US009244927B1

a2z United States Patent (10) Patent No.: US 9,244,927 B1
Ravan (45) Date of Patent: Jan. 26, 2016
(54) SYSTEM AND METHOD FOR RECORD 8,417,908 B2* 4/2013 Retnammaetal. 711/162
LEVEL MULTIPLEXING OF BACKUP DATA 8,468,082 B2* 6/2013 Doornebos et al. 705/36 R
2002/0025003 Al* 2/2002 Kyoung 375/240.26
TO STORAGE MEDIA 2003/0131117 Al* 7/2003 Jonesetal. 709/230
. 2003/0204555 Al* 10/2003 Jonesetal. 709/200
(75) Inventor: Daniel Ravan, Fremont, CA (US) 2003/0210711 Al* 11/2003 Faustetal. 370/474
2004/0205224 Al* 10/2004 Jonesetal. 709/231
(73) Assignee: EMC CORPORATION, Hopkinton, 2005/0204058 Al* 9/2005 Philbrick et al. 709/238
MA (US) 2005/0246510 Al* 11/2005 Retnamma et al. . 71162
2005/0278459 Al* 12/2005 Boucheretal. 709/250
. 2006/0224846 Al* 10/2006 Amarendran et al. . 71162
(*) Notice: Subject. to any dlsclalmer,. the term of this 2007/0058564 Al* 3/2007 Agrawala etal. .. 370252
patent is extended or adjusted under 35 2008/0091894 A1* 4/2008 Retnamma et al. .. 711/161
U.S.C. 154(b) by 946 days. 2009/0198713 Al* 82009 Safoctal. 707/100
2009/0234892 Al* 9/2009 Anglinetal. 707/201
N :
(1) Appl. No.: 121242418 20100100530 AL+ 42010 Nadathuretal 1 7071640
(22) Filed: Sep. 30, 2008 2010/0299311 Al* 112010 Anglinetal. 707/640
: .30,
* cited by examiner
(51) Imt.ClL
GOG6F 17/30 (2006.01) Primary Examiner — James Truyjillo
(52) US.CL Assistant Examiner — Hubert Cheung
CPC .ot GOG6F 17/30073 (2013.01) (74) Attorney, Agent, or Firm — Dergosits & Noah LLP;
(58) Field of Classification Search Todd A. Noah
CPC ..o GOG6F 17/30073; GOGF 17/30138
USPC e 707/640, 642 (57) ABSTRACT
See application file for complete search history. . .
system and method for efficiently creating a backup vol-
A syst d method for efficiently ting a backup vol
(56) References Cited ume that is also efficient to recover is described. The backup

U.S. PATENT DOCUMENTS

6,212,568 B1* 4/2001 Milleretal. 709/236
6,320,865 B1* 11/2001 Agrawala et al. .. 370/413
6,813,657 B2* 11/2004 Kyoung 710/52
7,315,923 B2* 1/2008 Retnamma et al. .. . 711/162
7,725,437 B2* 5/2010 Kirshenbaum et al. .. 707/640
7,814,074 B2* 10/2010 Anglinetal. 707/692
7,861,050 B2* 12/2010 Retnamma et al. . 711/162
8,031,717 B2* 10/2011 Satoetal. 370/394
8,131,964 B2* 3/2012 Retnammaetal. 711/162
8,284,845 B1* 10/2012 Kovacevic etal. 375/240.26

volume may be created with one save set per media record by
utilizing record level multiplexing rather than chunk level
multiplexing. Through the use of multiple circular buffers,
with each buffer associated with a respective save set, save
sets written to storage media are contiguous and individual
save set chunks are not separated by chunk headers within the
respective media record. Recovery is therefore more efficient
since the step of reading chunk headers and locating all the
chunks for a save set is no longer required.

