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1
SYSTEMS, METHODS, AND DEVICES FOR
IMAGE MATCHING AND OBJECT
RECOGNITION IN IMAGES USING
MINIMAL FEATURE POINTS

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 62/022,636, filed Jul. 9, 2014, the entire
contents of which are hereby fully incorporated herein by
reference for all purposes.

COPYRIGHT STATEMENT

This patent document contains material subject to copy-
right protection. The copyright owner has no objection to the
reproduction of this patent document or any related materials
in the files of the United States Patent and Trademark Office,
but otherwise reserves all copyrights whatsoever.

FIELD OF THE INVENTION

This invention relates to image processing, and, more par-
ticularly, to enhanced techniques for image matching and
object recognition in images.

BACKGROUND

Image processing techniques exist for trying to determine
whether one image is present in another image. More specifi-
cally, techniques exist for trying to determine whether one or
more objects in one image are present in another image. Such
object recognition/identification/location techniques vary in
speed and accuracy, but do not scale well to real time and
on-the-fly processing of multiple images.

It is desirable to provide object recognition/identification/
location image processing techniques that improve the speed
and/or accuracy of such techniques. It is further desirable to
provide image processing techniques for object recognition/
identification/location that support and scale to accurate real-
time, on the fly, and batch processing of multiple images.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects, features, and characteristics of the present
invention as well as the methods of operation and functions of
the related elements of structure, and the combination of parts
and economies of manufacture, will become more apparent
upon consideration of the following description and the
appended claims with reference to the accompanying draw-
ings, all of which form a part of this specification.

FIG. 1 depicts an overview of a system according to exem-
plary embodiments hereof;

FIGS. 2(a)-2(j) show aspects of databases and data struc-
tures used by the system of FIG. 1, according to exemplary
embodiments hereof;,

FIGS. 3(a)-3(e) show exemplary processing in the system
of FIG. 1, according to exemplary embodiments hereof;

FIGS. 4(a)-4(b) are flowcharts showing exemplary pro-
cessing according to exemplary embodiments hereof;,

FIG. 5 is a schematic diagram of a computer system; and

FIGS. 6(a)-6(d) show examples of the matching one or
more portions of a template image to a test image.
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DETAILED DESCRIPTION OF THE PRESENTLY
PREFERRED EXEMPLARY EMBODIMENTS

Glossary and Abbreviations

As used herein, unless used otherwise, the following terms
or abbreviations have the following meanings:

FLANN means Fast Library for Approximate Nearest
Neighbors;

GLOH means Gradient Location and Orientation Histo-
gram;

MSER means maximally stable external regions;

PCA-SIFT means Principal Components Analysis SIFT;

RANSAC refers to RANdom SAmple Consensus;

RBF means radial basis function;

SIFT means Scale-Invariant Feature Transform;

SURF means Speeded Up Robust Features;

SVM means support vector machine;

URL means a Uniform Resource Locator; and

a “mechanism” refers to any device(s), process(es),
routine(s), service(s), or combination thereof. A mechanism
may be implemented in hardware, software, firmware, using
a special-purpose device, or any combination thereof. A
mechanism may be integrated into a single device or it may be
distributed over multiple devices. The various components of
a mechanism may be co-located or distributed. The mecha-
nism may be formed from other mechanisms. In general, as
used herein, the term “mechanism” may thus be considered to
be shorthand for the term device(s) and/or process(es) and/or
service(s).

Background

For some problems where image matching is used, a given
template matches very few of the test images. For example,
for finding images in social media containing brands, a single
template for a brand typically does not match more than a
fraction of 1% of the images posted in social media. This
means that the vast majority of the time is spent attempting to
match a template against a test image that does not contain the
template or a transformed version of the template. We refer
these test images as non-matches for the template. Some
images that do not contain the template may produce false
positive matches with the template, but this is typically a
much, much smaller quantity than the non-matches. Given
the ratio of candidate matches to non-matches for a template,
speeding up the process of rejecting non-matches can have a
large impact on overall run time for a given test image.

A core aspect of the matching algorithm is finding the
nearest neighbors for each feature point. The time for com-
puting the nearest neighbors for all feature points is related to
the number of feature points for both the template and the test
image.

If the nearest neighbor calculation is done in an exhaustive
fashion using a linear search over all the feature points for the
template and all the feature points for the test image, then the
matching time is proportional to the product of the number of
feature points for the template and the number of feature
points for the test image, that is O(n?).

Other non-exhaustive approaches are possible. For
example, using FLANN, forest of kd-trees, hierarchical
k-means, locality sensitive hashing, and other sorted struc-
tures to organize and more efficiently search the feature
points of the template. (FLANN is a library for performing
fast approximate nearest neighbor searches in high dimen-
sional spaces. It contains a collection of algorithms we found
to work best for nearest neighbor search and a system for
automatically choosing the best algorithm and optimum
parameters depending on the dataset.) However, these tech-
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niques are approximate and only produce the approximate
nearest neighbors. They miss some of the nearest neighbors
and their performance advantage decreases as their precision
increases.

Similar data structures and approximate algorithms may be
used for the test image.

Many of the feature descriptors are very high dimensional.
For example, SIFT descriptors typically have 128 compo-
nents, and the speedup from a sorted structure is less than
might be hoped especially as the required precision
approaches 100% (see Lowe).

With approximate neighbors the matching time would no
longer be linear in the number of feature points in the tem-
plate, but in all cases reducing the number of feature points
under consideration for the template (or the test image) will
reduce match time.

Description

As shown in FIG. 1, an image processing system 100
according to exemplary embodiments hereof includes one or
more computer systems 102 operatively connected to one or
more databases 104. Processes 106 running on the computer
system(s) 102 interact with the databases 104 as described
herein.

The database(s) 104 preferably include one or more tem-
plate image databases 108, one or more test image databases
110, one or more image match databases 112, and one or more
auxiliary/miscellaneous databases 114, each described in
greater detail below. The one or more template image data-
bases 108 may also be referred to herein as template image
database(s) 108. Similarly, the one or more text image data-
bases 110 may also be referred to herein as text image data-
base(s) 110; and the one or more image match databases 112
may also be referred to herein as image match database(s)
112. The various databases may be implemented in any
known manner, including as a file system in an operating
system, and the system is not limited by the manner in which
any particular database is implemented or maintained or
accessed. There is no requirement for the databases to be
implemented in the same manner. The database(s) 104 may
be co-located with each other and/or with the computer sys-
tem(s) 102, or they may be remotely located. The database(s)
may be distributed.

The image processing system 100 obtains images from
one or more image sources 116 (also referred to as image
source(s) 116), which may include one or more social net-
working services 118 (e.g., Facebook, Twitter, and the like)
and other image generating or providing services 120. The
image processing system 100 may obtain the images via a
network 122 (e.g., the Internet) and/or in some other manner.
Itshould be appreciated that the image processing system 100
may obtain images from different image sources in different
manners.

Insome cases an image source 116 may provide a link (e.g.,
a URL or the like) to a web page or the like containing one or
more images. The image source 116 may have pre-filtered the
web pages to include links only those that it considers contain
one or more images. The image source 116 may also provide
meta-data about the link and/or the webpage. This meta-data
may include location and or user information.

With reference now to FIG. 2(a), an exemplary template
image database 108' may contain template image data 124 for
multiple template images. As used herein, a template image
refers to an image that is to be looked for in other images. A
template image may be any image, including one or more of:
alogo, a face, textual information, etc. A template image may
be fully or partially machine generated. The system is not
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limited by the content of template images or the way in which
they are generated, obtained, or stored.

The template image data 124 for a particular template
image may be generated in an offline process, as shown, e.g.,
in FIG. 3(a), in which a template image 300 is processed by an
initial setup mechanism 302 to produce template image data
124 corresponding to the template image 300. Preferably
each template image is uniquely identifiable within the sys-
tem, and, as shown in FIG. 2(5), exemplary template image
data 124 may include a template image identifier 126 and
template image feature points 128 (e.g., generated by the
initial setup mechanism 302). A copy of each template image
is preferably also maintained in database(s) 104, preferably in
template image database(s) 108, and each template image is
preferably accessible in the database(s) 104 using its corre-
sponding template image identifier 126.

Features are locations within an image that can be used by
a matching algorithm to try to find instances of a template
image in a test image. The features may also include a
description of the image at or near that point. Feature points
are preferably picked in such a way that the equivalent loca-
tions will also be picked if the image is transformed in various
ways (e.g., lighting changed, rotated, scaled, tilted). The fea-
ture descriptors are preferably designed to be invariant across
a various transformations to the image.

