a2 United States Patent

Low et al.

US009325811B2

(10) Patent No.: US 9,325,811 B2
(45) Date of Patent: Apr. 26, 2016

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

METHOD AND SYSTEM FOR PACKET
PROCESSING

Applicant: Conversant Intellectual Property
Management Inc., Ottawa (CA)

Inventors: Arthur John Low, Chelsea (CA);
Stephen J. Davis, Ottawa (CA)

Assignee: Conversant Intellectual Property
Management Inc., Ottawa (CA)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/148,895
Filed: Jan. 7, 2014

Prior Publication Data

US 2014/0122582 Al May 1, 2014

Related U.S. Application Data

Division of application No. 12/619,355, filed on Nov.
16, 2009, now Pat. No. 8,639,912, which is a
continuation of application No. 11/257,525, filed on
Oct. 25, 2005, now Pat. No. 7,631,116, which is a
continuation of application No. 09/741,829, filed on
Dec. 22, 2000, now Pat. No. 6,959,346.

Int. Cl1.

GO6F 15/00 (2006.01)

GO6F 3/00 (2006.01)

HO4L 29/06 (2006.01)

HO4L 12/861 (2013.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC ... HO4L 67/42 (2013.01); HO4L 49/90

(2013.01); HO4L 49/9036 (2013.01); HO4L
63/0485 (2013.01); HO4L 67/34 (2013.01);
HO4L 69/22 (2013.01); HO4L 69/329
(2013.01); HO4L 63/0428 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,768,389 A * 6/1998
6,141,681 A * 10/2000 .. 709/206
6,309,424 B1* 10/2001 341/51
7,600,131 B1* 10/2009 Krishna etal. 713/192

380/30

* cited by examiner

Primary Examiner — Idriss N Alrobaye
Assistant Examiner — Richard B Franklin
(74) Attorney, Agent, or Firm — Daniel Hammond

(57) ABSTRACT

A data processor and a method for processing data is dis-
closed. The processor has an input port for receiving packets
of'datato be processed. A master controller acts to analyze the
packets and to provide a header including a list of processes to
perform on the packet of data and an ordering thereof. The
master controller is programmed with process related data
relating to the overall processing function of the processor.
The header is appended to the packet of data. The packet with
the appended header information is stored within a buffer. A
buffer controller acts to determine for each packet stored
within the buffer based on the header within the packet a next
processor to process the packet. The controller then provides
the packet to the determined processor for processing. The
processed packet is returned with some indication that the
processing is done. For example, the process may be deleted
from the list of processes. The buffer controller repeatedly
makes a determination of a next process until there is no next
process for a packet at which time it is provided to an output
port.

16 Claims, 12 Drawing Sheets

102 102 102
L [[
—PROCESSOR|-{PROCESSOR|——{PROCESSOR
1 /oz 102 102
100 104
1/06 [IH{PROCESSOR}+{PROCESSOR | H—{PROCESSOR /
SERVER
PROCESSOR PROCESSOR OUTPUT
ADDRESSING [+
102 102 102 SWITCH

—|PROCESSOR[~|PROCESSOR[~—|PROCESSOR

US 9,325,811 B2

Sheet 1 of 12

Apr. 26,2016

U.S. Patent

14V H014dd

¢ 9Old

1vYINHO43d
&

d0SS300dd dde H1IM SS3004d
_

H0SS300dd ANZ HLIM SS300dd
*

d40SS300dd 1Sdid H1IM SS300dd

_
1IN0V IAIFOIY

1¥V HOldd
l Ol4
ERMARY dOV1S dOvIis | | ERAARY 3OV1iS
aNIN3dlid INIT3did INIT3dld dNI3did M\ dNI3did NMP
/
9l 145
/
ol

US 9,325,811 B2

Sheet 2 of 12

Apr. 26,2016

U.S. Patent

Ve
/

ve
/

€ Ol

ve
/

AININTTS
ONISS3004Hd

ININTTE
ONISS3004dd

d344N49g
v1ivdad

ININTT4
ONISS300Hd

ve
/

SEINERE
ONISS300dd

H3TIOHLNOD
d344Nd

/
2>

d344nd 40SS300dd
1Nndino d3LSVIN

/ /

g€ (4

U.S. Patent Apr. 26,2016 Sheet 3 of 12 US 9,325,811 B2

Receive packet

Insert leader

Provide packet to buffer

) Determine next processor to
process data

Provide packet to processor

v

Reformat data

Fig. 4

U.S. Patent Apr. 26,2016 Sheet 4 of 12 US 9,325,811 B2

Data
s

r/

Fig. 5

Super Packet Buffer

Data

US 9,325,811 B2

Sheet 5 of 12

Apr. 26,2016

U.S. Patent

9 31

"BJeP PALJIPOW PUR [BUISLIO S[OJJU0D ISHING BIB(]

-uonyerado sryderSo1dAin e soyoaur
Jey} uonoe [0NUOD Yded 10} papraosd aq Isnur uoneuoyul SulAoy

