a2 United States Patent

US009454616B2

10) Patent No.: US 9,454,616 B2

Baikov et al. 45) Date of Patent: *Sep. 27, 2016
(54) METHOD AND SYSTEM FOR UNIFYING (56) References Cited
CONFIGURATION DESCRIPTORS
U.S. PATENT DOCUMENTS
(75) Inventors: Chavdar S. Baikov, Sofia (BG); 6,202,207 Bl 3/2001 Donohue
Dimitar Angelov, Montana (BG); 6,604,113 Bl 8/2003 Kenyon et al.
Vladimir Savchenko, Sofia (BG); 6,954,792 B2 10/2005 Kang et al.
Alexander Zubev, Pazardjik (BG); ;’}gz’égg E% éggg; E)harlma it all
Dimitrina Stoyanova, Elhovo (BG) 7:23 1:435 B2 62007 Oﬁtsaey et ak
7,277,935 B2 10/2007 Sato
(73) Assignee: SAP SE, Walldorf (DE) 7,284,039 B2 10/2007 Berkland et al.
7,366,717 B2 4/2008 Warshavsky et al.
7,373,661 B2 5/2008 Smith et al.
(*) Notice: Subject to any disclaimer, the term of this 7,376,959 B2 5/2008 Warshavsky et al.
patent is extended or adjusted under 35 ;’32?’47132 E% ggggg %mlth ‘t’t ?1
A21, ang et al.
US.C. 154(b) by 952 days. 7.467,162 B2 12/2008 Rosenbloom et al.
This patent is subject to a terminal dis- 7,617,480 B2 11/2009 Falter et al.
claimer. 7,640,348 B2 12/2009 Atwal et al.
(Continued)
(21) Appl. No.: 11/238,244 FOREIGN PATENT DOCUMENTS
(22) Filed: Sep. 28, 2005 EP 1318461 Al * 6/2003 ... GO6F 17/30
EP 1387262 Al 2/2004
(65) Prior Publication Data (Continued)
OTHER PUBLICATIONS
US 2007/0073849 Al Mar. 29, 2007
Final Office Action for U.S. Appl. No. 10/749,666 Mailed Nov. 24,
(51) Tnt. Cl 2008, 15 pages.
GOGF 17/30 (2006.01) (Continued)
gng 5?%18 888288 Primary Examiner — Jackie Zuniga Abad
’ (74) Attorney, Agent, or Firm — Schwegman Lundberg &
(52) US. L Woessner, P.A.
CPCcccue. GO6F 17/3089 (2013.01); GOGF 9/54
(2013.01); HO4L 67/025 (2013.01) (57) ABSTRACT
(58) Field of Classification Search A method and system for unifying configuration files. In one

CPC GOG6F 17/3089; GOGF 8/30; GOGF 9/541;

GOG6F 8/65; GOG6F 17/2247, HO4L 67/10;

HO4L 67/02

USPC ittt 709/220-222
See application file for complete search history.

embodiment, a web services configuration file and a web
services client configuration file are identified. The web
services and web services client configuration files are
unified to create a configuration file.

20 Claims, 8 Drawing Sheets

APPLICATION SERVER
402

| WSFRAMEWORK | | WSCFRAMEWORK |
" A
I Lo |
| Lo |
|| wesservices | 1 1 [WEBDERVICES |
|| CONFIGURATION | 1 1 [coniiniion | 1
| DescriPTOR || 1 [COISORITIONS |
|28 ! 1| 40 !
| | | |
WEB SERVICES WEB SERVICES

T00LS CLIENT TOOLS

414 416

VISUAL ADMINISTRATOR 412

US 9,454,616 B2
Page 2

(56)

7,673,282

7,693,955

7,698,684

7,831,693

7,877,725

7,877,726

7,945,893

8,099,709

8,108,830

8,250,522

8,589,518

8,700,681

9,141,592

9,280,527
2001/0029604
2002/0143819
2003/0004746
2003/0005181
2003/0055878
2003/0084056
2003/0110242
2003/0110373
2003/0163450
2003/0191803
2003/0204645
2003/0208505
2003/0226139
2004/0003033
2004/0015564
2004/0017392
2004/0045005
2004/0054969
2004/0068554
2004/0088352
2004/0181537
2004/0199896
2004/0216086
2005/0080801
2005/0091087
2005/0091639
2005/0114394
2005/0125524
2005/0138041
2005/0149552
2005/0154785
2005/0172261
2005/0203933
2005/0216488
2005/0246656
2005/0273703
2005/0278270
2006/0015625
2006/0029054
2006/0031433
2006/0041636
2006/0048097
2006/0136351
2006/0173984
2006/0190580
2006/0200748
2006/0200749
2006/0206890
2006/0236302
2006/0236306
2007/0050482
2007/0064680
2007/0073221
2007/0073753
2007/0073760
2007/0073769
2007/0073771
2007/0118844
2007/0156872
2007/0203820
2007/0204279

References Cited

U.S. PATENT DOCUMENTS

B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

3/2010
4/2010
4/2010
11/2010
1/2011
1/2011
5/2011
1/2012
1/2012
8/2012
11/2013
4/2014
9/2015
3/2016
10/2001
*10/2002
1/2003
1/2003
3/2003
5/2003
6/2003
6/2003
8/2003
10/2003
10/2003
11/2003
12/2003
*1/2004
1/2004
1/2004
3/2004
3/2004
4/2004
5/2004
9/2004
10/2004
10/2004
4/2005
4/2005
4/2005
5/2005
6/2005
6/2005
7/2005
7/2005
8/2005
9/2005
*9/2005
11/2005
12/2005
12/2005
1/2006
2/2006
2/2006
2/2006
3/2006
*6/2006
8/2006
8/2006
9/2006
9/2006
9/2006
*10/2006
10/2006
3/2007
3/2007
3/2007
3/2007
3/2007
3/2007
3/2007
5/2007
7/2007
8/2007
8/2007

Amaru et al.

Karakashian

Baikov

Lai

Vitanov et al.

Sabbouh

Angrish et al.

Baikov

Bibr et al.

Baikov et al.

Baikov et al.

Baikov

Baikov et al.

Baikov

Dreyband et al.

Hanetal.cccoevennn, 707/513
Kheirolomoom et al.

Bau et al.

Fletcher et al.

DeAnna et al.

Brown et al.

Champion

Borenstein et al.

Chinnici et al.

Sharma et al.

Mullins et al.

Lee

Kamen et al. 709/203
Williams

Welch

Karakashian

Chiang et al.

Bales et al.

Kurth

Chawla et al.

Goodman et al.

Bau

Kothandaraman et al.

Smith et al.

Patel

Kaipa et al.

Chandrasekhar et al.

Alcorn et al.

Chan et al.

Reed et al.

Yuknewicz et al.

Chaudhuri et al.

Petrov et al. 707/100
Vasilev et al.

Doughan

Carr et al.

Ballinger et al.

Breh et al.

Patrick et al.

Ballinger et al.

Doshi

Angrish et al. ... 707/1
Emeis et al.
Shu et al.
Shenfield
Shenfield
Shenfield et al.
Bateman et al.
DeBruin et al.
Sundstrom et al.
Savchenko et al.
Bialecki et al.
Baikov

Baikov

Baikov et al.
Baikov

Huang et al.
Stoyanova
Rashid
Warshavsky et al.

............. 717/104

2007/0245167 Al 10/2007 De La Cruz et al.
2008/0189713 Al 8/2008 Betzler et al.
2008/0307392 Al 12/2008 Racca et al.
2010/0077070 Al 3/2010 Baikov et al.
2014/0075291 Al 3/2014 Baikov et al.
2016/0012026 Al 1/2016 Baikov et al.

FOREIGN PATENT DOCUMENTS

EP
WO

1 566 940
WO-03/073309

OTHER PUBLICATIONS

8/2005
9/2003

Non-Final Office Action for U.S. Appl. No. 11/239,546 Mailed Dec.
18, 2008, 11 pages.

