US009448828B2

a2 United States Patent

Zhao et al.

US 9,448,828 B2
*Sep. 20, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

METHODS AND APPARATUS TO PROVIDE
DYNAMIC MESSAGING SERVICES

Applicant: INTEL CORPORATION, Santa Clara,
CA (US)

Inventors: Jerry Zhao, Shanghai (CN); Michael

A. Rothman, Puyallup, WA (US);

Vincent J. Zimmer, Federal Way, WA

(US); Qian Ouyang, Shanghai (CN)

Intel Corporation, Santa Clara, CA
us)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

Appl. No.: 14/330,848

Filed: Jul. 14, 2014

Prior Publication Data

US 2014/0325512 Al Oct. 30, 2014

Related U.S. Application Data

Continuation of application No. 13/722,088, filed on
Dec. 20, 2012, now Pat. No. 8,786,622, which is a
continuation of application No. 11/426,727, filed on
Jun. 27, 2006, now Pat. No. 8,368,711.

Int. CL.

GO6F 9/455 (2006.01)

GO6F 9/44 (2006.01)

U.S. CL

CPC GO6F 9/45533 (2013.01); GOGF 9/4443

(2013.01)
Field of Classification Search
CPC GOG6F 9/4443; GOGF 9/4445;, GOG6F

9/45537; HO4N 21/4316; HO4N 21/47214;
HO4L 67/34
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

6,219,028 Bl 4/2001 Simonson
6,222,520 Bl 4/2001 Gerszberg et al.
6,285,985 Bl 9/2001 Horstmann
6,928,615 Bl 8/2005 Haitsuka et al.
8,368,711 B2 2/2013 Zhao et al.
8,786,622 B2 7/2014 Zhao et al.
(Continued)

OTHER PUBLICATIONS

VMware, User’s Manual: VMware Workstation, Version 3.2.,
2002.*

(Continued)

Primary Examiner — Gregory I Tryder
Assistant Examiner — Scott E Sonners

(74) Attorney, Agent, or Firm — Hanley,
Zimmerman, LLC

Flight &

(57) ABSTRACT

Methods and apparatus to provide dynamic messaging ser-
vices are disclosed. An example method of displaying infor-
mation on a display screen includes determining, using a
virtual machine manager, supported dimensions for display
of information on the display screen; generating, using the
virtual machine manager, restricted dimensions that are less
than the supported dimensions; providing the restricted
dimensions to an operating system of a virtual machine
supported by the virtual machine manager, wherein the
restricted dimensions define a boundary between a first
screen portion and a second screen portion; and using the
virtual machine manager to display first information in the
first screen portion, the virtual machine manager enforcing
the presence of the first screen portion on the display screen.

17 Claims, 7 Drawing Sheets

VAW NEORWAT GN
HANGLING

418
™

RESTR'CT SUPPORTED.
502 — DIMENSIONS

- BOOT TARGET

506 - |

508 - -

510 —

512 - AUXILARY.
INFORMATION

VM CURSOR
HANAGFMENT

INFORMATION

NETVORK SETUP

CTNNECTION 10

STORAGE =4 LED:

OISTA X NEW AUXLARY

US 9,448,828 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2003/0018527 Al
2004/0249708 Al
2006/0146057 Al 7/2006 Blythe

2006/0271425 Al 11/2006 Goodman et al.

OTHER PUBLICATIONS

1/2003 Filepp et al.
12/2004 Jacobs et al.

European Patent Office, “Summons to attend oral proceedings
pursuant to Rule 115(1) EPC,” issued in connection with Applica-
tion No. 07252605.6, Apr. 15, 2015, 9 pages.

Extensible Firmware Interface Specification, Intel Corporation,
Version 1.10, Dec. 1, 2002, (1084 pages). Part 1 (pp. 1-542), Part 2
(pp. 543-1084).

Extensible Firmware Interface Specification, Version 1.10, Speci-
fication Update, Intel Corporation, Version -001, Nov. 26, 2003, (63
pages).

“How to Remove free-pc.com Software,” Computing.net. Posted on
Nov. 19, 2002, retrieved from <http://www.computing.net/answers/
windows-95/how-to-remove-freepccom-software/132150 html> (4
pages).

“Help Me Remove My FreePC Software From WIN98,” Google
Cache of <www.experts-exchange.com/OS/MicrosoftOperating
Systems/Windows/98/Q_ 20413110 html> from Dec. 2, 2002, (13
pages).

United States Patent and Trademark Office, “Office Action”, in
connection with U.S. Appl. No. 11/426,727, dated Feb. 16, 2011,
(29 pages).

“User’s Manual: VMware Workstation,” VMware Inc., Version 3.2,
copyright 1998-2002, (420 pages).

Cringely, Robert X., “There is No Such Thing as a Free PC: Why
This Week’s Flurry of Free Computer hardware Isn’t for Real and
Probably Isn’t for You,” I, Cringely, Feb. 11, 1999, http://www.pbs.
org/cringely/pulpit/1999/pulpit__19990211_ 000600 .htm1 3
pages).

Junnarkar, Sandeep, “Site after Startup Plans PC Giveaway”, CNET
News, http://news.cnet.com/Site-jams-after-startup-plans-PC-give-
away/2100-1017_3-221326.html, (3 pages).

United States Patent and Trademark Office, “Office Action”, in
connection with U.S. Appl. No. 11/426,727, dated Mar. 17, 2009, (7

pages).

United States Patent and Trademark Office, “Office Action”, in
connection with U.S. Appl. No. 11/426,727, dated Apr. 12, 2010,
(26 pages).

United States Patent and Trademark Office, “Office Action”, in
connection with U.S. Appl. No. 11/426,727, dated Jul. 29, 2011, (18
pages).

United States Patent and Trademark Office, “Office Action”, in
connection with U.S. Appl. No. 11/426,727, dated Sep. 30, 2010,
(15 pages).

