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1
GENERALIZED POSITIONAL ORDERING

SUMMARY

Implementations described and claimed herein provide a
method and system for managing execution of commands
for a storage device, the method comprising determining a
plurality of commands to be executed for the storage device
and while a storage device is executing at least one com-
mand, determining an execution order for at least two of the
plurality of commands. Alternate implementation described
and claimed herein provide a computer readable memory for
storing a data structure, the data structure comprising a cost
table comprising a number of cells, each cell containing one
or more cost values related to one of a plurality of traversals
between two locations on a storage device wherein each of
the plurality of traversals is related to completion of one of
a plurality of commands and a benefit array comprising a
number of cells, each cell containing a benefit value related
to completion of one of the plurality of commands. These
and various other features and advantages will be apparent
from a reading of the following detailed descriptions. Other
implementations are also described and recited herein.

BRIEF DESCRIPTIONS OF THE DRAWINGS

FIG. 1 illustrates an example computer system according
to an embodiment disclosed herein.

FIG. 2 illustrates an example disk drive according to an
embodiment disclosed herein.

FIG. 3 illustrates a flowchart of a depth one search
implemented by the hard disk drive of FIG. 2.

FIG. 4 illustrates an example graph using the costs and
benefits related to various commands.

FIGS. 5A and 5B illustrate command-ordering optimiza-
tion trees generated based on the graph of FIG. 4.

FIGS. 6A and 6B illustrate a flowchart of iterative depth
search implemented by the hard disk drive of FIG. 2.

FIG. 7 illustrates a flowchart of a process used by the hard
disk drive of FIG. 2 to initiate the iterative depth search of
FIG. 6.

DETAILED DESCRIPTIONS

FIG. 1 illustrates an example computing system 100 such
as a server, a desktop, a laptop, a media device, a personal
data assistant, etc. The computing system 100 may include
a motherboard 102, a data storage system (DSS) 104, a
random access memory (RAM) 106, a read only memory
(ROM) 106. The DSS 104 includes a disk controller 110, a
disk drive 112 and a number of other components. The
computing system 100 may also include an internal com-
munication bus 120 communicatively connected to one or
more internal devices and to a number of external commu-
nication and input/output devices. For example, an input/
output controller 122 may be used to connect a wireless
communication terminal 124, a keyboard connector 126, and
a mouse connector 128 to the internal communication bus
120. Various components of the computing system 100 may
be powered by a power supply 130. In an embodiment of the
computing system 100, the DSS 104 may employ a method
of reordering read and write commands for a disk drive, the
method comprising, reordering the commands using an
iteratively deepening depth first search. Such reordering of
read and write commands is described in further detail
below.
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FIG. 2 illustrates an example block diagram of a hard disk
drive (HDD) 200. The HDD 200 may include a disk pack
202, which is mounted on spindle motor (not shown). The
disk pack 202 includes one or more individual disks, which
rotate in a direction indicated by the arrow 204 about a
central axis 206. Each surface on each disk of the disk pack
202 may be divided into a number of circumferential tracks,
with each track being further divided into a number of
sectors.

Each surface of each disk has an associated disk read/
write head 208 for communication with the disk surface. The
head 208 is attached to one end of an actuator arm 210 that
rotates about a pivot point 212 to position the head 208 over
a desired data track on a surface within the disk pack 202.
Specifically, the actuator arm 210 may rotate around the
pivot 212 so that the head 208 may be able to read data from
or write data to a surface in the disk pack 202 along an arc
220, wherein the arc 220 may span from close to the central
axis 206 to close to the edge 222 of the disk.

The DSS 104, such as the HDD 200, may receive multiple
commands to write data to or read data from the computing
system 100. When the HDD 200 receives these commands
at a rate faster than the rate the commands can be executed,
the commands are buffered to await their turn for processing
by a microprocessor in the data storage device 104. The
HDD 200 may store the incoming commands in a queue 240
and assign a queue tag to each command waiting to be
processed. The queue tag is generally identical to the queue
tag used by the host for queued host commands. Because
often such queues, such as the queue 240, are limited in size,
data storage devices can generally store only a finite number
of commands. Quite often, the performance of a data pro-
cessing device is measured in terms of the number of
commands processed in given time. Moreover, the order in
which the received commands are processed affects the
performance of the storage device. Reordering the com-
mands may allow for more efficient performance of the drive
hardware.