As shown in FIGS. 2(¢)-2(d), an exemplary test image
database 110' contains test image data 130 for multiple test
images. As noted above, test images may be obtained, e.g.,
from image source(s) 116. Once obtained by the system 100
images are preferably assigned a unique test image identifier
132 and are stored in test image data 130 the test image
database(s) 110 associated with the test image identifier 132.
It should be appreciated that it is preferable to store a copy of
the test image in the test image database(s) 110. Once a test
image has been processed (as described in greater detail
herein), the test image data 130 associated with the test image
may include test image feature points 134.

The image feature points (template image feature points
128, FIG. 2(b) and test image feature points 134, FIG. 2(d))
may be stored in an image feature points structure, such as the
exemplary logical structure shown in FIG. 2(e). Assuming
there are k image feature points for a particular image, the
logical structure includes an index (0 to k-1) for the feature
point, alocation in the image (e.g., a pixel) associated with the
feature point, and a descriptor of the feature point. The form
of the descriptor will depend on the feature descriptor algo-
rithm used, as described in greater detail below. In a present
implementation the feature descriptors are SIFT descriptors.
Those of ordinary skill in the art will realize and appreciate,
upon reading this description, that different and/or other
descriptors may be used. For example, the feature descriptors
may be SURF or PCA-SIFT or GLOH descriptors. PCA-
SIFT is described, e.g., in Yan Ke and Rahul Sukthankar.
2004. PCA-SIFT: a more distinctive vepresentation for local
image descriptors,” in Proc. of the 2004 IEEE Computer
Society Conference on Computer vision and pattern recogni-
tion (CVPR’04) IEEE Computer Society, Washington, D.C.,
USA, 506-513, the entire contents of which are hereby fully
incorporated herein by reference for all purposes. GLOH
descriptors are described, e.g., in Krystian Mikolajczyk and
Cordelia Schmid “A performance evaluation of local descrip-
tors”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 10, 27, pp. 1615-1630, 2005, the entire contents
of'which are hereby fully incorporated herein by reference for
all purposes. SURF descriptors are described, e.g., in Herbert
Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, “SURF:
Speeded Up Robust Features”, Computer Vision and Image
Understanding (CVIU), Vol. 110, No. 3, pp. 346-359, 2008,
the entire contents of which are hereby fully incorporated
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herein by reference for all purposes. In addition, feature
descriptors may be generated using deep learning convolu-
tional neural networks. For example, Fischer, et al, “Descrip-
tor Matching with Convolutional Neural Networks: a Com-
parison to SIFT,” May, 2014, the entire contents of which are
hereby fully incorporated herein by reference for all pur-
poses, describe SIFT-like features that are generated by a
neural network for the location identified by a SIFT detector
as well as matching these descriptors.

In a presently preferred exemplary implementation the fea-
tures are detected using an image pyramid of Laplacian-
filtered images to locate one set of features for the whole
image. Those of ordinary skill in the art will realize and
appreciate, upon reading this description, that different and/
or other approaches to feature detection may be used. For
example, in some alternate approaches features may detected
using SIFT or MSER, or feature sets may be found for inter-
esting regions of the test image and each region can be
matched separately.

Feature detection may find hundreds of features for the
template image and similarly, hundreds of features for the test
image.

Those of ordinary skill in the art will realize and appreciate,
upon reading this description, that any data structures shown
herein are merely examples, and that different and/or other
data structures and organizations may be used.

FIG. 2(f) shows an exemplary image match database 112"
containing match image data 136 for one or more (preferably
multiple) images.

As shown in FIG. 3(b), in operation, the image processing
system 100 may process a single test image 306 (at 304) with
respect to particular template image data 124 to determine
whether or not the template image corresponding to the tem-
plate image data 124 is present in the single test image 306. If
a match is found, i.e., if the process single image mechanism
304 determines with sufficient certainty that the template
image corresponding to template image data 124 is present in
the image 306, then the process produces image-matching
results 308. The image matching results 308 may include an
indication of where the template image is located in the single
image 306 and may also include other information about the
match. The image matching results 308 may be stored, e.g., in
match image data records 136 in the image match database(s)
112.

As used herein, a template image is considered to be
present in a test image if at least some portion of the template
image is in the test image. It should be appreciated and under-
stood that it is not necessary that the entire template image be
in the test image in order for the template to be in the test
image (see, e.g., FIGS. 6(a)-6(b)), nor is it necessary for the
portions of the template that are in the test image to be con-
tiguous or uninterrupted in the test image (see, e.g., F1G. 6(d),
where non-contiguous parts of the template image are in the
test image).

Matching is done between features of the template images
and the features of the test image, and the matching process
finds feature points that correspond between the two images.
Two feature points correspond/match if the descriptions of
the two feature points are similar enough. A similarity mea-
sure (e.g., a distance) is used between the two points and if the
distance is within some limit then the two feature points are
considered matches. The results of the matching process
between a template image and a test image is a set of pairs of
feature points called the match set. The first element of the
pair is a feature of the template image and the second element
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of'the pair is a feature of the test image. Associated with each
pair of features is a measure of the similarity of the two
features.

In presently preferred exemplary embodiments hereof, as
shown e.g., in FIG. 2(g), in some modes, the match image
data 136 may include: (i) a test image identifier 138 (corre-
sponding to the unique identifier of the matched test image in
the system); (ii) a template image identifier 140 (correspond-
ing to the unique identifier of the matched template image in
the system); (iii) (v) the number of feature points in the
template 146; and (iv) a match set 148. It should be appreci-
ated that some of these fields may not be present or used in all
embodiments hereof.

An exemplary match set (which may be part of the match
image data 136) preferably includes a list of matched points
from the template image and the test image, along with the
distance between them. Thus, e.g., the exemplary match set
148' in FIG. 2(%) includes N matches (P, P')), (P,, P',), . ..
(Py, P'y), with corresponding distances D, D, . . . Dy, Inthis
example, according to the matching algorithm, point P, in the
template image matches or corresponds to point P'; in the test
image, fori=1to N, where D, is a distance for points P, (in the
template image) and P'; (in the test image). In some imple-
mentations a match set 148 may be stored as a point vector
comprising pairs of matched points along with a distance
vector of the corresponding distances.

As shown in FIG. 3(b), the mechanism 304 attempts to
match a single template image with a single test image. How-
ever, in operation, a system 100 may attempt to match a
particular test image with multiple template images, as
shown, e.g., in FIG. 3(c). The mechanism 304 (to process a
single test image with respect to a single template image) may
thus be invoked repeatedly for multiple template images
whose template image data 122 are stored in the template
image database(s) 108. In some exemplary embodiments the
routine 304 may terminate when a match is found for a tem-
plate image. In other embodiments the mechanism 304 may
continue to look for other matches (e.g., with other template
images) even after a match is found.

As shown above with reference to FIG. 1, image-process-
ing system 100 may obtain test images from image source(s)
114. These test images may be obtained in a batch and/or as
one or more streams of images 310. For example, there may
be a stream of images corresponding to each image source.
With reference to FIGS. 3(d)-3(e), the process image
stream(s) mechanism 308 processes the images 306 in image
stream(s) 310 (from the image source(s) 114) to determine
whether one or more template images match images in the
image batch/image stream(s) 310. In some embodiments this
process may be implemented by repeatedly invoking the pro-
cess single image mechanism 304 for images in the image
stream(s) to determine whether any template images match
the image stream images.

The mechanisms (process single image, process image
stream(s), etc.) may correspond to processes 106 running on
the computer system(s) 102.

In some real-world system, the image streams may contain
millions of images, produced at a rate exceeding 2 million
images per day (about 1,400 images per minute).

Processing a Single Image

An exemplary mechanism to process a single image (cor-
responding to 304 in FIGS. 3(b) and 3(c¢)) is described in
David G. Lowe. 2004. Distinctive Image Features from
Scale-Invariant Keypoints. Int. J. Comput. Vision 60, 2 (No-
vember 2004), 91-110, hereinafter “Lowe”, and in U.S. Pat.
No. 6,711,293, to Lowe, the entire contents of both of which
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are hereby fully incorporated herein by reference for all pur-
poses. Lowe’s technique is sometimes referred to as SIFT.