Final Office Action for U.S. Appl. No. 10/750,058, Mailed Dec. 23,
2008, 14 pages.

“Sun.com, “The J2EE Tutorial: Web Application Archives” sun.
com/j2ee/tutorial/1-3-fcs/doc/WCC3 html”, 1-4.

Banerji, A. , et al., “Web Services Conversation Language (WSCL)
1.0”, W3C Note, World Wide Web Consortium, URL http://www.
w3.org/TR/wscl10/, (Mar. 2002).

Bussler, Christopher , et al., “A conceptual architecture for semantic
web enabled services”, Dieter Fensel, Alexander Maedche, ACM
SIGMOD Record, v. 31 n.4, (Dec. 2002).

Dustdar, Schahram , et al., “A View Based Analysis on Web Service
Registries”, Martin Treiber, Distributed and Parallel Databases, v.
18 n.2, (Sep. 2005), 147-171.

Final Office Action, Final Office Action from U.S. Appl. No.
10/749,735 mailed Mar. 17, 2008, 14 pgs.

Huhns, Michael N., et al., Service-Oriented Computing: Key Con-
cepts and Principles, IEEE Internet Computing, Munindar P. Singh,
v.9 n.1, (Jan. 2005), 75-81.

Hull, Richard , et al., “Tools for composite web services: a short
overview”, Jianwen Su, ACM SIGMOD Record, v. 34 n. 2, (Jun.
2005).

Shepherd, George , et al., “Programming with Microsoft Visual
C++.Net, Microsoft Press Sixth Edition”, (2003), 391-397, 771,
806-807, 820-826.

Sun.com, “The J2EE Tutorial: Web Application Archives”, http://
java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3 html, 4 pgs.
Non-Final Office Action for U.S. Appl. No. 11/232,660, Mailed
Dec. 22, 2008, 22 pages.

Abdel-Aziz, A A., et al., “Mapping XML DTDs to relational
schemas”, IEEE, (2005), pp. 1-4.

Amer-Yahia, S , et al., “A Web-services architecture for efficient
XML data exchange”, IEEE, (2004), pp. 1-12.

Ege, R K., “Object-oriented database access via reflection”, IEEE,
(1999), pp. 36-41.

Thomas-Kerr, J , et al., “Bitstream Binding Language — Mapping
XML Multimedia Containers into Streams”, IEEE, (2005), pp. 1-4.
Final Office Action for U.S. Appl. No. 11/233,203, Mailed Jan. 27,
2009, 16 pages.

Final Office Action for U.S. Appl. No. 11/238,912, Mailed Feb. 4,
2009, 10 pages.

“U.S. Appl. No. 11/232,717, Non Final Office Action mailed Feb.
26, 20097, 18 pgs.

“U.S. Appl. No. 11/238,873, Non-Final Office Action mailed Jul. 7,
2009, 14 pgs.

“U.S. Appl. No. 11/238,912, Advisory Action mailed Jul. 9, 2008,
3 pgs.

“U.S. Appl. No. 11/238,912, Final Office Action mailed Feb. 4,
20097, 9 pgs.

“U.S. Appl. No. 11/238,912, Final Office Action mailed Apr. 30,
20087, 9 pgs.

“U.S. Appl. No. 11/238,912, Non Final Office Action mailed Jun.
26, 20097, 12 pgs.

“U.S. Appl. No. 11/238,912, Non Final Office Action mailed Sep.
10, 20087, 9 pgs.

“U.S. Appl. No. 11/238,912, Non Final Office Action mailed Nov.
16, 20077, 10 pgs.

US 9,454,616 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

“U.S. Appl. No. 11/238,912, Preliminary Amendment filed Jul. 30,
20087, 10 pgs.

“U.S. Appl. No. 11/238,912, Response filed Jan. 11, 2008 to Non
Final Office Action mailed Nov. 16, 2007”, 9 pgs.

“U.S. Appl. No. 11/238,912, Response filed Apr. 17, 2009 to Final
Office Action mailed Feb. 4, 20097, 11 pgs.

“U.S. Appl. No. 11/238,912, Response filed Jun. 20, 2008 to Final
Office Action mailed Apr. 30, 20087, 10 pgs.

“U.S. Appl. No. 11/238,912, Response filed Oct. 31, 2008 to Non
Final Office Action mailed Sep. 10, 2008, 11 pgs.

“U.S. Appl. No. 11/238,912, Response filed Sep. 28, 2009 to Non
Final Office Action mailed Jun. 26, 2009”, 10 pgs.

“U.S. Appl. No. 11/238,920 , Non Final Office Action mailed Mar.
12, 20097, 10 pgs.

“U.S. Appl. No. 11/238,921, Non Final Office Action mailed Oct.
30, 20087, 12 pgs.

“U.S. Appl. No. 11/238,921, Notice of Allowance mailed Sep. 3,
2009, 14 pgs.

“U.S. Appl. No. 11/238,921, Response filed Mar. 2, 2009 to Non
Final Office Action mailed Oct. 30, 20087, 31 pgs.

“U.S. Appl. No. 11/238,921, Response filed Jun. 23, 2009 to Non
Final Office Action mailed Oct. 30, 20087, 32 pgs.

“U.S. Appl. No. 11/239,546, Advisory Action mailed Aug. 3, 2009”,
3 pgs.

“U.S. Appl. No. 11/239,546, Non Final Office Action mailed Jun. 2,
20097, 17 pgs.

“U.S. Appl. No. 11/239,546, Non Final Office Action mailed Dec.
18, 20087, 10 pgs.

“U.S. Appl. No. 11/239,546, Response filed Feb. 27, 2009 to Non
Final Office Action mailed Dec. 18, 2008”7, 5 pgs.

“U.S. Appl. No. 11/239,546, Response filed Jul. 20, 2009 to Final
Office Action mailed May 19, 2009”, 9 pgs.

“U.S. Appl. No. 11/322,567, Non Final Office Action mailed Dec.
31, 20077, 12 pgs.

“U.S. Appl. No. 11/238,873, Response filed Oct. 29, 2009 to Non
Final Office Action mailed Jul. 7, 2009”, 14 pgs.

“U.S. Appl. No. 11/238,912 , Final Office Action mailed Jan. 20,
20107, 8 pgs.

“U.S. Appl. No. 11/238,921, Notice of Allowance mailed Nov. 19,
2009, 7 pgs.

“U.S. Appl. No. 11/238,912, Pre-Appeal Brief Request mailed Mar.
18, 20107, 5 pgs.

“U.S. Appl. No. 12/629,819, Preliminary Amendment filed Jan. 14,
20107, 8 pgs.

“U.S. Appl. No. 11/238,873, Final Office Action mailed May 10,
20107, 14 pgs.

“U.S. Appl. No. 11/238,873, Non Final Office Action mailed Dec.
8, 20107, 12 pgs.

“U.S. Appl. No. 11/238,873, Response filed Jul. 23, 2010 to Final
Office Action mailed May 10, 20107, 10 pgs.

“U.S. Appl. No. 11/238,873, Final Office Action mailed May 11,
20117, 14 pgs.

“U.S. Appl. No. 11/238,873, Notice of Allowance mailed Apr. 19,
20127, 10 pgs.

“U.S. Appl. No. 11/238,873, Response filed Mar. 3, 2011 to Non
Final Office Action mailed Dec. 8, 20107, 12 pgs.

“U.S. Appl. No. 11/238,873, Response filed Aug. 9, 2011 to Final
Office Action mailed May 11, 20117, 14 pgs.

“U.S. Appl. No. 11/238,912, 312 Amendment filed Feb. 19, 2014”,
15 pgs.

“U.S. Appl. No. 11/238,912, Appeal Brief filed Jun. 28, 20107, 23
pgs.

“U.S. Appl. No. 11/238,912, Appeal Decision mailed Aug. 20,
2013, 5 pgs.

“U.S. Appl. No. 11/238,912, Decision on Pre-Appeal Brief Request
mailed May 28, 20107, 2 pgs.

“U.S. Appl. No. 11/238,912, Examiner’s Answer to Appeal Brief
mailed Sep. 15, 2010”, 9 pgs.