Therefore, data storage devices, such as the HDD 200,
have an incentive to process the commands as fast as
possible. The HDD 200 may also include a read cache 242
for storing data read from the disk pack 202 in response to
read commands. A write cache 244 may be used to store data
to be written to the disk pack 202. The read cache 242 and
the write cache 244 may be generally implemented by
registers, by random access memory, or by using other
memory structure. In one implementation of the system
disclosed herein, the completion of read and write com-
mands is reordered to maximize cache utilization, or in
combination with one or more other performance measure-
ment such as read throughput, write throughput, etc.

To manage the operation of the HDD 200, a disk con-
troller 246 may process various commands in the queue 240
in a predetermined manner. When determining how to
process the commands the disk controller 246 may consider
a number of different methods. In an embodiment of the
HDD 200, the disk controller 246 may employ a method of
reordering commands for a disk drive, the method compris-
ing, reordering the commands using an iteratively deepening
depth first search. Such reordering of commands is
described in further detail below.

For completing an individual command for a given set of
sectors, the disk controller may have to affect a partial to
more than one circumferential rotation of a disk around the
axis 206. Moreover, the disk controller 246 may also have
to position the head 208 at an appropriate radial position
along the arc 220 (referred to herein as a stroke).
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For example, to execute a command the head 208 has to
seek to a particular track on a particular surface. Moreover,
on a given track, the data has to be written to or read from
a particular sector, therefore, the completion of a command
also cannot begin until the head 208 has reached the begin-
ning of such a sector. Thus, the latency time, which is the
time before a next read or write operation can start based on
the current position of the head 208 includes the seek to
track time and the rotate to starting position time. For
example, if for a given disk the time for rotation of the disk
is 10 ms and the time for a complete stroke of the head
around the arc 220 is 45 ms, the average latency time for a
write operation may be approximately 20 ms, as given by the
sum of one third of the stroke time (15 ms) and one half of
the rotation time (5 ms).

In determining the execution of commands, the disk
controller 246 may order the execution of one or more
commands from the queue 240 such that one or more
parameters, such as the average seek time, total seek time,
etc., is optimized. An example of such optimization is
illustrated in FIG. 3.

Specifically, FIG. 3 illustrates a flowchart 300 of a depth
one best seek time search. In optimizing commands using a
depth one search, at a block 302, the disk controller 246 may
determine the existing commands in the queue 240. As the
queue 240 is generally changing dynamically based on the
commands received from the computing system 100 and
completion of commands execution, the disk controller 246
may use a predetermined rule in deciding when or how often
to take a snapshot of the existing commands in the queue
240. Alternatively, the disk controller 246 may undertake the
reordering only when a pre-determined number of com-
mands are available in the queue 240. Such a rule based on
the number of available commands may be beneficial given
that generally, the larger is the group of available commands,
the better are the benefits achieved by performing the
optimization.

Subsequently, at a block 304, the disk controller 246
determines the current position of the head. Note that while
in the flowchart 300 the steps 302 and 304 are illustrated as
distinct steps, in practice these two steps may be executed
simultaneously. At block 306, the disk controller computes
the seek latency of each command selected at block 302.
Thus, depending on the starting position of each command
and the current position of the head 208, the latency time of
each command is determined.

At block 308, the disk controller 246 selects the next
command. Such selection may be made, for example, by
selecting a command having the lowest latency. Subse-
quently, the disk controller selects a new set of commands
at block 302 and determines the current set of existing
commands.

Note that a number of variations of the one depth search
described above in FIG. 3 are possible. In an alternate
embodiment, the disk controller 246 may wait until a seek
operation is undertaken to move to another disk location
before it determines the “next command after that one” that
will result in the minimum seek time. As a result, this
searching occurs while the disk controller 246 needs more of
the computational bandwidth of a microprocessor than nor-
mal (because it is seeking). Further, the amount of time
available for computation before the head 208 moves is
limited, and once the head 208 moves, the existing compu-
tation of latency time may become invalid. The disk con-
troller 246 may undertake such computation of latency times
and ordering of the commands when the while other activi-
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ties are occurring within the hard disk drive 200 and the disk
controller 246 is not under heavy use.

