8l dais ~ 0l gl dais N

' 0Lve

ue)g weibold
BuLiojiUO PEOPLOA

vL20

US 9,342,529 B2

Sheet 24 of 24

May 17, 2016

U.S. Patent

G¢ 9Old
(sq) (sQ)
‘_m?_mm END PISTAVISIN eie(
0210
Z xwzmz
1010
(San) Jenies | | (SA) Jenies
\ elepels\ elepels\
0110
L {\oémz
0010
welD IVETIEg)
0€10

US 9,342,529 B2

1

DIRECTORY-LEVEL REFERRAL METHOD
FOR PARALLEL NFS WITH MULTIPLE
METADATA SERVERS

BACKGROUND OF THE INVENTION

The present invention relates generally to storage systems
and, more particularly, to a directory-level referral method for
parallel network file system with multiple metadata servers.

Recent technologies in distributed file system, such as par-
allel network file system (pNFS) and the like, enable an
asymmetric system architecture, which consists of a plurality
of data servers and a dedicated metadata server. In such a
system, file contents are typically stored in the data servers,
and metadata (e.g., file system namespace tree structure and
location information of file contents) are stored in the meta-
data server. Clients first consult the metadata server for the
location information of file contents, and then access file
contents directly from the data servers. By separating the
metadata access from data access, the system is able to pro-
vide very high /O (Input/Output) throughput to the clients.
One of the major use cases for such system is high perfor-
mance computing (HPC) application.

Although metadata are relatively small in size compared to
file contents, the metadata operations may make up as much
as half of all file system operations, according to the studies
done. Therefore, effective metadata management is critically
important for the overall system performance. Modern HPC
applications can use hundreds of thousands of CPU cores
simultaneously for a single computation task. Each CPU core
may steadily create/access files for various purposes, such as
checkpoint files for failure recovery, intermediate computa-
tion results for post-processing (e.g., visualization, analysis,
etc.), resulting in tremendous metadata access. A single meta-
data server is not sufficient to handle such metadata access
workload. Transparently distributing such workload to mul-
tiple metadata servers and providing a single namespace to
clients hence raises an important challenge for the system
design. Traditional namespace virtualization methods fall
into two categories, namely, server-only-virtualization and
client-server-cooperation.

Server-only-virtualization methods can be further catego-
rized into two sub-categories, namely, synchronization and
redirection. In a synchronization method (U.S. Pat. No.
7,987,161), the entire namespace is duplicated to multiple
metadata servers. Clients can access the namespace from any
metadata servers. Any update to the namespace is synchro-
nized to all the metadata servers. A synchronization method
has limited scalability due to high overhead for namespace
synchronization. In a redirection method (U.S. Pat. No.
7,509,645), the metadata servers maintain information about
how the namespace is distributed. Once a client establishes
connection with a metadata server, the client will always
access the entire namespace through the same metadata
server (called local server). When the client needs to access a
namespace portion that is not stored in the local server, the
local server redirects the access to another metadata server
(called remote server) where the namespace portion is
located. Once the local server receives the reply from the
remote server, it will send the reply to the client. A redirection
method has low overall system performance due to such
access redirection overhead.

Client-server-cooperation methods can also be further cat-
egorized into two sub-categories, namely, distribution-aware
and referral-based. In a distribution-aware method (U.S.
Patent Application Publication No. 2011/0153606A1), each
clienthas a distribution-aware module which maintains infor-

10

15

20

25

30

35

40

45

50

55

60

65

2

mation about how the namespace is distributed, and is able to
access a namespace portion from the metadata server where
the namespace portion is located. However, a distribution-
aware method requires a proprietary client and hence limits
its use cases. In a referral-based method (U.S. Pat. No. 7,389,
298), a client can seamlessly navigate a namespace across
pre-created referral points with a single network mount.
However, the referral points can only be created on exported
file systems by a system administrator in advance. Workload
balancing is coarse-grain and requires manual reconfigura-
tion by the system administrator to relocate referral points.
Hence, there is a need for a new namespace virtualization
method to overcome the aforementioned shortcomings.

BRIEF SUMMARY OF THE INVENTION

Exemplary embodiments of the invention provide a
method to distribute namespace to multiple metadata servers
(MDSs) through referral directories without performance
overhead on MDSs or proprietary client, and dynamically
redistribute real directories referred to from referral directo-
ries for load balancing without manual reconfiguration. In
specific embodiments, a distributed file system includes a
plurality of MDSs, data servers (DSs), and Clients, where
directories of a global file system namespace are distributed
to the MDSs through the creation of referral directories. This
invention can be used to design a parallel network file system
to provide scalable high metadata access performance, by
using multiple metadata servers.

An aspect of the present invention is directed to a plurality
of MDSs (metadata servers) in a distributed storage system
which includes data servers storing file contents, each MDS
having a processor and a memory and storing file system
metadata. Directories of a file system namespace are distrib-
uted to the MDSs through referral directories referring to real
directories using hash value of inode number of each of the
referral directories. During a process to create a directory in
the file system namespace, a first MDS dynamically creates a
referral directory in the first MDS, and creates a real directory
in a second MDS, the referral directory in the first MDS
referring to the real directory in the second MDS by main-
taining location information of the real directory in the sec-
ond MDS, the real directory in the second MDS containing
the file system metadata for the directory in the file system
namespace.

In some embodiments, the location information of the
referral directory includes a hash value for the real directory
and an IP address of the second MDS, and the second MDS
maps the hash value for the real directory to a local directory
path in a local namespace of the second MDS to the real
directory. The first MDS has a parent directory and creates the
referral directory under the parent directory to refer to the real
directory in the second MDS. The first MDS constructs an
inode for the referral directory which refers to the real direc-
tory, the inode for the referral directory including an inode
number, a file system identifier, and a location entry which
has an IP address of the second MDS in which the real
directory is located and a hash value of the inode number.

In specific embodiments, each MDS includes a referral-to-
path mapping table to store entries of a hash value of any real
directory in the MDS, a corresponding local path where the
real directory is stored in a local namespace of the MDS, and
a corresponding IP address of a source MDS where the refer-
ral directory referring to the real directory is located. Each
MDS maintains workload information to monitor access
workload for each directory in the referral-to-path mapping
table of the MDS. The first MDS in the distributed storage

US 9,342,529 B2

3

system periodically collects utilization information from one
or more of other MDSs and broadcasts consolidated utiliza-
tion information to all the other MDSs.

In some embodiments, any MDS, which has a real direc-
tory being referred to from a referral directory and has utili-
zation higher than a preset threshold, migrates the real direc-
tory including sub-tree of the real directory to another MDS
which has utilization sufficiently low to receive migration of
the real directory with the sub-tree, and informs a source
MDS where the referral directory referring to the real direc-
tory is located of the updated location information. Each
MDS includes a referral-to-path mapping table to store
entries of a hash value of any real directory in the MDS, a
corresponding local path where the real directory is stored in
a local namespace of the MDS, and a corresponding IP
address of a source MDS where the referral directory refer-
ring to the real directory is located. After migration of a real
directory from one MDS to another MDS, the one MDS and
said another MDS update respective referral-to-path mapping
tables and update respective workload information for the
respective MDSs based on the migration. If the sub-tree of the
real directory to be migrated includes another real directory
being referred to from another referral directory, the said
another real directory is not migrated but remains in the same
MDS before migration of the sub-tree.