An image may be decomposed into a number of feature
points to describe the visual content of the image. Feature
points may be generated at predetermined locations (i.e., at a
certain position, and radius) in an image, or computed from
features found in an image. When feature points are chosen
that are invariant to change (such as to translation or rotation),
these feature points may be used to determine whether two
images are related to each other.

For example, if two photographs are taken of the same
scene from slightly different vantage points, each image will
contain similar features in the overlap region between the
images. When the feature points from each image are com-
pared, it is possible to determine if the two images are related,
and the coordinate transformation of how they are related.

Feature point matching may also be used to see if a tem-
plate is found in an arbitrary image. A template may be a real
oran artificial image that expresses a pattern to be found in the
image. The template may be any image, including a computer
generated brand logo. In this case, the matching operation can
determine if the brand logo is present in a second image, and
if so, where in the second image the brand logo is located.

Matching a template against an image generally includes a
number of steps, namely:

1. Feature point extraction from the template image.

2. Feature point extraction from a test image.

3. Match feature points from template image with feature

points in a test image.

4. Match feature points in a test image with the feature

points from the template image.

5. Eliminate non-symmetrical matches.

6. Compute the best image transformation between the

matching points.

7. Determine if the template image is present in the test

image.

Feature Point Extraction

There are many feature detectors that may be used to
implement the feature point extraction of the first two steps,
including ones such as SIFT (Scale-Invariant Feature Trans-
form), and SURF (Speeded Up Robust Features) that can
detect features which are scale and rotationally invariant.

Feature point extraction from an image consists of two
steps. The first step is to determine positions in the image that
are stable (i.e., that do not move) over small and moderate
amounts of image transformation such as scale and rotation.
These locations define so-called keypoints in the image. A
keypoint describes a two-dimensional (2D) location (e.g., (X,
y) coordinates) and the angle (or orientation) of the feature
(SIFT keypoints specify a 2D location, scale, and orienta-
tion).

The second step of feature point extraction is to extract a
so-called descriptor (e.g., a numeric signature) from each
feature point. For example, an implementation of the SIFT
descriptor has 128 values that encapsulate the orientations in
a region that surrounds the keypoint. Numeric descriptor
values are often normalized such that the descriptor is of unit
length. This normalization improves the descriptors invari-
ance to illumination changes.

It should be appreciated that steps 1 and 2 generally differ
as to when the feature point extraction is computed. Typically
the template image is known in advance and the feature point
information can be constructed beforehand. Feature point
extraction of a test image may be computed when the image
is analyzed, and compared with the previously computed
information from the template image.
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Matching Feature Points

The third and fourth steps match (or attempt to match)
feature points from one image to feature points from another
image. This matching may be accomplished, e.g., by comput-
ing the nearest neighbors of each descriptor from a first image
to descriptors in a second image. Descriptors come in many
varieties ranging from binary (one-bit of information) to
numeric for each element in the descriptor. For numeric
descriptors, the nearest neighbors may be determined by the
descriptors with the shortest distance. Although many dis-
tance formulas can be used, the 1.2 (Euclidean) distance is
preferred. For each descriptor in one image, the closest
matches (usually two) from the second image are computed.

Lowe describes a ratio test that computes the ratio of the
smallest distance from a keypointin a first image to a keypoint
in a second image, to the second smallest distance from the
same keypoint in the first image to a second keypoint in the
second image. A large ratio (Lowe used a threshold of 0.8)
may be used to indicate that two keypoints in the second
image are similar to the keypoint in the first image. When this
condition arises, there is no matching keypoint in the second
image to the keypoint in the first image. This process is
carried out by comparing every keypoint in one image to the
keypoints in the second image.

The third and fourth steps differ in the direction of match-
ing. In the third step the keypoints from the template image
are compared with the keypoints in the test image. In the
fourth step the keypoints in the test image are compared with
the keypoints in the template image.

Eliminating Non-Symmetrical Matches

The fitth step enforces a constraint that the best matching
points between a first image and a second image should be the
best matching points between the second image and the first
image. This symmetric matching step discards the matches
found in the third and fourth step if the best matches do not
refer to each other.

Computing the Best Image Transformation Between the
Matching Points

The sixth step takes as input the keypoints from the tem-
plate image that match the keypoints in the test image, and
computes a geometric relationship between the points in each
image. Many different methods can be employed to deter-
mine these relationships, including using a Hough transform
(see, e.g., Lowe), affine transformation, or homography. A
homography computes the projective transform to describe
the relationship between two coordinate systems. The points
determined from the fifth step do not necessarily share the
same geometric transformation. One reason is that the points
come from different, non-related, portions of the image.
Another reason is that points belong to related objects, but the
objects are grossly distorted. The RANSAC (RANdom
SAmple Consensus) algorithm may be employed to find the
best subset of matching points to compute the best transfor-
mation between two images. The RANSAC algorithm is
described in Fischler, M. A., et al (June 1981). “Random
Sample Consensus: A Paradigm for Model Fitting with
Applications to Image Analysis and Automated Cartogra-
phy,” Comm. of'the ACM 24 (6): 381-395, the entire contents
of'which are hereby fully incorporated herein by reference for
all purposes.

Determining if the Template Image is Present in the Test
Image

The seventh step identifies whether the template image is
present anywhere in the test image. The result of the sixth step
is either: (i) no homography (insufficient matching points
exist between the template image and test image), (ii) an
incorrect homography, or (iii) a valid homography.
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An invalid homography is one in which the matching
points between the template image and test image returns a
mathematically valid result, but one which is impossible in
the natural world. Invalid homographies are treated as though
no homography was computed.

A valid homography is used to establish the coordinate
system relationship between points in the template image
with the points in the test image. However, the homography
might be valid only over a small region of the image, rather
than over the entire area of the template image. In some cases
this is acceptable if the template in the test image is obscured
or distorted. In other cases, the matching region may be small
because the template image is not found in the test image. For
example, a portion of a letter in the template image may match
the corresponding letter in the test image. This does not mean
that the template image is present in the test image, only that
they share a small common region. One common method to
determine if the template image is present in the test image is
to define a minimum overlap size between the template image
and test image. A match between the template image and test
image is returned only if the overlap area exceeds this thresh-
old.

Using Minimal Cover Sets

As described above, matching a template against an image
generally includes a number of steps, including matching
feature points from template image with feature points in a
test image. The observed structure of the feature space may be
used to speed up matching of a test image against a template
or a large set of templates by more rapidly rejecting non-
matches. The matching may be performed in two stages in a
cascade structure.

The first phase is a filtering process that determines if a
single template’s feature points can possibly match the fea-
ture points of the test image. If the first phrase determines that
the template may match, then we proceed to the second stage.
The second stage uses the normal process of exhaustive
search for nearest neighbors or one of the approximate near-
est neighbor algorithms. The first stage is designed to be
much faster than the second stage. It should be appreciated
that the first stage is not exact, and that it may characterize
some non-matches as possible matches. The first stage may
also occasionally characterize some true positive matches as
non-matches, but it is designed to do that very infrequently
since that would reduce the overall sensitivity of the match-
ing.

In the cases where the first stage does not filter a possible
match, it is extra work compared to the typical matching
process. However, given the expected ratio of non-matches to
candidate matches, if the filter is good enough, it will be the
only stage that is run most of them time, and if it is faster
enough, this is expected to result in a significant net reduction
in average processing time of multiple test images with
respect to multiple template images.

In some alternative embodiments hereof, the second stage
may take advantage of results of first stage and do a modified
version of the normal matching process.

Given a large enough set of true positive matches for a
given template we can determine empirically which feature
points of a template never participate in a match, which are
useful, and which are necessary. The true positives used for
this analysis can be hand tagged/labeled candidate matches or
they can also include be matches that have be determined by
a classifier to be true positive matches. Exemplary classifiers
are described in co-pending and co-owned U.S. application
No. 62/022,619, filed Jul. 9, 2014 and titled, “Systems, Meth-
ods, And Devices For Image Matching And Object Recogni-
tion In Images Using Template Image Classifiers,” and U.S.
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10
patent application Ser. No. 14/745,363, filed Jun. 19, 2015,
the entire contents of both of which are hereby fully incorpo-
rated herein by reference for all purposes.

For example, for the detector and feature descriptors used
in this system we have observed for a large set of test images
(a few thousand), that although there are many feature points
associated with a template image, only half of all of the
template feature points are involved in any of the true positive
matches. We refer to these as active feature points. Accord-
ingly, in some embodiments hereof, eliminating the non-
active feature points is expected to offer some useful speedup
in the matching process.