An example of the benefits of using a search of deeper
than one is illustrated based on the queue containing, for
example, a set of commands A-D at a given point in time,
with the position of the head 208 at the “start” location. The
following table 1 illustrates the locations of the commands
A-D in terms of the angular position (0) on the disk where
the position of the head 208 needs to be to perform the
particular command. Thus, for example, to perform the
operation A, the head 208 needs to be at angular position
represented by 0.3 rotation, for operation B, the head 208
needs to be at angular position represented by 0.4 rotation,
etc.

TABLE 1
Angular Position (6) Buffers
0 0.1 02 03 04 05 0.6 0.7 0.8 09 Freed
Command A A 5
B B 2
C C 15
D D 8

Specifically, Table 1 illustrates that to go from the starting
position of the head 208 (as denoted by “Start”) to command
A will take 0.3 revolution of the disk drive, to go from the
Start (which is at the angular position zero) to location B will
take 0.4 revolution, etc. Note that in the illustrated imple-
mentation the commands A-D in Table 1 are achievable
without an extra revolution of the disk drive. However,
sometime given the track position of a command compared
to the current position of the head 208, it may be necessary
for more than one revolution to go from the Start to a given
command.

Table 1 also provides a listing of the amount of buffer
space that will be freed by executing each of the commands
A-D. Thus, for example, if command A was a write com-
mand, when command A is executed, five units of buffer
space from the write cache 244 will be freed. Similarly, if
command B was also a write command, when command B
is executed, two units of buffer space from the write cache
244 will be freed.

Table 2 below provides an alternate illustration of the
latency times provided above in Table 1. Specifically, Table
2 provides the latency times not only between the starting
position of the head 208 and a starting position of a given
command, but it also gives the latency times between each
combination of commands, such as the time between A and
D, B and C, etc. Furthermore, Table 2 also provides other
costs x,; and y, ; related to each of the commands. Table 2
may also be referred to as a rotational positional ordering
(RPO) table.

TABLE 2
From
Start A B C D
To  Start * 0.3, 0.4, 0.4, 0.5,
Xs.4» Ys-4) Xsz YsB) Xs.o ¥s©)  Ksp Ysp)
A * * 0.1, (1.1, (1.2,
X483 Ya-B) X0 Ya-©) Xap» YaD)
B * 0.9, * (1, (1.2,
Xp. YB-4) Xp.c» YB.©) XB.D>» YB.D)
C * 0.9, (1, * 0.1,
Xca Yeu) Xes YoB) Xcps Yep)
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TABLE 2-continued
From
Start A B c D
D * 0.8, 0.9, 0.9, *

Xp.t» Yp-4) XD YD-B) XD YD-O)

Table 3 below illustrates an array that provides a benefit
related to each of the commands A-D. Specifically, Table 3
provides the buffer resource freed per each of the commands
A-D. Furthermore, Table 3 also provides other benefits z,
related to each of the commands.

TABLE 3
Buffers Freed, etc.
Command A 5,z
B (2, zp)
c (15, )
D (8, zp)

Given the latency time and the buffer resource informa-
tion as per Tables 2 and 3, a simple depth one search that
focuses only on latency time would have selected “Start-A-
B” as the sequence of commands to be executed. This is
because, when the head 208 is at the start position, the
command A is the closest one, and when the head 208 is at
a position given by completion of command A, command B
is the closest one. Notice that the latency time from com-
mand A to command C is 1.1 even though they are on
adjacent sectors. This may be due to the track position of
commands A and C may be such that the there is not enough
time for the head 208 to move from the track of command
A to the track of command C by the time the disk spins 0.1
revolution. As such, the disk will have to complete a full
revolution before the head 208 has moved to the track of
command C.