"BIEP
PAIEIOOSSE L) UO SALNUS [ONUO0D 3} U PAPOO SPUBUIIOD o) UrIoiod
0} STUSUISJA [ONIUOD JLIdUAT Yy} AQ parnbal suorONIISUI oY) ST 9pon

"SOIIIUS [OLJUOD dY) OuT Moreq paoeyd
9Ie UONBULIOJUT UONS[dUIOd PUR SIPOJ Y NSAI “BJRP J[NSAI J2o) 0} MOY
pue e1ep paydeye uo paunioyiad aq 03 uonerado Auopr SSLUL [0HUO))

“UOTIRULIOJ U
Sunpoen pue Furwn sopraoid pue 1030ed Jodng SOUAPI JOPRSL]

—

e W e NP

1png
Bl

U A9y

0 Ay

u 9ponn

0 °popn

U AQjug] jonuo))

0 Anur Jo1U0)

JOpeSH

US 9,325,811 B2

Sheet 6 of 12

Apr. 26,2016

U.S. Patent

[‘814

Juouy
Ju1SS90014 OLIOUAD)

90RLIOUT O110adS Judwa|

IS

JuoWo 3uIssa001g SL
ogoadg uoneornddy —
— VL
dorJIoU] J110ads Juswoy g +— c/
-
] P L

JFeuRy
20INOSY

US 9,325,811 B2

Sheet 7 of 12

Apr. 26,2016

U.S. Patent

8 81

98

/

UONBIIUAINY uondA1ougg
SAN-96DVINH SAd¢

Bursseo01g
$$0I3

©

@\ N B

Japng 1oed sodng

IS

IOAIDS
° 938dI

uorendrueiy
1opesH J]

L/

BuISsa001]
SSQISU]

®

US 9,325,811 B2

Sheet 8 of 12

Apr. 26,2016

U.S. Patent

(ox0ed d1)
BlR(]

Aoy

¢ Aoy

9 apoDn

¢ 9podn

¥ SpoDn

€ oponn

¢ ™popn

g [onuo)

S Jonuo)

{ [o1u0)

¢ [onu0)

ppy| 9°SdI

7 [onuo)

PpedH dS

[8poDn

[1013U0)H

A

dAOUITY |
!

REYNETS

@©

26 "SI

e1R(q

(1e3ord di)

[9poDn

3uIS$2001]
ssaIduy

I 1oQuo)

I9peaH dS

®

e
W)SAS

IO

(19y0rd d1)
eje(g

US 9,325,811 B2

Sheet 9 of 12

Apr. 26,2016

U.S. Patent

OIeL], dSH

e

I9peaH dSH

JSpeaH d1

b A

gAY

0 opoOn

g opoHn

¥ 9popn

& SPOOIL

NALINOLN

9 [OBI0)

¢ [oBU0)

b 1000

NN

[€ JONNO)

96 31

uondAouy
SHd¢

T5PESH dS

®

9191dwod Surssavo.ad sa1eoIpUT YoIey SSOL)

Tofted], dSd

193oed dl

1opesH dSH

IapeaH di

v ASY

¢ ASY

9 apon

¢ apoDn

¥ apoHn

¢ epopn

WAL

0 101U0)H

¢ JOJU0DH)

7 [ORE0))

NN

|

1939ed dI

7 A9

€ A3y

9 apoon

§ 9popn

¥ epoon

¢ 9popn

¢ 3popn

0 [01U0))

G JOIU0))

¢ 10nuo0nH

CIOQUOD

uonendrueiy
J3peaH d1

PRig)

£ 10000)

13pesH dS

©

Z [0R0)

ToPESH IS

US 9,325,811 B2

Sheet 10 of 12

Apr. 26,2016

U.S. Patent

B[eL], d5d

v Ms\\

PeRH dSH

JopeaH dl

AL

(RSN

9 spopn

S PO

AN

9 [ouo0)

S TOUOO)

RIOQHOY)

£ JOQUOO |

€ TORUOO

I3pESH dS

56 B4

o1o[duwios 3urssaooid sajedIpur yojey Sso1))

vonjendiueiy
IOpROH 99SdI

©

NNNNNNY
JVIANH
Io[IRL], dSH Ioftel], dSH
/ /
= =
pe \@ ‘

/. \@ \ \
19peoH dSH 12pe3H dSd
I5pesH d] I3peSH d[

NAEEN y A9y
IO NSRS
9 9poDn 9 9poDn
G epopn § 9ponn

PO 7 2poon

“EQPOO ~EIp00n
Zapoon. PO
9 MO.SEOU 9 ~O.SQOU
¢ 00D ¢ 101IU0)

