US009075722B2

a2 United States Patent
Naik et al.

US 9,075,722 B2
Jul. 7, 2015

(10) Patent No.:
(45) Date of Patent:

(54) CLUSTERED AND HIGHLY-AVAILABLE
WIDE-AREA WRITE-THROUGH FILE
SYSTEM CACHE

(71) Applicant: International Business Machines

Corporation, Armonk, NY (US)

(72) Inventors: Manoj P. Naik, San Jose, CA (US);

Frank B. Schmuck, Campbell, CA

(US); Anurag Sharma, Mountain View,

CA (US); Renu Tewari, San Jose, CA

(US)

(73) International Business Machines

Corporation, Armonk, NY (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 260 days.
2]
(22)

Appl. No.: 13/864,313

Filed: Apr. 17, 2013

Prior Publication Data

US 2014/0317359 Al Oct. 23, 2014

(65)

Int. Cl1.

GO6F 17/30
GO6F 15/16
GO6F 15/00
GO6F 12/08
U.S. CL

CPC

(51)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(52)

GOGF 12/0815 (2013.01); GOGF 17/30115
(2013.01); GOGF 17/30132 (2013.01); GO6F
17/30067 (2013.01); Y10S 707/00 (2013.01):
Y108 707/99941 (2013.01); Y108 707/99931
(2013.01)

100

Processor
104
Date Storage
Device 108

ey

, Program |

o
Computer 102

(58) Field of Classification Search

CPC ... GOG6F 17/30115; GO6F 17/30132;
GOGF 17/30067; Y10S 707/00; Y10S

707/99931; Y108 707/99941

USPC i 707/615, 822

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

Fishetal.ccoocviniinininnnns 1/1
Slivka et al.

‘Whitehouse 707/704
DeCusatis et al. 711/141

5,828,876 A * 10/1998
6,192,432 Bl 2/2001
8,788,474 B2* 7/2014
8,788,760 B2* 7/2014
2008/0046538 Al 2/2008 Susarla et al.
2012/0215970 Al 82012 Shats

OTHER PUBLICATIONS

Chen, PM. et al.; “The Rio file cache: surviving operating system
crashes”: SIGPLAN Notices, vol. 31, No. 9, pp. 74-83, Sep. 1996.

(Continued)

Primary Examiner — Cheryl Lewis
(74) Attorney, Agent, or Firm — Patricia B. Feighan

(57) ABSTRACT

A method for accessing data stored in a distributed caching
storage system containing a home cluster and a secondary
cluster is provided. A first copy of a file is stored on the home
cluster and a second copy of'the file is stored on the secondary
cluster. The second copy of the file is associated with an inode
data structure having a consistency attribute. An input/output
request is received directed to the file and indicates that file is
in an inconsistent state by updating the inode’s consistency
attribute. The first copy and the second copy of the file is
updated according to the received input/output request and it
is determined whether the first copy and the second copy were
updated successfully. The maintaining of the inode’s consis-
tency attribute is indicative of the inconsistent state of the file.

20 Claims, 6 Drawing Sheets

U8, East (Home Site)

NFS or CIFS
Cache File

Cluster 110

System

Server 122

Local Area Network (LAN)
us

Wide Area Network (WAN

Processor
104

U.S. West (Cache Site)

Pata Storage
Device 106
L
/Software,
[Program |
s/

NFS or CIFS

Home File
System

Cluster 114

Server 124

Computer 118

Local Area Network (LAN)
120

US 9,075,722 B2
Page 2

(56) References Cited Demeter, A. et al.; “Configuring Highly Available p609 Clusters
Using HACMP 4.5”; IBM Corporation Corporation, www.ibm.com/

OTHER PUBLICATIONS redbooks/redp0218; Jul. 2002.

IBM; “A method to use locking to ensure data integrity in a recover-
able data processing system in a highly available enviornment”;
http://www.ip.com/pubview/IPCOMO000183397D; May 21, 2009. * cited by examiner

U.S. Patent Jul. 7, 2015 Sheet 1 of 6 US 9,075,722 B2

100 U.S. East (Home Site)

Processor
104 “l
NFS or CIFS
Pata Storage Cache File
Device 106 System
e Cluster 110
/Softwa re,
\ Program |
ﬁ/ Server 122
Computer 102

Local Area Network (LAN)

\/’_

Wide Area Network (WAN)
112

U.S. West (Cache Site)

Processor -
104
NFS or CIFS
Home File
PData Storage System
Device 106 Cluster 114
‘Software',
\ Program |
m J Server 124
Computer 118

Local Area Network (LAN)

FIG. 1

U.S. Patent Jul. 7, 2015 Sheet 2 of 6 US 9,075,722 B2

200 ’l

Computer Computer Computer
118 118 118

Local Area Network (LAN)
120

Write -Through File
System Cache

Program
204 File System Daemon

Process 202

NFS or CIFS Cache File
System Cluster 114

Server 12

FIG. 2

U.S. Patent Jul. 7, 2015 Sheet 3 of 6 US 9,075,722 B2

SOO’l
(START)

Received read command to a file. 302

l

T T~
o —

////// . . \\\\\\ -~ \\\
=T Is file consistent? 304 = No—>(A
P
§
(/E\ Perform read from the local copy of the file and
—>
S return data to caller. 306

FIG. 3A

U.S. Patent Jul. 7, 2015 Sheet 4 of 6 US 9,075,722 B2

) (CsTART)

Received write command to a file. 308

<ij:/ Is file consistent? 310 \:;> NO—* A)

P Generate write-ahead log (WAL) entry and
(B —* update the inode of the file as “inconsistent”.