13 Claims, 4 Drawing Sheets

301

SELECT
SAVE SETS
FOR
BACKUP

l

/—303

PACKAGE
SAVE SET
INTO
CHUNKS

l

/305

STREAM
SAVE SET
CHUNKS TO
BURA

|

311
/

CREATE
CIRCULAR
BUFFER
FOR EACH
SAVE SET

l

/313

CHECK
CIRCULAR
BUFFER

|

/3]5

FLUSH
BUFFER TO
STORAGE
MEDIA

U.S. Patent Jan. 26, 2016 Sheet 1 of 4 US 9,244,927 B1

101

FIG. 1

U.S. Patent Jan. 26, 2016 Sheet 2 of 4 US 9,244,927 B1

203

210

211

> 205
s 212

N T NGCR
e
A A S RSO LEURRRRNR
e AR
ORI NN NS

SV SRS
2 1 3 R AR RARRR AR AR

SRR AR
2 0 1 < AR RRRER RN

SRR
SRR SRS EREIRARNNS
RNV
AN RARAR TSNS

214

o
—
N

> 207
216

N y

FIG. 2
(Prior Art)

U.S. Patent Jan. 26, 2016 Sheet 3 of 4 US 9,244,927 B1

/-301

SELECT
SAVE SETS
FOR
BACKUP

30
7

PACKAGE
SAVE SET
INTO
CHUNKS

| /‘305

STREAM
SAVE SET
CHUNKS TO
BURA

311
e

CREATE
CIRCULAR
BUFFER
FOR EACH
SAVE SET

313
/-

¥

CHECK
CIRCULAR
BUFFER

' /-315

FLUSH
BUFFER TO
STORAGE
MEDIA

FIG. 3

Sheet 4 of 4 US 9,244,927 B1

U.S. Patent Jan. 26, 2016

401

411
—

412
\

R
PR IR

RUSRRARERN

O RS AARARAARLRRERAR AANEAS
NN IR AR R AR
A A AR SARRRAN RTINS
SIS SN N N N S SURRUERCUREY
COVRR VAR RN QRN 4 1 3 SRR
SRR RN RN \ A e A R A
PR SRR BRI AR AR RS
OOV RN RN 5SS ERERRER
RN SRR AR PR 407
AR ARV T R S SARLRAEN
4 O 2 ‘< f d FUVRRIAR R
SRSSUULRURLE NNRNRR AR
OO R A s s e
AR SRRV AR TR
NED S NSNRESERRR RN
AT BOLURRROBANAY N R SRR AN
UMY RN AEEARERR A e aS
S SAREARENE NSNS
\ SUAES SN SANNS A AN S RRRRER
AR S ISRRREURSRRANS PUOVVVR R TRRNAORNS
K \\\\\\\\\j A 4] 4
S—

415

ay N . >409
ll ~ N\
]
403 { !
! _/
e] =

FIG. 4

US 9,244,927 B1

1
SYSTEM AND METHOD FOR RECORD
LEVEL MULTIPLEXING OF BACKUP DATA
TO STORAGE MEDIA

FIELD

The present invention relates generally to data backup, and
specifically, to multiplexing a save set of backup data to
storage media.

BACKGROUND

In a large organization, data from multiple backup clients
are typically backed up for retention and security purposes.
Backup clients include desktop computers, servers, net-
worked storage devices and other data stores that can contain
large amounts of data. The backup process is usually man-
aged by a backup and recovery application (“BURA”) resi-
dent on a dedicated backup or BURA server. In a typical
backup operation, data selected for backup will be transmit-
ted over a network from the backup clients to the BURA
server, and then from the BURA server to the storage media,
which may be tape or disk. Each set of client data selected for
backup is known as a “save set.” For example, all the data
selected for backup from a desktop computer may be one save
set; all the data selected for backup from a server may be
another save set; a single database on a networked storage
device may be another save set; and so forth. A backup pro-
cess may involve backing up many of these save sets and will
usually require the transmission of many large save sets over
the network.