“U.S. Appl. No. 11/238,912, Notice of Allowance mailed Nov. 19,
2013, 12 pgs.

“U.S. Appl. No. 11/238,912, Supplemental Examiner’s Answer to
Appeal Brief mailed Sep. 28, 20107, 2 pgs.

“U.S. Appl. No. 12/628,819, Non Final Office Action mailed May
16, 2011, 8 pgs.

“U.S. Appl. No. 12/629,819, Examiner Interview Summary mailed
Jul. 11, 20137, 2 pgs.

“U.S. Appl. No. 12/629,819, Final Office Action mailed Nov. 22,
20117, 9 pgs.

“U.S. Appl. No. 12/629,819, Notice of Allowance mailed Jul. 15,
2013, 14 pgs.

“U.S. Appl. No. 12/629,819, Response filed Feb. 21, 2012 to Final
Office Action mailed Nov. 22, 20117, 11 pgs.

“U.S. Appl. No. 12/629,819, Response filed Aug. 1, 2011 to Non
Final Office Action mailed May 16, 20117, 9 pgs.

“U.S. Appl. No. 14/082,647, Preliminary Amendment mailed Dec.
5, 2013”, 6 pgs.

Anwar, Muhammad, et al., “Multi-Agent Based Semantic E-Gov-
ernment Web Service Architecture Using Extended WSDL”, http://
delivery.acm.org/10.1145/1200000/1194805/27490599 pdf, (Dec.
2006), 4 pgs.

Barrett, Ronan, et al., “Model Driven Distribution Pattern Design
for Dynamic Web Service Compositions”, http://delivery.acm.org/
10.1145/1150000/1145612/p129-barrett.pdf, (Jul. 2006), 8 pgs.
Brambilla, Marco, et al., “Model-Driven Design and Developement
of Semantic Web Service Applications”, http://delivery.acm.org/10.
1145/1300000/1294151/a3-brambilla.pdf, (Nov. 2007), 31 pgs.
“U.S. Appl. No. 14/859,912, Corrected Notice of Allowance mailed
Jan. 20, 2016”, 2 pgs.

“U.S. Appl. No. 14/082,647, Notice of Allowance mailed Jun. 4,
2015, 12 pgs.

“U.S. Appl. No. 14/859,912, Notice of Allowance mailed Dec. 22,
2015, 10 pgs.

“U.S. Appl. No. 14/859,912, Preliminary Amendment filed Oct. 27,
20157, 8 pgs.

* cited by examiner

U.S. Patent Sep. 27, 2016
FIG. 1
UDDI —~110
WSDL —~108
XML
Schema 106
SOAP ~ 104
XML
NAMESPACES [792
[1

Sheet 1 of 8

US 9,454,616 B2

FIG. 2

202
—)

Virtual

204
—)

Web Service

Interface

1]

Definition

302 Schema to JAVA
Mappings

Web Service
Configurations

206

FIG. 3

1

304

)

Logical Ports

—

WSDL

U.S. Patent Sep. 27, 2016 Sheet 2 of 8 US 9,454,616 B2
FIG. 4
APPLICATION SERVER
402
: WS FRAMEWORK | : WSC FRAMEWORK |
| |
404		406		
	WEBSERVICES			WE%EIEER,\}’TICES
: CODNEFSICGI%F;%ISN	: CONFIGURATION	!		
' DESCRIPTOR	!			
208		410		
WEB SERVICES WEB SERVICES
TOOLS CLIENT TOOLS
414 416
VISUAL ADMINISTRATOR 412
FIG. 5
1 1
504~ WSDLInterface [----- * SchemaToJAVA 906
Mappings .- == Mappings
. : .
)]]
} P 1
E : ———————— : | ey
]
1 v v A
[}
' ~ 508
502 WSDL Configuration
‘ _______

U.S. Patent

Sep. 27, 2016

Sheet 3 of 8

FIG. 6

US 9,454,616 B2

APPLICATION SERVER
602

— e — ——— - — — — — — — — — —— v— — — — —

WS/WSC FRAMEWORK
604

WEB SERVICES/WEB SERVICES CLIENT

CONFIGURATION DESCRIPTOR
606

WS/WSC TOOLS
610

VISUAL ADMINISTRATOR 608

U.S. Patent

WS FRAMEWORK
102

|
|

|
WEB SERVICES | !
CONFIGURATION ||
DESCRIPTOR :
!

WSC FRAMEWORK |
104

|
|
WEB SERVICES ||
CLIENT |
CONFIGURATION | |
DESCRIPTOR | |
|

708

Sep. 27, 2016

FIG.7

COMMON
FORMAT
MODULE

718

MAPPING
SYSTEM

714

COMMON
FRAMEWORK
MODULE

716

Sheet 4 of 8

US 9,454,616 B2

— ———— — ——— — — —

WS/WSC FRAMEWORK
710

| |
I |
| I
I WEB SERVICES/ I
| | WEB SERVICES CLIENT | |
I CONFIGURATION I
| DESCRIPTOR |
I I
I I

712

U.S. Patent

Sep. 27, 2016 Sheet 5 of 8

802

US 9,454,616 B2

FIG. 8
IDENTIFY IDENTIFY
WS FORMAT AND WSC FORMAT |~ 504
FRAMEWORK AND FRAMEWORK
\ 4 \ 4
IDENTIFY COMMON PROPERTIES OF
WS/WSC CONFIGURATION DESCRIPTOR 806
\
REMOVE UNCOMMON PROPERTIES 808
v
CREATE A COMMON WS/WSC FORMAT 810
v
CREATE A NEW MAPPING SYSTEM L 812
\ 4
CREATE A COMMON API 814
\
CONFIGURE DESCRIPTORS INTO A | 16
COMMON DESCRIPTOR
\ 4
CREATE A COMMON WS/WSC FRAMEWORK |~ 818
v
PLACE THE COMMON DESCRIPTOR | 520

AT THE COMMON FRAMEWORK

U.S. Patent Sep. 27, 2016 Sheet 6 of 8 US 9,454,616 B2

FIG. 9
CLIENT : SERVER
|
|
|
PLACE A | | RECEIVETHE |
902< REQUEST | > REQUEST 904
|
|
|
|
[v
|
| UPDATE A
| COMMON L g06
| CONFIGURATION
| DESCRIPTOR
|
|
|
|
| Y
|
PREPARE AND
910~ REEE}’VOENEEE < : SEND A —-908
| RESPONSE
|
|
|
|

U.S. Patent Sep. 27, 2016 Sheet 7 of 8 US 9,454,616 B2

FIG. 10
CLIENT A
1002 PROCESSOR
1012
CLIENT B NETWORK
1008 SERVER
1004 1010
: MEMORY
1014
CLIENT N VM
1016
1006

US 9,454,616 B2

Sheet 8 of 8

Sep. 27, 2016

U.S. Patent

LL "OId
— (—_—) — (—_) N
G 911 Gl vil vil
aldIEi)| DINQ 901AQ 3JIA3(|0NU0D 3JIA9Qg
YHOMIDN uoiedIuNWWo) Aeidsig 10s1n) JBYJ0 Indug Jay30 Jo
Jondwo) 10 3SNOY pleogAd)y
\. v e -
4 > d < ¢ 4 //:
0LLL
- (_ N . . 4 |I||
EH gl 41 0ct Ll
Aows|y 1IN abelols Aowsy utepy
Aluo peay 494j0 10 - WYY U 105532014 T 10S$320.14
9ALQ pieH
\, J J

US 9,454,616 B2

1
METHOD AND SYSTEM FOR UNIFYING
CONFIGURATION DESCRIPTORS

TECHNICAL FIELD

Embodiments of the invention generally relate to the field
of web service and, more particularly, to a system and
method for unifying configuration description files.

