US009111015B1

United States Patent

(12) 10) Patent No.: US 9,111,015 B1
Ranade et al. 45) Date of Patent: Aug. 18, 2015
(54) SYSTEM AND METHOD FOR GENERATING 588;; 82222 51§§ i} : . (1);588; El(ompsoali etal. ... 707/17 Olg‘/lg
TN ersetal.
A POINT-IN-TIME COPY OF A SUBSET OF A 2011/0093471 Al* 4/2011 Brockwayetal. 707/747
COLLECTIVELY-MANAGED SET OF DATA
ITEMS OTHER PUBLICATIONS
(75) Tnventors: Dilip Madhusudan Ranade, Ef;;l;{{’z%gjn’z “\aVZ};back, User-Level Versioning File System for
Maharashtra (IN); Kedar Shrikrishna Munis’wamy-’Regdi Kiran-Kumar, et al., “A Versatile and User-Ori-
Patwardhan, Maharashtra (IN); ented Versioning File System,” Stony Brook University, Appears in
Maneesh Pusalkar, Maharashtra (IN) the proceedings of the Third USENIX Conference on File and Stor-
age Technologies (FAST 2004); pp. 1-14.
: . . : Peterson, Zachary, et al., “Ext3cow: The Design, Implementation,
(73) Assignee: Symantec Corporation, Mountain View, and Analysis of Metadata for a Time-Shifting File System,” Technical
CA (US) Report HSSL.-2003-03; Hopkins Storage Systems Lab, Department
. of Computer Science, The John Hopkins University, pp. 1-14, 2003.
(*) Notice: Subject to any disclaimer, the term of this Phillips, Daniel, “Tux3 Report: Now in Kernel and the Fun Begins,”
patent is extended or adjusted under 35 2008, http://lwn net/Articles/308652; 3 pages.
U.S.C. 154(b) by 795 days.
(5) by as * cited by examiner
(21) Appl. No.: 12/893,108 Primary Examiner — Mahesh Dwivedi
Tad- ssistant Examiner — s Mackes
(22) Filed: Sep. 29,2010 Assistant Exami Kris Mack
(74) Attorney, Agent, or Firm — Campbell Stephenson LLP
(51) Imt.ClL
GOGF 7/00 (2006.01) 7 ABSTRACT
GOG6F 17/00 (2006.01) Yarious systems and methods selective.ly generate a point-in-
GOG6F 17/30 (2006.01) time copy of less than all of the data items within a collec-
(52) US.Cl tively-managed set of data items. One method involves
i detecting a modification to a first unit of data within a collec-
C.PC s GO6F 17/30997 (2013.01) tively managed set, subsequent to generation of a selective
(58) Field of Classification Search snapshot of the collectively managed set, and then accesses a
CPC GO6F 17/30997 first tag associated with the first unit of data. Based on a value
USPC et 707/649 of the first tag, the method determines whether the first unit of
See application file for complete search history. data is included in a subset of the collectively managed set.
. The subset includes at least two of the units of data and fewer
(56) References Cited than all of the units of data in the collectively managed set.
Based upon whether the unit of data is included in the subset,
U.S. PATENT DOCUMENTS the method selects whether to preserve an original value of
8,250,033 BL* 82012 De Souteretal. 707/637 ~ the first unit of data.
8,396,838 B2* 3/2013 Brockway etal. ... 707/662
2006/0206536 A1* 9/2006 Sawdonetal. ... 707/200 17 Claims, 5 Drawing Sheets

Reosive request to generale srtapshot
E)

No

with request?

Create inial space efficient snapshot
25

Modification
toa unit of data detected?
220

I

Generate
conventional snapshot
of entire data set

Compare tag(s) if present)
associated with unitof data 1o tag(s)
associated with request
228

Allow modification and do
Y ot resere por e o
unit of dta for snapshot
25

Preserve pre-modification
value of unit of data for
L snapshot, then allow
modification
40

Unitof data part of snapshiot?
20

Yes

U.S. Patent Aug. 18, 2015 Sheet 1 of 5 US 9,111,015 B1

Computing Device 10

Application 40(1) FIG. 1

Application 40(2)

File System
30

Snapshot Module 60

Selective Snapshot Module 65

Storage 20
Files 30 Snapshot 70(1)
. @To
Directory A + Tag 1
File A+ Tag 1
File B+ Tag 1
Directory B + Tag 2g Snapshot 70(2)
File C + Tag 2 @T1+Tag 1
Directory C
File D
Directory D + Tag 1 & Tag 2 Snapshot 70(3)
File E +Tag1 & Tag 2 @T2+Tag 1 or Tag 2

\ /

U.S. Patent Aug. 18, 2015 Sheet 2 of 5 US 9,111,015 B1

C Start)
I

Receive request to generate shapshot
200 FIG. 2

No
Tag(s) associated with request?

l

Generate

- . conventional snapshot
Create initial space efficient snapshot of entire data set

21o 210

:
(Finish)

Modification
to a unit of data detected?
220

Yes

A 4

Compare tag(s) (if present)
associated with unit of data to tag(s)
associated with request
225

Allow modification and do

not preserve prior value of
Q unit of data for snapshot
235

Unit of data part of snapshot?
230

Preserve pre-modification
value of unit of data for
snapshot, then allow |«
modification
240

U.S. Patent Aug. 18, 2015 Sheet 3 of 5 US 9,111,015 B1

(Start)
v

Receive user input specifying initial tag
assignments

30 FIG. 3
v

Store information associating each tag with
one or more units of data

New unit of data created?
310

Store information associating
new unit of data with tag(s) associated with
related units of data
320

US 9,111,015 B1

Sheet 4 of 5

Aug. 18, 2015

U.S. Patent

v "OId
gev 457
901ne(9berIO)S 801n8(abeInig
dnyoeg Arewid
(5147 744
801Ae(301A8(Q
q ﬁ Indu Aeidsig
232 %7 [T4% A%
90BUAU| 90BUA| Je1depy aJMonIIse.u|
sbeiog Indu Aeidsig uoneIINLIWOY
w1] T
ay — — a9 —_
SoELS 19 eocmw 18][01 c% :wcoem SINPOI Smw%wo
UOEOIUNLILIOY) 1104103 Of 10403 W Jousdeus Id
EIDRETENS
5%
Kowspy weishkg /
Oly
wa)sAg bunndwon