United States Patent and Trademark Office, “Notice of Allowance”,
in connection with U.S. Appl. No. 11/426,727, dated Sep. 26, 2012,
(25 pages).

European Patent Office, “Extended European Search Report”,
issued in connection with EP application No. 07252605, dated Jan.
8, 2008, (7 pages).

European Patent Office, “Communication pursuant to Article 94(3)
EPC”, issued in connection with EP application No. 07252605,
dated Dec. 6, 2011, (5 pages).

European Patent Office, “Communication pursuant to Article 94(3)
EPC”, issued in connection with EP application No. 07252605,
dated Apr. 22, 2008, (1 pages).

“Freepc.com.” Freepc.com. Internet Archive, Jan. 26, 2004, Web.
Sep. 21, 2010. <http://web.archive.org/web/20040126011645/http:/
Ifreepc.com/>. (2 pages).

BBC News | The Company File | Free Computers . . . with Ads!
BBC News—Home. BBC.com, Feb. 8, 1999. Web. Sep. 24, 2010.
<http://news.bbc.co.uk/2/hi/business/275213.stm>. (3 pages).
United States Patent and Trademark Office, “Non-Final Office
Action,” issued in connection with U.S. Appl. No. 13/722,088, Mar.
29, 2013, 23 pages.

United States Patent and Trademark Office, “Final Office Action,”
issued in connection with U.S. Appl. No. 13/722,088, Sep. 13, 2013,
15 pages.

United States Patent and Trademark Office, “Advisory Action,”
issued in connection with U.S. Appl. No. 13/722,088, Feb. 6, 2014,
3 pages.

United States Patent and Trademark Office, “Notice of Allowance
and Fee(s) Due,” issued in connection with U.S. Appl. No.
13/722,088, Mar. 17, 2014, 34 pages.

* cited by examiner

U.S. Patent Sep. 20, 2016 Sheet 1 of 7 US 9,448,828 B2

100
N\

102 104
N N

110

116

114

112

108

OTHER INFORMATION
SOURCES

FIG. 1

U.S. Patent

200
N

Sep. 20, 2016 Sheet 2 of 7

206 BN

AUXILIARY GRAPHICS
READER

FROM LOCAL
LOCAL GRAPHICS GRAPHICS
GRAPHICS — READER » RENDERER

PROCESSING

A
202 DISPLAY
"N ATTRIBUTE
DETERMINER

T 210 —| INPUT DEVICE
PROCESSOR

FROM SYSTEM
HARDWARE/
FIRMWARE/
SOFTWARE

FROM INPUT DEVICE

FIG. 2

US 9,448,828 B2

FROM AUXILIARY
INFORMATION
STORAGE

TO DISPLAY
HARDWARE

U.S. Patent Sep. 20, 2016 Sheet 3 of 7 US 9,448,828 B2

300
N

310
USER APPLICATIONS =

312 ! 314"

DEVICE DRIVERS

— 308
306 — FIRMWARE
A
Y Y
304 — VIRTUAL MACHINE MANAGER
(VMM)

!

302 —| VIRTUAL THREADING PROCESSOR/
CHIPSET

FIG. 3

U.S. Patent Sep. 20, 2016 Sheet 4 of 7 US 9,448,828 B2

400 T\ (POWER-UP)

Y
402
02— SYSTEM POWER ON

y
INITIALIZE VMM

4
06— LAUNCH VM

y

408 VMM BILLBOARD YES

ENABLED? / l

NO

418
410 Y VMM INFORMATION
—\(BOOT TARGET) HANDLING

| ; I 412—\ ¥
CONTINUE NORMAL

OPERATION

414 NO
OS SHUTDOWN?

YES
e

SYSTEM POWER OFF

(END)

FIG. 4

U.S. Patent Sep. 20, 2016 Sheet 5 of 7 US 9,448,828 B2

VMM INFORMATION
HANDLING

RESTRICT SUPPORTED
418 ™~ 502 — DIMENSIONS

y
A BOOTTARGET _)
504 Y

506 —1 NETWORK SETUP

Y
NETWORK SETUP \ vES
508 FAILED? /

Y _NO

510 —| CONNECT TC AUXILIARY
INFORMATION STORAGE

Y
CONNECTIONTO
AUXILIARY
INFORMATION
STORAGE FAILED?

¥y NO

512

514
\6CURSOR MANAGEME9 YES
516 y
VMM CURSOR
MANAGEMENT
518 —\ ¥
DISPLAY AUXILIARY
BE—
INFORMATION
520 v
NO NEW AUXILIARY
INFORMATION
AVAILABLE?
520 ¥ YES
"N OBTAIN NEW AUXILIARY
INFORMATION
524 A
NO
q 0S SHUTDOWN? >
YES

v FIG. 5

U.S. Patent

514
N

516
N

Sep. 20, 2016 Sheet 6 of 7

0S8 CURSOR MANAGEMENT

!

802 —| DETERMINE X AND Y
SCREEN BOUNDARIES

US 9,448,828 B2

604 IS DESIRED CURSOR
POSITION OUTSIDE
BOUNDARIES?

y

808
"N MAKE CURSOR VISIBLE

Y

610 OTHER CURSOR
FUNCTIONS

VMM CURSOR
MANAGEMENT

v

606

MAKE CURSOR INVISIBLE

702 —| DETERMINE X AND Y
SCREEN BOUNDARIES

FIG. 6

>

IS CURRENT
704 CURSOR POSITION
OUTSIDE
BOUNDARIES?