BACKGROUND

Efforts are being made to more easily conduct business in
a web-based environment. “Web Services” is loosely under-
stood to mean the ability to discover and conduct business
in a web-based environment. For example, a user (e.g., a
web-based application or person with a web browser) may:
1) search through an on line registry of businesses and/or
services; 2) find a listing in the registry for web based access
to a service that that the user desires to have performed; and
then, 3) engage in a web-based business relationship with
the service application including the passing of relevant
information (e.g., pricing, terms, and conditions) over the
network. In other words, web services generally refer to
offerings of services by one application to another via the
World Wide Web.

Given the nature and use of web services and the rapid
increase in their demand, interoperability of web services
across clients and servers is becoming increasing important
and cumbersome. Some attempts have been made to achieve
interoperability across a wide range of platforms and run-
times. For example, using open standards like eXtensible
Markup Language (XML), Simple Object Access Protocol
(SOAP), Web Services Description Language (WSDL), and
Universal Description, Discovery, and Integration (UDDI),
some interoperability has been achieved.

FIG. 1 illustrates a prior art web services platform 100.
The platform 100 shows various XMlL-related standards
102-110 that are used in connection with web services to
attempt interoperability. The illustrated standards include
XML Namespaces 102, similar to Java package names, to
provide syntax for data representation in portable format.
SOAP 104 refers to a standard packaging format for trans-
mitting XML data between applications over a network.
XML schema 106 refers to World Wide Web Consortium
(W3C) schema specification for XML documents. WSDL
108 is standard used for describing the structure of XML
data that is exchanged between systems using SOAP 104.
Finally, UDDI 110 refers to a standard SOAP-based inter-
face for web services registry and defines a set of web
services operations and methods that are used to store and
search information regarding web services applications.

However, the open standards are not evolving fast enough
to keep up with the increasing demand for web services and
needs of additional flexibility and control on the client-side.
One of the problems today is the convoluted relationships
and mappings between relevant standards. Neither the
interoperability nor the client-side flexibility and control are
sufficiently achieved because of the conventional separation
of models and entities for web services (WS) and web
service clients (WSC). FIG. 2 illustrates a prior art web
services model 200. The illustrated web services model 200
includes Web service definition 204, which includes the
description of design-time configuration of a web service.
Web service configurations 206 refer to the description of
the run-time configurations of a web service. The web
services model 200 further includes a virtual interface 202.
A virtual interface 202 refers to an abstract interface.

10

15

20

25

30

35

40

45

50

55

60

65

2

Referring now to FIG. 3, it illustrates a prior art web
services client model 300. In the illustrated web services
client model 300, schema to Java (STJ) mappings 302
contain serializer classes and deserializer classes of the
XML Schema Definition (XSD) Types. However, the con-
ventional STJ mappings 302 do not contain any field or
operation-specific mappings. The conventional model 300
further includes logical ports 304 that are limited to con-
taining merely runtime (RT) relevant configurations and do
not contain design-time (DT) configurations. Finally, the
illustrated WSDL 306 contains a parsed WSDL structure.

Although the conventional models 200, 300 provide some
flexibility, further improvements are needed to achieve
interoperability. For example, the conventional model 200
provides provider-oriented inside-out approach for web ser-
vices, but it does not support consumer-based outside-in
approach for web services, which is becoming increasingly
important. The conventional models 200, 300 do not provide
similar modeling approach for developing web services and
web services client which leads to usability deficiencies.

SUMMARY

A method and system for provided for unifying web
services and web services client configuration description
files. In one embodiment, a web services configuration file
and a web services client configuration file are identified.
The web services and web services client configuration files
are unified to create a configuration file.

BRIEF DESCRIPTION OF THE DRAWINGS

The appended claims set forth the features of the inven-
tion with particularity. The embodiments of the invention,
together with its advantages, may be best understood from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1 illustrates a prior art web services platform;

FIG. 2 illustrates a prior art web services model;

FIG. 3 illustrates a prior art web service client model;

FIG. 4 illustrates an environment employing separate web
services and web services client configuration descriptor
files;

FIG. 5 illustrates an embodiment of a common meta
model for web services and web service client;

FIG. 6 illustrates an embodiment of an environment for
employing a unified web services and web services client
configuration descriptor;

FIG. 7 illustrates an embodiment of an environment for
unifying separate configuration descriptors into a common
configuration descriptor;

FIG. 8 illustrates an embodiment of a process for unifying
web services and web services client configuration descrip-
tors;

FIG. 9 illustrates a transaction sequence for using a
common configuration descriptor;

FIG. 10 illustrates an exemplary client/server system used
for implementing an embodiment of the invention; and

FIG. 11 is an exemplary computer system used for imple-
menting an embodiment of the invention.

DETAILED DESCRIPTION

Described below is a system and method for generating a
common web services model on the java stack. Throughout
the description, for the purposes of explanation, numerous
specific details are set forth in order to provide a thorough

US 9,454,616 B2

3

understanding of the embodiments of the present invention.
It will be apparent, however, to one skilled in the art that the
present invention may be practiced without some of these
specific details. In other instances, well-known structures
and devices are shown in block diagram form to avoid
obscuring the underlying principles of the present invention.

In the following description, numerous specific details
such as logic implementations, opcodes, resource partition-
ing, resource sharing, and resource duplication implemen-
tations, types and interrelationships of system components,
and logic partitioning/integration choices may be set forth in
order to provide a more thorough understanding of various
embodiments of the present invention. It will be appreciated,
however, to one skilled in the art that the embodiments of the
present invention may be practiced without such specific
details, based on the disclosure provided. In other instances,
control structures, gate level circuits and full software
instruction sequences have not been shown in detail in order
not to obscure the invention. Those of ordinary skill in the
art, with the included descriptions, will be able to implement
appropriate functionality without undue experimentation.

Various embodiments of the present invention will be
described below. The various embodiments may be embod-
ied in machine-executable instructions, which may be used
to cause a general-purpose or special-purpose processor or a
machine or logic circuits programmed with the instructions
to perform the various embodiments. Alternatively, the
various embodiments may be performed by a combination
of hardware and software.

Various embodiments of the present invention may be
provided as a computer program product, which may
include a machine-readable medium having stored thereon
instructions, which may be used to program a computer (or
other electronic devices) to perform a process according to
various embodiments of the present invention. The machine-
readable medium may include, but is not limited to, floppy
diskette, optical disk, compact disk-read-only memory (CD-
ROM), Digital Video Disk ROM (DVD-ROM), magneto-
optical disk, read-only memory (ROM) random access
memory (RAM), erasable programmable read-only memory
(EPROM), electrically erasable programmable read-only
memory (EEPROM), magnetic or optical card, flash
memory, or another type of media/machine-readable
medium suitable for storing electronic instructions. More-
over, various embodiments of the present invention may also
be downloaded as a computer program product, wherein the
program may be transferred from a remote computer to a
requesting computer by way of data signals embodied in a
carrier wave or other propagation medium via a communi-
cation link (e.g., a modem or network connection).

FIG. 4 illustrates an environment 400 employing separate
web services and web services client configuration descrip-
tor files 408, 410. As illustrated, in environment 400, the
web services descriptor 408 and the web services client
descriptor 410 are needed for web services and web services
client, respectively. The separate descriptors 408, 410 reside
in separate environments or frameworks (frameworks) 404,
406 at an application server 402. As illustrated, the web
services descriptor 408 resides within the web services
environment 404, while the web services client descriptor
410 resides at the web services client environment 406 at the
host application server 402.

Although the application 404 is capable of being used by
a number of providers and consumers, separate WS and
WSC descriptors 406, 408 are limited to providing merely
the provider-oriented inside-out approach. Typically, a WS
descriptor 408 contains interfaces for web services in Java

10

15

20

25

30

35

40

45

50

55

60

65

4

terms, while a WSC descriptor 410 contains interfaces for
web services client and mappings for WSDL to Java. The
WS descriptor 408 further includes WS deployment descrip-
tions having runtime properties, while design-time proper-
ties are often contained in a WS definition file residing at a
virtual interface (VI). The WS descriptor 408 further
includes WS formats and models, while the WSC descriptor
410 further includes WSC formats and models. As illus-
trated, two separate descriptors 408, 410 necessitate two
separate sets of tools 414, 416 at the visual administrator
(VA) 412 to access the descriptors 408, 410 and to serialize
and/or deserialize them, which further necessitates separate
APIs, longer start time, additional resources.