In specific embodiments, each directory in the MDSs has
an inode, the inode including an inode number, a mode of
“referral” for a referral directory and “normal” for a directory
which is not a referral directory, a file system identifier, and a
location entry; the file system identifier uniquely identifies
the referral directory if the mode is referral; and the location
entry has an IP address of the MDS in which the real directory
is located and a hash value of the inode number if the mode is
referral. The inode of a directory further includes a count
which is a number of MDSs to which sub-directories of the
directory can be distributed, and a MDS-List which is a list of
IP addresses of MDSs to which the sub-directories can be
distributed; and the count and MDS-List are determined
based on depth and width of the directory.

Another aspect of the invention is directed to a method of
managing directories in a distributed storage system which
includes a plurality of MDSs (metadata servers) storing file
system metadata and data servers storing file contents. The
method comprises distributing directories of a file system
namespace to the MDSs through referral directories referring
to real directories using hash value of inode number of each of
the referral directories. During a process to create a directory
in the file system namespace, a first MDS dynamically creates
a referral directory in the first MDS, and creates a real direc-
tory in a second MDS, the referral directory in the first MDS
referring to the real directory in the second MDS by main-
taining location information of the real directory in the sec-
ond MDS,; the real directory in the second MDS containing
the file system metadata for the directory in the file system
namespace.

In some embodiments, the location information of the
referral directory includes a hash value for the real directory
and an IP address of the second MDS, and the method further
comprises mapping, by the second MDS, the hash value for
the real directory to a local directory path in a local
namespace of the second MDS to the real directory. The first
MBDS has a parent directory and creates the referral directory
under the parent directory to refer to the real directory in the
second MDS, and the method further comprises constructing,
by the first MDS, an inode for the referral directory which
refers to the real directory, the inode for the referral directory
including an inode number, a file system identifier, and a

10

15

20

25

30

35

40

45

50

55

60

65

4

location entry which has an IP address of the second MDS in
which the real directory is located and a hash value of the
inode number.

These and other features and advantages of the present
invention will become apparent to those of ordinary skill in
the art in view of the following detailed description of the
specific embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an exemplary diagram of an overall system in
which the method and apparatus of the invention may be
applied according to a first embodiment.

FIG. 2 is a block diagram illustrating an example of the
components within a MDS.

FIG. 3 is a block diagram illustrating the components
within a DS (Data Server).

FIG. 4 is an example of a block diagram illustrating the
components within a client.

FIG. 5 is an example of a flow diagram illustrating the
exemplary steps to starta MDS, by executing an initialization
program.

FIG. 6 shows an example of the structure of a metadata
server utilization table.

FIG. 7 is an example of a flow diagram illustrating the
exemplary steps to process client requests in a MDS, by
executing a request processing program.

FIG. 8 is an example of a flow diagram illustrating the
exemplary steps of the create-directory process according to
the first embodiment.

FIG. 9 shows an example of the structure of an inode
according to the first embodiment.

FIG. 10 is an example of a flow diagram illustrating the
exemplary steps of a referral creation program executed by
the remote MDS.

FIG. 11 shows an example of the structure of a referral-to-
path mapping table.

FIG. 12 shows an example of the structure of a workload
information table.

FIG. 13 shows an example of a file system namespace
hierarchy.

FIG. 14 is an example of a flow diagram illustrating the
exemplary steps of the read-directory process.

FIG. 15 shows an example of the structure of a referral
status table.

FIG. 16 shows an example illustrating a file system
namespace which is distributed to two MDSs.

FIG. 17 is an example of a flow diagram illustrating the
exemplary steps to update the workload information table.

FIG. 18 is an example of a flow diagram illustrating the
exemplary steps of a workload monitoring program accord-
ing to the first embodiment.

FIG. 19 is an example of a flow diagram illustrating the
exemplary steps of a referral migration program.

FIG. 20 is an example of a flow diagram illustrating the
exemplary steps of the process executed in the source MDS
upon receiving the message of a referral directory migration.

FIG. 21 is an example of a flow diagram illustrating the
exemplary steps to inform clients of the new location of the
referral directory.

FIG. 22 shows an example of the structure of an inode
according to the second embodiment.

FIG. 23 is an example of a flow diagram illustrating the
exemplary steps of the create-directory process according to
the second embodiment.

US 9,342,529 B2

5

FIG. 24 is an example of a flow diagram illustrating the
exemplary steps of a workload monitoring program accord-
ing to the second embodiment.

FIG. 25 is an exemplary diagram of an overall system
according to the third embodiment.

DETAILED DESCRIPTION OF THE INVENTION

In the following detailed description of the invention, ref-
erence is made to the accompanying drawings which form a
part of the disclosure, and in which are shown by way of
illustration, and not of limitation, exemplary embodiments by
which the invention may be practiced. In the drawings, like
numerals describe substantially similar components through-
out the several views. Further, it should be noted that while the
detailed description provides various exemplary embodi-
ments, as described below and as illustrated in the drawings,
the present invention is not limited to the embodiments
described and illustrated herein, but can extend to other
embodiments, as would be known or as would become known
to those skilled in the art. Reference in the specification to
“one embodiment,” “this embodiment,” or “these embodi-
ments” means that a particular feature, structure, or charac-
teristic described in connection with the embodiment is
included in at least one embodiment of the invention; and the
appearances of these phrases in various places in the specifi-
cation are not necessarily all referring to the same embodi-
ment. Additionally, in the following detailed description,
numerous specific details are set forth in order to provide a
thorough understanding of the present invention. However, it
will be apparent to one of ordinary skill in the art that these
specific details may not all be needed to practice the present
invention. In other circumstances, well-known structures,
materials, circuits, processes and interfaces have not been
described in detail, and/or may be illustrated in block diagram
form, so as to not unnecessarily obscure the present invention.

Furthermore, some portions of the detailed description that
follow are presented in terms of algorithms and symbolic
representations of operations within a computer. These algo-
rithmic descriptions and symbolic representations are the
means used by those skilled in the data processing arts to most
effectively convey the essence of their innovations to others
skilled in the art. An algorithm is a series of defined steps
leading to a desired end state or result. In the present inven-
tion, the steps carried out require physical manipulations of
tangible quantities for achieving a tangible result. Usually,
though not necessarily, these quantities take the form of elec-
trical or magnetic signals or instructions capable of being
stored, transferred, combined, compared, and otherwise
manipulated. It has proven convenient at times, principally
for reasons of common usage, to refer to these signals as bits,
values, elements, symbols, characters, terms, numbers,
instructions, or the like. It should be borne in mind, however,
that all of these and similar terms are to be associated with the
appropriate physical quantities and are merely convenient
labels applied to these quantities. Unless specifically stated
otherwise, as apparent from the following discussion, it is
appreciated that throughout the description, discussions uti-
lizing terms such as “processing,” “computing,” “calculat-
ing,” “determining,” “displaying,” or the like, can include the
actions and processes of a computer system or other informa-
tion processing device that manipulates and transforms data
represented as physical (electronic) quantities within the
computer system’s registers and memories into other data
similarly represented as physical quantities within the com-
puter system’s memories or registers or other information
storage, transmission or display devices.

20

25

40

45

6

The present invention also relates to an apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the required purposes, or it may include
one or more general-purpose computers selectively activated
or reconfigured by one or more computer programs. Such
computer programs may be stored in a computer-readable
storage medium including non-transient medium, such as, but
not limited to optical disks, magnetic disks, read-only memo-
ries, random access memories, solid state devices and drives,
or any other types of media suitable for storing electronic
information. The algorithms and displays presented herein
are not inherently related to any particular computer or other
apparatus. Various general-purpose systems may be used
with programs and modules in accordance with the teachings
herein, or it may prove convenient to construct a more spe-
cialized apparatus to perform desired method steps. In addi-
tion, the present invention is not described with reference to
any particular programming language. It will be appreciated
that a variety of programming languages may be used to
implement the teachings of the invention as described herein.
The instructions of the programming language(s) may be
executed by one or more processing devices, e.g., central
processing units (CPUs), processors, or controllers.