Y
Issue local write and remote write operations in
parallel. 314

<:j:lf)/ia both operations succeed? @iﬁ:‘/

No

Generate WAL entry and update the inode of
the file as “consistent”. 322

v

o D| d WAL and ino d\é\\‘\\ Leave local copy of the

<\\\\Hp date succeed? 324 ///::—No—» inode as ér;cgnsmtent .

\.L/ l
3
v

Return success to Return failure to caller.

caller. 320
326

FIG. 3B

U.S. Patent Jul. 7, 2015 Sheet 5 of 6 US 9,075,722 B2

300"1 @

Attempt to make the local copy of the file
consistent again by performing a remote read.
328

Did remote read succeed? 330

-<
1)
v
Perform local write with data retrieved.
332

Return failure to caller
and leave file as
“‘inconsistent”. 342

Did local write succeed? 334

Generate WAL entry and update the inode of
the file as “consistent”. 336

'

No Did WAL and inode

update succeed? 338

Was original command
aread operation?
340

(®)

FIG. 3C

US 9,075,722 B2

Sheet 6 of 6

Jul. 7, 2015

U.S. Patent

¥ 'Old
A RETTEITET
| ¥p waLdvey
| NmomaEn
o
988
i [
e e .
,,,,, i _ 828 (SHNALSAS BNIIG-
4
13910 | JUIUIIN O AT T5VAD5 T9AN
(9VHOLS THONYL Je—— =77 I 1/
956 —_ TN/ | B e
//11/1....... e M w ///..I.!.i...f.. T,
. Bew e
PE6~ 0E8
N ower |
. T re8—
SuIMe | o |
LT BB
| | S BOLE T
M 928 08—
. oP8
SUERHETTHREITEIE] | SUEERRETEILT
b ” AN
P*2‘q°2006 p*2'q‘e008

US 9,075,722 B2

1
CLUSTERED AND HIGHLY-AVAILABLE
WIDE-AREA WRITE-THROUGH FILE
SYSTEM CACHE

BACKGROUND

The present invention relates to data caching in geographi-
cally distributed file systems.

Distributed wide-area file-caching products allow enter-
prises to easily make data available across geographically
dispersed locations. These systems usually comprise a central
“home” file system cluster, and a set of “secondary”, i.e.,
“cache” file system clusters. The “home” cluster contains the
master copy of all the files and directories, and the secondary,
i.e., cache file system clusters essentially cache copies of files
from the home cluster. This caching occurs when an operation
is performed on a file in the secondary, i.e., cache file system
cluster.

In the cache cluster, cache misses on read operations (e.g.
read() or fstat() must be handled synchronously, i.e. the caller
is blocked until sufficient data has been fetched from the
home site. However, modifications to the file system
namespace or file content can be pushed from the cache site to
the home site in either a synchronous (write-through) or asyn-
chronous (write-back) fashion.

Existing state-of-the-art “write-through file caching” prod-
ucts invalidate the home copy of the file when it is modified on
the cache site. In existing “write-through file caching prod-
ucts” when a modification occurs, the cache site’s file system
discards the locally cached copy of the file, and performs the
write operation directly on the home site. Then, a subsequent
read operation issued by the application on the cache site
causes the file to be re-cached from the home site. Therefore,
even though the write committed successfully from the appli-
cation’s perspective, the file may become unavailable, if the
home site fails or if the cache site becomes disconnected from
the home, since the file is not re-cached locally until the next
read. Furthermore, read operations that follow a write, actu-
ally incur write-amplification, due to the re-caching of the
file.

BRIEF SUMMARY

A method for accessing data stored in a distributed caching
storage system containing a home cluster and a secondary
cluster is provided. A first copy of a file is stored on the home
cluster and a second copy of'the file is stored on the secondary
cluster. The second copy of the file is associated with an inode
data structure having a consistency attribute. An input/output
request is received directed to the file and indicates that file is
in an inconsistent state by updating the inode’s consistency
attribute. The first copy and the second copy of the file is
updated according to the received input/output request and it
is determined whether the first copy and the second copy were
updated successfully. The maintaining of the inode’s consis-
tency attribute is indicative of the inconsistent state of the file.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

These and other objects, features and advantages of the
present invention will become apparent from the following
detailed description of illustrative embodiments thereof,
which is to be read in connection with the accompanying
drawings. The various features of the drawings are not to scale
as the illustrations are for clarity in facilitating one skilled in

10

15

20

25

30

35

40

45

50

55

60

65

2

the art in understanding the invention in conjunction with the
detailed description. In the drawings:

FIG. 1 illustrates a networked computer environment in
which embodiments of the present invention may be prac-
ticed;

FIG. 2 illustrates a networked computer environment with
an exemplary caching site server in accordance with an
embodiment of the present invention;

FIGS. 3A-3C is aflowchart illustrating the steps carried out
by a write-through file cache program in accordance with an
embodiment of the present invention; and

FIG. 4 is a block diagram of internal and external compo-
nents of computers depicted in FIG. 1 in accordance with an
illustrative embodiment of the present invention.

DETAILED DESCRIPTION

A typical distributed file system comprises a plurality of
clients and servers interconnected by a Local Area Network
(LAN) or Wide Area Network (WAN). The sharing of files
across such networks has evolved over time. The simplest
form of sharing data allows a client to request files from a
remote server, also known as a home cluster. Data is then sent
to the client and any changes or modifications to the data are
returned to the home cluster.