/W//TOV@/ {onednuayIn ¥ 101800y

TERTI0 | ST Y e [ETOT00 | «—
NALCAN LZALE/ I AT
.Mogwom dS Hoﬁwum ds

®

US 9,325,811 B2

Sheet 11 of 12

Apr. 26,2016

U.S. Patent

p6 "SI

JOAIDS
938dI

uonodwo)

pI009Y
D E—

IopeaH dS

IO[IeL], dSH

\\\
7

i

<

orerdwos Surssaooxd sajesrpur yojey sSox))

i

SN

DLy, d5H

£

1OPBIH dSH

10peaH dl

PRASH N

WREE

9 3poDn

o 5 APOOR

AL

PO

NN

9 [0[uoy

IopesH d1

wWSAS
SOABYT

Bu1ssa001g
$$2134

©

R IOTUO

£ JOLUC

G JORUO0)

IopeoH dS

US 9,325,811 B2

Sheet 12 of 12

Apr. 26,2016

U.S. Patent

d40SSH300dd

+40SS3004dd
d3Ad3S

oL ©ld
¥0SSIO0Ud|—{H0SSI00Ud| —{H0SSTD0Md
/ / /
HOLIMS 20} 20} 201
ONISSIHAAY
1Nd1no
] ¥0SSI00Hd[-{H0SSIO0Ud H{H0SSIO0Nd
v0L
/ / /
201 20! 201
M0SSIO0Hd - H0SSTO0UdHH0SSIO0Nd
/ / /
201 20l 201

00l

/
9ot

US 9,325,811 B2

1
METHOD AND SYSTEM FOR PACKET
PROCESSING

RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No.
12/619,355, filed Nov. 16, 2009, now U.S. Pat. No. 8,639,
912, issued Jan. 28, 2014, which is a continuation of U.S.
application Ser. No. 11/257,525, filed Oct. 25, 2005, now
U.S. Pat. No. 7,631,116, issued Dec. 8, 2009, which is a
continuation of U.S. application Ser. No. 09/741,829, filed
Dec. 22, 2000, now U.S. Pat. No. 6,959,346, issued Oct. 25,
2005. The entire teachings of the above applications are
incorporated herein by reference.

FIELD OF THE INVENTION

The invention relates generally to processor architectures
and more specifically to a flexible architecture for processing
of serial data.

BACKGROUND OF THE INVENTION

Before the advent of the Internet, corporate data networks
typically consisted of dedicated telecommunications lines
leased from a public telephone company. Since the hardware
implementation of the data networks was the exclusive prop-
erty of the telephone company, a regulated utility having an
absolute monopoly on the medium, security was not much of
a problem; the single provider was contractually obligated to
be secure, and the lack of access to the switching network
from outside made it more or less resistant to external hacking
and tampering.

Today, more and more enterprises are discovering the value
of the Internet which is currently more widely deployed than
any other single computer network in the world and is there-
fore readily available for use by a multinational corporate
network. Since it is also a consumer-level product, Internet
access can usually be provided at much lower cost than the
same service provided by dedicated telephone company net-
work. Finally, the availability of the Internet to the end user
makes it possible for individuals to easily access the corporate
network from home, or other remote locations.

The Internet however, is run by public companies, using
open protocols, and in-band routing and control that is opento
scrutiny. This environment makes it a fertile proving ground
for hackers. Industrial espionage is a lucrative business today,
and companies that do business on the Internet leave them-
selves open to attack unless they take precautions.

Several standards exist today for privacy and strong
authentication on the Internet. Privacy is accomplished
through encryption/decryption. Typically, encryption/de-
cryption is performed based on algorithms which are
intended to allow data transfer over an open channel between
parties while maintaining the privacy of the message con-
tents. This is accomplished by encrypting the data using an
encryption key by the sender and decrypting it using a decryp-
tion key by the receiver. In symmetric key cryptography, the
encryption and decryption keys are the same, whereas in
public key cryptography the encryption and decryption keys
are different.

Types of Encryption Algorithms
Encryption algorithms are typically classified into public-

key and secret key algorithms. In secret-key algorithms, keys
are secret whereas in public-key algorithms, one of the keys is

10

15

20

25

30

35

40

45

50

55

60

65

2

known to the general public. Block ciphers are representative
of the secret-key cryptosystems in use today. A block cipher
takes a block of data, for example 32-128 bits, as input data
and produces the same number of bits as output data. The
encryption and decryption operations are performed using the
key, having a length typically in the range of 56-128 bits. The
encryption algorithm is designed such that it is very difficult
to decrypt a message without knowing the exact value of the
key.

In addition to block ciphers, Internet security protocols
also rely on public-key based algorithms. A public key cryp-
tosystem such as the Rivest, Shamir, Adelman (RSA) cryp-
tosystem described in U.S. Pat. No. 5,144,667 issued to
Pogue and Rivest uses two keys, one of which is secret—
private—and the other of which is publicly available. Once
someone publishes a public key, anyone may send that person
a secret message encrypted using that public key; however,
decryption of the message can only be accomplished by use of
the private key. The advantage of such public-key encryption
is private keys are not distributed to all parties of a conversa-
tion beforehand. In contrast, when symmetric encryption is
used, multiple secret keys are generated, one for each party
intended to receive a message, and each secret key is privately
communicated. Attempting to distribute secret keys in a
secure fashion results in a similar problem as that faced in
sending the message using only secret-key encryption; this is
typically referred to as the key distribution problem.