‘ YES

NO

708
N MAKE CURSOR VISIBLE

'

710 | LOAD SUBSEQUENT ADS
ON CLICK

706

MAKE CURSOR INVISIBLE

FIG. 7

U.S. Patent Sep. 20, 2016 Sheet 7 of 7 US 9,448,828 B2

800 ~\
822 824
INPUT DEVICE %'gf;l%*g
[820
802 [
REMOVABLE
PROCESSOR MASS STORAGE NETWORK
STORAGE DEVICE DRIVE ADAPTER
804 N 826 828 830
832
806 808 810
RAM ROM FLASH
812

US 9,448,828 B2

1
METHODS AND APPARATUS TO PROVIDE
DYNAMIC MESSAGING SERVICES

RELATED APPLICATIONS

This patent arises from a continuation of U.S. patent
application Ser. No. 13/722,088, filed Dec. 20, 2012, which
is a continuation of U.S. patent application Ser. No. 11/426,
727 (now U.S. Pat. No. 8,368,711), filed Jun. 27, 2006. The
entireties of U.S. patent application Ser. No. 13/722,088 and
U.S. patent application Ser. No. 11/426,727 are incorporated
herein by reference.

TECHNICAL FIELD

The present disclosure pertains to processing systems and,
more particularly, to methods and apparatus to provide
dynamic messaging services.

BACKGROUND

Browsing networks, such as the Internet (also referred to
as the “world-wide-web” or the “web”), for information has
become a very popular technique for carrying out research
activities. The Internet includes servers providing numerous
sources of information for almost every topic imaginable. In
addition to research activities, browsing Internet sites, which
is commonly referred to as Internet surfing, has become a
popular pastime.

Browsing Internet sites has achieved such a cultural status
that public libraries and other publicly available resources
now provide numerous terminals at which Internet browsing
may be carried out. Additionally, many commercial estab-
lishments now provide web browsing capabilities. Internet
cafés (I-Cafés) provide network connections to the Internet
while patrons enjoy other products provided by the business.
For example, a coffee shop or other business may include
I-café functionality so that customers can browse the Inter-
net while they enjoy their coffee. Furthermore, Internet
access is now usually available at hotels.

In general, it is desirable to provide additional or auxiliary
information to persons browsing the Internet. This informa-
tion may take many forms, such as information on local
events, alerts, or advertising. As will be readily appreciated
by those having ordinary skill in the art, pop-up advertising
in one popular technique for providing advertisements to
persons browsing Internet web sites. For example, when a
user directs his or her browser-equipped personal computer
to logon to a desired web site to view requested information
or content, the desired web site may cause the browser in use
to open an additional pop-up window in which an adver-
tisement is displayed. The user must then close the window
including advertisement to resume viewing the desired con-
tent.

Many users find pop-up advertisements irritating. To that
end, a number of software tools have been created to stop the
occurrence of pop-up advertisements. These software tools
are commonly referred to as pop-up blockers, and may
reside on web browser tool bars or other convenient loca-
tions that enable users to selectively invoke the pop-up
blocking feature.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an example network computing
system.

10

15

20

25

30

35

40

45

55

60

65

2

FIG. 2 is a block diagram representing the functionality of
one example implementation of a dynamic messaging ser-
vice.

FIG. 3 is a block diagram of example software layering
that may be included within the terminal of FIG. 1.

FIG. 4 is a block diagram of an example power-up process
that may be carried out by the terminal of FIG. 1.

FIG. 5 is a block diagram of an example virtual machine
manager (VMM) information handling process.

FIG. 6 is a block diagram of an example operating system
(OS) cursor management process.

FIG. 7 is a block diagram of an example VMM cursor
management process.

FIG. 8 is a block diagram of an example processor system
on which the processes of FIGS. 4-7 may be implemented.

DETAILED DESCRIPTION

As described below, a portion of a computer system or
terminal display screen may be allocated for display of
information other than information requested by the user.
This allocated portion of the display screen may be used for
auxiliary content or information, such as, for example,
advertisements that may be used to defray the cost of a
network administrator (e.g., the administrator providing the
terminal with which the display screen is associated). The
allocation of the display screen to include portions of the
display of both request content or information (e.g., or
requested web page and auxiliary content or information,
may be carried out at software/firmware architecture level of
the terminal that is not accessible by an end user of the
computer system or terminal. Accordingly, the allocated
portion of the display screen may not be eliminated through
actions of the user of the display screen.

As shown in FIG. 1, an example network computing
system 100 generally includes a terminal 102 and a server
104. The terminal 102 and the server 104 may be coupled by
one or more networks 106, 108. For example, the network
106 may be a local area network (LAN) or some other
network configuration. The network 108 may be a network
such as the Internet, which is also referred to as the World
Wide Web. As will be readily appreciated by those having
ordinary skill in the relevant art, other information sources
such as computers, servers, and the like, may be coupled to
the network 108.

In further detail, the terminal 102 includes a display
screen 110 and a processing portion 112. As will be readily
appreciated by those having ordinary skill in the art, the
display screen 110 may be any display screen suitable to
provide visual information to a viewer. For example, the
display screen 110 may be a cathode ray tube (CRT), a liquid
crystal display (LCD), or a display of any other suitable
technology, such as a plasma display. Further, the display
screen 110 may be a monitor such as is conventionally used
with a personal computer, or may be a television-type
display.

The processing portion 112 may include any suitable
combination of hardware, software, and/or firmware. In
accordance with one example, the processing portion 112
and the display screen 110 may be implemented as described
below in conjunction with FIG. 8. As described below, the
processing portion 112 is configured to display information
in two distinct sections on the display screen 110. For
example, the processing portion 112 may partition the dis-
play screen 110 into a requested content section 114 and an
auxiliary information section 116. As described below, this
partitioning may be sized, shaped, and located in any

US 9,448,828 B2

3

manner desired and carried out by the processing portion
112 in a manner that is not modifiable by the end user of the
terminal 102. Thus, the end user of the terminal 102 will not
be able to eliminate the auxiliary information section 116
from the display screen 110. In one example described
below, the partitioning carried out by the processing portion
112 provides dynamic information throughout an entire
operating system (OS) deployment through the case of
billboard services in a firmware virtual machine manager.
Such an example arrangement allows for the provision of
continuous auxiliary information, which, if desired, may be
real-time, dynamic information. Additionally, in examples
with the VMM obtaining and presenting the auxiliary infor-
mation, such activities are OS agnostic and, therefore, it
does not matter whether the terminal (e.g., the terminal 102
of FIG. 1) uses a Windows-type OS, a Linux-type OS, or any
other OS.