Exemplary embodiments of the invention, as will be
described in greater detail below, provide apparatuses, meth-
ods and computer programs for a directory-level referral pro-
cess for parallel network file system with multiple metadata
servers.

Embodiment 1

FIG. 1 is an exemplary diagram of an overall system in
which the method and apparatus of the invention may be
applied according to a first embodiment. The system includes
a plurality of Metadata Servers (MDSs) 0110, Data Servers
(DSs) 0120, and Clients 0130 connected to a network 0100
(such as local area network). MDSs 0110 are the devices
where the file system metadata (e.g., directory structure and
location information of file contents) are stored. Data servers
0120 are the devices, such as conventional NAS (network
attached storage) devices, where file contents are stored. Cli-
ents 0130 are the devices (such as PCs) that access the meta-
data from MDSs 0110 and the file contents from DSs 0120.

FIG. 2 is a block diagram illustrating an example of the
components within a MDS 0110. A MDS may include, but is
not limited to, a processor 0210, a network interface 0220, a
NFS (network file system, e.g., NFSv4.1 or above) protocol
module 0230, a storage management module 0240, a storage
interface 0260, a system memory 0270, and a system bus
0280. The system memory 0270 includes, but is not limited
to, a file system program 0271, an initialization program 0272
(see FIG. 5), arequest processing program 0273 (see FIG. 7),
aworkload monitoring program 0274 (see FIG. 18), a referral
creation program 0275 (see F1G. 10), and a referral migration
program 0276 (see FIG. 19), which are computer programs
executed by the processor 0210. The system memory 0270
further includes a referral-to-path mapping table 0277 (see
FIG. 11), a referral status table 0278 (see FIG. 15), a metadata
server utilization table 0279 (see FIG. 6), and a workload
information table 027A (see FIG. 12), which are read and/or
written by the programs. The storage interface 0260 manages
the storage from a storage area network (SAN) or an internal
hard disk drive (HDD) array, and provides raw data storage to
the storage management module 0240. The storage manage-
ment module 0240 organizes the raw data storage into a
metadata volume 0250, where directories 0251, and files
0252 which consist of only file contents location information,
are stored. The directories 0251 and files 0252 are read and/or
written by the file system program 0271. The network inter-

US 9,342,529 B2

7

face 0220 connects the MDS 0110 to the network 0100 and is
used to communicate with other MDSs 0110, DSs 0120, and
Clients 0130. The NFS protocol module 0230 implements
both client and server functions of the NFS protocol to send
NFS requests to Data Servers 0120 and serve metadata access
requests from Clients 0130 through the network interface
0220. The processor 0210 represents a central processing unit
that executes the computer programs. Commands and data
communicated among the processor and other components
are transferred via the system bus 0280.

FIG. 3 is a block diagram illustrating the components
within a DS 0120. A DS may include, but is not limited to, a
network interface 0310, a NFS protocol module 0320, a stor-
age management module 0330, and a storage interface 0340.
The network interface 0310 connects the DS 0120 to the
network 0100 and is used for communication with MDS 0110
and Clients 0130. The NFS protocol module 0320 imple-
ments the server functions of NFS protocol, and serves NFS
requests from MDS 0110 and Clients 0130. The storage inter-
face 0340 manages the storage from a storage area network
(SAN) or an internal hard disk drive (HDD) array, and pro-
vides raw data storage to the storage management module
0330. The storage management module 0330 organizes the
raw data storage into a storage volume 0331, where file con-
tents 0332 are stored.

FIG. 4 is an example of a block diagram illustrating the
components within a client 0130. A Client may include, but is
not limited to, an application program 0410, a NFS protocol
module 0420, and a network interface 0430. The application
program 0410 generates metadata accesses to the namespace
and read/write operations on file contents. The network inter-
face 0430 connects the Client 0130 to the network 0100 and
is used to communicate with MDSs 0110 and DSs 0120. The
NFS protocol module 0420 implements client functions of
the NFS protocol to send metadata access requests to MDSs
0110 and file content access requests to DSs 0120.

Before describing the processes of the various programs of
the MDS, an overview using a file system namespace of F1G.
16 is instructive. FIG. 1 shows a distributed file system
includes a plurality of MDSs 0110, DSs 0120, and Clients
0130. Directories of a global file system namespace are dis-
tributed to the MDSs through the creation of referral directo-
ries. In the example shown in FIG. 16, during the creation of
directories inresponse to a client (e.g., Client_1), a file system
namespace is distributed to two MDSs 0110, namely, MDS_1
(with IP address 192.168.1.10) and MDS_2 (with IP address
192.168.2.20). As seen in FIG. 16, “/dirl” is a referral direc-
tory created by MDS_1 and the real directory is stored in
MDS_2. MDS_1 constructs the inode of “/dir1” having FSID
of ID1 and Location (IP:/hash_value) of 192.168.2.20:/0x20,
and performs Create_referral(/dirl, 0x20) to refer to the real
directory in MDS_2. MDS_2 updates the referral-to-path
mapping table 0277 for “/dir1” with hash value 0x20, and
returns “success” to MDS_1, which returns “success” to its
client. To access the real directory “/dirl” by referral (e.g., by
Client_2), Client_2 will try to access “/dirl” in MDS_1 and
MDS_1 will inform Client_2 that it has a referral directory for
“/dir1” and provide the FSID and Location (IP:/hash_value)
information of the real directory to Client_2. Client_2 will
access MDS_2 based on the Location (IP:/hash_value) infor-
mation. MDS_2 will send a reply to Client_2 with metadata
of “/dirl”

Note that the term “real directory” is used to refer to a
directory that is referred to from a referral directory. It is not
intended to imply that a referral directory is somehow not
real. The real directory corresponds to the referral directory
and contains the file system metadata. When a client tries to

10

20

25

30

35

40

45

8

access the file system metadata, the referral directory refers to
client to the real directory to access the file system metadata
stored in the real directory.

FIG. 5 is an example of a flow diagram illustrating the
exemplary steps to start a MDS 0110, by executing an initial-
ization program 0272. In Step 0510, the MDS checks if it is
the first MDS (for example, by checking if its IP address is a
preconfigured IP address). If YES, in Step 0520, the MDS
initializes the metadata server utilization table 0279, by
inserting an entry with its IP address and utilization as 0%.

FIG. 6 shows an example of the structure of a metadata
server utilization table 0279, which consists of, but is not
limited to, two columns, including IP address 0610 and uti-
lization 0620. Utilization 0620 is a percentage number rep-
resenting the resource (e.g., CPU, storage, network band-
width, or the combination) utilization percentage of a MDS
0110.

Referring back to FIG. 5, if NO in Step 0510, in Step 0540,
the MDS 0110 registers its IP address to the first MDS. Upon
receiving the registration message, the first MDS inserts an
entry into the metadata server utilization table with the
received IP address and utilization as 0%. In Step 0530, the
first MDS, periodically or when a new MDS 0110 registers,
collects utilization information from all the MDSs 0110 and
broadcasts the consolidated utilization information to the
other MDSs. Upon receiving the broadcast message from the
first MDS, in Step 0550, the MDS 0110 updates the metadata
server utilization table 0279 with the consolidated utilization
information. As a result, the metadata server utilization table
0279 in each MDS 0110 maintains the utilization information
of all the MDSs 0110 and is periodically updated by the first
MDS.