Key exchange is another application of public-key tech-
niques. In a key exchange protocol, two parties can agree on
a secret key even if their conversation is intercepted by a third
party. The Diffie-Hellman exponential key exchange method,
described in U.S. Pat. No. 4,200,770, is an example of such a
protocol.

Most public-key algorithms, such as RSA and Ditfie-Hell-
man key exchange, are based on modular exponentiation,
which is the computation of & mod p. This expression means
“multiply a by itself x times, divide the answer by p, and take
the remainder.” This is very computationally expensive to
perform for the following reason: In order to perform this
operation, many repeated multiplication operations and divi-
sion operations are required. Techniques such as Montgom-
ery’s method, described in “Modular Multiplication Without
Trial Division,” from Mathematics of Computation, Vol. 44,
No. 170 of April 1985, can reduce the number of division
operations required but do not overcome this overall compu-
tational expense. In addition, for present day encryption sys-
tems the numbers used are very large (typically 1024 bits or
more), so the multiply and divide instructions found in com-
mon CPUs cannot be used directly. Instead, special algo-
rithms that break down the large multiplication operations
and division operations into operations small enough to be
performed on a CPU are used. These algorithms usually have
a run time proportional to the square of the number of
machine words involved. These factors result in multiplica-
tion of large numbers being a very slow operation. For
example, a Pentium® processor can perform a 32x32-bit
multiply in 10 clock cycles. A 2048-bit number can be rep-
resented in 64 32-bit words. A 2048x2048-bit multiply
requires 64x64 separate 32x32-bit multiplication operations,
which takes 40960 clocks on the Pentium® processor assum-
ing no pipeline processing is performed. An exponentiation
with a 2048-bit exponent requires up to 4096 multiplication
operations if done in the straightforward fashion, which
requires about 167 million clock cycles. If the Pentium pro-
cessor is running at 166 MHZ, the entire operation requires
roughly one second. Of course, the division operations add
further time to the overall computation times. Clearly, a com-

US 9,325,811 B2

3

mon CPU such as a Pentium cannot expect to do key genera-
tion and exchange at any great rate.

Because public-key algorithms are so computationally
intensive, they are typically not used to encrypt entire mes-
sages. Instead, private-key cryptosystems are used for mes-
sage transfer. The private key used to encrypt the message,
called the session key, is chosen at random and encrypted
using a public key. The encrypted session key and the
encrypted message are then sent to the other party. The other
party uses its private key to decrypt the session key, and then
the message is decrypted using the session key. A different
session key is used for each communication, so that if security
of a session key is ever breached, only the one message
encrypted therewith is accessible. This public-key/private-
key method is also useful to protect continuous streams of
data within communications, such as interactive terminal ses-
sions that do not terminate in normal operation or that con-
tinue for extended periods of time. Preferably in this case, the
session key is periodically changed by repeating the key
exchange technique. Again, frequent changing of the session
key limits the amount of data compromised when security of
the session key is breached.

PRIOR ART

Network-level encryption devices, allowing access to cor-
porate networks using a software-based solution are experi-
encing widespread usage. Products typically perform encryp-
tion entirely in software. The software complexity and
processor speed limit throughput of such a system. Also,
session key generation using public-key techniques is time
consuming and is therefore undertaken only when necessary.
Software does have advantages such as ease of modification
and updating to encryption algorithms implemented thereby.

Other available devices use a combination of hardware and
software in order to provide encryption. For example, the
Entrust Sentinel X.25 encryption product uses a DES (Data
encryption standard) chip produced by AMD® to perform
DES symmetric-key encryption. Hardware implementations
of the DES algorithm are much faster than software imple-
mentations, since DES was designed for efficient implemen-
tation in hardware and dedicated hardware solutions are
known to be more efficient. A transposition that takes many
central processing unit (CPU) instructions on a general pur-
pose processor in execution of software are done using par-
allel special-purpose lookup tables.

The Sentinel also makes use of a Motorola DSP56000®
processor to perform public-key operations. When designed,
support of single-cycle multiplication by the digital signal
processor (DSP) made this processor significantly faster than
regular complex instruction set computers (CISC) micropro-
Cessors.

Most hardware encryption devices are severely limited in
the number of algorithms that they support. For example, the
AMD chip used in the Sentinel performs only DES. More
recent devices from Hi/Fn can perform DES and RC4. How-
ever, other standard algorithms such as RC5 sand IDEA
require use of another product.

It would be advantageous to provide a flexible processor
architecture for supporting encryption and other processing
of data within a data stream.

OBIJECT OF THE INVENTION

In order to overcome these and other limitations of the prior
art it is an object of the invention to provide a flexible proces-

4

sor architecture for supporting encryption and other process-
ing of data within a data stream.