The server 104 may be any computing device suitable to
provide information to the terminal 102. In one example
implementation, the server 104 may have the architecture
shown in FIG. 8. In the example of FIG. 1, the server 104
has access to auxiliary information storage 118 that is used
to store information that may be presented in the auxiliary
information section 116 of the display screen 110. Thus, in
contrast to pop-up advertisements from an Internet browser,
which are out of administrators’ control, the provision of
information in the auxiliary information section 116 is
completely under the control of the entity that manages
information on the auxiliary information storage 118.

The auxiliary information storage 118 may be located
proximate the server 104, such as on a mass storage device
of'the server. Alternatively, the auxiliary information storage
118 may be networked to the server 104 using, for example,
either or both of the networks 106, 108. For example, the
auxiliary information storage 118 may reside on another
server that is coupled to the server 104 via the network 108.
Alternatively or additionally, more than one storage medium
may be used to implement the information storage 118. For
example, the auxiliary information storage 118 may be
implemented as one or more networked hard drives storing
databases or other data constructs including the auxiliary
information.

The information stored on the auxiliary information stor-
age 118 may be of any suitable nature, such as, for example,
advertisements, service bulletins, or any other content
including text and/or graphics. Additionally, the auxiliary
information may be plain text, figures, voice, or multi-
media. Information may be selected for storage on the
auxiliary information storage 118 by a network operator
(e.g., an I-café owner, an original equipment manufacturer
(OEM), an Internet service provider, etc.), a network admin-
istrator, and/or an advertiser. Such entities may control the
addition and removal of content from the auxiliary infor-
mation storage 118 from a remote location, such as a
computer terminal located remotely from the auxiliary infor-
mation storage 118. In such an arrangement, such entities
may upload content to the auxiliary information storage 118
so that the uploaded content may be subsequently retrieved
and displayed in the auxiliary information section 116 of the
display screen 110.

As shown in FIG. 2, a graphics processing arrangement
200 includes a display attribute determiner 202, a local
graphics reader 204, an auxiliary graphics reader 206, a
graphics renderer 208, and an input device processor 210. As
will be readily appreciated by those having ordinary skill in
the art, items 202, 204, 206, 208, and 210 may be imple-
mented exclusively by hardware and/or by hardware execut-

40

45

60

4

ing software and/or firmware and/or by any combination of
hardware, software, and/or firmware that may be imple-
mented on, for example, the terminal 102 of FIG. 1. Addi-
tionally, some of the items of FIG. 2 may be implemented in
a pre-boot (i.e., pre-OS) environment, whereas some items
may be implemented in a post-boot (i.e., runtime) environ-
ment.

In operation, the display attribute determiner 202, which
may be implemented with the pre-boot environment,
receives information from the system (e.g., from system
hardware, software, and/or firmware) and determines attri-
butes for displaying information on the display screen. In
particular, the display attribute determiner 202 may deter-
mine available display space for displaying local graphics
information, such as graphics related to a software applica-
tion being operated by the user of the terminal 102 of FIG.
1. In an example implementation, the display attribute
determiner 202 may determine that a display screen supports
a resolution of 1600x1200 pixels in size, but that a portion
of' that size is to be reserved for auxiliary information. Thus,
the display attribute determiner 202 may determine that only
1280x1024 pixels are allocated to the display of information
requested by the user of the terminal 102 and that the
balance of the display screen is reserved for the display of
auxiliary information, hereby determining the location and
size of the auxiliary information section 116. The display
attribute determiner 202 passes the display screen informa-
tion to the graphics renderer 208 and the input device
processor 210, the functionality of each of which is
described below.

The local graphics reader 204 receives from a local
graphic processing system graphics corresponding to con-
tent to be displayed in response to the actions of the user of
the terminal 102. For example, if the terminal user has
requested the display of a particular Internet web page or the
use of a particular software application, the local graphics
reader 204 receives data corresponding to the visual content
corresponding to the Internet web page or the software
application and passes this content to the graphics renderer
208. The information provided to the graphics renderer 208
by the local graphics reader 204 may have dimension
information included therein and such dimension informa-
tion may be adjusted within the graphics renderer 208 in
accordance with the information provided to the graphics
renderer 208 by the display attribute determiner 202.

The auxiliary graphics reader 206 receives auxiliary infor-
mation from the auxiliary information storage 118, which as
described in conjunction with FIG. 1, may be coupled to the
terminal 102 via a server 104 and one or more networks 106,
108. The auxiliary information may be, for example, text or
graphics information and may include information that is
purely informational (e.g., weather reports, store hours, etc.)
or may include advertising information such as promotional
information and the like. The auxiliary graphics reader 206
passes the auxiliary information to the graphics renderer
208. As with the information from the local graphics reader
204, the information from the auxiliary graphics reader 206
may include dimensional information in addition to the
graphics and/or text information. This dimensional informa-
tion may be adjusted by the graphics renderer 208 in
accordance with the information the graphics renderer 208
receives from the display attribute determiner 202.

As described above, the graphics renderer 208 receives
information from both the local graphics reader 204 and the
auxiliary graphics reader 206. This information (i.e.,) infor-
mation provided in response to user input and auxiliary
information, is modified for display on a single screen by the

US 9,448,828 B2

5

graphics renderer 208. For example, because the display
attribute determiner 202 informed the graphics renderer 208
that the display screen was 1600x1200 pixels in size, but
that only 12801024 pixels of that display screen is allo-
cated to local graphics, the graphics renderer 208, in one
example, adjusts the size and location of the information
from the local graphics reader 204 so that such information
may be located properly on the display screen. Additionally,
the graphics renderer 208 may modify the auxiliary infor-
mation to fit the balance of the 1600x1200 pixel screen size
that is not occupied by the 1280x1024 pixels of local
graphics information.