Distributed file systems improve the efficiency of process-
ing of distributed files by creating a file cache at each client
location that accesses server data. The home cluster contains
the master copy of all the files and directories, and the client
file system, also known as a secondary file system, clusters
essentially cache copies of files from the home cluster. This
cache is referenced by client applications and only a cache
miss may cause data to be fetched from the home cluster.
Caching of data reduces network traffic and speeds response
time at the client location. However, since multiple caches
might exist in the system, it is imperative to ensure that cache
coherency is maintained. The cached data should be updated
when the data stored on the server is changed by another node
in the network after the data was loaded into the cache. How-
ever, a system or network failure may prevent the cached data
from being updated or the server data from being accessible
prior to the first read and then write on the caching client. As
such, there is greater potential for cache inconsistency.

Currently, geographically distributed caching file systems
cluster cache data from the home site via Network File Sys-
tem (NFS) or Common Internet File System (CIFS). Caching
sites are generally readers with a few sites being writers.
Typically, when a write request is issued, it is only written to
the home site. The caching site is established upon the first
read from the home site wherein the data is fetched from the
home site and stored on the cache site. However, a system or
WAN failure may prevent the caching site from being updated
or the home site being accessible prior to the first read and
then write on the caching site. As such, there is greater poten-
tial for inconsistency between the home site and the caching
site. Furthermore, it is extremely difficult in the current envi-
ronment to simultaneously write to the home site and the
caching site since there may be a system or WAN {failure prior
to both writes succeeding. It becomes very difficult to deter-
mine if the write succeeded or failed on both sites. All these
issues can cause a problem with data integrity in the distrib-
uted caching file system.

The following described exemplary embodiments provide
a system, method and program product to update both a
remote copy and local copy of a file. Currently, when a write
request is issued, the write is only applied to the home site and
the remote cache copy is deleted from the cache site. After a

US 9,075,722 B2

3

successful write on the home site, a subsequent read from the
cache site would cause data to be read remotely from the
home site. After the first remote read is performed on the
cache site, data is copied to the cache site from the home site
and is stored locally on the cache site for subsequent reads.
This may result in slower initial reads from the remote site
since data is not stored locally until it is fetched from the
home site upon the first read. It may also result in data being
inaccessible from the home site should a network failure
occur.

For example, if a network connection failure were to occur
after a successful write to the home site, but prior to the first
read from the cache site, data would not be able to be read
from the cache site until network connectivity was restored
and a retrieval of data from the home site could be performed.
As such, it may, therefore, be advantageous to have efficient
access to file system content that is read heavy, but needs to be
accessed at geographically distributed locations. Locally
cached data would be available for at least read requests, if the
WAN connection or the home site fails.

Furthermore, it may, therefore, be advantageous to provide
a data storage system that may write the data at the home site
and the cache site whenever a write request is issued at the
cache site. In a certain embodiment, after a write request is
issued at the cache site, the file will be updated in parallel on
the home and cache sites. The data storage system described
herein may store references to all files to facilitate writing to
and reading each file. These references may include metadata
structures called identification nodes (inodes). Notably, each
file may have an associated inode. The inode attached to the
file may be used to track the consistency of the file on both the
home and cache sites.

According to another aspect of the present embodiment, a
write-ahead log (WAL) may be used to keep track of any
modifications that have taken place on the home site and
cache site. In a data storage system using WAL, all modifica-
tions are written to a log before they are applied. Both the redo
and undo information may be stored in the log. One advantage
of'having the data written to both the home and the cache site
is that the data will always be available locally, whether
reading from the home site or the cache site, regardless of
whether there is a successful network connection. Another
advantage of having the data stored locally at both the home
site and the cache site is that it is much faster to perform the
first read from the cache site without having to fetch it from
the home site first. Yet another advantageous aspect provides
a current backup of data for availability and security purposes
since the file will be stored locally both at the home site and at
the cache site.

Referring to FIG. 1, an exemplary networked computer
environment 100 is depicted in which various embodiments
of the present invention may be practiced. The networked
computer environment 100 may include a plurality of LANs
116 and 120 (only two of which are shown), client computers
102 and 118 and server computers 122 and 124 intercon-
nected by corresponding LANs 116 and 120. It should be
appreciated that FIG. 1 provides only an illustration of one
implementation and does not imply any limitations with
regard to the environments in which different embodiments
may be implemented. Many modifications to the depicted
environments may be made based on design and implemen-
tation requirements.

The client computer 102 may communicate with server
computer 122 viathe LAN 116. Similarly, the client computer
118 may communicate with server computer 124 via the LAN
120. The server computer 122 may communicate with server
computer 124 via WAN 112. Networks 112, 116 and 120 may

10

15

20

25

30

35

40

45

50

55

60

65

4

include connections, such as wire, wireless communication
links, or fiber optic cables. As will be discussed with reference
to FIG. 4, server computers 122 and 124 may include internal
components 800a, 8005 and external components 900a,
9005, respectively, and client computers 102 and 118 may
include internal components 800c¢, 8004 and external compo-
nents 900¢, 900d, respectively. Client computers 102 and 118
may be, for example, a mobile device, a telephone, a personal
digital assistant, a netbook, a laptop computer, a tablet com-
puter, a desktop computer, or any type of computing devices
capable of issuing an input/output (I/O) request.