US 9,111,015 B1

Sheet 5 of 5

Aug. 18, 2015

U.S. Patent

NJOZS

3018

(NJ0BS

301N8(]

)06
301N8(]

11065
301A8Q

G6G
Aeuwy abeioig

Jusbisul

G o4

0%
0]

0cS
Jusld

ovs
JEVEL
yy

NJ09%

301N8(¢

[]

[]

o

})09G

801A8(] ¢

(1]
SINPON
Joysdeug

3A08I8S

018
Juslo

4/ 005

2IN081IY2IY HIOMSN

US 9,111,015 B1

1
SYSTEM AND METHOD FOR GENERATING
A POINT-IN-TIME COPY OF A SUBSET OF A
COLLECTIVELY-MANAGED SET OF DATA
ITEMS

FIELD OF THE INVENTION

This invention relates to the creation of point-in-time cop-
ies of data and, more particularly, to creating point-in-time
copies of less than all of the available data within a collec-
tively-managed set of data.

DESCRIPTION OF THE RELATED ART

A point-in-time copy of data, which can also be referred to
as a snapshot, is a copy of a particular set of data, as that set of
data existed at a discrete point in time. A point-in-time copy
can be created in a manner that requires reduced downtime of
the data being copied. For example, a point-in-time copy can
initially just refer (e.g., using logical structures such as point-
ers, bitmaps, and the like) to the set of data being copied. As
that set of data is subsequently modified, the pre-modification
values can be copied to the point-in-time copy prior to being
overwritten. Since such point-in-time copies can be created
relatively quickly, point-in-time copies can be used as the
source of operations such as backups, indexing, and virus
scanning in order to reduce the amount of time to which
access to the original set of data needs to be restricted.

Most techniques for generating point-in-time copies oper-
ate on an entire logical data set, such as a volume or file
system. Accordingly, these techniques do not allow point-in-
time copies to be made of less than the entire data set.

SUMMARY OF THE INVENTION

Various systems and methods for selectively generating a
point-in-time copy of less than all of the data items within a
collectively-managed set of data items are disclosed. One
such method involves detecting a modification to a first unit of
data within a collectively managed set of data, subsequent to
generation of a selective snapshot of the collectively managed
set of data. The method then accesses a first tag associated
with the first unit of data. The first tag identifies one or more
of several subsets of the collectively managed set of data.
Based on a value of the first tag, the method determines
whether the first unit of data is included in a subset of the
collectively managed set of data. The subset includes at least
two of the units of data and fewer than all of the units of data
in the collectively managed set of data. Based upon whether
the unit of data is included in the subset, the method selects
whether to preserve an original value of the first unit of data.
The original value is a value of the first unit of data at a point
in time at which the selective snapshot was generated. The act
of selecting is performed by a computing device implement-
ing a selective snapshot module.

In some embodiments, the collectively managed set of data
is an object storage device, and the first unit of data is an
object. In other embodiments, the collectively managed set of
data is a file system, and the first unit of data is a file.

In one embodiment, the method also detects that a new file
is being added to a directory within the file system and asso-
ciates the new file with a tag. The directory is associated with
the tag prior to detection that the new file is being added.

Ifit is determined that the first unit of data is not included
in the subset, the act of selecting can involve selecting to not
preserve the original value of the first unit of data. If it is
determined that the first unit of data is included in the subset,

25

35

40

45

55

2

the act of selecting can involve selecting to preserve the
original value of the first unit of data.

In some embodiments, the act of determining can involve
comparing a value of the first tag to a value of a second tag.
The second tag is associated with the selective snapshot.

An example of a system can include one or more proces-
sors and memory coupled to the processors. The memory
stores program instructions executable to perform a method
like the one described above. Similarly, such program instruc-
tions can be stored upon a computer readable storage
medium.

The foregoing is a summary and thus contains, by neces-
sity, simplifications, generalizations and omissions of detail;
consequently those skilled in the art will appreciate that the
summary is illustrative only and is not intended to be in any
way limiting. Other aspects, inventive features, and advan-
tages of the present invention, as defined solely by the claims,
will become apparent in the non-limiting detailed description
set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings.

FIG. 1 is a block diagram of a system that generates a
point-in-time copy of a subset of a collectively-managed set
of data, according to one embodiment of the present inven-
tion.

FIG. 2 is a flowchart of a method of generating a point-in-
time copy of a subset of a collectively-managed set of data,
according to embodiments of the present invention.

FIG. 3 is a flowchart of a method of managing tags asso-
ciated with a subset of a collectively-managed set of data,
according to one embodiment of the present invention.

FIG. 4 is a block diagram of a computing device, illustrat-
ing how a selective snapshot module can both be imple-
mented in software, according to one embodiment of the
present invention.

FIG. 5 is a block diagram of a networked system, illustrat-
ing how various computing devices can communicate via a
network, according to one embodiment of the present inven-
tion.

While the invention is susceptible to various modifications
and alternative forms, specific embodiments of the invention
are provided as examples in the drawings and detailed
description. It should be understood that the drawings and
detailed description are not intended to limit the invention to
the particular form disclosed. Instead, the intention is to cover
all modifications, equivalents and alternatives falling within
the spirit and scope of the invention as defined by the
appended claims.

DETAILED DESCRIPTION

FIG. 1 is a block diagram of a computing system. As
shown, computing device 10 is coupled to storage device 20.
Computing device 10 canbe any of a variety of diftferent types
of computing devices, including a server, personal computing
device, laptop computer, net book, personal digital assistant,
cellular phone, or the like. Storage device 20 can include one
or more of a variety of different storage devices, including
hard drives, compact discs, digital versatile discs, solid state
drive (SSD) memory such as Flash memory, and the like, or
one or more logical storage devices such as volumes imple-
mented on one or more such physical storage devices. Com-

US 9,111,015 B1

3

puting device 10 and storage device 20 can be integrated or
separate. If separate, computing device 10 and storage device
20 can be coupled by a network such as the Internet or a
storage area network.