In selecting the sequence of “Start-A-B,” the buffer
resources freed by completion of a particular command are
not taken into consideration. However, if the buffer
resources are taken into consideration, “Start-C-D”
sequence will be selected, as more buffer resources would
have been freed by such a sequence. Even though, the
sequence “Start-C-D” may take slightly more time to com-
plete. Yet alternatively, a weight may be assigned to each of
the latency time and the buffer resources freed to determine
a sequence that gives the most optimized result.

Furthermore, a depth one search may not always give the
optimal results if a total time for executing the commands,
or the average time in executing the commands, etc., is
selected as the optimized parameter. To get an optimized
result in such as case, a search to a higher depth may be
considered. However, when a large number of commands
are to be analyzed a search to a level deeper than depth one
may be time consuming and the disk controller 246 may not
have the processor time available to do such an extensive
search. For example, if there were five commands and an
exhaustive search to depth of five was to be undertaken to
determine the optimal route, each of 5! (5%4%3%2%1=120)
potential routes will have to be evaluated. Such an analysis
may become quite cumbersome as more commands are
added to the queue and are considered in any optimization
routine.

Alternatively, the commands listed in Table 2 may be
illustrated by a graph. FIG. 4 illustrates an example graph
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400 using costs and benefits related to various commands.
Specifically, the graph 400 includes the seek and execute
time to next command as the cost and the buffer space freed
per commands as the benefit related to various commands.
For simplicity, graph 400 depicts only the first three com-
mands A-C. In graph 400, each of the nodes A-C represents
a command and the buffer space to be freed by execution of
such a command. The edges of the graph (the connectors
between the nodes) illustrate the seek and execute time to go
from the start position to a given command, or the seek and
execute time to go from a given command to the next
command.

The graph 400 may also be referred to as a directed graph
as the values related to at least some of the edges depend on
the direction of the edge. For example, the value of edge A-B
is 0.1 whereas the value of the edge B-A is 0.9. While in
graph 400, the weights attached to the nodes are the buffer
space freed, a number of other parameters, such as a cost or
a benefit related to a command may be attached to the nodes.
Thus, for example, node A may have a parameter related to
SRAM descriptors freed by executing command A attached
to its node. Alternatively, the amount of firmware contrib-
uted by completing a operation may also be attached to the
nodes A-C. Generally, parameters assigned to the nodes
represent some type of benefit attained by performing a
particular command, however, in some embodiments, a cost
may also be assigned to a node.

In a similar fashion, while the edges between the nodes
represent the time for the movement of the head 208 from
one command to another, other parameters related to such
operation may also be denoted. Thus, for example, in an
embodiment, the edges may denote the energy used in
moving the head 208 from one command to another, the
noise generated in moving the head 208 from one command
to another, etc. Generally, parameters assigned to the edges
represent some type of cost in performing a particular
command, however, in some embodiments, a benefit may
also be assigned to an edge.

Based on the graph 400 or the table 2, a command-
ordering optimization tree of a desired depth may be gen-
erated. FIG. 5A illustrates a command-ordering optimization
tree 500 for performing commands in various orders assum-
ing if there were only three commands A, B, and C. Thus,
the optimization tree 500 of FIG. 5A is complete optimiza-
tion tree, i.e., it considers all the potential paths for com-
mands. While the command-ordering optimization tree 500
as depicted in FIG. 5A does not show the costs and benefits
attached to all the paths, one particular path, Start-A-B-C, is
illustrated to have the buffer space freed as the benefit
attached to its nodes and the time to move to the particular
command as the cost attached to various edges. Thus by
completing this path, total 22 units of buffer space will be
freed while the total time would be 1.4 units. Note that
because the paths are shown as complete paths, the total
buffer space freed would be the same. However, the same is
not true for the total time. For example, the path “Start-A-
C-B” would cost 2.4 units of time compared to 1.4 units for
the “Start-A-B-C path.”

As the number of nodes in the command-ordering opti-
mization tree 500 increases, the command-ordering optimi-
zation tree 500 becomes substantially large, as such, it may
not be possible for a microprocessor on a storage device,
such as a microprocessor on the disk controller 246 to
calculate the costs and benefits attached to each of the
various paths. For example, if all of the four commands were
used in calculating the optimization tree, there would be
potentially 24 different paths for order execution (the num-
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ber of paths is equal to the factorial of the number of
commands, thus in this case the potential number of paths
equals 41=24).