An application program, such as software program 108
may run on the client computers 102 and 118 and may be
programmed to issue an 1/O request, such as, a write request
oraread request to access data stored on the server computers
122 and 124. The server computer 124 may be programmed to
execute a write-through file system cache program 204 (FIG.
2) to write the data on a cache site. For illustrative purposes,
the home site may be on the east coast and the cache site may
be on the west coast. For example, a caller using an applica-
tion running on a client computer may issue a write request
from client computer 118 on the cache site, which may access
server computer 124 on the cache site via the LAN 120. The
server computer 124 may then execute the write-through file
system cache program 204 to check the consistency of the
file, i.e. whether the cache copy and the home copy are the
same, update the WAL and then write the data on the home
site and the cache site. Additionally, a caller program, such as
software program 108, running locally at client computer 118
on the cache site may issue a read request. Then client com-
puter 118 on the cache site may access server computer 124
on the cache site via the LAN 120. The write-through file
system cache program 204 running on server computer 124
on the cache site may retrieve the file if the file is in a consis-
tent state. Thus, the write-through file system cache program
204 may perform alocal read of the file or it may access server
computer 122 on the home site via WAN 112, if needed, to
copy the file to server computer 124 on the cache site so a
local read may then be made. The read and write operations as
performed by the write-through file system cache program
204 on server computer 124 are explained in more detail
below with respect to FIGS. 3A-3C.

In FIG. 2, a networked computer environment with an
exemplary caching site server is illustrated, in accordance
with an embodiment of the present invention. Client com-
puter 118 communicates with server computer 124 via LAN
120. The server computer 124 is running a protocol which
may include either a network file system (NFS) or common
internet file system (CIFS) cache file system cluster 114.
Users may access the file system cluster 114 via the protocol
NFS or CIFS. The cache file system cluster 114 may run a
background file system process, i.e., a daemon process 202.
In an embodiment of the present invention, the write-through-
file system cache program 204 runs on the daemon process
202. According to an embodiment of the present invention,
the write-through file cache program 204 is a modification to
the caching file system cluster 114. With respect to the
example above, a caller, such as software program 108
(shown in FIG. 1) may issue a read or write request from
client computer 118 on the cache site which may access
server computer 124 on the cache site via the LAN 120. The
server computer 124 may then execute the write-through file
system cache program 204 to read or write the data on the
cache site. The write-through file system cache program 204
runs in the background and may be executed automatically
once the write request is issued.

US 9,075,722 B2

5

Currently, when a write request is issued by a caller pro-
gram, such as software program 108 running on a client
computer, such as client computer 118, the client computer
118 accesses a server, such as server computer 124. The copy
of data on server computer 124 at the cache site would be
deleted and data would be written to the server computer 122
at the home site. Upon the first read of data on the cache site,
server computer 124 would retrieve data from the home site
on server computer 122 and copy it locally to server computer
124 on the cache site. If a network failure were to occur with
respect to the WAN 112 prior to the data being stored on
server computer 124 at the cache site, the caller programs
would be unable to retrieve any data. As such, it may be
advantageous to have data written on both the home site and
the cache site. For example, if the WAN 112 would experi-
ence a network failure, the caller programs on the cache site
would be able to access a locally stored copy of data on server
computer 124 without having to access server computer 122
on the home site via the WAN 112 prior to the first read of the
data.

FIGS. 3A-3C s a flowchart illustrating the steps carried out
by the write-through file system cache program 204 in accor-
dance with an embodiment of the present invention. The
embodiment incorporates the use of an inode data structure
attached to the file and a write-ahead log (WAL) for crash
recovery purposes as described in further detail below. Flow-
chart 300 may be described with the aid of the system archi-
tectures 100 shown in FIGS. 1 and 200 shown in FIG. 2.
Referring to FIG. 3A, at 302, the client computer 118 at the
cache site may receive an 1/O request, such as a read request
to read a file. For example, client computer 118 may be
located at a cache site, and the software program 108, running
on the client computer 118, may issue a read request directed
to a file. Then client computer 118 may access server com-
puter 124 via the LAN 120 and, at 304, the write-through file
system program 204, located on server 124, may check to see
if the file is consistent.

A file is deemed consistent when the local copy of the file
and the remote copy of the file are the same, i.e., the copy of
the file on the cache site server is the same as the copy on the
home site server. In an embodiment, consistency of a file may
be determined by reading the inode attached to the file. Every
file has an inode associated with it. An inode data structure
stores metadata, i.e., attributes describing a file, such as cre-
ation time, permissions, etc. The present embodiment may
store the consistency or inconsistency of the file in an attribute
of the inode associated with the file. For example, if a caller
program issues a read request on the cache site from local
client computer 118, then client computer 118 will access
local server computer 124 via the LAN 120. Then the write-
through cache file system program 204 running on computer
server 124 will check the inode associated with the corre-
sponding file to determine if the file is in either a consistent or
inconsistent state. If the inode attribute associated with the
file on local server computer 124 indicates a consistent state,
i.e., the same as the copy on the home site, then a read is
performed from the local copy of the file on server computer
124 onthe cache site and data is returned to the caller software
program 108, at 306. As such, the caller software program
108 in the previous example would be able to read the file
locally from server computer 124 on the cache site without
having to access the file on server computer 122 on the home
site via the WAN 112.

Referring to FIG. 3C, if at 304 the file on server computer
124 is determined to be inconsistent by the write-through file
system program 204, then an attempt will be made to make
the local copy of the file consistent by performing a remote

20

40

45

6

read from server computer 122 on the home site, at 328. For
example, the write-through cache file system program 204
running on server computer 124 will check the inode associ-
ated with the file to determine if the file is consistent or
inconsistent. If the inode attribute is indicative of an incon-
sistent state, then the write-through cache file system program
204 running on server computer 124 on the cache site will
access server computer 122 on the home site via WAN 112 in
attempt to retrieve the file from server computer 122 so a
remote read may be performed.