In this example, computing device implements several
applications 40(1) and 40(2). Each application can be any of
a variety of different types of software programs, including
programs that act as servers (e.g., database management sys-
tems, file servers, email servers, and the like) and programs
that act as clients (e.g., email clients, web browsers, backup
clients, and the like). Application 40 can alternatively be a
stand-alone user-level program (e.g., a document processing
application, a graphics editing program, a media player, or the
like). Applications 40(1) and 49(2) can access files 30 in order
to display, edit, execute, or otherwise process those files.

Computing device 10 also implements a file system 50.
File system 50 is a software program that organizes and
controls access to files 30, which are stored on a block device
(e.g., avolume) such as storage device 20. File system 50 can
maintain metadata that identifies each file (including directo-
ries, which are special files that can act as containers for one
or more other files), as well as each file’s location on a storage
device, each file’s size, and other information such as the
file’s creation time, most recent access time, and the like.
Such information is maintained in an inode structure for
certain types of files systems.

The term “file system” can refer to both the application
(which itself can be part of an operating system) that orga-
nizes the files and the collection of files that are organized by
that application. Files can be organized hierarchically, with
directories collecting groups of files and/or other directories.

In this example, files 30 include several files, which are
organized into four directories, Directory A, Directory B,
Directory C, and Directory D. Directory A includes two files,
File A and File B. Directory B includes one file, File C.
Directory C includes one file, File D. Directory D includes
onefile, File E. Itis noted that this is a simplified example, and
that other embodiments can include far more complex orga-
nizational schemes with a greater number of files and/or
directories than are shown here.

Computing device 10 implements a snapshot module 60.
Snapshot module 60 is configured to generate snapshots of
data stored on storage device 20. Each snapshot is generated
using a space efficient technique such as copy on write
(COW) or redirect (or divert) on write (ROW). Such tech-
niques allow snapshots to be generated quickly, without need-
ing to initially make copies of all of the data represented in the
snapshot, as described in more detail below.

To generate a snapshot, snapshot module 60 initially
“freezes” access to files 30 organized by file system 50 by
locking access to the files 30. Once all of the outstanding
accesses to the files have completed and new access is
blocked, the file system is said to be frozen. At this point in
time, snapshot module 60 generates a space efficient snap-
shot. Initially, at the time of creation, this snapshot only stores
metadata that maps the data in the snapshot to the original
data stored on storage device 30. Such a snapshot is space
efficient in that less space is required to store the snapshot
than is required to store the data represented by the snapshot.

Once the snapshot has been generated, snapshot module 60
unfreezes access to the file system. To maintain the snapshot
as a point in time copy of files 30 at the time that the snapshot
was generated, snapshot module 60 detects all subsequent
requests to modify files 30 (e.g., as generated by applications
40(1) and/or 40(2)) and, before those modifications are
applied to files 30, preserves the original value being modified
in the snapshot. For example, snapshot module 60 can detect

25

40

45

4

a request to write to a portion of one of files 30. Prior to
allowing the write to be performed, snapshot module 60 can
perform a copy on write action to copy the original value of
the portion of the file being modified to the snapshot, thus
preserving the original value in the snapshot. Alternatively,
snapshot module 60 can perform a redirect write action to
redirect the write to another location, such that the original
value is preserved in its original location.

In some embodiments, whenever a snapshot is created, the
snapshot includes a snapshot inode for each file included in
the snapshot. Initially, these snapshot inodes simply refer to
the corresponding inode for the appropriate file. If a file is
subsequently modified and COW techniques are used to gen-
erate the snapshot, the original value of the file can be moved
to the snapshot inode for that file. When a user reads from a
snapshot, the read will either be redirected to files 30 (e.g., if
the snapshot inode still simply refers to the corresponding
inode, indicating that the file has not been modified since the
snapshot was generated) or will retrieve the value stored in the
snapshotinode (e.g., if the file has been modified since the file
was generated).

Snapshot module 60 includes a selective snapshot module
65, which is configured to generate a snapshot of less than all
of'the units of data (e.g., files) in a collectively-managed set of
data such as the file system that includes files 30. To do this,
selective snapshot module 65 uses tags associated with each
file, as well as one or more tags associated with a request to
generate a snapshot. By comparing these two sets oftags (the
tag(s) in the request and the tag(s) associated with the files),
selective snapshot module 65 determines whether, upon
being modified subsequent to generation of the requested
snapshot, the original value of a portion of a value will be
preserved or not. Accordingly, selective snapshot module 65
can include some, but not all, of the files within the snapshot
by selecting which files are preserved in the snapshot. In
general, a selective snapshot preserves more than file but
fewer than all files within a file system.

In the example of FIG. 1, certain files are associated with
certain tags. Directory A, File 1, File 2, Directory D, and File
E are associated with Tag 1. Directory B, File C, Directory D,
and File E are associated with Tag 2. Some files, like Direc-
tory C and File D, are not associated with any tags. Other files,
like Directory D and File E, are associated with multiple tags.
Each tag can be a set of one or more bits or a more complex
data structure, such as a text string or set of alphanumeric
characters. Each tag identifies one or more subsets of data.

Thetags can be generated by a user, including a human user
such as an administrator or an application. These tags can be
specified by interacting with an interface (e.g., a command
line interface, application programming interface, graphical
user interface, or the like) provided by file system 50 or
selective snapshot module 65. The tags can be stored by file
system 50 as part of the metadata associated with files 30. For
example, the tag(s) assigned to a particular file can be stored
as part of the inode corresponding to that file.