A. Chunk Level Multiplexing

Transmitting large save sets can cause significant strain on
the network. Current methods for relieving network conges-
tion include a process known as “chunk level multiplexing,”
which involves packaging save sets into more manageable
sizes before transmitting or “streaming” them over the net-
work to the backup server. These packages are known as data
chunks, or simply, “chunks.” Thus, instead of transmitting
backup data as a large save set and potentially overwhelming
the network, the save set will be transmitted as chunks, allow-
ing the chunks to reach the BURA server using the most
efficient path on the network. Since the multiplexing occurs
during the chunk step of the backup process, it is known as
“chunk level multiplexing.”

As previously discussed, a backup process typically
involves many save sets. Each save set will therefore be
packaged into chunks and streamed to the BURA server. As a
result, chunks from different save sets may reach the BURA
server at the same time. The BURA server will temporarily
store the chunks in a buffer on the BURA server before
writing them to storage media. In order to identify the chunks’
originating save set, the BURA will also create metadata for
each chunk. Each chunk’s metadata will later be written into
a header (“chunk header”) that will physically precede the
chunk on the storage media. Chunk headers may be created
and associated with each respective chunk during the bufter-
ing step.

The buftering step will typically involve a single circular
buffer 201, shown in FIG. 2. A person having skill in the art
will appreciate that a circular buffer is a type of data structure
comprised of at least two data blocks. As data is added to one
data block, data may be removed from the other data block. In
the case of a backup process, the removal of data from the
circular buffer is known as “flushing.” In other words, once a
data block in the circular buffer has been filled with data
chunks (and their respective chunk headers), the buffer will

10

15

20

25

30

35

40

45

50

55

60

65

2

flush the chunks for recording on the storage media. While
one block is being flushed, the BURA may add data chunks
and chunk headers to another block on the circular buffer 201.
In this fashion, circular buffer 201 allows for a continuous
cycle of filling and flushing of its data blocks. This process of
filling and flushing is generally controlled and managed by
the BURA.

Backup storage media includes both tape and disk media,
both of which may be further divided into units called “media
records.” As noted previously, the circular buffer 201 may
also be comprised of units called data blocks. Usually, a data
block on circular buffer 201 will be the same size as a media
record. As shown in FIG. 2, one circular buffer data block has
been flushed and written to media record 205, and another
circular buffer data block has been flushed and written to
media record 207. Media record 205 is preceded by a record
header 203, which may contain metadata or information on
the chunks in media record 205. Media record 205 contains a
number of data chunks 211 and 213, each of which corre-
sponds to a different save set. Media record 207 contains data
chunks 215 and 217. Note that chunk 215 is from a different
save set, but chunk 217 is from the same save set as chunk
211. The separation of chunks 217 and 211 is due to the chunk
level multiplexing discussed above. Also shown are chunk
headers 210, 212, 214 and 216 that each correspond to the
data chunk it precedes. For example, chunk header 210 pre-
cedes and contains information for chunk 211; chunk header
212 precedes and contains information for chunk 213; and so
on. In some cases, metadata for the chunk may also antecede
the chunk, but in either case, chunks from one save set are
physically separated from other chunks from the same save
set. FIG. 2 therefore shows that not only are save sets chunks
separated from one another on the storage media (211 and
217), but each chunk is also further separated by chunk head-
ers.

While this is an efficient method for ensuring all save sets
are streamed and written to backup storage media, the result
of this process can complicate recovery. Recovery typically
involves recovery and restoration of an entire save set, as
opposed to individual chunks within the recorded save set.
When the BURA server receives a request to recover a save
set, the BURA must locate all of the chunks associated with
that save set on the storage media before the save set can be
recovered. This requires navigating to each and every media
record 205 on the storage media and reading each chunk
header to identify the respective chunk’s originating save set.
This is a tedious process that slows recovery and taxes BURA
resources.

What is therefore needed is a more efficient way to transmit
data for backup to a storage device that also improves the
recovery process.

BRIEF DESCRIPTION OF THE FIGURES

The present invention is illustrated by way of example and
not limitation in the figures of the accompanying drawings, in
which like references indicate similar elements, and in which:

FIG. 1 is an exemplary block diagram depicting an
embodiment of the present invention.