Although the provided example includes screen dimen-
sions of 1600x1200 pixels and an allocation of 1280x1024
pixels for the display of the requested information, thereby
leaving the balance of the display screen for auxiliary
information, such an example is only a manner of allocating
screen space. In fact, any allocation of screen space is
contemplated. For example, the requested content section
114 may be smaller or larger than the auxiliary information
section 116. Additionally, the location of the auxiliary infor-
mation section 116 may be above, below or to the left or
right of the requested content section 114. Further, matter of
the sections 114, 116 need be rectangularly shaped. In fact,
the sections could be square shaped, L-shaped, or any other
suitable shape.

The input device processor 210 receives information from
an input device, such as a mouse or any other input device,
and also receives information regarding various screen sec-
tion dimensions and locations from the display attribute
determiner 202. The input device processor 210 handles
generation of information representing the on-screen move-
ment corresponding to an input device, such as, for example,
the movement of a cursor on a screen in response to a user’s
movement of a mouse input device. In particular, the input
device processor 210 handles the transitions between screen
sections (i.e., between the requested content section 114 and
the auxiliary information section 116) because, as described
herein, the administration of such sections may be handled
by different entities such as a VMM or a Virtual Machine
(VM). The information representative of where a cursor or
any other visual indicator should be displayed is passed from
the input device processor 210 to the graphics renderer 208
so that the visual indicator may be displayed on the screen.

In one example, the processing portion 112 of the terminal
102 of FIG. 1 may have an architecture 300, such as that
shown in FIG. 3. In particular, the architecture 300 may be
based on a virtual threading processor/chipset 302 on which
a VMM 304 operates. The VMM 304 supports one or more
VM, one of which is shown at reference numeral 306 in FIG.
3. In one example, the VM 306 includes firmware 308 and
an OS 310, which includes one or more device drivers 312
and one or more user applications 314.

The virtual threading processor/chipset 302 is a device or
set of devices capable of supporting multiple threads of
software execution, wherein computational resources are
selectively allocated to the various threads of execution. One
example virtual threading processor/chipset is the Intel
Pentium 4 processor.

In one example, the VMM 304 is hardware executing
software and/or firmware. As explained below, instructions
may be stored in memory and executed by a processor to
implement the VMM 304, as well as to control the func-
tionality of the VMM 304. As will be readily appreciated by
those having ordinary skill in the art, the VMM 304 erects
and maintains a framework for managing virtual machines.
In particular, the VMM 304 provides memory management,

20

25

40

45

6

interrupt handling, and thread scheduling services to the
virtual machines (e.g., the VM 306) it supports.

As described below in detail, the VMM 304 may report to
the VM 306 the resources available for the execution of
program instructions and/or the resources available for dis-
play of information. To that end, the VMM 304 may inform
the VM 306 that a subset of resources is available when, in
reality, the resources are fully available. For example, the
VMM 304 may report to the VM 306 that the display screen
resolution is 1280x1024 pixels in size when, in reality, the
display screen is 1600x1200 pixels in size. By underreport-
ing to the VM 306 the resources that are available, the VMM
304 can reserve such resources for its own use.

The VM 306 may be implemented using a dynamic
programming language such as, for example, Java and for
CH#. A software engine (e.g., a Java Virtual Machine (JVM)
and Microsoft .NET Common Language Runtime (CLR),
etc.), which is commonly referred to as a runtime environ-
ment, executes the dynamic program language instructions
of'the managed application. The VM 306 interfaces dynamic
program language instructions (e.g., a Java program or
source code) to be executed and to a target platform (i.e., the
virtual threading processor/chipset 302 and the OS 310) so
that the dynamic program can be executed in a platform
independent manner.

Dynamic program language instructions (e.g., Java
instructions) are not statically compiled and linked directly
into native or machine code for execution by the target
platform (i.e., the operating system and hardware of the
target processing system or platform). Native code or
machine code is code that is compiled down to methods or
instructions that are specific to the operating system and/or
processor. In contrast, dynamic program language instruc-
tions are statically compiled into an intermediate language
(e.g., bytecodes), which may interpreted or subsequently
compiled by a just-in-time (JIT) compiler into native or
machine code that can be executed by the target processing
system or platform. Typically, the JIT compiler is provided
by the VM that is hosted by the operating system of a target
processing platform such as, for example, a computer sys-
tem. Thus, the VM and, in particular, the JIT compiler,
translates platform independent program instructions (e.g.,
Java bytecodes, Common Intermediate Language (CIL),
etc.) into native code (i.e., machine code that can be
executed by the virtual threading processor/chipset 302.

The firmware 308 within the VM 306 may be pro-
grammed to carryout tasks for the VM 306 prior to the VM
306 booting the OS 310 and its attendant device drivers 312
and user applications 314. For example, the firmware 308
may be responsible for interfacing with the VMM 304 to
determine the capabilities of hardware coupled to the virtual
threading processor/chipset 302. In particular, as described
below, the firmware 308 may request an indication of
display screen resolution from the VMM 304. The firmware
308 may store the resource indications in a memory (e.g.,
random access memory (RAM)), so that when the OS 310
boots, the OS 310 will be aware of the system resources at
its disposal.

As will be readily appreciated by those having ordinary
skill in the art, the OS 310 may include the device drivers
312 that are in communication with the user applications
314. The loading of the OS 310 causes the architecture 300
to leave the pre-boot phase of operating and to enter the
runtime operating phase. The OS 310 learns what resources
are at its disposal by reading the memory locations into
which the firmware 308 stored the system information
provided by the VMM 304. Alternatively, the OS 310 may

US 9,448,828 B2

7

communicate directly with the VMM 304 to obtain an
indication of the available resources. The OS 306 is told
what hardware resources are available by either the memory
manipulated by the firmware 308 or by the VMM 304 and,
thus, the OS 306 may be under an assumption that fewer or
different resources are available than those resource actually
available. For example, the memory location associated with
the system and/or the VMM 304 may inform the OS 310 that
the available space on the display screen is smaller than the
actual available space on the display screen. Thus, the OS
310 will only attempt to write graphics to the reduced
available space, thereby leaving a portion of the available
space for other use by another entity such as the VMM 304.