The tags can be assigned using a variety of different crite-
ria. For example, in some embodiments, tags can be assigned
to differentiate among files processed by different applica-
tions. Thus, all of the files processed by application 40(1)
could be assigned Tag 1, and all of the files processed by
application 40(2) could be assigned Tag 2. In some embodi-
ments, tags are assigned to identify files that are used by
different users or groups of users. For example, within a
corporation, Tag 1 could identify a sales group, while Tag 2
identifies a finance group. A variety of different criteria (e.g.,
relating to permissions or ownership, creation time, applica-
tion, users, and the like) can even be used within the same

US 9,111,015 B1

5

embodiment. In some embodiments, once a user has assigned
a tag to one file, related files (e.g., files within the same
directory as the tagged file, the directory including the tagged
file, and so on) can also be assigned the same tag automati-
cally by file system 50 and/or selective snapshot module 65.

In some embodiments, once an initial set of tag assign-
ments has been made, selective snapshot module 65 can
maintain the tags as new files are added to the file system.
Thus, if a new file is added to a directory, selective snapshot
module 65 can automatically assign the tag(s) associated with
the directory to the new file.

Whenever a request for a snapshot is received, selective
snapshot module 65 can parse the request to see if any tags are
associated with the request. The inclusion of a tag with the
request indicates that a selective snapshot (as opposed to a
conventional full snapshot) is being requested. The tag(s)
associated with the request can indicate which files must be
included within the selective snapshot and/or which files must
be excluded from the selective snapshot.

By only preserving certain files, selective snapshot module
65 preserves only those files that a user desires to include in
the snapshot and does not waste storage space or processing
cycles preserving unwanted values. In at least some embodi-
ments that use inodes, the selective snapshot can include
snapshot inodes for only those files being preserved in the
selective snapshot.

For example, the request can indicate that all files associ-
ated with Tag 1 and no Files associated with Tag 2 should be
included in the selective snapshot. In that situation, selective
snapshot module 65 would preserve the original values (at the
time that the snapshot is generated) of Directory A and Files
A and B within the snapshot (e.g., using COW or ROW
techniques) but would not preserve any other values.

As another example, the request could specify that all files
not associated with Tag 2 should be included in the selective
snapshot. In this situation, selective snapshot module 65
would preserve the original values (at the time that the snap-
shot is generated) of Directories A and C and Files A, B, and
D but would not preserve any other values.

As shown in FIG. 1, a set of three snapshots 70(1), 70(2),
and 70(3) have been generated of files 30 and stored on
storage device 20. The first snapshot 70(1) was generated at
time T0 and was not a selective snapshot. Accordingly, snap-
shot 70(1) will preserve the original values (at T0) of all of
files 30.

The second snapshot 70(2) was generated at time T1 and
includes all files associated with Tag 1. Accordingly, files that
are not associated with Tag 1 will not be preserved in this
snapshot.

The third snapshot 70(3) was generated at time T2 and
includes all files associated with Tag 1 or Tag 2. This snapshot
will preserve the original values (at T2) of all files other than
Directory C and File D, since all of the other files are associ-
ated with at least one of Tag 1 or Tag 2.

In alternative embodiments, instead of having various dif-
ferent values of the tags, the tags can be implemented as
simple flags. One value of the flag indicates that the associ-
ated file should be preserved in selective snapshots, while the
other value of the flag indicates that the associated file should
not be preserved in selective snapshots. The request to gen-
erate a snapshot can similarly include a simple flag indicating
whether the snapshot being requested is a selective snapshot.

A user (e.g., such a backup application) can access a snap-
shot by mounting that snapshot and then reading and writing
to that snapshot. In the case of a selective snapshot, not all
files are preserved within the snapshot. If a user attempts to
read a file that was not preserved from the selective snapshot,

10

15

20

25

30

35

40

45

50

55

60

65

6

selective snapshot module 65 can return an error message
and/or the current (non-snapshot) value of that file.

In general, a selective snapshot module such as that shown
in FIG. 1 can be used to generate selective snapshots of some
but not all of the units of data (e.g., files, logical objects, and
the like) in a collectively managed set of data such as a file
system. For example, such a selective snapshot module can be
used to generate selective snapshots of some but not all of'the
files in a file system, as illustrated in FIG. 1. As another
example, a selective snapshot module can be used to generate
selective snapshots of some but not all of the objects (as
identified by object identifiers, or OIDs) in an object storage
device. When used with object storage devices, the tag(s)
assigned to a given object can be linked to that object’s OID.

FIG. 2 is a flowchart of a method of generating a point-in-
time copy of a subset of a collectively-managed set of data.
This method can be performed by a snapshot module that
includes a selective snapshot module, like selective snapshot
module 65 of FIG. 1.

The method begins at 200, when a request to generate a
snapshot of a collectively-managed set of units of data, such
as a file system or object storage device, is received. This
request can be received from another application (e.g., a
backup application) and/or from an administrator. If the
request is a request for a selective snapshot, the request will
include one or more tags, as detected at 205.

If the request does not include any tags and thus simply
requests a conventional snapshot of all of the units of data in
the collectively-managed set of data, the snapshot module
will generate a conventional snapshot, as shown at 210. This
snapshot will preserve the values of all of the units of data at
the time that the snapshot was generated.

If the request does include one or more tags, and thus
requests a selective snapshot, the snapshot module will create
a space efficient snapshot of at least the units of data indicated
as being desired in the request, as shown at 215. The desired
units of data can be identified based upon the tag(s) associated
with the request, the tag(s) associated with the units of data,
and, in some embodiments, based upon how the request is
specified. For example, the request can specify a rule such as
“preserve all files with Tag X,” or “preserve all files with Tag
X but not Tag Y;” or “preserve all files except those with Tag
Y” Alternatively, a rule (e.g., must preserve or must not
preserve) can be predefined for all requests, and the request
can simply specify the tag(s) to input to that rule.