More importantly, a small set of feature points are found to
be involved in most of the true positive matches and the rest of
the points are involved in fewer true positive matches. Stated
mathematically, a small set of feature points is a covering set
for all of the true positive matches. The set covering problem
is described, e.g., in http://en.wikipedia.org/wiki/Set_cover-
_problem.

In this instance, a covering set is the smallest selection of
feature points for a template such that one of the feature points
in the selection is part of the match set of every true positive
match. This set is also referred to as the minimum set cover.

The covering set may be computed for a given group/set of
true positive matches. We have empirically observed for
many template images that while roughly half of the feature
points are active, a much smaller set of template feature points
will cover every true positive match. One value of a covering
set for the template image feature points is that if a test image
does match any of the feature points in the covering set, then
it is highly unlikely to be a true positive match.

It should be appreciated that since a covering set is deter-
mined empirically from the matching process run with a finite
set of test images, we cannot state categorically that every test
image exists that will be a true positive match for template
will have a feature point that matches one of the covering set
feature points. However, if the set of test images used is large
enough and representative of the population of test images
that will be used in the future, then we have confidence in our
result. We have also observed that after a large enough num-
ber oftest images (e.g., 1,000 test images), while the covering
set may grow in size or change, the new feature points only
cover a very small percentage of the true positive matches.

In some aspects hereof, the cover set may be recomputed
on a new set of test images.

A primary objective of computing the covering set is not to
eliminate feature points in the matching process. Instead we
are looking to use the covering set in the first stage of a
two-stage match where the first stage filters out images that
are very unlikely to result in a match.

Overview

There are several steps to prepare for using minimal feature
point filtering for a template. The result of these steps is a set
of minimal feature points and a vector distances. The prepa-
ration only has to happen once for a template. After the
preparation is completed the filter step can be run as part of
the match process for every new test image that needs to be
matched.

To prepare for the filter, first we match a set of test images
against a template. Then we hand tag a set of candidate
matches for this template or, if we have already trained a
classifier, we may use the classifier to tag the candidate
matches as true positive matches or false positive. The use of
aclassifier to label true and false positive matches is described
in co-owned and co-pending U.S. patent application No.
62/022,619, and U.S. patent application Ser. No. 14/745,363,
filed Jun. 19, 2015, the entire contents of both of which are
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hereby fully incorporated herein by reference for all pur-
poses. The set of true positive matches may then be used to
compute the maximum matching distance for all of the fea-
ture points of the template. We use the true positive matches
and the set of non-matches to determine how well each tem-
plate feature point discriminates between matches and non-
matches. We also compute a minimum covering set of true
positive matches. The result is a subset of the feature points of
the template.

Once the preparation is completed, the minimum covering
set and maximum matching distances may be used as a new
first stage of the matching process for the template. The first
stage then efficiently filters many test images that are highly
unlikely to match the template. The addition of this stage
speeds up the overall matching process.

An exemplary process/mechanism is described here with
reference to the flowchart in FIG. 4(a).

Determine Feature Points and Descriptors for Template

With reference to FIG. 4(a), at 402, the first step in our
process is to determine/extract the feature points for the tem-
plate image and to calculate the descriptors for these features
points. The result may stored in the file system/database(s)
and the ordered set of feature points is stored as a vector in a
variable (e.g., named template_feature_points) and the count
of feature points is stored in a variable (e.g., named tem-
plate_feature_point_count).

Match Set of Test Images Against Template

Next, match a representative sample of test image against
this template using the standard matching algorithm
described earlier (FIG. 4(a), at 404). The result is a set of
candidate matches stored in the database.

In alternative embodiments, many template images can be
matched against the same sample of test images producing
candidate matches for all of test images against all of the
templates. The result of this would then be used in the sub-
sequent processing for developing the minimal feature point
matching for a set of templates.

Review Matches or Classify

With reference to FIG. 4(a), at 406, the matches are
reviewed and/or classified. A human may review all or some
of'the candidate matches. The human would tag the candidate
matches as true positives or false positives. This would pro-
duce a set of true positive matches. In addition to or instead of
the hand tagged matches or as a replacement for the hand
tagging process, a classifier may be used to generate a set of
true positive matches. A classifier that labels true and false
positive matches is described in co-owned and co-pending
U.S. patent application No. 62/022,619 and U.S. patent appli-
cation Ser. No. 14/745,363, filed Jun. 19, 2015, the entire
contents of both of which have been fully incorporated herein
by reference for all purposes.

For the minimal feature point computations only the true
positive matches are needed. Ideally a large set of true posi-
tive matches would be created, on the order of a hundred to a
few thousand. In addition, it is preferable if the true positive
matches come from a statistically valid sample of the popu-
lation of test images.

Determine Maximum Matching Distance for All Template
Feature Points

With reference to FIG. 4(a), at 408, now determine the
maximum matching distance for all template feature points.

In the standard matching process, we determine which
feature points of the template image are close enough (in
feature space) to the feature points of the test image using a
combination of tests. The primary test is a ratio test. The ratio
test looks at the ratio between the two distances: the distance
from the feature point in the test image to the closest point in
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the template image and the distance from the feature point in
the test image to the second closest point in the template
image.

As part of this mechanism we are determining possible
matches with a reduced set of feature points for the template
image. Because we are using a limited set of feature points for
the template image, the ratio test is not effective. Accordingly,
an absolute distance threshold is used instead. We determine
the correct distance threshold on a feature point by feature
point basis. Associated with each template feature point is an
absolute threshold used to constrain the distance of a valid
matching feature point. The absolute thresholds are derived
empirically from the set of true positive matches. The insight
is that if future test images are similar to the images that are
part of the true positive matches, then the maximum distance
between a template feature point and a feature point in any of
the true positive matches, is a reasonable cutoff—since this
cutoff is obeyed (although it was not directly applied) by all
known true positive matches, it should work reasonably well
for future matches.

To calculate the maximum matching distance for all of the
feature points of the template image, we first initialize a
vector of max_distances. The vector is the length of number
of feature points in the template image and the elements are
initialized to 0. Next, we iterate over the true positive
matches. For each true positive match, we iterate over the
match set and in lock step iterate over the distances stored in
the match record. For each element of the match set, we get
from the pair of values the index of the template’s feature
point (named, e.g., template_feature_point_index). We also
retrieve the corresponding distance from the distances
(named, e.g., feature_point_distance). We then update the
element of the max_distances vector indexed by the tem-
plate_feature_point_index to the maximum of that elements
current value and the feature_point_distance.

In an alternative implementation, in addition to calculating
the maximum (worst) distance for every feature point of the
template image, we may also calculate the distribution of
distances for each feature point. The distribution may be use
to calculate a distance that fit most of the true positive matches
rather than all. The 95th percentile or any other selected
percentile could be computed from the distribution of dis-
tances for each feature point. This other distance thresholds
would be the same or smaller and thus a weaker constraint.

As an alternative, the maximum distance can be determine
for each feature point only from the true positive matches
where that specific feature point is only the feature point in the
match set of the true positive match that is in the minimal
feature point set. In this alternative, the maximum distance
would have to be computed after the minimum feature set was
determined. Again, this distance threshold would be a lower
threshold (or the same) since it is computed from a subset of
the true positive matches. A lower threshold would mean a
higher rejection rate by the filter although some of the rejected
images might be actual true positive matches. Another alter-
native to the maximum distance uses a threshold based on the
worst distance of any true match. In a test the ratio test was
used with the second nearest feature point. That second near-
est feature point distance may be used as a cutoff (this would
be larger than the actual match distance).

Determine How Well Each Feature Point Discriminates
Between Matches and Non-Matches

With reference to FIG. 4(a), at 410, now determine how
well each feature point discriminates between matches and
non-matches.

Some template feature points may only match feature
points in true positive images while other feature points may
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be common in the general universe of test images. This sec-
ond attribute we refer to as the discriminating power of a
feature point—it is a measure of how likely is it that a test
image that matches a template feature point is a true positive
match.

We gather data for computing this measure by matching
each template feature point against a large set of test images.
We iterate over a set of test image and each template feature
point is compared to each feature point of the test image. A
test image is considered to be a match for a feature point if the
distance between the template feature point and any feature
point in the test image is less than the maximum distance for
this template feature point retrieved from the max_distances
vector. We keep a count per template feature point of how
many test images match. The result is stored in a vector the
length of the number of feature points. The vector is called
all_matches and the value is found in the vector for a template
feature point indexed by the feature point’s index. The infor-
mation in all_matches may be used in determining the mini-
mum set covering.