SUMMARY OF THE INVENTION

In accordance with the invention there is provided a data
processor for processing data comprising an input port for
receiving packets of data; at least a port for communication
with each of a plurality of processors; a first processor in
communication with the at least a port and for processing
received data to provide a header including a list of processes
to perform on the packet of data and an ordering thereof, the
header stored within a packet of data to which the header
relates; a buffer for storing data received from the at least a
port; a buffer controller for determining based on the header
within a packet a next processor of the plurality of processors
to process said data packet and for providing said data packet
to the at least a port for provision to the next processor.

In accordance with another embodiment of the invention
there is provided a data processor for processing data com-
prising a buffer for storing data; a plurality of special purpose
processors, each for processing data from within the buffer; a
buffer controller in communication with each special purpose
processor, for determining a next processor of the special
purpose processors to process the data, and for providing the
data to the determined next processor.

In accordance with yet another embodiment there is pro-
vided a data processor for processing a packet of data com-
prising an addressing network; a plurality of special purpose
processors, each for processing data received via the address-
ing network and for providing processed data to the address-
ing network, the addressing network interconnecting the plu-
rality of special purpose processors; a first processor for
providing data for use in directing a packet of data through the
addressing network to a plurality of processors one after
another in a predetermined order, the data associated with the
packet, wherein different packets are provided with different
data for directing them differently through the addressing
network and wherein each special purpose processor is for
performing a function absent knowledge of the overall high
level packet processing operation.

In accordance with another aspect of the invention there is
provided a method for processing stream data comprising
receiving stream data including packets of data at an input
port; processing received data packets to provide for each a
header including a list of processes to perform on the packet
and an ordering thereof, the header stored within the packet to
which the header relates; providing the packet with the asso-
ciated header to a buffer for storage; for each packet within
the buffer:

determining based on the header within the packet a next

processor to process the packet;

providing the packet to the determined next processor for

processing, and receiving the processed packet from the
processor and storing it in the buffer, the stored packet
including one of an indication that processing by the
next processor is complete and that no processing by the
next processor is required; and,
when no further processes are indicated in a header of a
packet, providing the packet to an output port.

Inaccordance with yet another aspect of the invention there
is provided an architecture for processing data comprising:

a first processing element for receiving data and for for-

matting the data with a list of processes selected from
available processes and an ordering thereof, the list of
processes for being performed on the data;

20

30

35

40

45

50

55

60

US 9,325,811 B2

5

further processors for performing at least one process from
the available processes; and,
a routing memory for providing data to processors for
performing the processes according to the ordering of the
listed processes.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described with reference to the
drawings in which like reference numerals refer to similar
items and in which:

FIG. 1 is a prior art block diagram of a pipeline processor
for processing of data;

FIG. 2 is a simplified flow diagram of a method for pro-
cessing a packet using the pipeline processor of FIG. 1;

FIG. 3 is, a simplified architectural diagram of an embodi-
ment of the present invention;

FIG. 4 is a simplified flow diagram of a method according
to the invention;

FIG. 5 is a simplified block diagram of a processor archi-
tecture according to the invention;

FIG. 6 is a data structure diagram for a super packet;

FIG. 7 is a simplified block diagram of a processor archi-
tecture according to the invention;

FIG. 8 is a simplified block diagram of a processor archi-
tecture according to the invention;

FIGS. 9a-9d is a data structure diagram for a super packet
throughout a processing operation being performed thereon;
and,

FIG. 10 is a simplified block diagram of a processor array
for use with an architecture according to the invention.

DETAILED DESCRIPTION OF THE INVENTION

In data processing it is common that data is received in a
format commonly referred to as packets. A packet is a small
set of data including content data and classification data. The
classification data includes one or more of format data, rout-
ing data, data type information, data classification, packet
grouping data, and so forth.

As each packet is received it is processed in accordance
with its classification data in order to act on the data in
accordance with requirements relating to that classification of
data.

An example of packet classification and processing
according to the prior art is now described with reference to
FIG. 1 and FIG. 2. In FIG. 1 is shown a simplified block
diagram of a serial pipeline processor. The processor is shown
with a single pipeline path 10 for processing data received
serially at a data input port 12. The data is classified in a first
stage of the pipeline 14. The classified data is then routed to an
appropriate next pipeline stage through address lines 16.
Examples of subsequent pipeline stages include cipher pro-
cessing, routing processors, etc.

Referring to FIG. 2, a simplified flow diagram of a method
of packet processing for a packet received at input port 12 is
shown. The packet is received. It is classified to determine a
packet format. Here, the format is encrypted so the encrypted
packet data is provided to a cipher processor for decryption.
Once decrypted, the plain text is stored in a data buffer from
which it is transferred to a destination process such as a
communication port of a personal computer.

Though the packet processor of FIGS. 1 and 2 is efficient
and makes use of parallel hardware based processors that are
typically optimised for performing a specific task, the proces-
sor architecture is extremely inflexible. Each pipeline stage
requires knowledge of all immediately subsequent pipeline

10

15

20

25

30

35

40

45

50

55

60

65

6

stages in order to direct partially processed packets. Also,
some pipeline stages are fully utilised while others are under
utilised. Thus, efficiency is compromised. Finally, each
packet follows a same path with some simple switching to
ensure that packets are not processed when there is no need to
do so.