FIG. 5 illustrates an embodiment of a common meta
model 500 for web services and web service client. In the
illustrated embodiment, a meta model 500 is generated by
unifying various models 502-508 into a single common
model (common model) 500. For example, the common
model 500 includes a WSDL model 502, which refers to a
model for describing the WSDL structure of the web ser-
vices that are developed within an application, and/or
WSDL files that are used to generate WS client proxies. The
WSDL model 502 may also contain WSDL relevant exten-
sions. The WSDL interface mappings (WSDL IM) model
504 refers to a model for describing mappings between the
Java Service Endpoint (JSE) Interface (e.g., generated proxy
service interface) and its WSDL representation, such as the
names of the Java method and WSDL operation representing
the method, default values of parameters, etc.

The illustrated Schema to Java mappings model 506 is
used for describing mappings between XSD types and Java
classes representing these types, such as the names of the
fields. The configuration model 508 includes the design-time
and runtime configuration of web services and web services
client. The configuration model 508 logically references the
WSDL model 502 and the WSDL IM model 504, which, in
turn, references the STJ mappings model 506.

As illustrated, in one embodiment, a common model 500
is provided for WS and WSC frameworks to perform
development, deployment and configuration of applications
with relative ease. WS and WSC frameworks may reside on
a Java 2 Enterprise Edition (J2EE) engine. In one embodi-
ment, the common model 500 is migrated to the J2EE engine
to run and use the WS/WSC proxy on the J2EE engine to
provide a common model for WS and WSC frameworks.
Such migration can be performed using various migration
controllers and interfaces that are used for application devel-
opment. In one embodiment, the common configuration is
achieved by having a common configuration entity in the
configuration model 508. Common design utilities are pro-
vided using a common interface mapping model 504 and a
common schema to Java mapping model 506, while com-
mon deployment entities are provided with insignificant
differences between client and server.

In one embodiment, common models 502-508 are man-
aged by a common framework at the J2EE engine. The
common model 500 is created by, first, identifying those
elements, features, and components (components or prop-
erties) that are common to both web services model and web
services client model. Once such common components are
identified, they are then extracted and put together to create
a common WS model. It is contemplated that those com-
ponents that are necessary and/or preferred are used to create
the common framework, while those components that are
not regarded as necessary and/or preferred may not be used.
Further, the use of such common components helps support
the deployment of web services and web services client in a

US 9,454,616 B2

5

common way. For example, SAP administrative tools model
can be converted in light of the common framework to
separate the WS tools in the SAP Administrative tools from
the J2EE engine because of the different requirements
associated with the SAP Administrative tools and the J2EE
engine. Examples of administrative tools include various
Integrated Development Environment (IDE) tools (e.g., IDE
wizard and IDE views) and other SAP-based IDE and
administrative tools, such as SAP NetWeaver Developer
Studio, SAP Visual Administrator, and SAP NetWeaver
Administrator. Further, SAP’s IDE can be based on the
Eclipse IDE and may contain additional SAP developed
plugins.

In the illustrated embodiment, the common model 500
combines the requirements from both the provider and
consumer scenarios and is suitable to be used by both the
service and client platforms. This is performed such that the
common elements of functionality are adopted, while the
uncommon elements work side-by-side not only without
interfering with each other, but by complementing each
other in the common model 500. In one embodiment,
common models 502-508 are generated and employed and
further, they are directly mapped in a common model 500
via any number of programming languages that are right for
the time (e.g., C, C++, C#, Java, and ABAP). Further, a
generator, such as a proxy generator or a code generator,
modules, interfaces, and components are employed to form
common models 502-508, generate WSDL model, form
direct mapping between models 502-508 and between web
services interfaces and Java interfaces.

The common model 500 eliminates the need for the
conventional virtual interface for storing the data (e.g.,
description of the interface and its types). In one embodi-
ment, web services interface data is separate between the
WSDL model 502 and the two mapping models 504, 506.
Using this technique, SOAP extensions are not longer nec-
essary as the need for VI to WSDL conversion is eliminated.
Using the common model 500, web interfaces are described
in the WSDL model 502 as opposed to a virtual interface.
Further, the interface mapping information is used to
describe the mapping of web interfaces to Java interfaces
(e.g., Java SEI). Then, multiple design time configurations
can be attached to a single interface as an alternative.

Furthermore, the web services definition, which can be
used to describe an alternative design-time configuration, is
made part of the design-time part of the configuration model
508. This helps eliminate the need for generating several
portTypes based on the web services definition, which would
otherwise be necessary because the configuration would
have to be expressed in the form of WSDL extensions. In
one embodiment, a WS-policy standard is used to express
configuration of web services and consequently, several
alternative configurations can be expressed using one
WSDL portType. A WS-policy standard can be dynamically
created in which various parameters can be defined as
necessary or desired. Further, a client proxy generated out of
such WSDL may contain a single service endpoint interface
(SEI), which has a superior use for the application developer
using it as proxy. An SEI can be used to specify methods of
the Java class that are to be exposed as web services
operations, which are included and published in the WSDL
model 502 as the portType that a client application uses to
invoke web services.

In one embodiment, the STJ mappings model 506 con-
tains not only serializer and deserializer classes, but also
other field and operation-specific mappings information.
Using the STJ mappings model 506 having such information

10

15

20

25

30

35

40

45

50

55

60

65

6

helps facilitate various kinds of mappings, such as names of
getter/setter methods of a specific field, if an attribute is
presented as a data member or with getters/setters, etc.
Moreover, although the conventional logical ports are lim-
ited to containing only real-time configurations, the illus-
trated embodiment of the configuration model 508 contains
and maintains not only real-time configuration information,
but also contains and maintains design-time configuration
information. Various mapping files and interfaces may be
used to map the individual models 502-508 into the common
model 500.

The illustrated WSDL model 502 includes a WSDL file
that specifies the WSDL structure, including message for-
mats, Internet protocols, and addresses, that a client may use
to communicate with a particular web service. Using the
basic structure of WSDL, a WSDL document includes an
XML document that adheres to the WSDL XML schema. A
WSDL document contains various components and ele-
ments (e.g., biding, import, message, operation, portType,
service, and types) that are rooted in the root element (e.g.,
definitions element) of the WSDL document.

The binding element is used to assign portTypes and its
operation elements to a particular protocol (e.g., SOAP) and
encoding style. The import element is used to import WSDL
definitions from other WSDL documents (such as those
similar to an XML schema document import element). The
message element describes the message’s payload using
XML schema built-in types, complex types, and/or elements
defined in the WSDL document’s type elements. The opera-
tion and portType elements describe web service’s interface
and define its methods and are similar to Java interfaces and
their method declarations. The service element is used for
assigning an Internet address to a particular binding. The
type element uses the XML schema language to declare
complex data types and elements that are used elsewhere in
the WSDL document. The WSDL IM model 504 is used for
describing the mappings between the Java SEI and its
WSDL representation.

The STJ mappings model 506 contains a model for
describing the mappings between XSD types and Java
classes representing a group of classes and interfaces in Java
packages, such as a name which is either derived from the
XML namespace URI, or specified by a binding customi-
zation of the XML namespace URI, a set of Java content
interfaces representing the content models declared within
the schema, and a set of Java element interfaces representing
element declarations occurring within the schema. The con-
figuration model 508 includes both the design-time and
runtime configuration of web services and web services
clients. The configuration model 508 may also include one
or more description descriptors or files, such as XML
configuration files, deployment descriptors, etc.

In one embodiment, the WSDL IM model 504 contains
reference to and uses elements of interfaces with the WSDL
model 502. The WSDL IM model 504 further contains
reference to the STJ mappings model 506. The STJ map-
pings model 506, on the other hand, references to the WSDL
model 502 and uses elements from the WSDL model 502.
Examples of the elements that the STJ mappings model 506
uses include elements of XSD and/or type elements, such as
complex type and simple type. The configuration model 508
contains reference to the WSDL model 502 and the WSDL
IM model 504.