FIG. 2 is an exemplary block diagram depicting data on
storage media stored using a prior art method.

FIG. 3 is an exemplary flow diagram illustrating the steps
of'an embodiment of the present invention.

FIG. 4 is an exemplary block diagram depicting data on
storage media stored using an embodiment of the present
invention.

US 9,244,927 B1

3
DETAILED DESCRIPTION

The present invention is a system and method for “record
level multiplexing” that improves over previous methods that
multiplex at the chunk level. The present invention involves
multiplexing at the buffering and recording steps of the
backup process, rather than at the transmitting step. Record
level multiplexing ensures that a save set’s data chunks are
written to storage media such that the storage media record
contains chunks from one save set, and such that each chunk
is not be separated by a chunk header. Instead, each media
record will be preceded with a single record header that
identifies the save set contained in the media record. This is an
improvement over previous methods that result in save set
chunks that are physically separated by chunk headers on the
storage media. As will be discussed further below, this
improves the recovery process without compromising the
backup process.

The present invention may be implemented by any backup
network environment. For example, as illustrated in FIG. 1,
the present invention may be managed by a BURA server 101,
which contains the BURA software application and is con-
nected to a network 121. One or more desktop computers 111
storing data for backup may also be connected to the network
121. Additionally, one or more servers 131 storing data for
backup may be connected to the network 121. Further, one or
more storage devices 141 may be connected to the network
121. There may be one or more network switches or routers
151 directing network traffic on network 121. The software
application on BURA server 101 may manage the backup of
data stored on backup clients, such as desktop computers 111,
servers 131 or networked storage devices 141. A backup
client’s data will be packaged for backup, streamed to the
BURA server 101 and written to storage media housed in
storage array 161, which may be a tape library, disk array, or
a combination of the two.

It should be appreciated that the present invention can be
implemented in numerous ways, including as a process, an
apparatus, a system, a device, a method, or a computer read-
able medium such as a computer readable storage medium
containing computer readable instructions or computer pro-
gram code, or a computer network wherein computer read-
able instructions or computer program code are sent over
optical or electronic communication links. Applications may
take the form of software executing on a general purpose
computer or be hardwired or hard coded in hardware. In this
specification, these implementations, or any other form that
the invention may take, may be referred to as techniques. In
general, the order of the steps of disclosed processes may be
altered within the scope of the invention.

As noted previously, a backup process will typically
involve the transmission and storage of a number of different
save sets packaged as chunks that are transmitted to BURA
server 101 and recorded onto storage media in a media record
205. In the prior art, a media record 205 may contain chunks
from different save sets, and each chunk may be separated by
its respective chunk header, as shown in FIG. 2.

A. Record Level Multiplexing

The present invention is a method that avoids separating
chunks by chunk headers on the storage media by multiplex-
ing at the record level rather than the chunk level. In an
embodiment, the present invention is a method whereby mul-
tiple circular buffers are used to temporarily store each save
set’s chunk data before flushing and writing the data to the
storage media. As will be discussed further below, this
improves over prior art backup methods where only one cir-

30

40

45

50

4

cular buffer is used, and/or chunks from different save sets are
stored in the same circular buffer.

FIG. 3 illustrates an embodiment of the method of the
present invention. In step 301, data from multiple desktop
computers 111, servers 131 or network storage devices 141
are selected for backup. Each backup client’s data will com-
prise a save set. In step 303, each save set may be packaged
into chunks for transmission over network 121. Once a save
set is packaged as chunks, in step 305 the chunks are trans-
mitted or streamed to BURA server 101. The BURA software
application on BURA server 101 will create a circular buffer
for each save set (step 311). The circular buffer may behave
similarly to circular buffer 201 described in the prior art
chunk level multiplexing method; however, the circular
buffer used in the present invention will only contain chunks
from one save set. By creating and using a circular buffer for
each save set, the present invention ensures that when that
circular buffer is flushed, only one save set is streamed to the
storage media at a time. In this fashion, save set chunks are
kept together on the storage media, rather than fragmented
and separated by chunk headers on the storage media as is
presently done. In order to identify the save set from which
the chunks originate, the BURA may create a record header
that may precede the save set chunks on the storage media. As
such, a media record will contain one save set comprised of
the save set’s chunks as they were transmitted, but the media
record will only contain a single record header, instead of
multiple chunk headers as is presently done.