FIG. 7 is an example of a flow diagram illustrating the
exemplary steps to process client requests ina MDS 0110, by
executing a request processing program 0273, after the MDS
starts as aforementioned. It may be noted that the root direc-
tory “/” of the namespace is created by the first MDS (once
start) and stored in the first MDS, which is known to all the
Clients 0130. In Step 0710, the current MDS checks if the
request is to create a new directory, or read an existing direc-
tory, or others. If the request is to create a new directory, in
Step 0720, the current MDS executes a create-directory pro-
cess (see FIG. 8). Ifthe request is to read an existing directory,
in Step 0730, the current MDS then executes a read-directory
process (see FIG. 14). If the request is of some other type (for
“others™), in Step 0740, the current MDS then serves the
request as conventional NFS protocol except SEQUENCE
RPC call (see FIG. 21). In Step 0750, the current MDS
updates its workload information table 027A (see FIG. 17).

FIG. 8 is an example of a flow diagram illustrating the
exemplary steps of the create-directory process (Step 0720 in
FIG. 7) according to the first embodiment. In Step 0810, the
current MDS checks if it has the lowest utilization in the
metadata server utilization table 0279. If NO, in Step 0820,
the current MDS selects another MDS (referred to as remote
MDS) which has lower utilization (randomly or select the one
with the lowest utilization). In Step 0830, the current MDS
constructs an inode for the new directory, by assigning an
inode number and a FSID, and setting type as “Directory,”
mode as “referral,” and location as “IP address of remote
MDS:/hash value of inode number.”

FIG. 9 shows an example of the structure of an inode
according to the first embodiment. An inode consists of, but is
not limited to, 5 elements, including inode number 0910, type
0920, mode 0930, FSID 0940, and location 0950. The inode
number 0910 is a unique identifier assigned to a file/directory.
The type 0920 is either “File” or “Directory.” The mode 0930

US 9,342,529 B2

9

is either “referral” or “normal” for a directory, and is always
“normal” for a file. The FSID 0940 is a unique file system
identifier. The location 0950 consists of IP address:/hash_
value. The hash_value is obtained from the hash value of the
inode number, and is unique with a collision-free hash func-
tion, such as 160-bit SHA-1 or the like. The FSID 0940 and
location 0950 are set to empty for an inode with mode 0930 as
“normal.”

Referring back to FIG. 8, in Step 0840, the current MDS
sends a “create_referral” request to the remote MDS. The
request consists of the full path of the directory to be created
in the namespace, and the hash_value. In Step 0850, the
current MDS waits to receive “success” notification from the
remote MDS.

FIG. 10 is an example of a flow diagram illustrating the
exemplary steps of a referral creation program 0275 executed
by the remote MDS, upon receiving the “create_referral”
request. In Step 1010, the remote MDS creates the directories
in the received path, if the directories did not exist. For
example, if the received path is “/dir1/dir2/dir3,” the remote
MDS will create “/dirl,” “/dir1/dir2,” and “/dir1/dir2/dir3” in
sequence. In Step 1020, the remote MDS updates its referral-
to-path mapping table 0277, by inserting an entry with the
received hash value, path, and the IP address of the MDS 0110
which sends the “create_referral” request.

FIG. 11 shows an example of the structure of a referral-to-
path mapping table 0277, which consists of, but is not limited
10, 3 columns, including a hash value 1110, a local path 1120,
and an IP address 1130. The hash value 1110 is a hash value
of the inode number 0910 of a referral directory. The local
path 1120 is the path where the real directory of the referral
directory is stored. The IP address 1130 is the IP address of a
MDS 0110 (referred to as source MDS) where the referral
directory is created.

Referring back to FIG. 10, in Step 1030, the remote MDS
updates its workload information table 027 A, by inserting an
entry with the received path, and “0” access count.

FIG. 12 shows an example of the structure of a workload
information table 027A, which consists of, but is not limited
to, 2 columns, including a local path 1210, and an access
count 1220. The local path 1210 is the path where the real
directory of a referral directory is stored. The access count
1220 is the number of access to the sub-tree under the local
path 1210. Initially, the access count 1220 is set to “0.” Fur-
ther, in the workload information table 027 A, there is always
an entry with local path 1210 as “Total,” and access account
1220 is the summary of access account of all the other entries
in the table.

Referring back to FIG. 10, in Step 1040, the remote MDS
returns “success” to the MDS 0110 which sends the
“create_referral” request.

Referring back to FIG. 8, after receiving the “success”
notification from the remote MDS,; in Step 0870, the current
MDS inserts a directory entry for the new directory to its
parent directory. As such, a referral directory is successfully
created. In Step 0880, the current MDS returns “success” to
the client 0130 which sends the create directory request. The
referral directory (FIG. 10) is created dynamically, i.e., dur-
ing the create directory process (FIG. 8), to distribute
namespace workload to multiple metadata servers (MDSs).

FIG. 13 shows an example of a file system namespace
hierarchy, which consists of 4 directories: */,” “/dirl,” “/dirl/
dir2,” and ““/dirl/dir2/dir3.” Further, for each directory, the
information of the sub-files and sub-directories under the
directory is stored as the content of the directory, referred to
as directory entries. FIG. 13 also shows an example of the
structure of a directory entry, which consists of, but is not

10

15

20

25

30

35

40

45

50

55

60

65

10

limited to, inode number 1310, name 1320, and type 1330.
The inode number 1310 is a unique identifier assigned for the
sub-file/sub-directory. The name 1320 is the sub-file/sub-
directory name. The type 1330 is either “File” or “Directory.”

Referring back to FIG. 8,if YES in Step 0810, in Step 0860,
the current MDS constructs an inode for the new directory, by
assigning an inode number 0910, and setting type 0920 as
“Directory,” mode 0930 as “normal,” and FSID 0940 and
location 0950 as empty. Similarly, the current MDS then
executes Step 0870 and Step 0880.

Referring back to FIG. 7, in Step 0710, if the request is to
read an existing directory, in Step 0730, the current MDS then
executes a read-directory process.

FIG. 14 is an example of a flow diagram illustrating the
exemplary steps of the read-directory process (Step 0730 in
FIG. 7). In Step 1410, the current MDS checks if the
requested directory is found in the referral-to-path mapping
table 0277. If NO, in Step 1420, the current MDS further
checks if the requested directory is a referral directory by
checking the mode 0930 of the directory inode. If NO, in Step
1470, the current MDS simply serves the request with meta-
data of the directory. If YES in Step 1420, in Step 1430, the
current MDS returns with information indicating that the
requested directory is a referral directory (e.g., it may return
“NFS4ERR_MOVED” for the GETFH, ie., Get Current
Filehandle, RPC call), and in Step 1440, returns the FSID
0940 and location 0950 of the directory inode for the subse-
quent GETATTR RPC call (to obtain attributes for the direc-
tory specified by the current filehandle), to the Client 0130
which sends the read directory request. Consequently, the
Client will treat the referral directory as a mounted file sys-
tem, and create a super block with the FSID 0940 and access
the real directory from the remote MDS by using the location
0950 information, i.e., IP address:/hash_value. In Step 1450,
the current MDS updates the referral status table 0278, by
adding an entry (if the entry does not exist) with the FSID,
Client ID, and sets the status as “Normal.” If YES in Step
1410, in Step 1460, the current MDS performs a path traversal
to a local directory (local path 1120) found in the referral-to-
path mapping table 0277 (Step 1410). In Step 1470, the cur-
rent MDS serves the request with metadata of the local direc-
tory.