After the snapshot is generated at 215, the snapshot module
will selectively preserve only the values of those units of data
indicated as being desired in the request. Thus, when a modi-
fication to a unit of data within the collectively-managed set
of'data is detected, the snapshot module will determine, based
upon the tag(s) associated with the request and the tag(s) (if
any) associated with the unit of data being modified, whether
to preserve the pre-modification value of that unit of data in
the selective snapshot.

Thus, at 220, the snapshot module detects a modification to
aunit of data. The snapshot module then compares the tag(s),
if any, associated with that unit of data to the tag(s) included
in the request. Based upon the rule being used and the out-
come of the comparison, the snapshot module determines
whether that unit of data is being preserved in the selective
snapshot or not, as indicated at 225. Ifthe unit of data is being
preserved, the snapshot module will preserve the pre-modi-
fication value of that unit of data (i.e., the value of that unit of
data at the time that the snapshot was generated) before allow-
ing the modification to be performed, as indicated at 240.
Otherwise, the snapshot module will simply allow the modi-
fication to be performed and will not preserve the original

US 9,111,015 B1

7

value of that unit of data, as indicated at 235. Operations 220,
225, 230, and/or 235 can be repeated until the selective snap-
shot is deleted.

FIG. 3 is a flowchart of a method of managing tags asso-
ciated with a subset of a collectively-managed set of data.
Like the method of FIG. 2, this method can be performed by
a snapshot module that includes a selective snapshot module,
like selective snapshot module 65 of FIG. 1.

The method begins at 300, when user input (e.g., from an
administrator and/or application) is received. The user input
specifies the initial tag assignments for one or more units of
data within the collectively-managed set of data. These
assignments indicate the tag(s) (if any) to be assigned to each
unit of data.

Information associating each tag with one or more units of
data to which that tag has been assigned is then stored. For
example, each tag assigned to a particular file can be stored in
that file’s inode. Alternatively, each tag assigned to a logical
object can be linked to that logical object’s OID.

After the initial assignments have been made, new units of
data may be added to the collectively-managed set of data, as
detected at 310. In response to detecting that a new unit of
data has been created, the tag(s) (if any) associated with one
or more related units of data can be automatically assigned to
the new unit of data, as indicated at 320. For example, if a new
file is created in a directory in a file system, that new file can
be assigned the same tags that are assigned to the directory
that contains the file. Likewise, a new file can be assigned the
same tags as other files within the same directory. A new unit
of data can also be assigned a tag automatically based upon
which application and/or user created the unit of data.

FIG. 4 is a block diagram of a computing system 410
capable of implementing a selective snapshot module as
described above. Computing system 410 broadly represents
any single or multi-processor computing device or system
capable of executing computer-readable instructions.
Examples of computing system 410 include, without limita-
tion, any one or more of a variety of devices including work-
stations, personal computers, laptops, client-side terminals,
servers, distributed computing systems, handheld devices
(e.g., personal digital assistants and mobile phones), network
appliances, storage controllers (e.g., array controllers, tape
drive controller, or hard drive controller), and the like. In its
most basic configuration, computing system 410 may include
at least one processor 414 and a system memory 416. By
executing the software that implements a selective snapshot
module 80, computing system 410 becomes a special purpose
computing device that is configured to generate snapshots
that contain only a non-empty subset (e.g., two or more but
fewer than all of the units of data contained in a collectively
managed set of data) of a collectively-managed set of data
such as a file system or object storage device.

Processor 414 generally represents any type or form of
processing unit capable of processing data or interpreting and
executing instructions. In certain embodiments, processor
414 may receive instructions from a software application or
module. These instructions may cause processor 414 to per-
form the functions of one or more of the embodiments
described and/or illustrated herein. For example, processor
414 may perform and/or be a means for performing all or
some of the operations described herein. Processor 414 may
also perform and/or be a means for performing any other
operations, methods, or processes described and/or illustrated
herein.

System memory 416 generally represents any type or form
of volatile or non-volatile storage device or medium capable
of storing data and/or other computer-readable instructions.

20

30

35

40

45

50

8

Examples of system memory 416 include, without limitation,
random access memory (RAM), read only memory (ROM),
flash memory, or any other suitable memory device. Although
not required, in certain embodiments computing system 410
may include both a volatile memory unit (such as, for
example, system memory 416) and a non-volatile storage
device (such as, for example, primary storage device 432
and/or L2 cache 70, as described in detail below). In one
example, program instructions implementing a selective
snapshot module 60 may be loaded into system memory 416.

In certain embodiments, computing system 410 may also
include one or more components or elements in addition to
processor 414 and system memory 416. For example, as
illustrated in FIG. 4, computing system 410 may include a
memory controller 418, an Input/Output (1/O) controller 420,
and a communication interface 422, each of which may be
interconnected via a communication infrastructure 412.
Communication infrastructure 412 generally represents any
type or form of infrastructure capable of facilitating commu-
nication between one or more components of a computing
device. Examples of communication infrastructure 412
include, without limitation, a communication bus (such as an
Industry Standard Architecture (ISA), Peripheral Component
Interconnect (PCI), PCI express (PCle), or similar bus) and a
network.

Memory controller 418 generally represents any type or
form of device capable of handling memory or data or con-
trolling communication between one or more components of
computing system 410. For example, in certain embodiments
memory controller 418 may control communication between
processor 414, system memory 416, and I/O controller 420
via communication infrastructure 412. In certain embodi-
ments, memory controller 418 may perform and/or be a
means for performing, either alone or in combination with
other elements, one or more of the operations or features
described and/or illustrated herein.

1/0O controller 420 generally represents any type or form of
module capable of coordinating and/or controlling the input
and output functions of a computing device. For example, in
certain embodiments /O controller 420 may control or facili-
tate transfer of data between one or more elements of com-
puting system 410, such as processor 414, system memory
416, communication interface 422, display adapter 426, input
interface 430, and storage interface 434.