FIG. 5B shows a partial optimization tree 502 that illus-
trates some of such 24 potential paths. Specifically, the
optimization tree shows twelve potential paths (Start-A-B-C
... Start-B-D-C) and the related total latency times and total
buffer space freed for a depth of up to three commands deep.
In this illustration paths related to the selection of commands
A and B as the first command are calculated without any
calculations related to the selection of commands C and D
as the first command. Such depiction is for illustration
purpose only, In an alternate illustration, each path to the
depth of level two may be calculated first before any
calculations to the level of depth three is performed.

In an embodiment, when the HDD 200 is performing a
first operation, the disk controller 246 may use commands
A-B in queue 240 to calculate the total cost and total benefits
related to one or more of the paths as illustrated in FIG. 5B.
In a particular case, the disk controller 246 may not be able
to complete all the calculations related to the complete
optimization tree 500 or the partial optimization tree 502.
Thus, the depth to which the optimization tree is searched is
determined dynamically based on the amount of time and
resources available to the disk controller 246. For example,
in one embodiment, when the disk controller 246 runs out of
processor time, it may stop searching the optimization tree
to any additional depth. In an alternate embodiment, when
the disk controller 246 runs out of available resources, such
as registers, etc., it may decide to stop searching the opti-
mization tree to any additional depth.

In such a case, based on the current available information
about total costs and total benefits related to various paths to
the depth searched, the disk controller 246 may decide the
order of execution for the commands A-D. While the opti-
mization tree 502 discloses the values calculated for only
one cost (latency time) and only one benefit (buffers freed),
in an alternate embodiment a number of different costs and
a number of different benefits related to each path may be
calculated. For example, costs related to energy expanded
per each path, the costs related to noise generated per each
path, etc., may also be calculated. The selection of the order
of execution for the commands may also be based on some
weighted formula that assigns different weights to different
costs and benefits. For example, in one embodiment, the
weight assigned to the cost of latency time may be higher
than the weight assigned to the cost of energy expanded.

However, as a compromise, the disk controller may
employ an iteratively deepening depth first search (IDDFS)
algorithm. In employing the IDDFS algorithm, the disk
controller calculates such costs and benefits related to vari-
ous paths iteratively. In employing such a routine, the disk
controller 246 dynamically calculates the cost and benefit
values to a given level depending upon the amount of time
available. Thus, for example, at a given point if the disk
controller 246 has any idle time, it performs calculations as
necessary for a depth one and determines a best path among
the various depth one paths. At this point, if there is more
time available, the disk controller 246 starts making calcu-
lations for various depth 2 searches. Note that once the cost
attached to each alternate routes at depth one are determined,
the value of such costs can be used repeatedly at the
following depths.

The disk controller 246 may dynamically determine what
depth level to perform such searched based on a number of
parameters. In one embodiment, the decision to stop making
further searches to increasing depth may be based on avail-
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able microprocessor time. In an alternate embodiment, the
decision to stop making further searches may be based on
certain threshold, wherein such as threshold may be defined
in the terms of the cost and/or the benefit related to the best
path found by the present searches. Yet alternatively, the
decision to stop making further searches may be based on
the available register space for performing such calculations.
In an embodiment, the IDDFS may be implemented using an
application specific integrated circuit (ASIC), a special
hardware engine, etc. Other methods of performing search
along the optimization trees 500, 502, such as a fixed depth
depth-first search, etc., may also be employed. For example,
in a fixed depth depth-first search, each path is calculated up
to a fixed depth before making calculation for the alternate
paths. Yet alternatively, other type of search method, based
on heuristic observation of past search results, may also be
employed.

Once a decision is made to complete doing calculation for
more depth searches, the disk controller 246 may decide to
commit to only the first, or the most immediate step, based
on the searches. In such a case, the disk controller will restart
calculations for the next step while the immediate step, to
which it has committed, is being performed. In such a case,
the disk controller may recalculate the command-ordering
optimization tree 500 based on the current starting position
and initiate a new depth one search.