An alternate approach to generate information about how
well each point discriminates between true matches and non-
matches may use the technique described in “Evaluating The
Quality Of Individual Sift Features” by Hui Su, et al., IEEE,
ISIP 2012, the entire contents of which are hereby fully
incorporated herein by reference for all purposes. Su et al
discuss issues of feature points being so wide that it makes it
hard to get enough data about each feature point. Instead of
looking at frequencies for the actual feature points Su et al
first associate each feature point with a cluster center and look
at the frequencies for the cluster as an estimate of the fre-
quency for the actual feature point.

Determine Minimum Set Covering

With reference to FIG. 4(a), at 412, now determine the
minimum covering set for the template image.

Finding the best set of feature points for the filtering stage
can be viewed as a set covering problem. Each of the feature
points of the template image is part of the match set of some
subset of true positive matches and can be considered to cover
those true positive matches. Together all of the active feature
points cover all of the positive matches. The union of the
positive matches from each point is equal to all. Those of
ordinary skill in the art will realize and appreciate, upon
reading this description, that there may be many possible
covering sets. It should be appreciated that a goal of this
approach is to minimize the number of feature points. How-
ever, since in terms of total processing time of a test image
with respect to a template image, the number of feature points
in the minimal feature set is only one component. Accord-
ingly, in some aspects, instead of minimizing the count of
feature points in the minimal feature point set, we preferably
minimize a function that incorporates the total processing
cost implicit in adding each feature point to the set. The result
of finding the minimum set covering is stored as a vector in a
variable named, e.g., minimal_feature_points. The entries of
this vector are indices into the template_feature_points.

Solving the minimum set cover is an NP-hard problem.
However, an approximate solution is adequate for our pur-
poses. We use a greedy algorithm to determine an approxi-
mate minimum set cover. Other algorithms could also be used
including hybrids of greedy algorithms with the addition of
backtracking.

The algorithm initializes variables and then proceeds (iter-
ates) until all true positive matches are covered. At each step
of the iteration pick the feature point that covers the most
remaining true positive matches, add this point to the minimal
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feature points and remove from the remaining true positives
all of the matches covered by this new feature point.

The initialization step of the algorithm sets up the follow-
ing:
all of the true positive matches are put in a vector named

remaining_matches.

a vector named minimal_feature_points is initialized to

empty (zero length).

At each step of iteration, we first check if there are any
remaining_matches. If there are not, then we are done and
return the minimal_feature_points as the result of the filter. If
not, we compute the number of remaining_matches covered
by each of the feature point in the remaining_feature_points.
The number of matches covered is stored as a vector in a
variable, e.g., named matches_covered. The elements of the
vector are initialized to zero.

A nested iteration over the elements of the
remaining_matches is performed. During the iteration the
current match s stored in a variable named remaining_match.

In a further nested loop, the match pairs of the match set of
the remaining_match are iterated over. The first element of
each match pair is an index of feature point of the template it
is stored in a variable named match_pair_template_index. In
the body of the match set loop, the matches_covered entry
indexed by the match_pair_template_index is incremented.
This is also the end of the remaining_matches loop.

The result of finding the minimum set covering is stored as
a vector in a variable named, minimal_feature_points.
The entries of this vector are indices into the template_fea-
ture_points and range from O to one less than the number of
feature points for the template.

In an alternative implementations, instead of re-computing
the matches_covered vector from scratch, it can be computed
incrementally by decrementing the corresponding entries
when a new feature point is selected and added to the mini-
mal_feature_points.

The index of the largest entry of the matches_covered is
found. This index is stored in a variable named new_mini-
mal_feature_point. The new_minimal_feature_point is
added to the end of the minimal_feature_points vector.

Another loop is now done to update the
remaining_matches. The mechanism loops over each of the
remaining_matches and checks if the match contains in its
match set the new_minimal_feature_point. If it does, then
this match is now covered and is removed from the remain-
ing_matches vector. This is the end of the main loop.

Alternative implementations may not try to cover all of the
true positive matches. We can stop when a large enough
percentage of the true positives are covered. The resulting
minimal feature point set is likely to (incorrectly) filter true
positive matches more often thus reducing the sensitivity of
the overall matching process. However, the filter would run
faster with a smaller minimal feature point set.

Generally, the minimal feature point set is derived from
empirical results—it is based on a set of matches and not
every possible match. Therefore it is approximate. It relies on
the observation that having seen a certain number of ran-
domly selected test images; newer test images will be similar
to ones already seen. And ifthey match, they are very likely to
be having a subset of matching template feature points
already seen.

A process referred to as boosting may be used as part of the
matching process, as described in U.S. Patent Application
No. 62/022,592, filed Jul. 9, 2014 and in U.S. patent applica-
tion Ser. No. 14/745,353, filed Jun. 19, 2015, the entire con-
tents of each of which are hereby fully incorporated herein by
reference for all purposes. If boosting is used as part of the
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matching process, then the minimal feature points are deter- -continued
mined from a match set determined prior to boosting. The
boosted match set includes template points that are not close # now calculate the worst distance for each index
h in featu 4 tch the test i d without index_distances_hash = index_distances(all_photos)
enoug 1n Ieature space (o matc € test image and withou # now calculate the indices with the most photos
boosting would not be part of the match set. 5 minimal_points = []
While the covering set algorithm described finds a reduced photos =dalLPh0tOS-duP
. . int_index = 1
set of feature points and prefers feature points that cover many S;Llﬁe’; Ehz)fos_ empty? do
matches, it may include feature points that may also be nearin new_minimal_index, new_index_distance, photos =
the feature space to feature points of non-matching images. most_popular_index(photos, index_distances_hash) .
) e e 10 puts “#{point_index} : index: # {new_minimal_index} with
These feature points are not as good at discriminating distance # {new_index_distance}”
between true matches and non-matches. In an alternative _ minimal_points << {*keypoint_index => new_minimal_index,
) i . L. . :distance => new_index_distance}
implementation, the mechanism prioritizes selecting feature point index += 1
points that both cover many true positive matches and do not ed :
. . . .15 return minimal_points
match too many non-matching images. One way of doing this end
is, instead of selecting the feature point with the greatest def index_distances(all_photos)
.. tps . index_distances_hash= {}
coverage of the remaining true positive matches (maximum
! all_photos.each do Iphotol
value in the matches_covered vector), to select the feature original_indices = photo[:logo_indices_original]
point with the greatest ratio of true positive coverage to all 20 original_distances = photo[:logo_distances_original]
h The featu int index is ch that has th . original_indices.each_index_do lindex|
matches. The fea re point index is chosen that has the maxi- logo. index  original_indices[index]
mum value of the ratio between the entry in the matches_cov- logo_index_distance = original _distances[index]
ered vector and the corresponding entry in the all_matches if index_distances_hash.has_key?(logo_index)
index_distances_hash[logo_index] =
vector. 25 [index_distances_hash[logo_index], logo_index_distance].max
Picking more discriminating feature points may mean we else
.. . . index_distances_hash[logo_index] = logo_index_distance
have a larger minimal feature point set and this would mean end
that the filter would be slower to compute. As an alternative, end
we can optimize the minimal feature point set taking into end
. . . index_distances_hash
account the estimated full cost (processing time) of the two 5 end
step matching process. The full cost would include two terms. def index_distance(all_photos, new_minimal_index)
One term is the cost of the filter and this grows as the number max_distance = nil
. . .. . all_photos.each do Iphotol
of feature points in the minimal feature point set grows. The array_index = photo[:logo_indices_original].index
second term is the cost of the full match times the percentage (new_minimal_index)
of time that a full match is needed. We can estimate how often 3> ifaray_index . . .
; X Al R distance = photo[:logo_distances_original][array_index]
a full match is needed for a given minimal feature point set if max_distance
using the data in the all_matches vector. This optimization lmaxfdismnce = [distance, max_distance].max
may be done using a greedy algorithm with backtracking or eriiixfdistance _ distance
some other optimization technique. 40 end
As an alternative, we can find the minimal covering set egd
.. . €I
Where each true positive ngtch is covered by two fegtme max_distance
points and not just one. This is likely to enlarge the minimal end
feature point set, but it is likely to lower the chances thata true def most_popular_index(photo_group, index_distances_hash)
positive test image will be incorrectly filtered. 45 index_hash = {}
S de for an exempl implementation of this photo-group.cach do [photo_entry]
ourge CO. e N plary p . . indices = photo_entry[:logo_indices_original]
mechanism is in the following tables. This code picks the indices.each do llogo_index|
feature point with the shortest distance if two feature points if index_hash.has_key?(logo_index)
cover the same number of matches. lmdexfhaSh[logofmdeX] +=1
clse
50 index_hash[logo_index] =1
end
def minimal_feature_points_from_matches(directory) end
# first load the data for all of the photos end
all_photos =] max =0
Pathname(directory).each_child do Ifilel max_index = nil
if ﬁle.basename.tofs.match(/.\ Jjson$/i) 55 min_distance = nil
photo_data = JTSON.parse(File.read(file)) index_hash.each pair_do lindex, count!