At 330, the write-through file system program 204 deter-
mines whether the remote read was successful from server
122 on the home site. If the remote read failed, then the caller
software program 108 would receive a failure message and
the inode associated with the file would remain as inconsis-
tent, at 342. With respect to the example above, if the write-
through cache file system program 204 running on server
computer 124 on the cache site accessed server computer 122
on the home site via WAN 112 and was unsuccessful in
retrieving the file from server computer 122 on the home site,
then, at 342, the write-through cache file system program 204
running on server computer 124 on the cache site may return
a failure message to the caller and the inode attribute associ-
ated with the file on server computer 124 would remain as
inconsistent.

If, at 330, the write-through cache file system program 204
determines that the remote read was successful, then, at 332,
an attempt may be made to write the retrieved copy of the file
locally onto the server computer 124 on the cache site. Refer-
ring to the example above, if the write-through cache file
system program 204 running on server computer 124 on the
cache site accessed server computer 122 on the home site via
WAN 112 and was successful in retrieving the copy of the file
from server computer 122 on the home site 330, then the
write-through cache file system program 204 running on
server computer 124 on the cache site would attempt to write
the file to server computer 124 on the cache site at 332, in
order to make both copies of the file substantially identical.

At 334, the write-through cache file system program 204
determines whether the writing of the file locally to server
computer 124 was successful. If it was not successful, then a
failure message is returned to the caller software program 108
and the inode attribute is left as inconsistent, at 342. Regard-
ing the above example, the write-through cache file system
program 204 running on server computer 124 on the cache
site may attempt to write the copy of the file retrieved from
server computer 122 on the home site to server computer 124
on the cache site 332 and if the write was not successful at
334, then the write-through cache file system program 204
running on server computer 124 on the cache site would
return a failure message to the caller and the inode attribute
associated with the file on server computer 124 would remain
as inconsistent, at 342.

If the writing of the file locally has succeeded, at 332, then
the write-through cache file system program 204 may gener-
ate a write-ahead log (WAL) entry which may describe the
performed operation and the inode attribute would be marked
as consistent, at 336. A WAL, as used hereinafter, is a log
located in the NFS or CIFS cache file system cluster 114
where all modifications are written to before they are applied.
Usually both redo and undo information is stored in the WAL.
The WAL is useful for crash recovery purposes since the WAL
entry is written first, before the file’s inode is updated. There-
fore, if there is a failure before the inode is updated, the WAL
entry contains the necessary information to redo the inode
entry upon recovery. For example, server computer 124 may
be in the middle of performing the writing of the file copy

US 9,075,722 B2

7

locally when there is a loss of power. Upon restart, it may be
beneficial for the write-through file system cache program
204 running on server computer 124 to know whether the
operation it was performing succeeded, half-succeeded, or
failed. If a WAL were used, the write-through file system
cache program 204 could check this log and compare what it
was supposed to be doing when the corresponding server
unexpectedly lost power to what was actually done. On the
basis of this comparison, the write-through file system cache
program 204 could decide to undo what it had started, com-
plete what it had started, or keep things as they are.

At 338, it is determined whether the WAL and inode
updates succeeded. If both operations did not both succeed,
then a failure message would be returned to the caller soft-
ware program 108, at 342. For example, if the write-through
file system cache program 204 running on server computer
124 determines that the WAL and/or inode was not success-
fully updated on server computer 124 on the cache site, then
the write-through file system cache program 204 would leave
the attribute of the inode associated with the file on server
computer 124 marked as inconsistent and return a failure
message to the caller, at 342.

If it is determined that the WAL and inode updates did
succeed (yes branch of 338), then at 340, it is determined
whether the original request was a read request. If it was not
a read request, then a corresponding WAL entry is generated
and the inode of the file is updated as inconsistent, at 312
(FIG. 3B). Next, an attempt is made to write the file in parallel
to both the home site and the cache site.

With respect to the example above, the write-through file
system cache program 204 running on server computer 124
would determine if the WAL and inode updates succeeded at
338. If the updates did succeed at 338, then the write-through
file system cache program 204 running on server computer
124 would determine whether the original request was a read
request, at 340. If the write-through file system cache pro-
gram 204 running on server computer 124 determines that the
original request was not a read request, then the write-through
file system cache program 204 generates a WAL entry on
server computer 124 and the inode associated with the file on
server computer 124 is updated as inconsistent, at 312 (FIG.
3B). Next an attempt is made to write the file in parallel to
both the home site and the cache site by following the steps
314 to 326 (FIG. 3B), which are explained in detail below.

If at 340, it is determined the original request was a read
request, then a read of the file is performed from the local
copy and the data is returned to the caller software program
108, at 306 (FIG. 3A). For example, if, at 340, the write-
through file system cache program 204 running on server
computer 124 determines that the original request was a read
request then the read is performed from the local copy of the
file on server computer 124 on the cache site and the data is
returned to the caller software program 108, at 306. As such,
the caller in the previous example would be able to read the
file locally from server computer 124 on the cache site with-
out having to access the file on server computer 122 on the
home site via the WAN 112.