FIGS. 6A and 6B illustrate a flowchart 600 of a method
of reordering commands according to one embodiment
illustrated herein. Specifically, the flowchart 600 determines
the order of the commands based on a search of deeper than
depth one. At a block 602, the disk controller 246 is shown
to have an idle time entry. In other words, at block 602, the
disk controller is shown to have microprocessor/CPU time
available to perform calculations of one or more command
ordering/optimization searches. The microprocessor/CPU
may have idle time when one or more commands are being
executed.

A block 604 determines if there is at least one more
command in the queue 240. If there are no more commands
in the queue 240, there is no further operation necessary, as
shown by a block 606. However, the disk controller 246
continues to monitor the queue 240. If it is determined that
there is at least one more command in the queue 240, control
is passed to a block 608. Block 608 determines if there is at
least one depth one search solution for the next command.

If there is no depth-one search solution available for the
next command, a block 610 finds the next best command
ordering choice starting from an endpoint of the current disk
operation based on the current RPO table such as the Table
2. The blocks 608 and 610 represent a special case repre-
senting in effect an IDDFS search invoked with a maximum
search depth of one. If the block 608 finds at least one depth
one search solution for the next command, a block 612
determines if the RPO table, such as the Table 2, has cells
that should be filled out. If the RPO table is not complete, a
block 614 calculates the values for the one or more cells in
the RPO table that are not filled out. Once the RPO table is
completed, block 614 passes the control back to the block
612.

Once the block 612 determines that the RPO table is
complete, that is the values of the inter-operation cost
estimates are filled out, control is transferred to block 616.
Block 616, in effect represents an entry point to an itera-
tively deepening search entry point. In one embodiment, the
control is transferred to the block 616 when the RPO table
has necessary entries filled out and a depth one choice for the
next command is known. In an alternate embodiment, con-
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trol is transferred to block 616 based on some other criterion,
such as a predetermined time limit from starting of certain
operation, command, etc. In such an embodiment, the RPO
table is not completely filled and the subsequent operations
are performed using the information from the partially filled
RPO table.

Block 616 determines the metric for the iteratively deep-
ening search by determining the goal of the iteratively
deepening search. For example, block 616 may determine
what metric to use for reordering commands. In one
example, a metric based on the buffers freed per commands
executed may be a parameter used for reordering the com-
mands. In an alternate embodiment, the queue entries elimi-
nated per time, buffers freed per unit of energy expended,
buffers freed per unit of noise generated, etc may be used as
a parameter used for reordering the commands.

A subsequent block 618 sets the depth search to two (2).
Block 618 may set the depth search to two (2) based on the
amount of processor time available, amount of other pro-
cessor resources available, etc. A block 620 determines
whether the current depth of the search is less than or equal
to the number of commands in the RPO table. If the depth
is found to be higher than the number of commands in the
RPO table, the iterative depth search stops, and as indicated
by block 622, the best course of future action of commands,
given the current information, is known.

If block 620 determines that the current depth of the
search is less than or equal to the number of commands in
the RPO table, a block 624 determines if the current depth
exceeds some pre-determined maximum search depth. Such
maximum claim search depth may be determined based on
some analysis of a number of prior iterative searches. For
example, such an analysis may indicate that heuristically, the
incremental benefits of performing a search at depth n+1
compared to a depth n search are minimal and therefore, it
is not advantageous to perform n+1 depth searches.

If the block 620 determines that the current search depth
does not exceed the pre-determined maximum search depth,
block 626 performs a depth first search of the desired depth
to find a path that maximizes the desired metric (as deter-
mined at block 616). Subsequently, block 628 determines
that best path based on the calculations up to the desired
depth. After incrementing the search depth by 1 at a block
630, the control is transferred to block 620. The results of the
iterative searches at various depths are stored in a memory
that is easily accessible for update and reading, such as on
the registers on a microprocessor, etc. In an implementation,
the disk controller 246 may move a pointer to point to the
registers or memory where the best path at the current depth
search is stored.