Communication interface 422 broadly represents any type
or form of communication device or adapter capable of facili-
tating communication between computing system 410 and
one or more additional devices. For example, in certain
embodiments communication interface 422 may facilitate
communication between computing system 410 and a private
or public network including additional computing systems.
Examples of communication interface 422 include, without
limitation, a wired network interface (such as a network inter-
face card), a wireless network interface (such as a wireless
network interface card), a modem, and any other suitable
interface. In at least one embodiment, communication inter-
face 422 may provide a direct connection to a remote server
via a direct link to a network, such as the Internet. Commu-
nication interface 422 may also indirectly provide such a
connection through, for example, a local area network (such
as an Ethernet network), a personal area network, a telephone
or cable network, a cellular telephone connection, a satellite
data connection, or any other suitable connection.

In certain embodiments, communication interface 422
may also represent a host adapter configured to facilitate
communication between computing system 410 and one or
more additional network or storage devices via an external

US 9,111,015 B1

9

bus or communications channel. Examples of host adapters
include, without limitation, Small Computer System Inter-
face (SCSI) host adapters, Universal Serial Bus (USB) host
adapters, Institute of Electrical and Electronics Engineers
(IEEE) 1394 host adapters, Serial Advanced Technology
Attachment (SATA), Serial Attached SCSI (SAS), and exter-
nal SATA (eSATA) host adapters, Advanced Technology
Attachment (ATA) and Parallel ATA (PATA) host adapters,
Fibre Channel interface adapters, Ethernet adapters, or the
like.

Communication interface 422 may also allow computing
system 410 to engage in distributed or remote computing. For
example, communication interface 422 may receive instruc-
tions from a remote device or send instructions to a remote
device for execution.

As illustrated in FIG. 4, computing system 410 may also
include at least one display device 424 coupled to communi-
cation infrastructure 412 via a display adapter 426. Display
device 424 generally represents any type or form of device
capable of visually displaying information forwarded by dis-
play adapter 426. Similarly, display adapter 426 generally
represents any type or form of device configured to forward
graphics, text, and other data from communication infrastruc-
ture 412 (or from a frame buffer, as known in the art) for
display on display device 424.

As illustrated in FIG. 4, computing system 410 may also
include at least one input device 428 coupled to communica-
tion infrastructure 412 via an input interface 430. Input device
428 generally represents any type or form of input device
capable of providing input, either computer or human gener-
ated, to computing system 410. Examples of input device 428
include, without limitation, a keyboard, a pointing device, a
speech recognition device, or any other input device.

As illustrated in FIG. 4, computing system 410 may also
include a primary storage device 432 and a backup storage
device 433 coupled to communication infrastructure 412 via
a storage interface 434. Storage devices 432 and 433 gener-
ally represent any type or form of storage device or medium
capable of storing data and/or other computer-readable
instructions. For example, storage devices 432 and 433 may
each include a magnetic disk drive (e.g., a so-called hard
drive), a floppy disk drive, a magnetic tape drive, an optical
disk drive, a flash drive, or the like. Storage interface 434
generally represents any type or form of interface or device
for transferring data between storage devices 432 and 433 and
other components of computing system 410. A storage device
like primary storage device 432 can store information such as
files 30 of FIG. 1 or snapshots 70 of FIG. 1, as described
above.

In certain embodiments, storage devices 432 and 433 may
be configured to read from and/or write to a removable stor-
age unit configured to store computer software, data, or other
computer-readable information. Examples of suitable remov-
able storage units include, without limitation, a floppy disk, a
magnetic tape, an optical disk, a flash memory device, or the
like. Storage devices 432 and 433 may also include other
similar structures or devices for allowing computer software,
data, or other computer-readable instructions to be loaded
into computing system 410. For example, storage devices 432
and 433 may be configured to read and write software, data, or
other computer-readable information. Storage devices 432
and 433 may also be a part of computing system 410 or may
be a separate device accessed through other interface sys-
tems.

Many other devices or subsystems may be connected to
computing system 410. Conversely, all of the components
and devices illustrated in FIG. 4 need not be present to prac-

10

15

20

25

30

35

40

45

50

55

60

65

10

tice the embodiments described and/or illustrated herein. The
devices and subsystems referenced above may also be inter-
connected in different ways from that shown in FIG. 4.

Computing system 410 may also employ any number of
software, firmware, and/or hardware configurations. For
example, one or more of the embodiments disclosed herein
may be encoded as a computer program (also referred to as
computer software, software applications, computer-read-
able instructions, or computer control logic) on a computer-
readable storage medium. Examples of computer-readable
storage media include magnetic-storage media (e.g., hard
disk drives and floppy disks), optical-storage media (e.g.,
CD- or DVD-ROMs), electronic-storage media (e.g., solid-
state drives and flash media), and the like. Such computer
programs can also be transferred to computing system 410 for
storage in memory via a network such as the Internet or upon
a carrier medium.

The computer-readable medium containing the computer
program may be loaded into computing system 410. All or a
portion of the computer program stored on the computer-
readable medium may then be stored in system memory 416
and/or various portions of storage devices 432 and 433. When
executed by processor 414, a computer program loaded into
computing system 410 may cause processor 414 to perform
and/or be a means for performing the functions of one or more
ofthe embodiments described and/or illustrated herein. Addi-
tionally or alternatively, one or more of the embodiments
described and/or illustrated herein may be implemented in
firmware and/or hardware. For example, computing system
410 may be configured as an application specific integrated
circuit (ASIC) adapted to implement one or more of the
embodiments disclosed herein.

FIG. 5 is a block diagram of a network architecture 500 in
which client systems 510, 520, and 530 and servers 540 and
545 may be coupled to a network 550. Client systems 510,
520, and 530 generally represent any type or form of com-
puting device or system, such as computing system 410 in
FIG. 4.

Similarly, servers 540 and 545 generally represent com-
puting devices or systems, such as application servers or
database servers, configured to provide various database ser-
vices and/or run certain software applications. Network 550
generally represents any telecommunication or computer net-
work including, for example, an intranet, a wide area network
(WAN), a local area network (LAN), a personal area network
(PAN), or the Internet. In one example, client systems 510,
520, and/or 530 and/or servers 540 and/or 545 may include a
selective snapshot module 65 as shown in FIGS. 1 and 4.