FIG. 15 shows an example of the structure of a referral
status table 0278, which consists of, but is not limited to, 3
columns, including a FSID 1510, a ClientID 1520, and a
status 1530. The FSID 1510 is a unique file system identifier.
The ClientID 1520 is a unique ID assigned for a Client. The
status 1530 is either “Normal” or “Migrated,” which will be
further described herein below.

FIG. 16 shows an example illustrating a file system
namespace (referred to in FIG. 13) which is distributed to two
MDSs 0110, i.e., MDS_1 (with IP address 192.168.1.10) and
MDS_2 (with IP address 192.168.2.20). As in the example,
“/dir1” is a referral directory created by MDS_1 and the real
directory is stored in MDS_2, and “/dirl/dir2/dir3” is a refer-
ral directory created by MDS_2 and the real directory is
stored in MDS_1. It should be noted that the location 0950 in
aninode of areferral directory consists of a hash value instead
of real path, such that cyclic path travel can be avoided. If the
location 0950 in an inode of a referral directory stores the real
path, following cyclic path travel will happen. For example, a
Client 0130 wants to access “/dirl/dir2/dir3/£31,” the client
will first do the path travel from file system namespace root
directory “/,” which is stored in MDS_1, then will look up
“/dirl”” As “/dir1” is a referral directory, and suppose the
inode consists of the real path (i.e., 192.168.2.20:/dir1) in
MDS_2, the client then will look up *“/dir1” under root direc-

US 9,342,529 B2

11

tory in MDS_2, and will look up “dir2” and “dir3” in
sequence. As “/dirl/dir2/dir3” is a referral directory again,
and suppose the inode consists of the real path (i.e.,
192.168.1.10:/dir1/dir2/dir3) in MDS_1, the client then will
look up again “/dirl” under root directory in MDS_1 (this is
required in order to look up *“/dir1/dir2/dir3/£31 ” in MDS_1).
As “/dir]l” is a referral directory, the client will jump back to
MDS_2 again. As such, a cyclic path travel between MDS_1
and MDS_2 happens, and the client will never be able to
access “/dirl/dir2/dir3/£31.”

On the other hand, the aforementioned cyclic path travel
can be avoided with the present invention. With the same
example, a client wants to access “/dirl/dir2/dir3/f31,” and
will first do the path travel from file system namespace root
directory “/,” which s stored in MDS_1, and then will look up
“/dirl.” As “/dirl” is a referral directory, referring to “/0x20”
in MDS_2, the client then will look up “/0x20” under root
directory in MDS_2. As “/0x20” is in the referral-to-path
mapping table 0277 (as described in FIG. 14), MDS_2 serves
the request with the metadata of““/dirl > Again, the client then
will look up “dir2” and “dir3” in sequence. Now, as “/dirl/
dir2/dir3” is a referral directory again, referring to “/0x10” in
MDS_1, the client then will look up “/0x10” under root
directory in MDS_1. As “/0x10” is in the referral-to-path
mapping table 0277, MDS_1 then serves the request with
metadata of “/dir1/dir2/dir3” directly to the client. As a result,
the client can then successfully access “f31” under the direc-
tory.

Referring back to FIG. 7, in Step 0710, if the request is for
others, in Step 0740, the current MDS then serves the request
as conventional NFS protocol except SEQUENCE RPC call,
which will be further explained in FIG. 21. In Step 0750, the
current MDS updates its workload information table 027A.

FIG. 17 is an example of a flow diagram illustrating the
exemplary steps constituting Step 0750 to update the work-
load information table in FIG. 7. In Step 1710, the current
MDS obtains the local path of the accessed file/directory. In
Step 1720, the current MDS checks if the path is in the
workload information table 027A. The check process in Step
1720 is a recursive process. For example, if the accessed path
is “/a/b/c,” the current MDS will check if the workload infor-
mation table 027A has an entry with local path as “/a/b/c,” or
“/a/b,” or “/a” in sequence. If any of the paths is found in the
workload information table 027A, the check process termi-
nates and the current MDS increases the access count of the
found entry by 1 (Step 1730), and the access count of the entry
“Total” by 1 (Step 1740). Otherwise, the current MDS only
increases the access count of the entry “Total” by 1 (Step
1740).

As described in FIG. 5 (Step 0530), the first MDS (peri-
odically or when a new MDS 0110 registers) collects utiliza-
tion information from all the MDSs, and broadcasts the con-
solidated utilization information to the other MDSs. Upon
receiving the request to collect utilization information, a
MDS 0110 executes a workload monitoring program 0274.

FIG. 18 is an example of a flow diagram illustrating the
exemplary steps of a workload monitoring program 0274
according to the first embodiment. In Step 1810, the current
MDS first calculates its utilization 0620, which is a percent-
age number defined as the Total_access/Max_access, where
Total_access is the access count 1220 of entry “Total” in the
workload information table 027A, and Max_access means
the maximum number of namespace accesses that can be
served by the MDS 0110 within the time period since last
execution time of the workload monitoring program 0274.
The current MDS then sends the utilization information to the
first MDS as a reply. In Step 1820, the current MDS obtains

10

15

20

25

30

35

40

45

50

55

60

65

12

the consolidated utilization information of all the MDSs from
the broadcast message from the first MDS and updates the
metadata server utilization table 0279. In Step 1830, the cur-
rent MDS checks if its utilization 0620 is higher than a pre-
defined threshold, referred to as thresholdl. The thresholdl
may have any suitable value; in one example, thresholdl is
90%. IfYES, in Step 1840, the current MDS further checks if
there is any MDS (referred to as remote MDS) with utilization
lower than thresholdl. IfYES, in Step 1850, the current MDS
negotiates with the remote MDS on the number of accesses
that can be migrated. The remote MDS then replies with the
number of accesses that can be migrated, which is defined as
Total_access*(threshold1-utilization)/utilization, where
Total_access is the access count 1220 of entry “Total” in the
workload information table 027A, and utilization is its utili-
zation 0620 in the metadata server utilization table 0279. In
Step 1860, the current MDS then checks if any sub-tree of a
real directory corresponding to a referral directory can be
migrated to the remote MDS, by checking if any entry (the
entry “Total” is exclusive) in the workload information table
027A has an access count 1220 less than the number of
accesses that can be migrated as determined in Step 1850. If
YES, in Step 1870, the current MDS then executes a referral
migration program 0276 to migrate the selected sub-tree to
the remote MDS (which will be further described in FIG. 19).
In Step 1880, the current MDS updates the metadata server
utilization table 0279, by reducing the utilization 0620 of the
current MDS and increasing the utilization 0620 of the
remote MDS based on the access account 1220 of the
migrated sub-tree. Recursively, the current MDS checks
again if its utilization 0620 is higher than threshold1 in Step
1830. If NO in Step 1830 or Step 1840, the program ends.
It should be noted that during negotiation (in Step 1850),
the number of accesses that can be migrated should be
reserved in the remote MDS,; so as to prevent multiple MDSs
from migrating namespace sub-trees to the same remote
MDS and overloading the remote MDS. Also, if no
namespace sub-tree can be migrated to the remote MDS (in
Step 1860), the reservation should be released so that other
MDSs can migrate namespace sub-trees to the remote MDS.
FIG. 19 is an example of a flow diagram illustrating the
exemplary steps of a referral migration program 0276. In Step
1910, the current MDS copies the sub-tree of the real direc-
tory corresponding to a referral directory to the remote MDS
(referred to as new target MDS), by creating the same
namespace of the sub-tree in the remote MDS. It should be
noted that if the sub-tree consists of other real directories
referring to from other referral directories, the sub-trees under
the underneath real directories are excluded from the migra-
tion (i.e., they remain in the current MDS). Further, before the
referral migration program 0276 completes, the MDS will
forward the subsequent namespace update of the copied sub-
tree to the new target MDS to ensure that the namespace of the
sub-tree in both MDSs remains consistent. In Step 1920, the
current MDS sends the corresponding entry of the real direc-
tory in the referral-to-path mapping table 0277, and the cor-
responding entry of the sub-tree of the real directory in the
workload information table 027 A, to the new target MDS. As
a result, the new target MDS will insert the received entries
into its referral-to-path mapping table 0277 and workload
information table 027A, respectively. In Step 1930, the cur-
rent MDS informs the source MDS (with the IP address 1130
in the corresponding entry in the referral-to-path mapping
table 0277) about the migration of the real directory to the
new target MDS. In Step 1940, the current MDS waits to
receive “success” notification from the source MDS.