FIG. 7 illustrates a flowchart 700 that may activate the
steps represented by the flowchart 600 of FIG. 6. At a block
702, the disk controller 246 recognizes that a current disk
operation, such as a read or a write command is completed.
At block 704, the disk controller 246 orders the next disk
operation, such as another command, based on the best path
as determined by the iterative depth search of FIG. 6. The
disk controller 246 may use, for example, a pointer that
points to the current best path to select the next command.
At block 706, the disk controller 246 deletes the information
from previous searches and sets the search depth to one.
Subsequently, a block 708 transfers control to block 602 of
the flowchart 600 illustrated in FIG. 6.

While the implementations herein are described with
respect to an iteratively deepening search, it should be
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appreciated that other types of searches may be imple-
mented, depending on desired performance characteristics
of the disk drive.

The embodiments described herein are implemented as
logical steps in one or more computer systems. The logical
operations of the embodiments described herein are imple-
mented (1) as a sequence of processor-implemented steps
executing in one or more computer systems and (2) as
interconnected machine or circuit modules within one or
more computer systems. The implementation is a matter of
choice, dependent on the performance requirements of the
computer system implementing embodiments described
herein. Accordingly, the logical operations making up the
embodiments described herein are referred to variously as
operations, steps, objects, or modules. Furthermore, it
should be understood that logical operations may be per-
formed in any order, unless explicitly claimed otherwise or
a specific order is inherently necessitated by the claim
language.

The above specification, examples, and data provide a
complete description of the structure and use of example
embodiments described herein. Since many alternate
embodiments can be made without departing from the spirit
and scope of the embodiments described herein, the inven-
tion resides in the claims hereinafter appended. Furthermore,
structural features of the different embodiments may be
combined in yet another embodiment without departing
from the recited claims. The implementations described
above and other implementations are within the scope of the
following claims.

What is claimed is:
1. A system comprising:
a processor comprising:

a cost table comprising a number of cells, each cell
containing one or more cost values related to one of
a plurality of parameters wherein each of the plural-
ity of parameters is related to completion of one of
a plurality of executable commands;

a benefit array comprising a number of cells, each cell
containing a benefit value related to completion of
one of the plurality of executable commands; and

computer readable instructions encoding a computer
program for executing a computer process on the
processor, the computer process determining plural-
ity of paths for executing the plurality of executable
commands based on the data structure, wherein each
of the plurality of paths providing an execution order
for at least the next two of the plurality of executable
commands, and selecting one of the plurality of
paths such that at least one parameter of the storage
device is optimized, wherein the at least one param-
eter of the storage device is at least one cost attached
to each of the plurality of paths; and

an optimization tree, the optimization tree generated
based on calculating the one or more cost values and
the benefit values related to at least one path of the
optimization tree based on one of (1) a fixed depth
depth-first search; (2) a breadth-first search; and (3) an
iteratively deepening depth first search.
2. The method of claim 1, wherein determining the
execution order further comprises:
determining values of a plurality of cells in a rotational
positional ordering (RPO) table.
3. The method of claim 2, wherein selecting one of the
plurality of paths further comprises determining a plurality
of paths in using a command-ordering optimization tree,
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wherein each path provides an order for executing at least
two or more of the plurality of commands.

4. The method of claim 1, wherein the cost attached to
each of the plurality of paths is at least one of (1) time to
execute the commands related to the each of the plurality of
paths; (2) noise generated in executing the commands
related to the each of the plurality of paths; (3) energy
consumed in executing the commands related to the each of
the plurality of paths; and (4) heat generated in executing the
commands related to the each of the plurality of paths.

5. The method of claim 1, wherein the providing an
execution order for at least the next two of the plurality of
executable commands further comprises preprocessing only
a subset of a plurality of paths for executing at least the next
two of the plurality of executable commands to determine a
cost related to each of the subset of the plurality of paths.