As illustrated in FIG. 5, one or more storage devices 560
(1)-(N) may be directly attached to server 540. Similarly, one
or more storage devices 570(1)-(N) may be directly attached
to server 545. Storage devices 560(1)-(N) and storage devices
570(1)-(N) generally represent any type or form of storage
device or medium capable of storing data and/or other com-
puter-readable instructions. In certain embodiments, storage
devices 560(1)-(N) and storage devices 570(1)-(N) may rep-
resent network-attached storage (NAS) devices configured to
communicate with servers 540 and 545 using various proto-
cols, such as Network File System (NFS), Server Message
Block (SMB), or Common Internet File System (CIFS).

Servers 540 and 545 may also be connected to a storage
area network (SAN) fabric 580. SAN fabric 580 generally
represents any type or form of computer network or architec-
ture capable of facilitating communication between multiple
storage devices. SAN fabric 580 may facilitate communica-
tion between servers 540 and 545 and a plurality of storage
devices 590(1)-(N) and/or an intelligent storage array 595.

US 9,111,015 B1

11

SAN {fabric 580 may also facilitate, via network 550 and
servers 540 and 545, communication between client systems
510, 520, and 530 and storage devices 590(1)-(N) and/or
intelligent storage array 595 in such a manner that devices
590(1)-(N) and array 595 appear as locally attached devices
to client systems 510, 520, and 530. As with storage devices
560(1)-(N) and storage devices 570(1)-(N), storage devices
590(1)-(N) and intelligent storage array 595 generally repre-
sent any type or form of storage device or medium capable of
storing data and/or other computer-readable instructions.

In certain embodiments, and with reference to computing
system 410 of FIG. 4, a communication interface, such as
communication interface 422 in FIG. 4, may be used to pro-
vide connectivity between each client system 510, 520, and
530 and network 550. Client systems 510, 520, and 530 may
be able to access information on server 540 or 545 using, for
example, a web browser or other client software. Such soft-
ware may allow client systems 510, 520, and 530 to access
data hosted by server 540, server 545, storage devices 560
(1)-(N), storage devices 570(1)-(N), storage devices 590(1)-
(N), or intelligent storage array 595. Although FIG. 5 depicts
the use of a network (such as the Internet) for exchanging
data, the embodiments described and/or illustrated herein are
not limited to the Internet or any particular network-based
environment.

In at least one embodiment, all or a portion of one or more
of the embodiments disclosed herein may be encoded as a
computer program and loaded onto and executed by server
540, server 545, storage devices 560(1)-(N), storage devices
570(1)-(N), storage devices 590(1)-(N), intelligent storage
array 595, or any combination thereof. All or a portion of one
or more of the embodiments disclosed herein may also be
encoded as a computer program, stored in server 540, run by
server 545, and distributed to client systems 510,520, and 530
over network 550.

In some examples, all or a portion of the computing devices
in FIGS. 1, 4, and 5 may represent portions of a cloud-
computing or network-based environment. Cloud-computing
environments may provide various services and applications
via the Internet. These cloud-based services (e.g., software as
a service, platform as a service, infrastructure as a service,
etc.) may be accessible through a web browser or other
remote interface. Various functions described herein may be
provided through a remote desktop environment or any other
cloud-based computing environment.

In addition, one or more of the components described
herein may transform data, physical devices, and/or represen-
tations of physical devices from one form to another. For
example, a selective snapshot module 65 in FIG. 1 may trans-
form behavior of a computing device in order to cause the
computing device to generate snapshots of more than two but
fewer than all of the units of data included within a collec-
tively managed set of data.

Although the present invention has been described in con-
nection with several embodiments, the invention is not
intended to be limited to the specific forms set forth herein.
On the contrary, it is intended to cover such alternatives,
modifications, and equivalents as can be reasonably included
within the scope of the invention as defined by the appended
claims.

What is claimed is:

1. A method comprising:

receiving a request to generate a selective snapshot of a

collectively managed set of data, wherein

the request comprises an identifying tag to identify an
identified subset of the collectively managed set of
data, and

25

35

40

45

55

60

12
the identifying tag is one of a plurality of tags;
generating the selective snapshot of the collectively man-
aged set of data, wherein the selective snapshot com-
prises a snapshot inode for each unit of data within the
collectively managed set of data;
detecting a modification to a first unit of data within the
collectively managed set of data, wherein
a first tag is assigned to the first unit of data,
the detecting occurs subsequent to the generation of the
selective snapshot of the collectively managed set of
data, and
the first tag identifies a first subset of the collectively
managed set of data;
based on a comparison of the first tag to the identifying tag,
determining whether the first unit of data is included in
the identified subset of the collectively managed set of
data, wherein
the identified subset comprises at least two of the units of
data and fewer than all of the units of data in the
collectively managed set of data;
based upon whether the first unit of data is included in the
identified subset, selecting whether to preserve an origi-
nal value of the first unit of data, wherein
the original value is a value of the first unit of data at a
point in time at which the selective snapshot was
generated,
the selecting occurs subsequent to generation of the
selective snapshot of the collectively managed set of
data, and
the selecting is performed by a computing device imple-
menting a selective snapshot module;
wherein the determining comprises determining that the
first unit of data is not included in the identified subset,
and wherein the selecting comprises selecting to not
preserve the original value of the first unit of data;

wherein the determining comprises determining that the
first unit of data is included in the identified subset, and
wherein the selecting comprises selecting to preserve
the original value of the first unit of data; and

transferring the original value of the first unit of data to the
snapshot inode for the first unit of data.

2. The method of claim 1, wherein the collectively man-
aged set of data is an object storage device, and wherein the
first unit of data is an object.

3. The method of claim 1, wherein the collectively man-
aged set of data is a file system, and wherein the first unit of
data is a file.

4. The method of claim 3, further comprising:

detecting that a new file is being added to a directory within

the file system; and

associating the new file with a tag, wherein the directory is

associated with the tag prior to the detecting that the new
file is being added.