if photo_data[‘logo_indices_original’] && !photo_data
[‘logo_indices’]. empty? &&

photo_data[‘matches’] > 5

all_photos << {:logofdistances => photo_data

[‘logo_distances’],
:logo_indices => photo_data[‘logo_indices’],
:logo_distances_original => photo_data
[‘logo_distances_original’],

if count > max
max = count
max_index = index
min_distance = index_distances_hash[index]
60 elsif count == max
distance = index_distances_hash[index]
if distance < min_distance

:logo_indices_original => photo_data IH?X,illldeX = ind‘?x
[‘logo_indices_original’]} min_distance = distance
end end
end 65 end

end end
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-continued

# now remove those photos from the group
new_photo_group = photo_group.delete_if{ Iphoto_entry|
photo_entry[:logo_indices_original].include?(max_index) }
return max_index, min_distance, new_photo_group
end

Using Minimum Set Covering to Speed Matching Process

After the minimal_feature_points and max_distances have
been computed, the filtering step can be used as part of the
matching process. The filtering step is applied to a test image
after the feature points for the test image have been extracted/
computed (at 414, 416, FIG. 4(b)). The filter computes the
distance from each of the feature points indexed by the entries
in the minimal_feature_points and compares these distances
to the max_distances. If any of the feature point to feature
point distances is less than the corresponding threshold in the
max_distances, then the test image is a possible match to the
template and the filter returns FALSE and the second step of
matching (420 in FIG. 4(5)) should be performed.

The filtering step can be used to speed up matching of a
template after the minimal_feature_points and the max_dis-
tances have been computed. The filtering step is run after the
feature points have been extracted for the test image
and before the normal match (at 414, 416, FIG. 4(5)). The
feature points for the test image are vector named test_fea-
ture_points.

The filtering step iterates over the feature points indices
in the minimal_feature_points vector. The entry of the mini-
mal_feature_points vectors is stored in a variable named tem-
plate_feature_point_index. The feature point is looked up in
the template_feature_point vector using the template_fea-
ture_point_index as the index into the vector. The point is
stored in a variable named template_feature_point. A nested
iteration is done that iterates over all of the feature points of
the test image, test_feature_point. The test image feature
point is stored in a variable named test_feature_point. Each
time through the inner loop, the distance, feature_point_dis-
tance, is computed between the template_feature_point and
the test_feature_point. This distance may be computed using
the same distance function as is used in the standard matching
process. Other distance functions could be used in here too.
The same distance function should be used in the filter step
and the normal match step. The threshold for the distance,
threshold_distance, is looked up in the max_distances vector
using as an index the template_feature_point_index. The dis-
tance, feature_point_distance is compared to the threshold,
threshold_distance, and if the distance is less than or equal to
the threshold, feature_threshold, then that point is a potential
match and the test_image is potential match, so we exit both
loops and the filter returns FALSE to indicate that the normal
match step must be done. If the outer loop completes iterating
over the template feature points, then there is no template
feature point too close to one of the minimal feature points
and the filter returns TRUE to indicate that this test image is
not a potential match and need not be processed further (at
420, F1G. 4(b)).

As an alternative to using a distance threshold and having
any point that has a distance under that threshold result in not
filtering, a model (e.g. SVM) may be trained to take as input
the distances for the minimal feature set points and determine
the result of the filter.

The input to the model would be the width of the minimal
feature points. The input values in the vector may be the
computed distances for the minimal feature points to the test
image feature point (or O if this point is not a match). The true
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positive examples would be used as examples to the model for
training and labeled with “true.”” A set of non-matches would
also be used as training examples and labeled with “false”” A
linear SVM or other model may be trained with this data. The
training may be done such that the model would have the
minimum of the number of mislabeled “trues” while maxi-
mizing the number of correctly labeled “falses”. In other
words, since it is to be used a filter, we want it to filter out as
many non-matches as possible while filtering out as few true
positive matches as possible.

EXAMPLE
Experimental Results

In experiments with a set of templates, the number of
minimal feature points was on average 1/25 the total number
of'feature points for the same template. The filter step rejected
an average of 97% of the non-matching images tested. This
implies that matching with the filter step would be approxi-
mately 14 times faster than matching without the filter step. A
less than 1% decrease in sensitivity was shown. This was due
to a few true positive matches being incorrectly the filtered i.e.
false positives.

For a set of 1,152 logos that are used as templates, there are
an average of 193 feature points for each template. Some
examples of the number of minimal feature points vs. all
feature points:

932—31 heineken

619—26 budlight

505—26 budlight lime

13127

238—18

End of Example

In some cases results of the filtering process may be sub-
sequently used for the full match. In addition, if feature points
are ordered by their importance, then the filter has essentially
done the most important points in priority order—the ones
that cover the most images are the most important.

As described, we have computed a set of points where
every matching image is covered by at least one point in this
set.

We can also compute the set of points that would get a two
point covering of very image. We can treat the one point set as
a first filter stage. If we checked the additional points in the
two point cover next, that would be a second filter and every
test image would have to have at least two matching points to
get through that filter. Random chance matches might not
make it through two stages, and the second stage would still
be less than all of the points. The results could be used in the
full match. It should be appreciated that this requires a test
other than the ratio test. This could continue for more stages
of filters. The matching could thereby effectively be done
with a cascade of filters.

Incorporation into a System

The covering set for a template image may be determined
as part of the initial setup for that template image (e.g., initial
setup 302 in FIG. 3(a)). Preferably the covering set data are
maintained in the template image database(s) 108. The filter-
ing process may be incorporated, e.g., into the process single
image mechanism 304 (in FIG. 3(b)), where incoming test
images are checked against the cover set for each template
image, either as a final determination or as a filter for subse-
quent processing.

Application of Techniques

The framework, system, techniques and mechanisms

described herein have general applicability. However, in a
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presently preferred implementation the template images
comprise logos and the like corresponding to products (e.g.,
goods and services) related to certain companies or other
entities.

As used herein a logo refers to any symbol, image, text, or
other design, or combination thereof, adopted or used by an
entity to identify its products, goods, services, etc.

In some cases the system may use multiple versions of the
same logo (e.g., at different sizes).

In operation multiple test images in one or more input
streams are processed with respect to multiple logos from
multiple entities.

Template images found in a test image may be used to
provide targeted advertising.

Computing

Programs that implement such methods (as well as other
types of data) may be stored and transmitted using a variety of
media (e.g., computer readable media) in a number of man-
ners. Hard-wired circuitry or custom hardware may be used in
place of, or in combination with, some or all of the software
instructions that can implement the processes of various
embodiments. Thus, various combinations of hardware and
software may be used instead of software only.

FIG. 5 is a schematic diagram of a computer system 500
upon which embodiments of the present disclosure may be
implemented and carried out.

According to the present example, the computer system
500 includes a bus 502 (i.e., interconnect), one or more pro-
cessors 504, one or more communications ports 514, a main
memory 506, removable storage media 510, read-only
memory 508, and a mass storage 512. Communication port(s)
514 may be connected to one or more networks by way of
which the computer system 500 may receive and/or transmit
data.

As used herein, a “processor” means one or more micro-
processors, central processing units (CPUs), computing
devices, microcontrollers, digital signal processors, or like
devices or any combination thereof, regardless of their archi-
tecture. An apparatus that performs a process can include,
e.g., a processor and those devices such as input devices and
output devices that are appropriate to perform the process.

Processor(s) 504 can be (or include) any known processor,
such as, but not limited to, an Intel® Itanium® or Itanium
2® processor(s), AMD® Opteron® or Athlon MP® proces-
sor(s), or Motorola® lines of processors, and the like. Pro-
cessor(s) may include one or more graphical processing units
(GPUs) which may be on graphic cards or stand-alone
graphic processors.