6. A system comprising:

a data structure comprising:

a cost table comprising a number of cells, each cell
containing one or more cost values related to one of
a plurality of parameters wherein each of the plural-
ity of parameters is related to completion of one of
a plurality of executable commands;

a benefit array comprising a number of cells, each cell
containing a benefit value related to completion of
one of the plurality of executable commands; and

computer readable instructions encoding a computer
program for executing a computer process on a
computer system, the computer process determining
plurality of paths for executing the plurality of
executable commands based on the data structure,
wherein each of the plurality of paths providing an
execution order for at least the next two of the
plurality of executable commands, and selecting one
of the plurality of paths such that at least one
parameter of the storage device is optimized,
wherein the at least one parameter of the storage
device is at least one cost attached to each of the
plurality of paths; and

an optimization tree, the optimization tree generated

based on calculating the one or more cost values and
the benefit values related to at least one path of the
optimization tree based on one of (1) a fixed depth
depth-first search; (2) a breadth-first search; and (3) an
iteratively deepening depth first search.

7. The system of claim 6, wherein each of the plurality of
parameters is a traversal representing movement of a head of
the storage device.

8. A method of generating a directed graph based on the
data structure of claim 6, the method comprising:

assigning the one or more cost values to edges of the

directed graph; and

assigning the benefit values to nodes of the directed graph.

9. A non-transitory computer-readable storage medium
encoding a computer program for executing a computer
process on a computer system, the computer process com-
prising:

generating a rotational positional ordering (RPO) table for

executing a plurality of executable commands via

parameter optimization in a plurality of paths in a

storage device by (1) determining cost values related to

a plurality of parameters on the storage device (2)

storing the cost values in a cost table in a computer-

readable memory, (3) determining benefit values

related to each of the plurality of parameters, and (4)
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storing the benefit values in a benefit array in the
computer-readable storage medium, wherein the cost
values and the benefit values are determined when the
storage device is performing one or more commands;

determining a plurality of paths for executing the plurality
of executable commands using the RPO table, each of
the plurality of paths providing execution order for at
least the next two of the plurality of executable com-
mands; and

selecting one of the plurality of paths such that at least one

parameter of the storage device is optimized, wherein
the at least one parameter of the storage device is at
least one cost attached to each of the plurality of paths.

10. The non-transitory computer-readable storage
medium of claim 9, wherein generating the RPO table
further comprises preparing a command-ordering optimiza-
tion tree up to a specific depth based on the RPO table.

11. The non-transitory computer-readable storage
medium of claim 10, wherein the specific depth of the
command-ordering optimization tree is one of (1) deter-
mined dynamically based on an amount of a resource
available to a microprocessor; and (2) pre-determined based
on heuristic analysis of incremental benefits of performing a
search at a depth higher than the specific depth.

12. The non-transitory computer-readable storage
medium of claim 11, wherein the available resource is at
least one of (1) a microprocessor time; and (2) a micropro-
cessor register space.

13. The system of claim 6, wherein the iteratively deep-
ening depth first search is based on a parameter for reorder-
ing commands.

14. The system of claim 13, wherein the parameter is
based on buffers freed per commands executed.

15. The system of claim 13, wherein the parameter is
based on queue entries eliminated per time.

16. The system of claim 13, wherein the parameter is
based on buffers freed per unit of energy expended.

17. The system of claim 13, wherein the parameter is
based on buffers freed per unit of noise generated.

18. The system of claim 6, wherein the cost values
attached to each of the parameters is at least one of (1) time
to execute the commands related to the each of the plurality
of paths; (2) noise generated in executing the commands
related to the each of the plurality of paths; (3) energy
consumed in executing the commands related to the each of
the plurality of paths; and (4) heat generated in executing the
commands related to the each of the plurality of paths.

19. The non-transitory computer-readable storage
medium of claim 9, wherein the cost values attached to each
of the parameters is at least one of (1) time to execute the
commands related to the each of the plurality of paths; (2)
noise generated in executing the commands related to the
each of the plurality of paths; (3) energy consumed in
executing the commands related to the each of the plurality
of paths; and (4) heat generated in executing the commands
related to the each of the plurality of paths.

20. The non-transitory computer-readable storage
medium of claim 9, wherein the providing an execution
order for at least the next two of the plurality of executable
commands further comprises preprocessing only a subset of
a plurality of paths for executing at least the next two of the
plurality of executable commands to determine a cost related
to each of the subset of the plurality of paths.
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