US 9,342,529 B2

13

FIG. 20 is an example of a flow diagram illustrating the
exemplary steps of the process executed in the source MDS
upon receiving the message of the migration of a real direc-
tory corresponding to a referral directory (see Step 1930 in
FIG. 19). In Step 2010, the source MDS changes the IP
address of the location 0950 in the inode of the referral direc-
tory to the new target MDS’s IP address. In Step 2020, the
source MDS changes the status 1530 to “Migrated” for the
entries in the referral status table 0278 with the FSID 0940 of
the referral directory inode. In Step 2030, the source MDS
then informs the Clients 0130 about the new location 0950 of
the referral directory, through the reply of the SEQUENCE
RPC call from a Client. In Step 2040, the source MDS waits
until all the status 1530 that were changed to “Migrated” in
Step 2020 are changed back to “Normal,” and in Step 2050,
the source MDS replies with “success.”

FIG. 21 is an example of a flow diagram illustrating the
exemplary steps constituting Step 2030 in FIG. 20 to inform
clients of the new location of the referral directory, when
receiving SEQUENCE RPC call (which is the first RPC call
followed by other RPC calls in each request sent from a client,
and is used for established session control) from a Client
0130. In Step 2110, the source MDS checks if the referral
status table 0278 has an entry with the FSID 1510 as the
migrated directory entry and the ClientID 1520 for the Client.
If NO, in Step 2140, the source MDS returns “success.”
Otherwise, in Step 2120, the source MDS further checks if the
status 1530 of the found entry is “Migrated.” If YES, the
source MDS returns “SEQ4_STATUS_LEASE_MOVED”
(which indicates that responsibility for lease renewal for a
mounted file system, i.e., a referral directory, has been trans-
ferred to a new metadata server) to the client. Consequently,
the client will read the referral directory to get the new loca-
tion as described in FIG. 14, and the status 1530 of the
corresponding entry will be changed back to “Normal” (Step
1450). If NO in Step 2120, the source MDS returns “success.”

Referring back to FIG. 19, after receiving the “success”
notification from the source MDS, in Step 1950, the current
MDS deletes the migrated sub-tree of the real directory cor-
responding to a referral directory. It should be noted that if the
sub-tree consists of other real directories referred to from
other referral directories, the path to the underneath real
directories will remain. In Step 1960, the current MDS
deletes the entry of the migrated real directory from the refer-
ral-to-path mapping table 0277. In Step 1970, the current
MDS updates the workload information table 027A, by
removing the entry of the migrated sub-tree, and decreasing
the access count 1220 of the entry “Total” by the access count
1220 of the migrated sub-tree.

It should be noted that when workload monitoring program
0274 completes its process, a MDS will reset all the access
counts 1220 to “0” in the workload information table 027A, in
order to monitor access workload within the time period
between current and the next execution time of the workload
monitoring program 0274.

Embodiment 2

The description of a second embodiment of the present
invention will mainly focus on the differences from the first
embodiment. In the first embodiment, when creating a direc-
tory, a MDS 0110 checks if it is the MDS with lowest utili-
zation (see Step 0810 in FIG. 8). If NO, the directory will be
created as a referral directory and distributed to a remote
MDS. As a result, sub-directories under a parent directory
may be widely distributed to all the MDSs. This may cause
low directory access performance (e.g., readdir) and high
memory usage at the Client 0130, as a client needs to establish

10

15

20

25

30

35

40

45

50

55

60

65

14

additional connection with a remote MDS and create a super
block for each referral directory.

In the second embodiment, referral directories are created
and distributed to a number of MDSs, based on the depth and
width of the parent directory, to reduce the number of referral
directories created, and control the number of MDSs to which
the referral directories are distributed. To this end, for direc-
tories that are closer to root, its sub-directories will be more
widely distributed. As such directories are typically created
for different purposes, e.g., different departments, different
projects, different users, and so on, it is better to distribute
such directories to more MDSs to share the workload. In
addition, a fat directory with many sub-files/directories may
have lots of access from clients, and therefore, it is also better
to distribute the sub-directories to more MDSs to share the
workload. On the other hand, a thin and deep directory can be
split into multiple portions, and each portion is stored in a
MDS, to avoid the situation where a single MDS handles all
the metadata access to the entire sub-tree.

FIG. 22 shows an example of the structure of an inode,
according to the second embodiment, where a count 2260 and
a MDS-List 2270 are added (see the first embodiment in FIG.
9). The count 2260 is the number of MDSs 0110 to which the
sub-directories can be distributed, and is initially set to 1. The
MDS-List 2270 is a list of IP addresses of MDSs to which the
sub-directories can be distributed, and is initially consisted of
only the IP address of the MDS where the directory is created.

FIG. 23 is an example of a flow diagram illustrating the
exemplary steps of the create-directory process (Step 0720 in
FIG. 7) according to the second embodiment. In Step 2310,
the current MDS 0110 checks if the directory depth of the
parent directory is smaller than or equal to a predefined
threshold, referred to as Threshold2. Threshold2 may have
any suitable value; in one example, Threshold2 is 10. The
depth of a directory (referred to as Dir_Depth) is defined as
the depth from the root of the file system namespace to the
directory, or from the top of a sub-tree of a referral directory
to the directory (if the directory is in the sub-tree of a referral
directory). If YES, in Step 2320, the current MDS calculates
the number of MDSs (referred to as Numl), to which the
sub-directories under the parent directory can be distributed,
as [#MDSs/Dir_Depth]|x[Dir_Width/Threshold3], where
#MDSs is the total number of MDSs in the system, Dir_Depth
is the directory depth of the parent directory as defined above,
Dir_Width is the number of sub-files/sub-directories under
the parent directory, and Threshold3 is a predefined threshold.
Threshold3 may have any suitable value; in one example,
Threshold3 is 1000. If NO in Step 2310, in Step 2330, the
current MDS then calculates the Num1 as [#MDSs/(Dir_
Depth-Threshold2)|x[Dir_Width/Threshold3]. In Step
2340, the current MDS checks if count 2260 in the parent
inode is smaller than Numl, and Numl is smaller than or
equal to a predefined threshold, referred to as Threshold4,
which represents the maximal number of MDSs to which the
sub-directories can be distributed. Threshold4 may have any
suitable value; in one example, Threshold4 is 10. IfYES, in
Step 2350, the current MDS adds (Num1-count) MDSs to the
MDS-List 2270 of the parent directory inode. In Step 2360,
the current MDS selects a MDS with the lowest utilization
from the newly added MDSs, and executes Step 2370, which
consists of the same steps from Step 0830 to Step 0880, as
described in FIG. 8. If NO in Step 2340, the current MDS
selects a MDS with the lowest utilization from the MDS-List
2270. In Step 2390, the current MDS checks if the selected
MDS is itself. If NO, the current MDS executes Step 2370.
Otherwise, the current MDS executes Step 23 A0, which con-
sists of the same steps from Step 0860 to Step 0880, as
described in FIG. 8.