A virtual interface refers to an abstract interface and/or a
type description system that is created based on a program-
ming language interface (e.g., Java interface and ABAP
methods). A virtual interface can be used to decouple the

US 9,454,616 B2

7

language-specific implementation from interface descrip-
tion. A web service refers to an interface of the web service
as described by the WSDL file at the WSDL model 502,
which describes web services methods and web services
type systems, such as the XML messages transmitted upon
the web services invocation. When the web service interface
is generated via the virtual interface, it is done by having
Java classes build the virtual interface to generate the WSDL
file (web interface). This process of WSDL generation is
carried in the engine by the WS runtime, while the virtual
interface contains hints for WSDL generation details called
SOAP extensions. A WSDL file provides proxy generator
which generates Java classes (web services client proxy) and
logical ports (that contain web services client configuration).
Using the web services client proxy classes, application
invoke the web services described by the WSDL file. Also,
using logical ports, applications configure the web services
client proxy.

In one embodiment, virtual interfaces and the virtual
interface model are eliminated by having the web services
development based on WSDL (web services interface) at the
WSDL model 502 in an outside-in scenario. For example, on
the server side, WSDL 502 provides proxy generator which
generates default mappings that are then changed (e.g.,
updated as the desired by the developer or as necessitated)
using an administrative/IDE tool, such as an SAP
NetWeaver Administrator, SAP NetWeaver Developer Stu-
dio, IDE wizard, etc. This is then used by the proxy
generator to generate Java beans with mapped Java methods
and WSDL 502 and mappings and the configuration model
508. A developer can implement methods (logic) of the bean
and thus, providing logic to the web services methods.
Furthermore, the conventional inside-out scenario can be
customized using administrative and/or IDE tools to be
compatible with the new model 500. For example, in one
embodiment, Java classes can created a virtual interface that
generates default WSDL which proves a proxy generator
which further generates default mappings. These default
mappings (e.g., default Java mappings) are then changed or
updated or customized to reflect the original Java interface
for which the common WS model 500 can be used by
using/reusing the outside-in deployment. On the client side,
in one embodiment, WSDL at the WSDL model 502 pro-
vides a proxy generate which generates Java files and
mappings and the configuration model 508. This mechanism
provides having the same deployment entities for adapting
various scenarios (e.g., inside-out and outside-in) and allows
the common model 500 for development of such scenarios.

FIG. 6 illustrates an embodiment of an environment 600
for employing a unified web services and web services client
configuration descriptor 606. The properties relating to
separate web services and web services client descriptors are
identified, a number of properties are removed (e.g., those
that are unnecessary and/or undesired) other properties are
kept (e.g., those that are common to both descriptors,
necessary, and/or desired). The properties include compo-
nents, elements, interfaces, modules, formats, and the like.
Also, formats of separate descriptors are identified and a
common format is then created that is suitable for both the
web services and the web services client configurations.
Once a common format is created, frameworks of different
descriptors are identified and a common environment or
framework (common framework) 604 is created. The com-
mon framework 604 is used to employ a common or unified
WS-WSC configuration descriptor (common descriptor)
606. As illustrated, in one embodiment, common or unified
WS-WSC tools (common tools) 610 are provided at the VA

5

10

20

25

30

35

40

45

50

55

60

65

8

608 for visualizing, accessing, configuring/reconfiguring,
and loading/reloading the common descriptor 606. Having a
common descriptor 606 eliminates the need for multiple or
separate tools. Common tools 610 include various configu-
ration, developmental, and administrative tools to work with
the common descriptor 606.

In one embodiment, a common model and mapping
system of FIG. 4 can be used to provide direct mapping of
various web services and web services client models and
such direct mappings are used to create the common descrip-
tor 606. For example, direct mappings of various models
within a common model is employed to established direct
mappings of various components of separate WS and WSC
descriptors into creating a common framework 604 and into
further creating a common descriptor 606. Common tools
610 may be separately created and employed to access and
obtain a common view of the common descriptor 606 so that
the user does not have to regard the WS and WSC descrip-
tors as separate files. The common descriptor 606 also
provides a faster start time since the same file (as opposed
to separate files) is to be used. Furthermore, using the
common descriptor 606, a common API can be used to serve
as both the server API and the client API, a common code
can be used for deployment of the common descriptor 606
instead of using multiple codes, and a common API can be
for various runtime protocols (e.g., security protocol and
session protocol). Moreover, since a common format can be
used for the common descriptor 606, a common code can be
also be used for writing, reading, and editing of the common
descriptor 606. The common descriptor 606 also supports
the outside-in approach that is client/consumer-oriented,
while supporting the inside-out approach that is server/
provider-oriented.

In one embodiment, the application lifecycle is reconfig-
ured into a simpler common lifecycle. The parts of design,
deployment, and configuration of the application lifecycle
can be combined such that they can be performed by the
same user. For example, design, deployment, configuration
can be performed by a single developer or administrator
instead of the conventional way of being assigned to sepa-
rate users (e.g., design to the developer, and configuration to
the administrator). The design part includes creating inter-
faces, data services, and code for the application structure
and appearance. The deployment part refers to running the
application creating during design and to transforming the
application by changing the structure of the descriptors into
a new structure. The configuration part includes performing
configuration of the application after its deployment. Con-
figuration during design time is considered default time, but
once the deployment is performed, further configuration can
be performed.

FIG. 7 illustrates an embodiment of an environment 700
for unifying separate configuration descriptors 706, 708 into
a common configuration descriptor 712. In one embodiment,
separate web services and web services configuration
descriptors 706, 708 are unified into a common web ser-
vices-web services client configuration descriptor 712. The
illustrated WS configuration descriptor 706 resides within a
WS framework 702, while the WSC configuration descriptor
708 resides within a WSC framework 704. Also, for
example, both frameworks 702, 704 may reside at an
application server at a J2EE engine.

In one embodiment, a mapping system 714 that facilitates
generation a common model, such as the one illustrated in
FIG. 4, can be used to also help unify the separate configu-
ration descriptors 706, 708. In another embodiment, a new
mapping system 714 is created to unify the configuration

US 9,454,616 B2

9

descriptors 706, 708. The mapping system 714 may include
the necessary modules, component, and elements to provide
direct mapping of various WS and WSC models (e.g.,
WSDL model, configuration model, Java to Schema map-
pings model, and WSDL interface mappings model) into a
common unified model. The mapping system 714 includes
one or more unifying modules to unify and integrate the
configuration descriptors 706, 708. In one embodiment,
properties of WS and WSC descriptors 706, 708 are iden-
tified and evaluated. Upon analyzing such properties, certain
properties are kept as they are desired, necessary, and/or
common to both descriptors 706, 708, while certain other
properties may not be kept or changed so they are compat-
ible with the new common descriptor 712.

In one embodiment, as part of identifying and evaluating
properties, formats for separate descriptors 706, 708 are also
identified and analyzed using a common format module 718.
Using the properties of these formats, a new common format
is created that is appropriate for the common descriptor 712.
The common format module 718 is created separately and is
used for identifying different formats and further for creating
a common format that is compatible with the common
descriptor 712, i.e., that format that can handle configura-
tions of both the web services and web services client. In one
embodiment, the common format module 718 is used in
combination with the mapping system 714 to generate the
common format for the common descriptor 712.

In one embodiment, the mapping system 714 is then used
with a common framework module 716 to generate a
common framework 710 where the common descriptor 712
can reside. The common framework 710 includes a plug-
gable framework that could be used not only to have the
common descriptor 712, but also can be used to add, delete,
and amend any number of protocols, components, and
elements so that the common framework 710 and the
common descriptor 712 remain dynamic.