Having described the architecture of one example system
that may be used to provide dynamic messaging services,
various processes are described. Although the following
discloses example processes, it should be noted that these
processes may be implemented in any suitable manner. For
example, the processes may be implemented using, among
other components, software, or firmware executed on hard-
ware. However, this is merely one example and it is con-
templated that any form of logic may be used to implement
the systems or subsystems disclosed herein. Logic may
include, for example, implementations that are made exclu-
sively in dedicated hardware (e.g., circuits, transistors, logic
gates, hard-coded processors, programmable array logic
(PAL), application-specific integrated circuits (ASICs), etc.)
exclusively in software, exclusively in firmware, or some
combination of hardware, firmware, and/or software. Addi-
tionally, some portions of the process may be carried out
manually. Furthermore, while each of the processes
described herein is shown in a particular order, those having
ordinary skill in the art will readily recognize that such an
ordering is merely one example and numerous other orders
exist. Accordingly, while the following describes example
processes, persons of ordinary skill in the art will readily
appreciate that the examples are not the only way to imple-
ment such processes.

Referring now to FIG. 4, a power-up process 400 that may
be carried out by a terminal, such as the terminal 102 of FIG.
1, is shown. In particular, the process 400 may be carried out
by a processor system, such as the processor system 800 of
FIG. 8. The power-up process 400 begins when the system
powers on (block 402), which may be due to a power cycle
event or due to a reset event. After the system power on
(block 402), the process 400 initializes a VMM (block 404)
to handle the resource allocation for one or more VMs.

After the VMM has been initialized 404, one or more
VMs are launched (block 406). The process 400 then
determines if the VMM billboard is enabled (block 408).
The VMM billboard is a reference to dedicated screen space
(i.e., the auxiliary information space 116 on the display
screen 110 of FIG. 1) that is allocated to the display of
auxiliary information.

If the VMM billboard is not enabled (block 408), the
process continues its normal booting operation by booting a
target OS (block 410) and continuing normal operation
(block 412) until the OS shuts down (block 414). When the
OS shuts down (block 414), the system powers off (block
416) and the process 400 ends.

Alternatively, if the VMM billboard is enabled (block
408), a VMM information handling process (block 418) is
started. The VMM information handling process (block 418)
may be carried out by the VMM, such as the VMM
initialized at block 404 of FIG. 4.

As shown in FIG. 5 in further detail, according to one
example, the VMM information handling process 418

10

15

20

25

30

35

40

45

50

55

60

65

8

begins by restricting the supported dimensions that are
reported when an OS seeks to determine the supported
dimensions of the display screen (block 502). According to
one example, the process 418 may query hardware, such as
a graphics display card, to determine the resolution and
dimensional capabilities of such hardware. The supported
dimensions are then restricted in accordance with the screen
space that is to be allocated to the auxiliary information. For
example, if the supported dimensions are 1600x1200 pixels,
the process 418 may report that the supported dimension is
1280x1024 pixels. Thus, when the OS and its attendant
hardware and software of a VM prepare to display infor-
mation on the screen, the dimensions used for displaying
information on the screen are 1280x1024 pixels.

After the supported dimensions have been restricted
(block 502), a target is booted (block 504). The booting of
the target causes an OS to be loaded on a VM, such as one
of the VMs launched at block 406 of FIG. 4.

After or during booting of the target (block 504), the
network connection is set up (block 506) to provide the
process 418 access to auxiliary information, such as auxil-
iary information stored in the auxiliary information storage
118 of FIG. 1. For example, with reference to FIG. 1, the
network connection may connect the terminal 102 to either
or both of the network 106 and/or the network 108. The
process then determines if the network setup attempted at
block 506 failed (block 508). If the network setup failed
(block 508), the system continues normal operation in the
OS present domain (block 412 of FIG. 4).

If, however, the network setup did not fail (block 508) the
process 418 attempts to connect to the auxiliary information
storage (block 510) and the process 418 determines whether
the connection to the auxiliary information storage failed
(block 512). If the connection to the auxiliary information
storage failed (block 512), the system continues normal
operation in the OS present domain (block 412 of FIG. 4).

Alternatively, if the connection to the auxiliary informa-
tion storage did not fail (block 512), the process 418 initiates
the OS cursor management process (block 514). The initia-
tion of the process 514 may include passing a request or
instruction from the VMM to the VM running the OS so that
the OS can run the OS cursor management process 514.
After the OS cursor management process 514 is initiated, the
process 418 commences a VMM cursor management pro-
cess 516. Further detail regarding each of the processes 514
and 516 is provided below in conjunction with FIGS. 6 and
7.

Once the cursor management processes 514 and 516 have
been initiated, the process 418 obtains and displays the
auxiliary information (block 518). In one example, obtaining
the auxiliary information may include downloading the
auxiliary information from a remote physical location such
as the auxiliary information storage and/or may include
recalling the auxiliary information from a location that is
local to the terminal 102. In one example, the auxiliary
information that is obtained may be personal in nature and
may be keyed to a login type or username used to log into
the terminal 102 of FIG. 1. For example, if an I-Café owner
registers users with some demographic information such as
age/job/school major/etc., the auxiliary information may be
targeted to that user when the user arrives at the terminal in
question.

After auxiliary information is displayed (block 518), the
process 418 determines whether new auxiliary information
is available (block 520). If no new auxiliary information is
available (block 520), the process 418 continues to display
the previously-obtained auxiliary information (block 518).