Communications port(s) 514 can be any of an RS-232 port
for use with a modem based dial-up connection, a 10/100
Ethernet port, a Gigabit port using copper or fiber, or a USB
port, and the like. Communications port(s) 514 may be cho-
sen depending on a network such as a Local Area Network
(LAN), a Wide Area Network (WAN), a CDN, or any network
to which the computer system 500 connects. The computer
system 500 may be in communication with peripheral devices
(e.g., display screen 516, input device(s) 518) via Input/Out-
put (I/0) port 520. Some or all of the peripheral devices may
be integrated into the computer system 500, and the input
device(s) 518 may be integrated into the display screen 516
(e.g., in the case of a touch screen).

Main memory 506 can be Random Access Memory
(RAM), or any other dynamic storage device(s) commonly
known in the art. Read-only memory 508 can be any static
storage device(s) such as Programmable Read-Only Memory
(PROM) chips for storing static information such as instruc-
tions for processor(s) 504. Mass storage 512 can be used to
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store information and instructions. For example, hard disks
such as the Adaptec® family of Small Computer Serial Inter-
face (SCSI) drives, an optical disc, an array of disks such as
Redundant Array of Independent Disks (RAID), such as the
Adaptec® family of RAID drives, or any other mass storage
devices may be used.

Bus 502 communicatively couples processor(s) 504 with
the other memory, storage and communications blocks. Bus
502 can be a PCI/PCI-X, SCSI, a Universal Serial Bus (USB)
based system bus (or other) depending on the storage devices
used, and the like. Removable storage media 510 can be any
kind of external hard-drives, floppy drives, IOMEGA® Zip
Drives, Compact Disc-Read Only Memory (CD-ROM),
Compact Disc-Re-Writable (CD-RW), Digital Versatile
Disk-Read Only Memory (DVD-ROM), etc.

Embodiments herein may be provided as one or more
computer program products, which may include a machine-
readable medium having stored thereon instructions, which
may be used to program a computer (or other electronic
devices) to perform a process. As used herein, the term
“machine-readable medium” refers to any medium, a plural-
ity of the same, or a combination of different media, which
participate in providing data (e.g., instructions, data struc-
tures) which may be read by a computer, a processor or a like
device. Such a medium may take many forms, including but
not limited to, non-volatile media, volatile media, and trans-
mission media. Non-volatile media include, for example,
optical or magnetic disks and other persistent memory. Vola-
tile media include dynamic random access memory, which
typically constitutes the main memory of the computer.
Transmission media include coaxial cables, copper wire and
fiber optics, including the wires that comprise a system bus
coupled to the processor. Transmission media may include or
convey acoustic waves, light waves and electromagnetic
emissions, such as those generated during radio frequency
(RF) and infrared (IR) data communications.

The machine-readable medium may include, but is not
limited to, floppy diskettes, optical discs, CD-ROMs, mag-
neto-optical disks, ROMs, RAMs, erasable programmable
read-only memories (EPROMs), electrically erasable pro-
grammable read-only memories (EEPROMs), magnetic or
optical cards, flash memory, or other type of media/machine-
readable medium suitable for storing electronic instructions.
Moreover, embodiments herein may also be downloaded as a
computer program product, wherein the program may be
transferred from a remote computer to a requesting computer
by way of data signals embodied in a carrier wave or other
propagation medium via a communication link (e.g., modem
or network connection).

Various forms of computer readable media may be
involved in carrying data (e.g. sequences of instructions) to a
processor. For example, data may be (i) delivered from RAM
to a processor; (ii) carried over a wireless transmission
medium; (iii) formatted and/or transmitted according to
numerous formats, standards or protocols; and/or (iv)
encrypted in any of a variety of ways well known in the art.

A computer-readable medium can store (in any appropriate
format) those program elements that are appropriate to per-
form the methods.

As shown, main memory 506 is encoded with
application(s) 522 that support(s) the functionality as dis-
cussed herein (an application 522 may be an application that
provides some or all of the functionality of one or more of the
mechanisms described herein). Application(s) 522 (and/or
other resources as described herein) can be embodied as
software code such as data and/or logic instructions (e.g.,
code stored in the memory or on another computer readable



US 9,330,329 B2

21

medium such as a disk) that supports processing functionality
according to different embodiments described herein.

During operation of one embodiment, processor(s) 504
accesses main memory 506 via the use of bus 502 in order to
launch, run, execute, interpret or otherwise perform the
logic instructions of the application(s) 522. Execution of
application(s) 522 produces processing functionality of the
service(s) or mechanism(s) related to the application(s). In
other words, the process(es) 524 represents one or more por-
tions of the application(s) 522 performing within or upon the
processor(s) 504 in the computer system 500.

It should be noted that, in addition to the process(es) 524
that carries (carry) out operations as discussed herein, other
embodiments herein include the application 522 itself (i.e.,
the un-executed or non-performing logic instructions and/or
data). The application 522 may be stored on a computer
readable medium (e.g., a repository) such as a disk or in an
optical medium. According to other embodiments, the appli-
cation 522 can also be stored in a memory type system such as
in firmware, read only memory (ROM), or, as in this example,
as executable code within the main memory 506 (e.g., within
Random Access Memory or RAM). For example, application
522 may also be stored in removable storage media 510,
read-only memory 508, and/or mass storage device 512.

Those skilled in the art will understand that the computer
system 500 can include other processes and/or software and
hardware components, such as an operating system that con-
trols allocation and use of hardware resources.

Embodiments herein may be provided as a computer pro-
gram product, which may include a machine-readable
medium having stored thereon instructions, which may be
used to program a computer (or other electronic devices) to
perform a process. As used herein, the term “machine-read-
able medium” refers to any medium, a plurality of the same,
or a combination of different media, which participate in
providing data (e.g., instructions, data structures) which may
be read by a computer, a processor or a like device. Such a
medium may take many forms, including but not limited to,
non-volatile media, volatile media, and transmission media.
Non-volatile media include, for example, optical or magnetic
disks and other persistent memory. Volatile media include
dynamic random access memory, which typically constitutes
the main memory of the computer. Transmission media
include coaxial cables, copper wire and fiber optics, including
the wires that comprise a system bus coupled to the processor.
Transmission media may include or convey acoustic waves,
light waves and electromagnetic emissions, such as those
generated during radio frequency (RF) and infrared (IR) data
communications.

The machine-readable medium may include, but is not
limited to, floppy diskettes, optical discs, CD-ROMs, mag-
neto-optical disks, ROMs, RAMs, erasable programmable
read-only memories (EPROMs), electrically erasable pro-
grammable read-only memories (EEPROMs), magnetic or
optical cards, flash memory, or other type of media/machine-
readable medium suitable for storing electronic instructions.
Moreover, embodiments herein may also be downloaded as a
computer program product, wherein the program may be
transferred from a remote computer to a requesting computer
by way of data signals embodied in a carrier wave or other
propagation medium via a communication link (e.g., modem
or network connection).

Various forms of computer readable media may be
involved in carrying data (e.g. sequences of instructions) to a
processor. For example, data may be (i) delivered from RAM
to a processor; (ii) carried over a wireless transmission
medium; (iii) formatted and/or transmitted according to
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numerous formats, standards or protocols; and/or (iv)
encrypted in any of a variety of ways well known in the art.

A computer-readable medium can store (in any appropriate
format) those program elements that are appropriate to per-
form the methods.

Those skilled in the art will understand that the computer
system 700 can include other processes and/or software and
hardware components, such as an operating system that con-
trols allocation and use of hardware resources.

As discussed herein, embodiments of the present invention
include various steps or operations. A variety of these steps
may be performed by hardware components or may be
embodied in machine-executable instructions, which may be
used to cause a general-purpose or special-purpose processor
programmed with the instructions to perform the operations.
Alternatively, the steps may be performed by a combination
of hardware, software, and/or firmware. The term “module”
refers to a self-contained functional component, which can
include hardware, software, firmware or any combination
thereof.

One of ordinary skill in the art will readily appreciate and
understand, upon reading this description, that embodiments
of an apparatus may include a computer/computing device
operable to perform some (but not necessarily all) of the
described process.

Embodiments of a computer-readable medium storing a
program or data structure include a computer-readable
medium storing a program that, when executed, can cause a
processor to perform some (but not necessarily all) of the
described process.

Where a process is described herein, those of skill in the art
will appreciate that the process may operate without any user
intervention. In another embodiment, the process includes
some human intervention (e.g., a step is performed by or with
the assistance of a human).