One skilled in the art will appreciate that the use of multiple
circular buffers maintains or even increases the efficiency of
the backup operation. The previous method step of transmit-
ting save sets as chunks may be performed, thereby control-
ling network congestion. Data chunks are not grouped (or
re-grouped) by their originating save sets until after transmis-
sion to the BURA server. As discussed in step 311, chunks are
held in circular buffers grouped by their originating save set
before they are recorded onto media blocks on the storage
media. Because there are multiple circular buffers, the BURA
will be equipped to receive and store more save sets than in
prior art methods that utilize a single circular buffer.

In step 313, the BURA server may check to see if the save
set is completely written to its respective circular buffer, or
will check to see if a block on the circular buffer is full. If a
circular buffer block is full, it will flush that block’s contents
for recording on the storage media (step 315). Once the cir-
cular buffer’s block has flushed, the BURA server will check
to see if the save sethas been completely written to the storage
media. If not, then as the circular buffer removes its contents
it will continuously store more of that save set’s chunks. This
will continue until the save set is completely streamed and
written to the storage media. Alternatively, the circular buffer
may be designed to withhold flushing until it has been com-
pletely filled, at which point it will flush its contents. After the
save set is completely flushed and recorded on the storage
media, the circular buffer may be re-used for another save set
or may be deleted.

The result of the method of FIG. 3 is illustrated in FIG. 4.
As shown, rather than the fragmented save sets of FIG. 2, the
save sets in FIG. 4 appear as large but single chunks because
the chunks are not separated by chunk headers. In FIG. 4,
media record 405 contains a single record header 410 and
save set 411, which may be comprised of multiple chunks
streamed and flushed from its respective circular buffer 401.
The record header may contain metadata about the source and
contents of the respective save set. Similarly, media record
407 contains a single record header 412 and save set 413,
which may be comprised of multiple chunks streamed and

US 9,244,927 B1

5

flushed from respective circular bufter 402. Further, media
record 409 contains a single record header 414 and save set
415 stored as chunks streamed and flushed from circular
buffer 403. Because the chunks from different save sets are
not intermixed, there is no need to create and write chunk
headers for each chunk. Instead, a single record header may
precede or otherwise associate with the corresponding save
set in each media record.

B. Recovery

The benefits of the present invention are especially realized
during recovery. As previously discussed, recovery typically
involves restoring a whole save set, rather than parts of a save
set. This requires analyzing each media record on the storage
media, and reading each chunk header in a media record to
identify the save set from which a chunk originated. Since a
save set’s chunks may be separated across multiple media
records, recovery also requires searching the storage media
for all of the chunks from the save set, and making sure every
chunk is located, recovered and streamed. As a result of this
process, recovery is extremely slow.

This tedious recovery process is obviated by the method
described above. FIG. 4 shows that during recovery, the
BURA only needs to read a record header 410 to identify the
corresponding save set 411. No additional searching for other
chunks is necessary since all of the save set’s chunks will be
found in one media record 405 in the storage media. Simi-
larly, media record 407 contains all of the chunks from save
set 413, and media record 409 contains all of the chunks from
save set 415. Record header 412 identifies save set 413 and
record 414 identifies save set 415. Therefore, the recovery
process becomes a simple method of streaming the data that
follows the record header. As a result, recovery is much faster,
more efficient and more accurate.

One will appreciate that the BURA server may also use the
method of multiple circular buffers during the recovery pro-
cess. Once a save set is identified and streamed from the
storage media, it can be stored in a circular buffer before
streaming to the client. If multiple save sets are selected for
recovery, then each save set will have its own circular buffer,
thereby allowing the BURA server to recover more save sets
at a time. The recovered data can thereby be directed to a
single client or multiple clients, depending upon the nature of
the recovery request.