Referring to FIG. 3B, a caller program may issue a write
request to a file, at 308. For example, the client computer 118
at the cache site may issue a write request to a file, at 308. In
this example, client computer 118 is located on the cache site
and a local caller issues a write request to the file. At 310, the
write-through file system program 204 located on server
computer 124 will check to see if the file is consistent. As
previously explained, a file is deemed consistent when the
local copy of the file and the remote copy of the file are the
same. In an embodiment of the present invention, consistency

5

10

20

25

30

40

45

55

60

65

8

of a file may be determined by reading the inode associated
with the file to see if it is consistent or inconsistent. For
example, if a caller software program 108 issues a write
request on the cache site from local client computer 118, then
client computer 118 will access local server computer 124 via
the LAN 120 and the write-through file system cache pro-
gram 204 running on server computer 124 would check the
inode associated with the file to determine if the attribute is
consistent or inconsistent, at 310.

If, at 310, the write-through file system cache program 204
determines that the file on local server computer 124 is incon-
sistent, then the previously described steps of FIG. 3C may be
performed to attempt to make both copies of the file consis-
tent. With respect to the example above, the caller software
program 108 on the cache site may issue a write request from
client computer 118. Client computer 118 would then access
server 124 via the LAN 120.

If, at 310, the write-through file system cache program 204
determines that the file is consistent, then the WAL entry
would be made on server computer 124 on the cache site
noting that the file is to be updated and the inode attribute
would be changed to inconsistent, at 312. As previously
explained a WAL is a loglocated in the NFS or CIFS cache file
system cluster 114 where all modifications are written to
before they are applied. Usually both redo and undo informa-
tion is stored in the log. The WAL is useful for crash recovery
purposes since the WAL entry is written first, before the file’s
inode is updated. With respect to the example above, once the
write-through file system cache program 204 running on
server computer 124 determines that the file on server com-
puter 124 is consistent, at 310, the write-through file system
cache program 204 running on server computer 124 may
generate the WAL entry on server computer 124 to reflect that
a write request is to be performed. Additionally, the write-
through file system cache program 204 on server computer
124 may update the inode associated with the file on server
computers 124 by changing the attribute to inconsistent, at
312.

At 314, an attempt may be made to write to the copy of the
file on server computer 122 atthe home site and to the copy of
the file on server computer 124 at the cache site, in any order.
For example, the write-through file system cache program
204 running on server computer 124 would issue write
requests to computer servers 124 and 122. Therefore, the
write-through file system cache program 204 running on
server computer 124 would attempt to update both copies of
the file stored, respectively, on the server computer 124 on the
cache site and the server computer 122 on the home site.

Then, at 316, a determination is made as to whether the
write operation succeeded both at the home site and at the
cache site. If the write operation did not succeed at both
locations then, at 318, the inode of the local copy of the file
may be maintained as inconsistent and a failure message may
be returned to the caller software program 108 at 320. For
example, if the write-through file system cache program 204
running on server computer 124 determines that the file was
not successfully written to on both server computer 122 on the
home site and server computer 124 on the cache site, then the
write-through file system cache program 204 running on
server computer 124 may generate the WAL entry on server
computer 124 to reflect that a write request had not suc-
ceeded. Additionally, the write-through file system cache pro-
gram 204 running on server computer 124 may leave the
inode associated with the file on server computer 124 as
inconsistent 318 and return a failure message to the caller, at
320.

US 9,075,722 B2

9

If the write operation successfully updated copies of the
file at both the home and cache locations, then, at 322, the
WAL entry would be made noting that the file was written and
the inode attribute would be marked as consistent. For
example, if the write-through file system cache program 204
running on server computer 124 determines that the file was
successfully updated on both server computer 122 on the
home site and server computer 124 on the cache site, then the
write-through file system cache program 204 running on
server computer 124 may generate the WAL entry on server
computer 124 to reflect that a write request had succeeded.
Additionally, the write-through file system cache program
204 running on server computer 124 may update the inode
associated with the file on server computer 124 to change the
attribute to indicate that the file is now in a consistent state.

At 324, it may be determined whether the WAL and inode
updates succeeded. If the updates did not succeed then the
inode of the local copy of the file may be left as inconsistent,
at 318, and a failure message may be returned to the caller
software program 108, at 320. For example, if the write-
through file system cache program 204 running on server
computer 124 determines that WAL and inode entries were
not successfully updated on server computer 124 on the cache
site, then the write-through file system cache program 204
running on server computer 124 may leave the attribute of the
inode associated with the file marked as inconsistent, at 318,
and may return a failure message to the caller software pro-
gram, at 320.

If, at 324, the write-through file system cache program 204
running on server computer 124 determines that the WAL and
inode updates did succeed, a successful write operation noti-
fication message would be returned to the caller software
program 108, at 326. For example, if the write-through file
system cache program 204 running on server computer 124
determines that WAL and inode were successfully updated on
server computer 124 on the cache site, then the write-through
file system cache program 204 running on server computer
124 would return to the caller a notification message indicat-
ing a successful write operation, at 320.

In a certain embodiment, after a write request is issued at
the cache site, both copies of the file may be updated in
parallel on the home and cache sites. The data storage system
described herein may store references to all files to facilitate
writing to and reading each file. As will be appreciated by one
skilled in the art, aspects of the present invention may be
embodied as a system, method or computer program product.
Accordingly, aspects of the present invention may take the
form of an entirely hardware embodiment, an entirely soft-
ware embodiment (including firmware, resident software,
micro-code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module” or “system.” Furthermore, aspects of
the present invention may take the form of a computer pro-
gram product embodied in one or more computer readable
tangible storage devices having computer readable program
code embodied thereon.

FIG. 4 is a block diagram of internal and external compo-
nents of computers depicted in FIG. 1 in accordance with an
illustrative embodiment of the present invention. It should be
appreciated that FIG. 4 provides only an illustration of one
implementation and does not imply any limitations with
regard to the environments in which different embodiments
may be implemented. Many modifications to the depicted
environments may be made based on design and implemen-
tation requirements.