Real Time

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that, as used herein, the
term “‘real time” means near real time or sufficiently real time.
It should be appreciated that there are inherent delays in
network-based and computer communication (e.g., based on
network traffic and distances), and these delays may cause
delays in data reaching various components. Inherent delays
in the system do not change the real-time nature of the data. In
some cases, the term “real-time data” may refer to data
obtained in sufficient time to make the data useful for its
intended purpose. Although the term “real time” may be used
here, it should be appreciated that the system is not limited by
this term or by how much time is actually taken to perform
any particular process. In some cases, real time computation
may refer to an online computation, i.e., a computation that
produces its answer(s) as data arrive, and generally keeps up
with continuously arriving data. The term “online” computa-
tion is compared to an “offline” or “batch” computation.

Although many of the examples presented herein involve
specific combinations of method acts or system elements, it
should be understood that those acts and those elements may
be combined in other ways to accomplish the same objectives.
With regard to flowcharts, additional and fewer steps may be
taken, and the steps as shown may be combined or further
refined to achieve the methods described herein. Acts, ele-
ments and features discussed only in connection with one
embodiment are not intended to be excluded from a similar
role in other embodiments.

As used herein, whether in the written description or the
claims, “plurality” means two or more.
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As used herein, whether in the written description or the
claims, the terms “comprising”, “including”, “having”, “con-
taining”, “involving”, and the like are to be understood to be
open-ended, that is, to mean including but not limited to. Only
the transitional phrases “consisting of”” and “consisting essen-
tially of”, respectively, are closed or semi-closed transitional
phrases with respect to claims.

As used herein, “and/or” means that the listed items are
alternatives, but the alternatives also include any combination
of the listed items.

Asused in this description, the term “portion” means some
orall. So, for example, “A portion of X” may include some of
“X” or all of “X”. In the context of a conversation, the term
“portion” means some or all of the conversation.

Asused herein, including in the claims, the phrase “at least
some” means “one or more,” and includes the case of only
one. Thus, e.g., the phrase “at least some ABCs” means “one
or more ABCs”, and includes the case of only one ABC.

As used herein, including in the claims, the phrase “based
on” means “based in part on” or “based, at least in part, on,”
and is not exclusive. Thus, e.g., the phrase “based on factor X”
means “based in part on factor X” or “based, at least in part,
on factor X.” Unless specifically stated by use of the word
“only”, the phrase “based on X does not mean “based only
onX.”

As used herein, including in the claims, the phrase “using”
means “using at least,” and is not exclusive. Thus, e.g., the
phrase “using X means “using at least X.” Unless specifi-
cally stated by use of the word “only”, the phrase “using X”
does not mean “using only X.”

In general, as used herein, including in the claims, unless
the word “only” is specifically used in a phrase, it should not
be read into that phrase.

As used herein, including in the claims, the phrase “dis-
tinct” means “at least partially distinct.” Unless specifically
stated, distinct does not mean fully distinct. Thus, e.g., the
phrase, “X is distinct from Y” means that “X is at least
partially distinct from Y,” and does not mean that “X is fully
distinct from Y.” Thus, as used herein, including in the claims,
the phrase “X is distinct from Y™ means that X differs fromY
in at least some way.

As used herein, including in the claims, a list may include
only one item, and, unless otherwise stated, a list of multiple
items need not be ordered in any particular manner. A list may
include duplicate items. For example, as used herein, the
phrase “a list of XYZs” may include one or more “XYZs”.

It should be appreciated that the terms “first”, “second”,
“third,” and so on, if used in the claims, are used to distinguish
or identify, and not to show a serial or numerical limitation.
Similarly, the use of letter or numerical labels (such as “(a)”,
“(b)”, and the like) are used to help distinguish and/or iden-
tify, and not to show any serial or numerical limitation or
ordering. Specifically, use of ordinal terms such as “first”,
“second”, “third”, etc., in the claims to modify a claim ele-
ment does not by itself connote any priority, precedence, or
order of one claim element over another or the temporal order
in which acts of a method are performed, but are used merely
as labels to distinguish one claim element having a certain
name from another element having a same name (but for use
of the ordinal term) to distinguish the claim elements.

The foregoing is merely illustrative and not limiting, hav-
ing been presented by way of example only. Although
examples have been shown and described, it will be apparent
to those having ordinary skill in the art that changes, modifi-
cations, and/or alterations may be made.
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Thus is provided a framework for finding template images
in test or target images, including using feature point extrac-
tion using minimal feature points to improve match quality
and speed.

While the invention has been described in connection with
what is presently considered to be the most practical and
preferred embodiments, it is to be understood that the inven-
tion is not to be limited to the disclosed embodiment, but on
the contrary, is intended to cover various modifications and
equivalent arrangements included within the spirit and scope
of'the appended claims.

What is claimed:

1. A computer-implemented method, implemented by
hardware in combination with software, the method compris-
ing:

for each particular template image of a plurality of tem-
plate images:

(A) determining a first set of feature points associated with
said particular template image;

(B) determining a second set of feature points associated
with said particular template image, said second set of
feature points (i) being a subset of said first set of feature
points, and (ii) comprising fewer feature points than said
first set of feature points;

(C) associating said first set of feature points and said
second set of feature points with said particular template
image; and

(D) storing said first set of feature points and said second
set of feature points,

wherein said second set of feature points associated with
said particular template image comprises a cover set of
feature points associated with said particular template
image, and

wherein the cover set comprises a subset of said feature
points associated with said particular template image
wherein one of the feature points in the cover set is
associated with substantially every true positive match
of feature points associated with said particular template
image with feature points associated with a test image.

2. The method of claim 1 wherein said cover set of feature
points associated with said particular template image com-
prises a substantially minimal cover set of feature points
associated with said particular template image.

3. The method of claim 1 wherein said first set of feature
points and said second set of feature points are stored in a
database and are accessible from said database using an iden-
tification of said particular template image.

4. A computer-implemented method for determining
whether a portion of a first image is located within a second
image, the method, implemented by hardware in combination
with software, the method comprising:

(A) determining whether a first set of feature points asso-
ciated with the first image match a set of feature points
associated with the second image; and then

(B)based on said determining in (A), when it is determined
that said first set of feature points associated with the first
image match the set of feature points associated with the
second image, then determining whether said portion of
said first image is located within said second image
based on whether or not a second set of feature points
associated with the first image match the set of feature
points associated with the second image,

wherein said first set of feature points: (i) is a subset of said
second set of feature points, and (ii) comprises fewer
feature points than said second set of feature points.
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5. The method of claim 4 wherein said first set of feature
points associated with said first image comprises a cover set
of feature points associated with said first image.

6. The method of claim 4 wherein said first set of feature
points associated with said first image comprises a substan-
tially minimal cover set of feature points associated with said
first image.

7. The method of claim 5 wherein the cover set comprises
a subset of feature points associated with said first image,
wherein at least one feature point in the cover set is associated
with substantially every true positive match of feature points
associated with said first image with feature points associated
with a test image.

8. The method of claim 4 further comprising:

prior to said determining in (A), obtaining said first set of

feature points.

9. The method of claim 8 wherein said first set of feature
points is obtained from a database using an identification of
said first image.

10. The method of claim 4 further comprising:

obtaining said second set of feature points.

11. A computer program product having computer read-
able instructions stored on non-transitory computer readable
media, the computer readable instructions including instruc-
tions for implementing a computer-implemented method,
said method operable on one or more devices comprising
hardware including memory and at least one processor and
running one or more services on said hardware, said method
comprising:

for each particular template image of a plurality of tem-

plate images:

(A) determining a first set of feature points associated with

said particular template image;
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(B) determining a second set of feature points associated
with said particular template image, said second set of
feature points (i) being a subset of said first set of feature
points, and (ii) comprising fewer feature points than said
first set of feature points;

(C) associating said first set of feature points and said
second set of feature points with said particular template
image; and

(D) storing said first set of feature points and said second
set of feature points,

wherein said second set of feature points associated with
said particular template image comprises a cover set of
feature points associated with said particular template
image, and

wherein the cover set comprises a subset of said feature
points associated with said articular template image
wherein one of the feature points in the cover set is
associated with substantially every true positive match
of feature points associated with said particular template
image with feature points associated with a test image.

12. The computer program product of claim 11 wherein
said cover set of feature points associated with said particular
template image comprises a substantially minimal cover set
of feature points associated with said particular template
image.

13. The computer program product of claim 11 wherein
said first set of feature points and said second set of feature
points are stored in a database and are accessible from said
database using an identification of said particular template
image.