Referring to FIG. 3, a simplified architectural diagram of
an embodiment of the present invention is shown. Here a data
buffer 30 is shown disposed central to a packet processor. A
buffer controller 31 determines based on the header within a
packet, a next processor of a plurality of processors to process
data packets. The bufter controller 31 provides the data packet
to a port for provision to the next processor. A master proces-
sor 32 acts to format each packet in order to insert a header
therein indicative of processes required for processing that
packet. The master processor 32 is programmable and under-
stands the processing of packets at a high level. Once the
packet is reformatted, it is returned to the data buffer 30 from
which it is routed to a processing element 34 for performing
the first listed function. For example, in the example of FIG.
2, the first function is determining a format of the packet. The
packet format is determined and for each determined format
a number of possible functions may be added or removed
from the list within the header. For example, an encrypted
packet may have the function cipher added to it along with
some form of key identifier. The key identifier and the packet
is then provided to a cipher processor from the buffer 30. In
the cipher processor the packet is decrypted and the decrypted
packet is returned to the buffer 30. The buffer 30 continues to
provide the packet to processors as long as further functions
remain within the header. When the header is empty, the
packet is transferred to an output port for storage, for example
in a received data buffer 36. Alternatively, a last function
indicates the provision of the data to a data output port.

Because of the central data buffer of F1G. 3, the number and
type of processors is easily varied, upgraded, expanded and so
forth. Each time a new function is supported, the master
processor is reprogrammed to know of the new function and
appropriate packets for which to list the process.

Advantageously, only the master processor inserts func-
tions within a header. As such, only the master processor
needs to capture data relating to packet processing and only
the master processor requires reprogramming when the pro-
cessing method or capabilities are changed.

Referring to FIG. 4, a simplified flow diagram of'a method
according to the invention is shown. Here, a packet is
received. The master processor inserts a header indicative of
classification, cipher processing, combining packets, and
providing the combined data to the data output port. The
buffer then receives the formatted packet and provides it to a
classification processor that strips out classification data
within the packet and replaces it with a known classification
code. The packet is then returned to the buffer. The returned
packet has the classification step removed therefrom either by
removing the function from the header or by indicating the
function as completed. The classified packet is then provided
to a processor for ciphering. The cipher processor decrypts
the packet data and returns the clear text packet to the buffer.
The clear text packet is now provided to a combining proces-
sor that detects the packet classification information to deter-
mine if it is part of a segmented larger packet and combines it
with those segments of the larger packet that are already in the
combiner. When the larger packet is complete, it is returned to
the buffer and then provided to the output data port.

As is clear to one of skill in the art, the use of such an
architecture greatly facilitates updating the processor capa-
bilities, programming, and power. For example, a new cipher

US 9,325,811 B2

7

processor is easily added. The new resource is identified to the
buffer as a cipher processor to allow the buffer to send packets
having a cipher function required to the new processor. Simi-
larly, a classification processor can be upgraded or changed
without effecting the processor.

Also, the core processor according to the inventive archi-
tecture comprises a buffer and a master processor. The master
processor is programmable to allow for upgradable and flex-
ible packet processing. The buffer is capable of recognising
and interfacing with a plurality of different dedicated proces-
sors. Of course, when desired, the dedicated processors are
included within a same integrated processor.

Referring to FIG. 5, a simplified architectural diagram of a
processor according to the invention is shown. A super packet
buffer 51 is in communication with a plurality of data ele-
ments 52. The data elements 52 are for providing data to the
super packet buffer 51 and for receiving data from the super
packet buffer 51. Though the data element D1 is shown for
providing and the data element D2 is shown receiving data,
data elements 52 optionally support bidirectional communi-
cation with the super packet buffer (SPB) 51.

The SPB is also in communication with a plurality of
processors. Processors 53 provide data processing including
determining further processing required for a data packet.
Processors 54 are referred to as client processors and perform
data processing on packets that are received. Typically client
processors 54 are dedicated to a single form of processing that
is self contained and can be performed on a packet in isola-
tion. Cipher processing is one such process. Thus, a DES
encryption engine typically forms a client processor for
receiving data, for encrypting the data, and for returning the
encrypted data to the SPB.

Each communication port is typically controlled by a
driver process in execution within the SPB 51. For example,
a driver process for a DES encryption engine would typically
strip the header from a packet and provide the data to be
encrypted by the processor along with key data in the form of
akey or of a key identifier. The DES processor then processes
the data and returns the processed data to the driver process
which reinserts the header data, indicates the DES processing
as completed, and passes the packet back to the SPB 51. The
use of driver processes allows for use of non-proprietary
processing elements—Ilegacy processors—for performing
dedicated tasks. The use of driver processes also allows for
system maintainability and upgradability.

Referring to FIG. 6, an exemplary super packet data struc-
ture is shown. The super packet comprises a header, an
ordered list of operations, data relating to the operations, key
data, and packet data. The header provides data used for
identifying the super packet and for tracking of same. Option-
ally, the header also includes auditing information for use in
monitoring performance, debugging, security audits, and
other functions wherein a log is useful.