One will appreciate that in the description above and
throughout, numerous specific details are set forth in order to
provide a thorough understanding of the present invention. It
will be evident, however, to one of ordinary skill in the art,
that the present invention may be practiced without these
specific details. For example, one will appreciate that other
methods of streaming save sets or backup data to the BURA
server may be contemplated without departing from this dis-
closure or the scope of the invention, so long as once the
BURA server receives the save sets, there are each stored in
their own circular buffer. In other instances, well-known
structures and devices are shown in block diagram form to
facilitate explanation. The description of the preferred
embodiments is not intended to limit the scope of the claims
appended hereto.

What is claimed is:

1. A method for storing data comprising:

receiving, by a server, data chunks over a network connec-

tion, the data chunks being subdivisions of a save set of
a plurality of save sets, each save set originating from a
different device;

creating, on the server, a plurality of circular buffers for

each of the plurality of save sets, each circular buffer
only including data for a corresponding save set;

20

25

30

35

40

45

50

55

60

6

storing, on the server, received data chunks of a first save
set in a first circular buffer of the plurality of circular
buffers, wherein the received data chunks of the first
save set are not separated by chunk headers within the
first circular buffer;

creating, by the server, a record header associated with all

the data chunks of the first save set, the record header
including metadata about the device from which the first
save set originated;

storing, on the server, received data chunks of a second

save set in a second circular buffer of the plurality of
circular buffers, wherein the received data chunks of'the
second save set are not separated by chunk headers
within the second circular buffer; and

in response to all of the data chunks of the first save set

being stored in the first circular buffer, writing the
received data chunks of the first save set and the record
header to a first media record on a storage media before
writing any portion of the second save set to a second
media record on the storage media, the storage media
being coupled to the server and comprising backup data
for a plurality of client devices, the data chunks of the
first save set and the record header being stored together
in the first media record.

2. The method of claim 1, wherein the storage media is
tape.

3. The method of claim 1, wherein the storage media is
disk.

4. The method of claim 1 wherein all the data chunks of the
first save set can be recovered from the first media record, and
all the data chunks of the second save set can be recovered
from the second media record.

5. The method of claim 1 wherein the first media record
includes data from a first client and excludes data from a
second client.

6. The method of claim 1 comprising:

upon receiving a request to recover the first save set, locat-

ing on the first media record each data chunk of the
plurality of data chunks from the first save set.

7. The method of claim 1 comprising:

after the writing the contents of the first circular buffer to a

first media record, upon receiving a request to recover
the first save set, reading the record header associated
with the first save set;

streaming a first data chunk written to the first media record

in response to the request to recover the first save set; and
streaming a second data chunk written to the first media
record after the streaming the first data chunk, wherein
the first data chunk and the second data chunk are from
the first save set, the first data chunk immediately fol-
lows the first record header within the first media record
on the storage media, and the second data chunk imme-
diately follows the first data chunk on the storage media.
8. A method for storing data comprising:
receiving, by a server, data chunks over a network connec-
tion, the data chunks being subdivisions of a save set of
a plurality of save sets, each save set originating from a
different device;
creating, on the server, a plurality of circular buffers for
each of the plurality of save sets, each circular buffer
only including data for a corresponding save set;

storing, on the server, received data chunks of a first save
set and associated record metadata for the first save setin
a first circular buffer of the plurality of circular buffers,
wherein the received data chunks of the first save set are
not separated by chunk headers within the first circular
buffer;