Data processing system 800, 900 is representative of any
electronic device capable of executing machine-readable pro-

10

15

20

25

30

35

40

45

50

55

60

65

10

gram instructions. Data processing system 800, 900 may be
representative of a smart phone, a computer system, PDA, or
other electronic devices. Examples of computing systems,
environments, and/or configurations that may represented by
data processing system 800, 900 include, but are not limited
to, personal computer systems, server computer systems, thin
clients, thick clients, hand-held or laptop devices, multipro-
cessor systems, microprocessor-based systems, network PCs,
minicomputer systems, and distributed cloud computing
environments that include any of the above systems or
devices.

User client computers 102 and 118, and network server
computers 122 and 124 include respective sets of internal
components 800 a, b, ¢, d and external components 900 a, b,
¢, d illustrated in FIG. 4. Each of the sets of internal compo-
nents 800 g, b, ¢, d includes one or more processors 820, one
or more computer-readable RAMs 822 and one or more com-
puter-readable ROMs 824 on one or more buses 826, and one
or more operating systems 828 and one or more computer-
readable tangible storage devices 830. The one or more oper-
ating systems 828 and program 108 in client computer 102 or
118 and program 204 in network server 124 are stored on one
or more of the respective computer-readable tangible storage
devices 830 for execution by one or more of the respective
processors 820 via one or more of the respective RAMs 822
(which typically include cache memory). In the embodiment
illustrated in FIG. 4, each of the computer-readable tangible
storage devices 830 is a magnetic disk storage device of an
internal hard drive. Alternatively, each of the computer-read-
able tangible storage devices 830 is a semiconductor storage
device such as ROM 824, EPROM, flash memory or any other
computer-readable tangible storage device that can store a
computer program and digital information.

Each set of internal components 800 a, b, ¢, d also includes
a R/W drive or interface 832 to read from and write to one or
more portable computer-readable tangible storage devices
936 such as a CD-ROM, DVD, memory stick, magnetic tape,
magnetic disk, optical disk or semiconductor storage device.
The write-though file cache system program 204 in server
computer 124 can be stored on one or more of the respective
portable computer-readable tangible storage devices 936,
read via the respective R/W drive or interface 832 and loaded
into the respective hard drive 830.

Each set of internal components 800 a, b, ¢, d also includes
network adapters or interfaces 836 such as a TCP/IP adapter
cards, wireless wi-fi interface cards, or 3G or 4G wireless
interface cards or other wired or wireless communication
links. The program 108 in client computer 102 and 118 and
program 204 in network server 124 can be downloaded to
respective client computers 102 and 118 and network server
124 from an external computer via a network (for example,
the Internet, a local area network or other, wide area network)
and respective network adapters or interfaces 836. From the
network adapters or interfaces 836, the program 108 in client
computer 102 and 118; program 204 in network server com-
puter 124 are loaded into the respective hard drive 830. The
network may comprise copper wires, optical fibers, wireless
transmission, routers, firewalls, switches, gateway computers
and/or edge servers.

Each of the sets of external components 900 a, b, ¢, d can
include a computer display monitor 920, a keyboard 930, and
a computer mouse 934. External components 900 q, b, ¢, d
can also include touch screens, virtual keyboards, touch pads,
pointing devices, and other human interface devices. Each of
the sets of internal components 800 a, b, ¢, d also includes
device drivers 840 to interface to computer display monitor
920, keyboard 930 and computer mouse 934. The device

US 9,075,722 B2

11

drivers 840, R/W drive or interface 832 and network adapter
or interface 836 comprise hardware and software (stored in
storage device 830 and/or ROM 824).

Aspects of the present invention have been described with
respect to block diagrams and/or flowchart illustrations of
methods, apparatus (system), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer instructions. These computer
instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other pro-
grammable data processing apparatus to produce a machine,
such that instructions, which execute via the processor of the
computer or other programmable data processing apparatus,
create means for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The aforementioned programs can be written in any com-
bination of one or more programming languages, including
low-level, high-level, object-oriented or non object-oriented
languages, such as Java, Smalltalk, C, and C++. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package, partly
on the user’s computer and partly on a remote computer, or
entirely on a remote computer or server. In the latter scenario,
the remote computer may be connected to the user’s com-
puter through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet service provider). Alter-
natively, the functions of the aforementioned programs can be
implemented in whole or in part by computer circuits and
other hardware (not shown).

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system”. Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

10

15

20

25

30

35

40

45

50

55

60

65

12

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The foregoing description of various embodiments of the
present invention has been presented for purposes of illustra-
tion and description. It is not intended to be exhaustive or to

US 9,075,722 B2

13

limit the invention to the precise form disclosed. Many modi-
fications and variations are possible. Such modifications and
variations that may be apparent to a person skilled in the art of
the invention are intended to be included within the scope of
the invention as defined by the accompanying claims.

What is claimed is

1. A method, executed by a computing device, for access-
ing data stored in a distributed caching storage system con-
taining a home cluster and a secondary cluster, the method
comprising:

storing a first copy of a file on the home cluster and storing

a second copy of the file on the secondary cluster, the
second copy of the file is associated with an inode data
structure having a consistency attribute;

receiving an input/output (110) request directed to the file;

indicating that the file is in an inconsistent state by updating

the inode’s consistency attribute;

updating the first copy and the second copy of the file

according to the received 1/O request;

determining whether the first copy and the second copy

have been updated successfully;

indicating that the file is in a consistent state by resetting

the inode’ s consistency attribute in response to the
determining that the first copy and the second copy have
been updated successfully; and

maintaining the inode’s consistency attribute indicative of

the inconsistent state of the file in response to determin-
ing that either the first copy of the file or the second copy
of' the file has not been updated successfully.