The control entries include a list of processes—func-
tions—required for the data within the data buffer. These
processes are generally listed in a generic fashion such that
the super packet buffer routes the super packet to any of a
number of available processors for performing said function.
Some functions require data, which is stored either following
each function identifier or in a separate set of fields within a
super packet. For example, a cipher processor may require an
indication of which of encrypt/decrypt to perform. Key data is
stored in a subsequent set of fields and typically identifies
keys by identifier instead of storing within the actual super
packets. Finally, the data to be processed is included within
the super packet.

20

30

40

45

55

8

Referring to FIG. 7, an architectural diagram of another
embodiment of the invention is shown. Here, a resource man-
ager 71 maintains information on resource availability and so
forth while agents 72 in execution within the super packet
buffer 51 operate to provide super packets to processors 75 in
accordance with their headers. Client specific agents 73 act as
part of the driver process and communicate with the agents 72
to determine data that will be suitably processed by the client
75. Once the client 75 is determined, the remainder of the
driver process 74 acts to format the data for receipt by the
client 75.

Referring to FIG. 8, a simplified architectural diagram ofa
processor for use in supporting Internet protocol security
(IPSEC) processing is shown. The process of data reaching a
processor having an architecture according to the invention is
shown in FIGS. 94-9d. The data element 81 performs ingress
processing of data prior to providing the data in the form of'a
super packet of data to the super packet buffer 51. The super
packet of data includes a header indicative of a single pro-
cess—that of the server processor 82 for processing the data
packet. The super packet is then provided to the IPSEC server
82 where it is converted into a super packet more indicative of
correct processing. The IPSEC server 82 is the only processor
that has knowledge of the overall process being performed on
each incoming data packet. All other processors perform their
single function absent knowledge of how it fits into the global
scheme.

The super packet is returned to the super packet buffer 51
from the server processor 82. Once there, the super packet is
provided to the client processor 83 for IP header manipula-
tion. The data within the data buffer is shown (FIG. 94) with
IP header information and encapsulated security payload
(ESP) header information therein. The process, control 2, is
then marked as performed and the super packet is returned to
the super packet buffer 51. The next process is that process
indicated by control 3, 3DES Encryption. Client 84 provides
this functionality. The super packet is provided to client 84
where, as shown in FIG. 95 encryption is performed and the
function control 3 is marked as having been performed. The
next function to be performed is HMAC96-MDS5 Authentica-
tion. Client 85 performs this function. The super packet is
provided to the client 85 where, as shown in FIG. 9¢, Hashed
Message Authentication Code (HMAC) is added to the data
within the buffer. The super packet is returned to the super
packet buffer 51 once the function is marked as having been
performed.

The next function is control 5, which requires IPSEC
Header Manipulation. The client 83 is capable of performing
this function as well as the function of control 2. The super
packet is provided to the client 83 where the data is reformat-
ted as shown in FIG. 9¢. Once again the function control 5 is
marked as having been performed and the super packet is
returned to the super packet buffer. Finally, the remaining
function relates to egress processing performed by data ele-
ment 86 and the results of which are shown in FIG. 94. The
super packet is stripped of its header leaving a processed
packet of data for communication. Optionally, the stripped
header information is provided to the server for use in real-
time monitoring of performance and logging of performance
data.

As is evident to those of skill in the art, only the server is
provided with data relating to the overall process. Replace-
ment of the cipher processor client 84 with a new version of
the cipher processor has virtually no impact on the overall
architecture or the system. Though the server 82 needs to
know steps for carrying out the process, these steps are high
level and the server 82 need not understand anything relating

US 9,325,811 B2

9
to 3DES, IP Header manipulation or HMAC. Advanta-
geously, instead of replacing a client processor a new client
processor is simply added to the system to provide more than
one client processor for a single task.

Though the architecture is described with reference to a
modular embodiment, the entire processor architecture may
be implemented within a single integrated circuit. Preferably,
the integrated circuit provides an interface for external pro-
cessors to allow for future dedicated modules and application
specific data processing client modules.

Of course, when a single group of processing functions is
performed sufficiently many times in a same order, it is pref-
erable to group those functions into a single client processor.
For example, encryption is a plurality of different functions
that are grouped. When an amount of IPSEC packet process-
ing required is equivalent to the entire throughput of each
client processor required, an IPSEC packet processor includ-
ing the same functional elements arranged in a pipeline is
preferably used as a client processor to the super packet
buffer. In this way, much of the SPB overhead is eliminated.
Of course, the flexibility to use the client processors for other
processing operations is lost so, when resource usage is less
than a maximum resource usage, it is often preferable to
maintain a more flexible architecture.

Alternatively, a single pipeline processor is provided with
aplurality of input ports for providing access to the complete
pipeline or to a single, underutilised, processor forming part
of the pipeline processor. Of course, such an embodiment
adds significant complexity to the pipeline processor and
therefore is considered less desirable than using separate
client processors or a dedicated function pipeline processor as
described above.