US 9,244,927 B1

7

creating, by the server, a record header associated with all
the data chunks of the first save set, the record header
including metadata about the device from which the first
save set originated;
storing, on the server, received data chunks of a second
save set and associated record metadata for the second
save set in a second circular buffer of the plurality of
circular buffers, wherein the received data chunks of the
second save set are not separated by chunk headers
within the second circular buffer; and
in response to all of the data chunks of the first save set
being stored in the first circular buffer, writing the
received data chunks of the first save set and the record
header to storage media before writing any portion of the
second save set, the storage media being coupled to the
server and comprising backup data for a plurality of
client devices, the data chunks of'the first save set and the
record header being stored together in the first media
record.
9. The method of claim 8, wherein the storage media is
tape.
10. The method of claim 8, wherein the storage media is
disk.
11. A non-transitory computer readable medium contain-
ing computer readable instructions for storing data, the com-
puter readable instructions comprising:
computer program code for receiving, by a server, data
chunks over a network connection, the data chunks
being subdivisions of a save set of a plurality of save sets,
each save set originating from a different device;

computer program code for creating, on the server, a plu-
rality of circular buffers for each of the plurality of save
sets, each circular buffer only including data for a cor-
responding save set;
computer program code for storing, on the server, received
data chunks of a first save set in a first circular buffer of
the plurality of circular buffers, wherein the received
data chunks of the first save set are not separated by
chunk headers within the first circular buffer;

computer program code for creating, by the server, a record
header associated with all the data chunks of the first
save set, the record header including metadata about the
device from which the first save set originated;

computer program code for storing, on the server, received
data chunks of a second save set in a second circular
buffer of the plurality of circular buffers, wherein
received data chunks of the second save set are not
separated by chunk headers within the first circular
buffer; and

computer program code for, in response to all of the data

chunks of the first save set being stored in the first
circular buffer, writing the received data chunks of the
first save set and the record header to storage media
before writing any portion of the second save set, the
storage media being coupled to the server and compris-
ing backup data for a plurality of client devices, the data
chunks of the first save set and the record header being
stored together in the first media record.

12. A non-transitory computer readable medium contain-
ing computer readable instructions for storing data, the com-
puter readable instructions comprising:

10

30

35

40

45

50

8

computer program code for receiving, by a server, data
chunks over a network connection, the data chunks
being subdivisions of a save set of a plurality of save sets,
each save set originating from a different device;

computer program code for creating, on the server, a plu-
rality of circular buffers for each of the plurality of save
sets, each circular buffer only including data for a cor-
responding save set;

computer program code for storing, on the server, received
data chunks of a first save set and metadata for the first
save set in a first circular buffer of the plurality of circu-
lar buffers, wherein the received data chunks of the first
save set are not separated by chunk headers within the
first circular buffer;

computer program code for creating, by the server, a record
header associated with all the data chunks of the first
save set, the record header including metadata about the
device from which the first save set originated;

computer program code for storing, on the server, received
data chunks of a second save set and metadata for the
second save set in a second circular buffer of the plural-
ity of circular buffers, wherein the received data chunks
ofthe second save set are not separated by chunk headers
within the second circular buffer; and

computer program code for, in response to all of the data
chunks of the first save set being stored in the first
circular buffer, writing the received data chunks of the
first save set and the record header to storage media
before writing any portion of the second save set, the
storage media being coupled to the server and compris-
ing backup data for a plurality of client devices, the data
chunks of the first save set and the record header being
stored together in the first media record.

13. A system for storing data comprising:

a server with one or more processors for receiving data
chunks over a network connection, the data chunks
being subdivisions of a corresponding save set, each
save set originating from a different device, for creating
a circular buffer for each of the save sets, each circular
buffer only including data for a corresponding save set,
for storing received data chunks of a first save set in a
first circular buffer of the created circular buffers, for
creating a record header associated with all the data
chunks of the first save set, the record header including
metadata about the device from which the first save set
originated, for storing received data chunks of a second
save setin a second circular buffer of the created circular
buffers, and for writing, in response to all of the data
chunks of the first save set being stored in the first
circular buffer, the received data chunks of the first save
set and the record header to storage media before writing
any portion of the second save set, wherein the first save
set and the second save set are each comprised of a
plurality of data chunks not separated by chunk headers,
the storage media being coupled to the server and com-
prising backup data for a plurality of client devices, the
data chunks of the first save set and the record header
being stored together in a first media record.

#* #* #* #* #*