US 9,448,828 B2

9

However, if new auxiliary information is available (block
520), the process 418 obtains the new auxiliary information
(block 522) and, if the OS is not going to shut down (block
524), displays the auxiliary information obtained at block
522. In one example, the originally obtained auxiliary infor-
mation may be continuously displayed until a user clicks or
otherwise selects the auxiliary information section 116 of
FIG. 1. As noted above, the process 418 may obtain the
auxiliary information by downloading and/or recalling the
auxiliary information from memory.

If, however, the process 418 determines that the OS is to
be shut down (block 524), the OS shuts down and the system
powers off as shown at block 416 of FIG. 4.

While the foregoing describes an example in which
auxiliary information is handled by a VMM, other tech-
niques for handling auxiliary information are possible. For
example, a second virtual machine may be provided and the
VMM may restrict the supported dimensions of the second
virtual machine. Thus, the VMM may determine the overall
dimensions supported by the display device and may parti-
tion the supported dimensions of the display by restricting
the dimensions provided to each of the first and second
virtual machines. In this way, the first virtual machine may
provide content for a first portion of the display screen (e.g.,
the requested content) and the second virtual machine may
provide content for a second portion of the display screen
(e.g., the auxiliary content).

Example OS and VMM cursor management processes are
now described in further detail. In general, when the cursor
lies within the screen boundary allocated to the OS and the
VM, the cursor is made visible by the OS. However, when
the user attempts to move the cursor off the screen allocated
to the OS and VM and into the screen portion allocated to
the auxiliary information and the VMM, the OS makes the
cursor invisible within the screen allocated to the OS so that
the cursor does not appear to be stuck at the boundary
separating the screen portion allocated to the OS.

As shown in FIG. 6, the OS cursor management process
514 begins by determining the boundaries for the screen
allocated to the OS (block 602). The process 514 then
determines if the desired cursor position desired by the user
is outside the boundaries (block 604). The desired cursor
position may be determined by tracking the cursor position
and the extent to which the user has moved the mouse a
distance past the boundary between the desired content
section (e.g., the section 114 of FIG. 1) and an auxiliary
information section (e.g., the section 116 of FIG. 1). If the
desired cursor position is outside the boundary, the OS
makes the cursor invisible by making the coloring and
texturing of the cursor match the coloring and texturing of
the graphics behind the cursor (block 606). In the alterna-
tive, if the desired cursor position is not outside the bound-
aries (block 604), the process 514 makes the cursor visible
(block 608). After the cursor is made visible, other cursor
functions are carried out (block 610), which may include
conventional cursor functions that are performed by an OS
to provide cursor functionality.

As shown in FIG. 7, in one example the VMM cursor
management process 516 determines the screen boundaries
that were passed to the OS (block 702). This determination
identifies the location of the desired content section and the
location of the auxiliary information section. The process
516 then determines whether the cursor is in a position
outside the boundaries (i.e., that the cursor is within the
auxiliary information section (block 704). If the cursor is not
outside the boundaries (i.e., is within the desired content
section) (block 704), the process 516 makes the cursor

10

15

20

25

30

35

40

45

50

55

60

65

10

invisible (block 706) so that when the cursor is within the
desired content section, another cursor is not shown at the
boundary the desired content section and the auxiliary
information section. The techniques for making the cursor
invisible are well known, some of which are described
above.

When the cursor transitions to a location outside the
boundaries (i.e., the cursor is outside of the desired content
section and, therefore, is inside of the auxiliary information
section) (block 704), the process 516 makes the cursor
visible (block 708). Optionally, when the cursor is within the
auxiliary information section, subsequent or different infor-
mation may be loaded into the auxiliary information section
in response to a user click within the auxiliary information
section (block 710).

As shown in FIG. 8, an example processor system 800,
includes a processor 802 having associated memories 804,
such as a random access memory (RAM) 806, a read only
memory (ROM) 808, and a flash memory 810. The flash
memory 810 of the illustrated example includes a boot block
812. The processor 802 is coupled to an interface, such as a
bus 820 to which other components may be interfaced. In the
illustrated example, the components interfaced to the bus
820 include an input device 822, a display device 824, a
mass storage device 826, and a removable storage device
drive 828. The removable storage device drive 828 may
include associated removable storage media (not shown),
such as magnetic or optical media. The processor system
800 may also include a network adapter 830.

The example processor system 800 may be, for example,
a server, a remote device, a conventional desktop personal
computer, a notebook computer, a workstation or any other
computing device. The processor 802 may be any type of
processing unit, such as a microprocessor from the Intel®
Pentium® family of microprocessors, the Intel® Itanium®
family of microprocessors, and/or the Intel XScale® family
of processors. The processor 802 may include on-board
analog-to-digital (A/D) and digital-to-analog (D/A) convert-
ers.

The memories 804 that are coupled to the processor 802
may be any suitable memory devices and may be sized to fit
the storage and operational demands of the system 800. In
particular, the flash memory 810 may be a non-volatile
memory that is accessed and erased on a block-by-block
basis.

The input device 822 may be implemented using a
keyboard, a mouse, a touch screen, a track pad or any other
device that enables a user to provide information to the
processor 802.

The display device 824 may be, for example, a liquid
crystal display (LCD) monitor, a cathode ray tube (CRT)
monitor or any other suitable device that acts as an interface
between the processor 802 and a user. The display device
824 includes any additional hardware required to interface a
display screen to the processor 802.

The mass storage device 826 may be, for example, a
conventional hard drive or any other magnetic or optical
media that is readable by the processor 802.