US 9,342,529 B2

15

FIG. 24 is an example of a flow diagram illustrating the
exemplary steps of a workload monitoring program 0274
according to the second embodiment. In Step 2410, the cur-
rent MDS executes the same Step 1810 and Step 1820, as
described in FIG. 18. In Step 2420, the current MDS checks
ifits utilization 0620 is higher than threshold1. IfYES, in Step
1840, the current MDS further checks if there is any MDS
(referred to as remote MDS) with utilization lower than
thresholdl. If YES, in Step 2440 (same as Step 1850), the
current MDS negotiates with the remote MDS on the number
of accesses that can be migrated. In Step 2450, the current
MDS then checks if any sub-tree of a real directory corre-
sponding to a referral directory can be migrated to the remote
MDS, by checking ifany entry (the entry “Total” is exclusive)
in the workload information table 027 A has an access count
1220 less than the number of accesses that can be migrated as
determined in Step 2440. If YES, in Step 2460, the current
MBDS then obtains the MDS-List 2270 of the parent directory
from the source MDS, with the IP address 1130 of the corre-
sponding entry in the referral-to-path mapping table 0277. In
Step 2470, the current MDS checks if the remote MDS (re-
ferred to new target MDS) is in the MDS-List. If YES, the
current MDS then executes Step 2480, which consists of Step
1870 and Step 1880, as described in FIG. 18. If NO, in Step
2490, the current MDS checks if all sub-trees of real directo-
ries corresponding to referral directories with the same parent
directory can be migrated the new target MDS, by checking
the total access account 1220 of the sub-trees in the workload
information table 027A. If YES, in Step 24A0, for each sub-
tree, the current MDS executes Step 1870 and Step 1880. In
Step 24B0, the current MDS updates the MDS-List 2270 in
the source MDS, by removing the IP address of the current
MDS and adding the IP address of the new target MDS.
Recursively, the current MDS checks again if its utilization
0620 is higher than thresholdl in Step 2420, after Step 2480
or Step 24B0 or it NO in Step 2490. [fNO in Step 2420 or Step
2430, the program ends.

Embodiment 3

The description of a third embodiment of the present inven-
tion will mainly focus on the differences from the first
embodiment. In the first embodiment, clients 0130 first
access the metadata from MDSs 0110 and then access file
contents directly from DSs 0120. In other words, MDSs 0110
are not in the access path during file contents access. How-
ever, a Client 0130 may not have the capability to differentiate
between the processes of metadata access and file contents
access, 1.e., to send metadata access to MDSs and send file
content access to DSs. Instead, a Client 0130 may send both
metadata access and file contents access to MDSs 0110.
Therefore, in the third embodiment, the MDSs 0110 will
serve both metadata access and file content access from Cli-
ents 0130.

FIG. 25 is an exemplary diagram of an overall system
according to the third embodiment. The system includes a
plurality of Metadata Servers (MDSs) 0110, Data Servers
(DSs) 0120, and Clients 0130. Clients 0130 and MDSs 0110
are connected to a network 1 0100. MDSs 0110 and DSs 0120
are connected to a network 2 0101. Clients 0130 access both
the metadata and file contents from MDSs 0110 through
network 1 0100. For metadata access, MDSs will serve the
requests as described in the first embodiment. For file con-
tents access, if the access involves read operation, the MDSs
0110 will retrieve file contents from DSs 0120 through net-
work 2 0101, and send back file contents to Clients 0130
through network 1 0100. On the other hand, if the access
involves write operation, the MDSs 0110 will receive the file

10

15

20

25

30

40

45

50

55

60

65

16
contents from Clients 0130 through network 1 0100, and store
the file contents to DSs 0120 through network 2 0101.

Embodiment 4

The description of a fourth embodiment of the present
invention will mainly focus on the differences from the above
embodiments 1-3. In the above-described embodiments, a
MDS 0110 maintains location information of file contents
0252, and a Client 0130 uses the location information to
access file contents 0332 stored in DSs 0120 through NFS
protocol module 0420. In the fourth embodiment, a MDS
0110, a DS 0120, and a Client 0130 can also be equipped with
a block-access protocol module, such as iSCSI (Internet
Small Computer System Interface) and FCOE (Fibre Channel
over Ethernet). A MDS 0110 can store location information
of'file contents in such a way that a Client 0130 can access file
contents via either NFS protocol module or block-access
protocol module.

Of course, the system configurations illustrated in FIGS. 1
and 25 are purely exemplary of information systems in which
the present invention may be implemented, and the invention
is not limited to a particular hardware configuration. The
computers and storage systems implementing the invention
can also have known I/O devices (e.g., CD and DVD drives,
floppy disk drives, hard drives, etc.) which can store and read
the modules, programs and data structures used to implement
the above-described invention. These modules, programs and
data structures can be encoded on such computer-readable
media. For example, the data structures of the invention can
be stored on computer-readable media independently of one
or more computer-readable media on which reside the pro-
grams used in the invention. The components of the system
can be interconnected by any form or medium of digital data
communication, e.g., a communication network. Examples
of communication networks include local area networks,
wide area networks, e.g., the Internet, wireless networks,
storage area networks, and the like.

In the description, numerous details are set forth for pur-
poses of explanation in order to provide a thorough under-
standing of the present invention. However, it will be apparent
to one skilled in the art that not all of these specific details are
required in order to practice the present invention. It is also
noted that the invention may be described as a process, which
is usually depicted as a flowchart, a flow diagram, a structure
diagram, or a block diagram. Although a flowchart may
describe the operations as a sequential process, many of the
operations can be performed in parallel or concurrently. In
addition, the order of the operations may be re-arranged.

As is known in the art, the operations described above can
be performed by hardware, software, or some combination of
software and hardware. Various aspects of embodiments of
the invention may be implemented using circuits and logic
devices (hardware), while other aspects may be implemented
using instructions stored on a machine-readable medium
(software), which if executed by a processor, would cause the
processor to perform a method to carry out embodiments of
the invention. Furthermore, some embodiments of the inven-
tion may be performed solely in hardware, whereas other
embodiments may be performed solely in software. More-
over, the various functions described can be performed in a
single unit, or can be spread across a number of components
in any number of ways. When performed by software, the
methods may be executed by a processor, such as a general
purpose computer, based on instructions stored on a com-
puter-readable medium. If desired, the instructions can be
stored on the medium in a compressed and/or encrypted for-
mat.

US 9,342,529 B2

17

From the foregoing, it will be apparent that the invention
provides methods, apparatuses and programs stored on com-
puter readable media for a directory-level referral process for
parallel network file system with multiple metadata servers.
Additionally, while specific embodiments have been illus-
trated and described in this specification, those of ordinary
skill in the art appreciate that any arrangement that is calcu-
lated to achieve the same purpose may be substituted for the
specific embodiments disclosed. This disclosure is intended
to cover any and all adaptations or variations of the present
invention, and it is to be understood that the terms used in the
following claims should not be construed to limit the inven-
tion to the specific embodiments disclosed in the specifica-
tion. Rather, the scope of the invention is to be determined
entirely by the following claims, which are to be construed in
accordance with the established doctrines of claim interpre-
tation, along with the full range of equivalents to which such
claims are entitled.