Using the common framework module 716 and the map-
ping system 714, the descriptors 706, 708 are separately
identified and analyzed to determine those properties that are
common to both descriptors 706, 708 and/or are necessary.
Some of the properties are maintained in the new common
framework 712; however, other properties can be deleted or
updated/amended and even new properties can be added to
the existing ones to help achieve better efficiency and
compatibility of web services and web services client. The
mapping system 714 is further used to introduce to initialize
the WS and WSC at runtime. Also, a common API is also
added to the common framework 710 to replace multiple
APIs that are typically needed for WS and WSC.

FIG. 8 illustrates an embodiment of a process for unifying
web services and web services client configuration descrip-
tors. At processing blocks 802 and 804, frameworks and
formats for web services and web services client configu-
ration descriptors are identified. Once the formats are iden-
tified, common properties, functions and/or components
(properties) of the WS and WSC configuration descriptors
are identified at processing block 806. At processing 808,
properties or data that uncommon, unnecessary, and/or
unwanted are removed. For example, interface mappings or
type mappings that were previously described can be
removed. A common WS-WSC format is then created that
can be used by both the web services and web services client
to handle configuration that is suitable for both the web
services and web services client at processing block 810.

Atprocessing block 812, a new mapping system is created
using a mapping module. The mapping system is used to
initialize the WS and WSC runtime. A common API is then

10

15

20

25

30

35

40

45

50

55

60

65

10

created at processing block 814. For example, XML schema
may be created for defining the XML file format by creating
XSD. The API may also be used for ready WSDL and for
defining the WSDL model. Further, the common API may
also be used to serve as a Java-based API. At processing
block 816, the mapping system is used to unify the separate
configuration descriptors into a common descriptor. The
common descriptor is created using the common format. At
processing block 818, a common framework is created to
host the common descriptor with the common format. The
common descriptor with the common format is placed at the
common framework at processing block 820.

FIG. 9 illustrates a transaction sequence for using a
common configuration descriptor. A request is placed via a
client 902. The request may include any update to the
application that necessitates reconfiguration of the configu-
ration descriptor, such as requesting a new mechanism for
authorization/authentication (e.g., requesting that an authen-
tication certification be required along with a user ID and
password) for access a system. The request is received at the
server 904. Having a common configuration descriptor, a
single common descriptor is updated 906 (as opposed to
updating separate WS descriptor and WSC descriptors).
Once the reconfiguration is performed, the common descrip-
tor is updated and reloaded. For example, the authentication/
authorization mechanism is changed to require user ID,
password, and authentication certificate to access the system
as requested by the user. A response is then prepared and sent
to the client 908. The response is received at the client 910.

The architectures and methodologies discussed above
may be implemented with various types of computing
systems such as an application server that includes a J2EE
server that supports Enterprise Java Bean (EJB) components
and EJB containers (at the business layer) and/or Servlets
and Java Server Pages (JSP) (at the presentation layer). Of
course, other embodiments may be implemented in the
context of various different software platforms including, by
way of example, Microsoft® NET, Windows®/NT, Micro-
soft Transaction Server (MTS), the ABAP platforms devel-
oped by SAP AG and comparable platforms.

FIG. 10 illustrates an exemplary client/server system
1000 used in implementing one or more embodiments of the
invention. In the illustrated embodiment, a network 1008
links a server 1010 with various client systems A-N 1002-
1006. The server 1010 is a programmable data processing
system suitable for implementing apparatus, programs, or
methods in accordance with the description. The server 1010
provides a core operating environment for one or more
runtime systems that process user requests. The server 1010
includes a processor 1012 and a memory 1014. The memory
1014 can be used to store an operating system a Transmis-
sion Control Protocol/Internet Protocol (TCP/IP) stack for
communicating over the network 1008, and machine-ex-
ecutable instructions executed by the processor 1012. In
some implementations, the server 1010 can include multiple
processors, each of which can be used to execute machine-
executable instructions.

The memory 1014 can include a shared memory area that
is accessible by multiple operating system processes execut-
ing at the server 1010. An example of a suitable server to be
implemented using the client/server system 1000 may
include J2EE compatible servers, such as the Web Applica-
tion Server developed by SAP AG of Walldorf, Germany, or
the WebSphere Application Server developed by Interna-
tional Business Machines Corp. (IBM®) of Armonk, N.Y.

Client systems 1002-1006 are used to execute multiple
applications or application interfaces. Each instance of an

US 9,454,616 B2

11

application or an application interface can constitute a user
session. Each user session can generate one or more requests
to be processed by the server 1010. The requests may
include instructions or code to be executed on a runtime
system (e.g., the virtual machine (VM) 1016) on the server
1010. A VM 1016 is an abstract machine that can include an
instruction set, a set of registers, a stack, a heap, and a
method area, like a real machine or processor. A VM 1016
essentially acts as an interface between program code and
the actual processor or hardware platform on which the
program code is to be executed. The program code includes
instructions from the VM instruction set that manipulates the
resources of the VM 1016.

FIG. 11 is an exemplary computer system 1100 used in
implementing an embodiment of the present invention. In
this illustration, a system 1100 comprises a bus 1110 or other
means for communicating data. The system 1100 includes
one or more processors, illustrated as shown as processor 1
1115 through processor n 1120 to process information. The
system 1100 further comprises a random access memory
(RAM) or other dynamic storage as a main memory 1125 to
store information and instructions to be executed by the
processor 1115 through 1120. The RAM or other main
memory 1125 also may be used for storing temporary
variables or other intermediate information during execution
of instructions by the processors 1115 through 1120.

A hard drive or other storage device 1130 may be used by
the system 1100 for storing information and instructions.
The storage device 1130 may include a magnetic disk or
optical disc and its corresponding drive, flash memory or
other nonvolatile memory, or other memory device. Such
elements may be combined together or may be separate
components. The system 1100 may include a read only
memory (ROM) 1135 or other static storage device for
storing static information and instructions for the processors
1115 through 1120.

A keyboard or other input device 1140 may be coupled to
the bus 1110 for communicating information or command
selections to the processors 1115 through 1120. The input
device 1140 may include a keyboard, a keypad, a touch-
screen and stylus, a voice-activated system, or other input
device, or combinations of such devices. The computer may
further include a mouse or other cursor control device 1145,
which may be a mouse, a trackball, or cursor direction keys
to communicate direction information and command selec-
tions to the processors and to control cursor movement on a
display device. The system 1100 may include a computer
display device 1150, such as a cathode ray tube (CRT),
liquid crystal display (LCD), or other display technology, to
display information to a user. In some environments, the
display device may be a touch-screen that is also utilized as
at least a part of an input device. In some environments, the
computer display device 1150 may be or may include an
auditory device, such as a speaker for providing auditory
information.

A communication device 1150 may also be coupled to the
bus 1110. The communication device 1150 may include a
modem, a transceiver, a wireless modem, or other interface
device. The system 1100 may be linked to a network or to
other device using via an interface 1155, which may include
links to the Internet, a local area network, or another
environment. The system 1100 may comprise a server that
connects to multiple devices. In one embodiment the system
1100 comprises a Java® compatible server that is connected
to user devices and to external resources.

While the machine-readable medium 1130 is illustrated in
an exemplary embodiment to be a single medium, the term

10

15

20

25

30

35

40

45

50

55

60

65

12

“machine-readable medium” should be taken to include a
single medium or multiple media (e.g., a centralized or
distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“machine-readable medium” shall also be taken to include
any medium that is capable of storing, encoding or carrying
a set of instructions for execution by the machine of the
system 1100 and that causes the machine to perform any one
or more of the methodologies of the present invention. The
term “machine-readable medium” shall accordingly be
taken to include, but not be limited to, solid-state memories,
optical and magnetic media, and carrier wave signals.

An article of manufacture may be used to store program
code. An article of manufacture that stores program code
may be embodied as, but is not limited to, one or more
memories (e.g., one or more flash memories, random access
memories (static, dynamic or other)), optical disks, CD-
ROMs, DVD-ROMs, EPROMs, EEPROMs, magnetic or
optical cards or other type of machine-readable media
suitable for storing electronic instructions. Program code
may also be downloaded from a remote computer (e.g., a
server) to a requesting computer (e.g., a client) by way of
data signals embodied in a propagation medium (e.g., via a
communication link (e.g., a network connection)).