The removable storage device drive 828 may be, for
example, an optical drive, such as a compact disk-recordable
(CD-R) drive, a compact disk-rewritable (CD-RW) drive, a
digital versatile disk (DVD) drive, or any other optical drive.
The removable storage device drive 828 may alternatively
be, for example, a magnetic media drive. If the removable
storage device drive 828 is an optical drive, the removable
storage media used by the drive 828 may be a CD-R disk,
a CD-RW disk, a DVD disk or any other suitable optical

US 9,448,828 B2

11

disk. On the other hand, if the removable storage device
drive 48 is a magnetic media device, the removable storage
media used by the drive 828 may be, for example, a diskette
or any other suitable magnetic storage media.

The network adapter 830 may be any suitable network
interface such as, for example, an Ethernet card, a wireless
network card, a modem, or any other network interface
suitable to connect the processor system 800 to a network
832. The network 832 to which the processor system 800 is
connected may be, for example, a local area network (LAN),
a wide area network (WAN), the Internet, or any other
network. For example, the network could be a home net-
work, a intranet located in a place of business, a closed
network linking various locations of a business, or the
Internet.

Although certain apparatus constructed in accordance
with the teachings of the invention have been described
herein, the scope of coverage of this patent is not limited
thereto. On the contrary, this patent covers every apparatus,
method and article of manufacture fairly falling within the
scope of the appended claims either literally or under the
doctrine of equivalents.

What is claimed is:

1. A method of displaying information on a display
screen, the method comprising:

determining, using a virtual machine manager, supported

dimensions for display of information on the display
screen;
generating, using the virtual machine manager, restricted
dimensions that are less than the supported dimensions;

providing the restricted dimensions to an operating sys-
tem of a virtual machine supported by the virtual
machine manager, wherein the restricted dimensions
define a boundary between a first screen portion and a
second screen portion; and

using the virtual machine manager to display first infor-

mation in the first screen portion, the virtual machine
manager enforcing the presence of the first screen
portion on the display screen by preventing a user of the
virtual machine from eliminating the first screen por-
tion.

2. A method as defined in claim 1, wherein the determin-
ing of the supported dimensions using the virtual machine
manager includes querying a hardware device associated
with the display screen to determine the supported dimen-
sions of the hardware device prior to booting the virtual
machine.

3. A method as defined in claim 1, further including
displaying second information provided by the virtual
machine on the second screen portion after booting the
virtual machine.

4. A method as defined in claim 1, further including
displaying a first cursor in the first screen portion using the
virtual machine manager in response to detecting that a
cursor position is outside of the second screen portion using
the virtual machine manager.

5. A method as defined in claim 4, further including
instructing the virtual machine to hide a second cursor in the
second screen portion from view when displaying the first
cursor in the first screen portion.

6. A method as defined in claim 4, further including hiding
the first cursor from view in response to detecting that the
cursor position is within the second screen portion.

7. An apparatus to display information on a display
screen, comprising:

a virtual machine manager implemented using a proces-

sor; and

5

10

15

20

25

30

35

40

45

50

55

o

5

12

a storage device including computer readable instructions
which, when executed, cause the virtual machine man-
ager to at least:
determine supported dimensions for display of infor-
mation on the display screen;

generate restricted dimensions that are less than the
supported dimensions;

provide the restricted dimensions to an operating sys-
tem of a virtual machine supported by the virtual
machine manager, wherein the restricted dimensions
define a boundary between a first screen portion and
a second screen portion; and

display first information in the first screen portion while
the virtual machine manager enforces the presence of
the first screen portion on the display screen by
preventing a user of the virtual machine from elimi-
nating the first screen portion.

8. An apparatus as defined in claim 7, wherein the
instructions are to cause the virtual machine manager to
query a graphics display device associated with the display
screen to determine the supported dimensions of the graph-
ics display device prior to booting the virtual machine.

9. An apparatus as defined in claim 7, wherein the
instructions are further to cause the virtual machine manager
to display second information provided by the virtual
machine on the second screen portion after booting the
virtual machine.

10. An apparatus as defined in claim 7, wherein the
instructions are further to cause the virtual machine manager
to display a first cursor in the first screen portion in response
to the virtual machine manager detecting that a cursor
position is outside of the second screen portion using the
virtual machine manager.

11. An apparatus as defined in claim 10, wherein the
instructions are further to cause the virtual machine manager
to instruct the virtual machine to hide a second cursor in the
second screen portion from view when the virtual machine
manager displays the first cursor in the first screen portion.

12. An apparatus as defined in claim 10, wherein the
instructions are further to cause the virtual machine manager
to hide the first cursor from view in response to the virtual
machine manager detecting that the cursor position is within
the second screen portion.

13. A computer readable storage device comprising com-
puter readable instructions which, when executed, cause a
processor to at least:

determine, using a virtual machine manager, supported
dimensions for display of information on a display
screen;

generate, using the virtual machine manager, restricted
dimensions that are less than the supported dimensions;

provide the restricted dimensions to an operating system
of a virtual machine supported by the virtual machine
manager, wherein the restricted dimensions define a
boundary between a first screen portion and a second
screen portion; and

display first information in the first screen portion via the
virtual machine manager; and

enforce the presence of the first screen portion on the
display screen by preventing a user of the virtual
machine from eliminating the first screen portion via
the virtual machine manager.

14. A storage device as defined in claim 13, wherein the
instructions, when executed, cause the processor to query a
graphics display card associated with the display screen to
determine the supported dimensions of the graphics display
card prior to booting the virtual machine.

US 9,448,828 B2

13

15. A storage device as defined in claim 13, wherein the
instructions, when executed, further cause the processor to
display a first cursor in the first screen portion via the virtual
machine manager in response to detecting that a cursor
position is outside of the second screen portion.

16. A storage device as defined in claim 15, wherein the
instructions, when executed, further cause the processor to
instruct the virtual machine to hide a second cursor in the
second screen portion from view when the virtual machine
manager is displaying the first cursor in the first screen
portion.

17. A storage device as defined in claim 15, wherein the
instructions, when executed, further cause the processor to
hide the first cursor from view in response to detecting that
the cursor position is within the second screen portion.

#* #* #* #* #*

10

15

14