2. The method of claim 1, further comprising generating an
entry in a write ahead log describing the I/O request, in
response to receiving the /O request.

3. The method of claim 2, further comprising updating the
first copy of the file based on the write ahead log entry, in
response to determining that the first copy has not been
updated successfully, and indicating that the file is in a con-
sistent state by resetting the inode’s consistency attribute.

4. The method of claim 2, further comprising updating the
second copy of the file based on the write ahead log entry, in
response to determining that the second copy has not been
updated successfully, and indicating that the file is in a con-
sistent state by resetting the inode’s consistency attribute.

5. The method of claim 1, further comprising:

receiving another /O request directed to the file;

determining whether the inode’s consistency attribute indi-

cates the inconsistent state of the file;
replacing the first copy of the file with the second copy of
the file in response to determining that the inode’s con-
sistency attribute indicates the inconsistent state of the
file and in response to determining that the first copy of
the file has not been updated successfully; and

indicating that the file is in a consistent state by resetting
the inode’s consistency attribute.

6. The method of claim 1, further comprising:

receiving another /O request directed to the file;

determining whether the inode’s consistency attribute indi-

cates the inconsistent state of the file;
replacing the second copy of the file with the first copy of
the file in response to determining that the inode’s con-
sistency attribute indicates the inconsistent state of the
file and in response to determining that the second copy
of the file has not been updated successfully; and

indicating that the file is in a consistent state by resetting
the inode’s consistency attribute.

7. The method of claim 1, wherein receiving the /O request
directed to the file comprises receiving a write request
directed to the file.

10

20

25

30

35

40

45

55

65

14

8. The method of claim 7, further comprising transmitting
a notification message indicating a failure to a sender of the
1/O request, in response to determining that the first copy or
the second copy has not been updated successfully.

9. The method of claim 1, wherein the I/O request con-
forms to either Network File System (NFS) protocol or Com-
mon Internet File System (CIFS) protocol.

10. The method of claim 1, wherein receiving the 1/O
request directed to the file comprises receiving a read request
directed to the file.

11. A computer program product for accessing data stored
in a distributed caching storage system containing a home
cluster and a secondary cluster, the computer program prod-
uct comprising a non-transitory computer readable storage
medium having program code embodied therewith, the pro-
gram code readable/executable by a processor to:

store a first copy of a file on the home cluster and store a

second copy of the file on the secondary cluster, the
second copy of the file is associated with an inode data
structure having a consistency attribute;

receive an input/output (1/O) request directed to the file;

indicate that the file is in an inconsistent state by updating

the inode’s consistency attribute;

update the first copy and the second copy of the file accord-

ing to the received 110 request;

determine whether the first copy and the second copy have

been updated successfully;

indicate that the file is in a consistent state by resetting the

inode’ s consistency attribute in response to determining
that the first copy and the second copy have been updated
successfully; and

maintain the inode’ s consistency attribute indicative of the

inconsistent state of the file in response to determining
that either the first copy of the file or the second copy of
the file has not been updated successfully.

12. The computer program product of claim 11, further
comprising the program code to generate an entry in a write
ahead log describing the I/O request, in response to receiving
the 1/O request.

13. The computer program product of claim 12, further
comprising the program code to update the first copy of the
file based on the write ahead log entry, in response to deter-
mining that the first copy has not been updated successfully,
and indicating that the file is in a consistent state by resetting
the inode’s consistency attribute.

14. The computer program product of claim 12, further
comprising the program code to update the second copy of the
file based on the write ahead log entry, in response to deter-
mining that the second copy has not been updated success-
fully, and indicating that the file is in a consistent state by
resetting the inode’s consistency attribute.

15. The computer program product of claim 11, further
comprising the program code readable/executable by a pro-
cessor to:

receive another 1/O request directed to the file;

determine whether the inode’s consistency attribute indi-

cates the inconsistent state of the file;

replace the first copy of the file with the second copy of the

file in response to determining that the inode’s consis-
tency attribute indicates the inconsistent state of the file
and in response to determining that the first copy of the
file has not been updated successfully; and

indicate that the file is in a consistent state by resetting the

inode’s consistency attribute.

16. The computer program product of claim 11, further
comprising the program code readable/executable by a pro-
cessor to:

US 9,075,722 B2

15

receive another 1/O request directed to the file;

determine whether the inode’s consistency attribute indi-

cates the inconsistent state of the file;

replace the second copy of the file with the first copy of the

file in response to determining that the inode’s consis-
tency attribute indicates the inconsistent state of the file
and in response to determining that the second copy of
the file has not been updated successfully; and

indicate that the file is in a consistent state by resetting the

inode’s consistency attribute.

17. The computer program product of claim 11, wherein
receiving the I/O request directed to the file comprises receiv-
ing a write request directed to the file.

18. The computer program product of claim 17, further
comprising transmitting a notification message indicating a
failure to a sender of the I/O request, in response to determin-
ing that the first copy or the second copy has not been updated
successfully.

19. The computer program product of claim 11, wherein
the 1/O request conforms to either Network File System
(NFS) protocol or Common Internet File System (CIFS) pro-
tocol.

20. The computer program product of claim 11, wherein
receiving the I/O request directed to the file comprises receiv-
ing a read request directed to the file.

#* #* #* #* #*

10

25

16