Furthermore, it is appreciated that a lesser or more
equipped computer system than the example described
above may be desirable for certain implementations. There-
fore, the configuration of system 1100 may vary from
implementation to implementation depending upon numer-
ous factors, such as price constraints, performance require-
ments, technological improvements, and/or other circum-
stances.

It is noted that processes taught by the discussion above
can be practiced within various software environments such
as, for example, object-oriented and non-object-oriented
programming environments, Java based environments, such
as a J2EE environment or environments defined by other
releases of the Java standard), or other environments (e.g., a
NET environment, a Windows/NT environment each pro-
vided by Microsoft Corporation).

It should be noted that, while the embodiments described
herein may be performed under the control of a programmed
processor, such as processors 1115 through 1120, in alter-
native embodiments, the embodiments may be fully or
partially implemented by any programmable or hardcoded
logic, such as field programmable gate arrays (FPGAs), TTL
logic, or application specific integrated circuits (ASICs).
Additionally, the embodiments of the present invention may
be performed by any combination of programmed general-
purpose computer components and/or custom hardware
components. Therefore, nothing disclosed herein should be
construed as limiting the various embodiments of the present
invention to a particular embodiment wherein the recited
embodiments may be performed by a specific combination
of hardware components.

It should be appreciated that reference throughout this
specification to “one embodiment” or “an embodiment”
means that a particular feature, structure or characteristic
described in connection with the embodiment is included in
at least one embodiment of the present invention. Therefore,
it is emphasized and should be appreciated that two or more
references to “an embodiment” or “one embodiment™ or “an
alternative embodiment” in various portions of this specifi-
cation are not necessarily all referring to the same embodi-
ment. Furthermore, the particular features, structures or
characteristics may be combined as suitable in one or more
embodiments of the invention.

US 9,454,616 B2

13

Similarly, it should be appreciated that in the foregoing
description of exemplary embodiments of the invention,
various features of the invention are sometimes grouped
together in a single embodiment, figure, or description
thereof for the purpose of streamlining the disclosure aiding
in the understanding of one or more of the various inventive
aspects. This method of disclosure, however, is not to be
interpreted as reflecting an intention that the claimed inven-
tion requires more features than are expressly recited in each
claim. Rather, as the following claims reflect, inventive
aspects lie in less than all features of a single foregoing
disclosed embodiment. Thus, the claims following the
detailed description are hereby expressly incorporated into
this detailed description, with each claim standing on its own
as a separate embodiment of this invention.

While certain exemplary embodiments have been
described and shown in the accompanying drawings, it is to
be understood that such embodiments are merely illustrative
of and not restrictive, and that the embodiments of the
present invention are not to be limited to specific construc-
tions and arrangements shown and described, since various
other modifications may occur to those ordinarily skilled in
the art upon studying this disclosure.

What is claimed is:

1. A computer-implemented method comprising:

identifying a web services configuration file; the web

services configuration file comprising a plurality of
runtime properties related to a web services configu-
ration;

identifying a web services client configuration file, the

web services client configuration file comprising a
plurality of runtime properties related to a web services
client configuration;

analyzing the runtime properties associated with the web

services configuration file and the runtime properties
associated with the web services client configuration
file to identify a set of common runtime properties and
a set of uncommon runtime properties; and
generating a unified configuration file by unifying the web
services configuration file and the web services client
configuration file and removing the set of uncommon
runtime properties from the unified configuration file.

2. The method of claim 1, further comprising deploying
the unified configuration file at an application server.

3. The method of claim 1, wherein the unified configu-
ration file is accessed using a plurality of tools, the plurality
of tools including configuration tools to access the unified
configuration file.

4. The method of claim 3, further comprising generating
the configuration tools by unifying web services configura-
tion tools and web services client configuration tools.

5. The method of claim 1, wherein:

the plurality of runtime properties related to the web

services configuration comprises a web services for-
mat; and

the plurality of runtime properties related to a web ser-

vices client configuration comprises a web services
client format;

the method further comprising creating a common format

by unifying the web services format and the web
services client format.

6. The method of claim 5, wherein creating the common
format further comprises generating a format module to
create the common format.

10

15

20

30

35

40

45

50

55

60

65

14

7. The method of claim 1, wherein:

the plurality of runtime properties related to the web
services configuration comprises a web services frame-
work, and

the plurality of runtime properties related to a web ser-

vices client configuration comprises a web services
client framework;

the method further comprising creating a common frame-

work by unifying the web services framework and the
web services client framework.
8. The method of claim 7, wherein creating the common
framework further comprises generating a framework mod-
ule to create the common framework.
9. The method of claim 1, wherein creating the unified
configuration file further comprises generating a mapping
system to create the unified configuration file, the mapping
system to provide direct mapping of one or more of a Web
Service Description Language (WSDL) model, a WSDL
interface mapping model, and a schema to Java mapping
model to a configuration model.
10. A system comprising:
a processor; and
a memory coupled to the processor, the memory to store:
a web services configuration file comprising a plurality
of runtime properties related to a web services con-
figuration, and
a web services client configuration file comprising a
plurality of runtime properties related to a web
services client configuration, and
instructions which when executed by the processor
provide a mapping system to:
analyze the runtime properties associated with the
web services configuration file and the runtime
properties associated with the web services client
configuration file to identify a set of common
runtime properties and a set of uncommon runtime
properties,

unify the web services configuration file and the web
services client configuration file into a unified
configuration file, and

remove the set of uncommon runtime properties
from the unified configuration file.

11. The system of claim 10, wherein the instructions
further provide a format module to create a common format
compatible with the web services configuration file and web
services client configuration file.

12. The system of claim 10, wherein the memory further
comprising storing a framework module to create a common
framework compatible with the web services configuration
file and web services client configuration file.

13. The system of claim 10; wherein the instructions
further provide tools to provide access to the unified con-
figuration file, wherein the tools are web services tools and
web services client tools.

14. The system of claim 10; wherein the mapping system
comprising one or more of: a mapping module and a
unifying module.

15. The system of claim 10, wherein the web services
configuration file, the web services client configuration file,
and the unified configuration file reside at a web application
server residing at a Java 2 Enterprise Edition (J2EE) engine.

16. A non-transitory machine-readable medium having
stored thereon data representing sets of instructions which,
when executed by a machine, cause the machine to:

US 9,454,616 B2

15

identifying a web services configuration file, the web
services configuration file comprising a plurality of
runtime properties related to a web services configu-
ration;

identifying a web services client configuration file, the
web services client configuration file comprising a
plurality of runtime properties related to a web services
client configuration;

analyzing the runtime properties associated with the web
services configuration file and the runtime properties
associated with the web services client configuration
file to identify a set of common runtime properties and
a set of uncommon runtime properties; and

generating a unified configuration file by unifying the web
services configuration file and the web services client
configuration file and removing the set of uncommon
runtime properties from the unified configuration file.

17. The machine-readable medium of claim 16, wherein

the plurality of runtime properties related to the web
services configuration comprises a web services for-
mat, and

the plurality of runtime properties related to a web ser-
vices client configuration comprises a web services
client format; and

5

15

16

wherein the sets of instructions which; when executed by
the machine, further cause the machine to create a
common format by unifying the web services format
and web services client format.

18. The machine-readable medium of claim 17, wherein
the sets of instructions which, when executed by the
machine, further cause the machine to generate a format
module to create the common format.

19. The machine-readable medium of claim 17, wherein

the plurality of runtime properties related to the web

services configuration comprises a web services frame-
work, and

the plurality of runtime properties related to a web ser-

vices client configuration comprises a web services
client framework; and

wherein the sets of instructions which, when executed by

the machine, further cause the machine to create a
common framework by unifying the web services
framework and web services client framework.

20. The machine-readable medium of claim 19, wherein
the sets of instructions which, when executed by the
machine, further cause the machine to generate a framework
module to create the common framework.

#* #* #* #* #*