What is claimed is:

1. A plurality of MDSs (metadata servers) in a distributed
storage system which includes data servers storing file con-
tents, each MDS: having a processor and a memory and
storing file system metadata,

wherein directories of a file system namespace are distrib-

uted to the MDSs through referral directories referring
to real directories using hash value of inode number of
each of the referral directories;

wherein during a process to create a directory in the file

system namespace, a first MDS dynamically creates a
referral directory in the first MDS, and creates a real
directory in a second MDS, the referral directory in the
first MDS referring to the real directory in the second
MDS by maintaining location information of the real
directory in the second MDS, the real directory in the
second MDS containing the file system metadata for the
directory in the file system namespace;

wherein each directory in the MDSs has an inode, the inode

including an inode number, a mode of “referral”for a
referral directory and “normal”for a directory which is
not a referral directory, a file system identifier, and a
location entry;

wherein the file system identifier uniquely identifies the

referral directory if the mode is referral;

wherein the location entry has an IP address of the MDS in

which the real directory is located and a hash value of the
inode number if the mode is referral;

wherein the inode of a directory further includes a count

which is a number of MDSs to at least some of which
sub-directories of the directory are to be distributed, and
a MDS-List which is a list of [P addresses of MDSs to at
least some of which the sub-directories are to be distrib-
uted; and

wherein the count and MDS-List are determined based on

depth and width of the directory.

2. The plurality of MDSs according to claim 1,

wherein the location information of the referral directory

includes a hash value for the real directory and an IP
address of the second MDS; and

wherein the second MDS maps the hash value for the real

directory to alocal directory path in a local namespace of
the second MDS to the real directory.

3. The plurality of MDSs according to claim 1,

wherein the first MDS has a parent directory and creates the

referral directory under the parent directory to refer to
the real directory in the second MDS.

20

25

30

40

45

50

[

0

65

18

4. The plurality of MDSs according to claim 3,
wherein the first MDS constructs an inode for the referral
directory which refers to the real directory, the inode for
the referral directory including an inode number, a file
system identifier, and a location entry which has an IP
address of the second MDS in which the real directory is
located and a hash value of the inode number.
5. The plurality of MDSs according to claim 1,
wherein each MDS includes a referral-to-path mapping
table to store entries of a hash value of any real directory
in the MDS, a corresponding local path where the real
directory is stored in a local namespace of the MDS, and
a corresponding IP address of a source MDS where the
referral directory referring to the real directory is
located.
6. The plurality of MDSs according to claim 5,
wherein each MDS maintains workload information to
monitor access workload for each directory in the refer-
ral-to-path mapping table of the MDS.
7. The plurality of MDSs according to claim 1,
wherein the first MDS in the distributed storage system
periodically collects utilization information from one or
more of other MDSs and broadcasts consolidated utili-
zation information to all the other MDSs.
8. The plurality of MDSs according to claim 1,
wherein any MDS, which has a real directory being
referred to from a referral directory and has utilization
higher than a preset threshold, migrates the real direc-
tory including sub-tree of the real directory to another
MDS which has utilization sufficiently low to receive
migration of the real directory with the sub-tree, and
informs a source MDS where the referral directory refer-
ring to the real directory is located of the updated loca-
tion information.
9. The plurality of MDSs according to claim 8,
wherein each MDS includes a referral-to-path mapping
table to store entries of a hash value of any real directory
in the MDS, a corresponding local path where the real
directory is stored in a local namespace of the MDS, and
a corresponding IP address of a source MDS where the
referral directory referring to the real directory is
located; and
wherein, after migration of a real directory from one MDS
to another MDS, the one MDS and said another MDS
update respective referral-to-path mapping tables and
update respective workload information for the respec-
tive MDSs based on the migration.
10. The plurality of MDSs according to claim 8,
wherein if the sub-tree of the real directory to be migrated
includes another real directory being referred to from
another referral directory, the said another real directory
is not migrated but remains in the same MDS before
migration of the sub-tree.
11. The plurality of MDSs according to claim 1,
wherein the inode in each directory in the MDSs has a
unique inode number.
12. The plurality of MDSs according to claim 1,
wherein each directory is assigned a unique inode number.
13. A method of managing directories in a distributed stor-
age system which includes a plurality of MDSs (metadata
servers) storing file system metadata and data servers storing
file contents, the method comprising:
distributing directories of a file system namespace to the
MDSs through referral directories referring to real direc-
tories using hash value of inode number of each of the
referral directories;
wherein during a process to create a directory in the file
system namespace, a first MDS dynamically creates a

US 9,342,529 B2

19

referral directory in the first MDS, and creates a real
directory in a second MDS, the referral directory in the
first MDS referring to the real directory in the second
MDS by maintaining location information of the real
directory in the second MDS, the real directory in the
second MDS containing the file system metadata for the
directory in the file system namespace;

wherein each directory in the MDSs has an inode, the inode

including an inode number, a mode of “referral”for a
referral directory and “normal”for a directory which is
not a referral directory, a file system identifier, and a
location entry;

wherein the file system identifier uniquely identifies the

referral directory if the mode is referral;

wherein the location entry has an IP address of the MDS in

which the real directory is located and a hash value of the
inode number if the mode is referral;

wherein the inode of a directory further includes a count

which is a number of MDSs to at least some of which
sub-directories of the directory are to be distributed, and
a MDS-List which is a list of [P addresses of MDSs to at
least some of which the sub-directories are to be distrib-
uted; and

wherein the count and MDS-List are determined based on

depth and width of the directory.

14. The method according to claim 13, wherein the location
information of the referral directory includes a hash value for
the real directory and an IP address of the second MDS, the
method further comprising:

mapping, by the second MDS, the hash value for the real

directory to alocal directory path in a local namespace of
the second MDS to the real directory.

15. The method according to claim 13, wherein the first
MBDS has a parent directory and creates the referral directory
under the parent directory to refer to the real directory in the
second MDS, the method further comprising:

30

35

20

constructing, by the first MDS, an inode for the referral
directory which refers to the real directory, the inode for
the referral directory including an inode number, a file
system identifier, and a location entry which has an IP
address of the second MDS in which the real directory is
located and a hash value of the inode number.

16. The method according to claim 13, wherein each MDS
includes a referral-to-path mapping table to store entries of a
hash value of any real directory in the MDS, a corresponding
local path where the real directory is stored in a local
namespace of the MDS, and a corresponding IP address of a
source MDS where the referral directory referring to the real
directory is located, the method further comprising:

maintaining, by each MDS, workload information to moni-

tor access workload for each directory in the referral-to-
path mapping table of the MDS.

17. The method according to claim 13, further comprising:

periodically collecting, by the first MDS in the distributed

storage system, utilization information from one or
more of other MDSs, and broadcasting consolidated
utilization information to all the other MDSs.

18. The method according to claim 13, further comprising:

migrating, by any MDS which has a real directory being

referred to from a referral directory and has utilization
higher than a preset threshold, the real directory includ-
ing sub-tree of the real directory to another MDS which
has utilization sufficiently low to receive migration of
the real directory with the sub-tree, and informing a
source MDS where the referral directory referring to the
real directory is located of the updated location informa-
tion.

19. The method according to claim 13,

wherein the inode in each directory in the MDSs has a

unique inode number.

20. The method according to claim 13, wherein each direc-
tory is assigned a unique inode number.

#* #* #* #* #*