5. The method of claim 1, wherein the determining com-
prises determining that the first unit of data is included in the
identified subset if the first tag has the same value as the
identifying tag.

6. The method of claim 1, further comprising:

performing the transferring if the selective snapshot is gen-

erated using a space efficient snapshot technique.

7. The method of claim 6, wherein

the space efficient snapshot technique is a copy on write

(COW) snapshottechnique or a redirect on write (ROW)
snapshot technique.

8. A non-transitory computer readable storage medium
comprising program instructions executable to:

US 9,111,015 B1

13

receive a request to generate a selective snapshot of a
collectively managed set of data, wherein the request
comprises an identifying tag of one or more tags initially
assigned to identify an identified subset of the collec-
tively managed set of data, and a first tag of the one or
more tags initially assigned associated with the request
to generate the selective snapshot, wherein the firsttag is
associated with a first unit of data within the collectively
managed set of data;

generate the selective snapshot of the collectively managed
set of data, wherein the selective snapshot comprises a
snapshot inode for each unit of data within the collec-
tively managed set of data;

detect a modification to the first unit of data within the
collectively managed set of data, wherein
the first tag is assigned to the first unit of data,
detection of the modification occurs subsequent to gen-

eration of the selective snapshot of the collectively

managed set of data, and
the first tag identifies one or more of a plurality of sub-

sets of the collectively managed set of data;

determine, based on a comparison of the first tag to the

identifying tag, whether the first unit of data is included
in the identified subset of the collectively managed set of
data, wherein the identified subset comprises at least two
of the units of data and fewer than all of the units of data
in the collectively managed set of data;

select, based upon whether the unit of data is included in
the identified subset, whether to preserve an original
value of the first unit of data, wherein the original value
is a value of the first unit of data at a point in time at
which the selective snapshot was generated, and the
selecting occurs subsequent to generation of the selec-
tive snapshot of the collectively managed set of data;

wherein determining whether the first unit of data is
included in the identified subset comprises determining
that the first unit of data is not included in the identified
subset, and wherein selecting whether to preserve the
original value comprises selecting to not preserve the
original value of the first unit of data;

wherein determining whether the first unit of data is
included in the identified subset comprises determining
that the first unit of data is included in the identified
subset, and wherein selecting whether to preserve the
original value comprises selecting to preserve the origi-
nal value of the first unit of data; and

transfer the original value of the first unit of data to the
snapshot inode for the first unit of data.

9. The non-transitory computer readable storage medium
of claim 8, wherein the collectively managed set of data is an
object storage device, and wherein the first unit of data is an
object.

10. The non-transitory computer readable storage medium
of claim 8, wherein the collectively managed set of data is a
file system, and wherein the first unit of data is a file.

11. The non-transitory computer readable storage medium
of claim 10, wherein the program instructions are further
executable to:

detect that a new file is being added to a directory within the
file system; and

associate the new file with a tag, wherein the directory is
associated with the tag prior to detection that the new file
is being added.

12. The computer readable storage medium of claim 8,

wherein determining whether the first unit of data is included
in the identified subset comprises determining that the first

10

15

20

25

30

35

40

45

50

55

60

65

14

unit of data is included in the identified subset if the first tag
has the same value as the identifying tag.

13. A system comprising:

one or more processors; and

a memory coupled to the one or more processors, wherein

the memory stores program instructions executable by
the one or more processors to:
receive a request to generate a selective snapshot of a
collectively managed set of data, wherein the request
comprises an identifying tag of one or more tags ini-
tially assigned to identify an identified subset of the
collectively managed set of data, and a first tag of the
one or more tags initially assigned associated with the
request to generate the selective snapshot, wherein the
first tag is associated with a first unit of data within the
collectively managed set of data;
generate the selective snapshot of the collectively man-
aged set of data, wherein the selective snapshot com-
prises a snapshot inode for each unit of data within the
collectively managed set of data;
detect a modification to the first unit of data within the
collectively managed set of data, wherein
a first tag is assigned to the first unit of data,
detection of the modification occurs subsequent to
generation of the selective snapshot of the collec-
tively managed set of data, and
the first tag identifies one or more of a plurality of
subsets of the collectively managed set of data;
determine, based on a comparison of the first tag to the
identifying tag, whether the first unit of data is
included in the identified subset of the collectively
managed set of data, wherein the identified subset
comprises at least two of the units of data and fewer
than all of the units of data in the collectively managed
set of data;
select, based upon whether the unit of data is included in
the identified subset, whether to preserve an original
value of the first unit of data, wherein the original
value is a value of the first unit of data at a point in time
atwhich the selective snapshot was generated, and the
selecting occurs subsequent to generation of the
selective snapshot of the collectively managed set of
data;
wherein determining whether the first unit of data is
included in the identified subset comprises determin-
ing that the first unit of data is not included in the
identified subset, and wherein selecting whether to
preserve the original value comprises selecting to not
preserve the original value of the first unit of data:
wherein determining whether the first unit of data is
included in the identified subset comprises determin-
ing that the first unit of data is included in the identi-
fied subset, and wherein selecting whether to preserve
the original value comprises selecting to preserve the
original value of the first unit of data; and
transfer the original value of the first unit of data to the
snapshot inode for the first unit of data.

14. The system of claim 13, wherein the collectively man-
aged set of data is an object storage device, and wherein the
first unit of data is an object.

15. The system of claim 13, wherein the collectively man-
aged set of data is a file system, and wherein the first unit of
data is a file.

16. The system of claim 15, wherein the program instruc-
tions are further executable to:

detect that a new file is being added to a directory within the

file system; and

US 9,111,015 B1
15

associate the new file with a tag, wherein the directory is
associated with the tag prior to detection that the new file
is being added.

17. The system of claim 13, wherein determining whether
the first unit of data is included in the subset comprises deter- 5
mining that the first unit of data is included in the identified
subset if the first tag has the same value as the identifying tag.

#* #* #* #* #*

16