In accordance with another embodiment of the invention as
shown in FIG. 10, the server processor 106 stores within the
header switching information for use in switching the super
packet within an array of processors 106. A packet is directed
from the server processor 106 to a first processor 100 for
processing. The header and the packet data are separated so as
to not affect processing of the data. When the data is pro-
cessed, header data is provided to an output addressing switch
104 and the super packet data is automatically routed in a
pseudo pipelined fashion to a subsequent processing element.
Such an embodiment reduces flexibility, expandability, func-
tionality and so forth while adding to the overall hardware
complexity. That said, the performance of such an embodi-
ment is likely superior to the more flexible architecture
described above and in many applications the lack of flexibil-
ity and so forth is not considered a great disadvantage.

Alternatively, since the super packet includes data relating
to individual processes, it is possible to encode therein
executable code for execution on the processor. As such a
general purpose processor is provided and when functions
outside the scope of the special purpose client processors is
required, executable code and the super packet is provided to
the general purpose processor for processing thereof. Further
alternatively, only a pointer to the code is provided to reduce
the overall super packet size.

In accordance with the diagrams, the invention is particu-
larly well suited to encryption functions wherein secret keys
are guarded in single function modules to enhance overall
system security. The super packet buffer directs packets to
different modules as necessary to perform processing thereof
without compromising secret keys stored within those mod-
ules.

Numerous other embodiments may be envisaged without
departing from the spirit or scope of the invention.

10

20

25

30

40

45

50

65

10

What is claimed is:
1. An integrated circuit comprising:
a data processor disposed on the integrated circuit, the data
processor comprising a plurality of processors each
operable to process data;
an input port operable to receive packets of data;
at least one port operable to communicate with each of the
plurality of processors;
a first processor, also disposed on the integrated circuit, in
communication with the at least one port and operable to
process received data to insert a header including a list of
processes to perform on at least one of the packets of
received data and an ordering of the processes specified
in the header, the header stored within a packet of data to
which the header relates;
a buffer that is operable to store data from the at least one
port; and
a buffer controller of the buffer, the buffer controller oper-
able to:
determine, based on the header, a destination processor
of the plurality of processors to process the data
packet; and

to provide the data packet to the at least one port for
provision to the destination processor.

2. The integrated circuit of claim 1 wherein the first pro-
cessor is operable to provide executable code to the destina-
tion processor, the executable code being executable to pro-
cess an associated packet.

3. The integrated circuit of claim 1 wherein the first pro-
cessor is operable to provide an indication of executable code
to the destination processor, the executable code being
executable to process an associated packet.

4. The integrated circuit of claim 1 wherein the buffer
controller is operable to determine the destination processor
from a plurality of available processors each of which is
operable to process the data packet.

5. The integrated circuit of claim 1 wherein the plurality of
processors includes a plurality of special purpose processors.

6. The integrated circuit of claim 5 wherein the plurality of
special purpose processors includes at least a cryptographic
processor having secret keys stored therein and inaccessible
from outside the cryptographic processor.

7. The integrated circuit of claim 5 wherein the plurality of
special purpose processors includes a plurality of processors
for performing aspects of network security protocol process-
ing in order to support at least a network security protocol.

8. The integrated circuit of claim 7 wherein the network
security protocol is IPSec.

9. A method comprising:

receiving, at an input port of an integrated circuit, a plural-
ity of data packets;

generating, by a first processor of the integrated circuit in
communication with at least one port operable to com-
municate with each of a plurality of processors forming
a data processor disposed on the integrated circuit along
with the first processor, a header including a list of
processes to perform on at least one of the plurality of
data packets and an ordering of the processes specified in
the header;

storing, at a buffer of the integrated circuit, the header
within a packet of data to which the header relates;

determining based on the header, by a buffer controller of
the buffer, a destination processor of a plurality of pro-
cessors to process the data packet; and

providing, by the buffer controller, the data packet to the at
least one port for provision to the destination processor.

US 9,325,811 B2

11

10. The method of claim 9, further comprising providing,
by the first processor, executable code to the destination pro-
cessor, the executable code being executable to process an
associated packet.

11. The method of claim 9, further comprising providing,
by the first processor, an indication of executable code to the
destination processor, the executable code being executable
to process an associated packet.

12. The method of claim 9, further comprising determin-
ing, by the buffer controller, the destination processor from a
plurality of available processors each of which is operable to
process the data packet.

13. The method of claim 9 wherein the plurality of proces-
sors includes a plurality of special purpose processors.

14. The method of claim 13 wherein the plurality of special
purpose processors includes at least a cryptographic proces-
sor having secret keys stored therein and inaccessible from
outside the cryptographic processor.

15. The method of claim 13 wherein the plurality of special
purpose processors includes a plurality of processors for per-
forming aspects of network security protocol processing in
order to support at least a network security protocol.

16. The method of claim 15 wherein the network security
protocol is [PSec.

10

15

20

25

12

