a2 United States Patent

Yoo et al.

US009160805B2

US 9,160,805 B2
*QOct. 13, 2015

(10) Patent No.:
(45) Date of Patent:

(54) PROXY-BASED CACHE CONTENT
DISTRIBUTION AND AFFINITY

(71) Applicant: MICROSOFT CORPORATION,
Redmond, WA (US)
(72) Inventors: Won Suk Yoo, Redmond, WA (US);
Nick Holt, Seattle, WA (US); Daniel
Vasquez Lopez, Duvall, WA (US);
Aniello Scotto Di Marco, Redmond,
WA (US)
(73) Assignee: Microsoft Technology Licensing, LL.C,
Redmond, WA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
This patent is subject to a terminal dis-
claimer.
(21) Appl. No.: 14/096,697
(22) Filed: Dec. 4,2013
(65) Prior Publication Data
US 2014/0095649 A1l Apr. 3,2014
Related U.S. Application Data
(63) Continuation of application No. 13/022,527, filed on
Feb. 7, 2011, now Pat. No. 8,612,550.
(51) Imt.ClL
GO6F 15/167 (2006.01)
HO4L 29/08 (2006.01)
HO4L 12/721 (2013.01)
HO4L 12/775 (2013.01)
(52) US.CL
CPC HO4L 67/2842 (2013.01); HO4L 45/44

(2013.01); HO4L 45/58 (2013.01); HO4L
67/288 (2013.01); HO4L 67/2885 (2013.01);
HO4L 67/327 (2013.01)

Load Belancer
Recsives Content
Request

Apply Load
Balancing
Algorlthm

Dispatch Content
Request To Edge
Routing Server

Edge Routing
Server Receives
Request

(58) Field of Classification Search
USPC 709/213,217, 218, 219
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,305,389 A 4/1994 Palmer
5,924,116 A 7/1999 Aggarwal
6,330,606 B1 12/2001 Logue et al.
6,427,187 B2 7/2002 Malcolm
6,438,652 Bl 8/2002 Jordan et al.
(Continued)
OTHER PUBLICATIONS

Das, et al., “Predicting Web Cache Behavior using Stochastic State-
Space Models”, In Proceedings of the Second International Work-
shop on Scalable Data Management Applications and Systems, Jul.
2008, 8 pages. Available at <<http://csl.cse.psu.edu/publications/
cachepred-sdmas08.pdf£>>.

(Continued)

Primary Examiner — Umar Cheema
Assistant Examiner — Marshall McLeod

(74) Attorney, Agent, or Firm — Ben Tabor; Doug Barker;
Micky Minhas

&7

A distributed caching hierarchy that includes multiple edge
routing servers, at least some of which receiving content
requests from client computing systems via a load balancer.
When receiving a content request, an edge routing server
identifies which of the edge caching servers the requested
content would be in if the requested content were to be cached
within the edge caching servers, and distributes the content
request to the identified edge caching server in a deterministic
and predictable manner to increase the likelihood of increas-
ing a cache-hit ratio.

ABSTRACT

8 Claims, 4 Drawing Sheets

| Load
Balancer

Edge Routing
Server Identifies

Server Requested

Which Edge Content

Content Would Be In

|~ 305
Edge

F Routing
Server

Dispatch Content

Request To Identified
Edgs Caching Server

306

US 9,160,805 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

6,490,615 B1 12/2002 Dias et al.
6,615,317 B2 9/2003 Roseborough et al.
6,732,237 Bl 5/2004 Jacobs
7,024,466 B2 4/2006 Outten et al.
7,133,905 B2 11/2006 Dilley et al.
7,565,423 Bl 7/2009 Fredricksen
7,697,557 B2 4/2010 Segel
7,730,262 B2 6/2010 Lowery et al.
7,761,664 B2 7/2010 Gill
7,904,562 B2 3/2011 Takase et al.
8,291,007 B2 10/2012 Orr et al.

2004/0167981 Al
2004/0172466 Al
2004/0254943 Al
2008/0222281 Al*

8/2004 Douglas

9/2004 Douglas

12/2004 Malcolm

9/2008 Dilley etal. 709/223
2009/0248871 Al 10/2009 Takase et al.

2010/0080226 Al 4/2010 Khalid et al.

2010/0332595 Al* 12/2010 Fullagaretal. 709/203
2012/0185557 Al 7/2012 Di Marco et al.

2012/0203866 Al 8/2012 Yoo et al.

OTHER PUBLICATIONS

Gill, Binny S., “On Multi-Level Exclusing Caching: Offline Optimal-
ity and Why promotions are better than demotions.”, In 6th USENIX

Conference on File and Storage Technologies, Feb. 27, 2008, 17
pages. Available at <<http://webcache.googleusercontent.com/
search?q=cache:nwgGP4zkly AJ:static.usenix.org/event/fast08/
tech/full_papers/gill/gill.pdf+&cd=1&hl=en&ct=clnk&gl=in>>.
Gulwani et al., WebCalL.—A Domain Specific Language for Web
May 2000, http://research.microsoft.com/en-us/um/
people/sumitg/pubs/webcal _ wew00.pdf.

Caching,

Lindemann, “Evaluating Cooperative Web Caching Protocols for
Emerging Network Technologies,” University of Dortmund, Depart-
ment of Computer Science, Aug. 2001.

Andrey Naumenko, “Some Recommendations on Building Proxy
caching Service”, Pub date: Nov. 1998 (6 pages).

Duane Wessels et al., “ICP and the Squid Web Cache”, Pub date :
Aug. 13, 1997 (25 pages).

Nikolaos Laoutaris, et al., “The Cache Inference Problem and its
Application to Content and Request Routing”, Pub. Date: May 29,
2007 (10 pages).

U.S. Appl. No. 13/006,694, Aug. 29, 2012, Office Action.

U.S. Appl. No. 13/006,694, Nov. 20, 2012, Notice of Allowance.
U.S. Appl. No. 13/022,527, Mar. 22, 2013, Office Action.

U.S. Appl. No. 13/022,527, Aug. 20, 2013, Notice of Allowance.

* cited by examiner

US 9,160,805 B2

Sheet 1 of 4

Oct. 13, 2015

U.S. Patent

J ainbi4

9|1B[OA-UON

801

sjouuey)
UoIe2IUNLIWOY

S|BIoA

¥01
Alows\

001
walsAg Bunndwon

201

(s)10ss9004d

US 9,160,805 B2

Sheet 2 of 4

Oct. 13, 2015

U.S. Patent

20z slenles
uibuo

€1¢Z SIoAles
Buiyoeo Jall 2

Z1Z slenies
Buiyoen abp3g

|12 SI9AI8S
Bunnoy a6p3

LOC S|u9D

—> o%o

0¢0¢

e 044 °
acie

—> 044 [}
acie

— > o%o

arie

— 044 °
310¢

veoc
Gae
Gee
veEle
véle
Vile
dloc¢

Z 94nbi4

- 0lc

I SN
| usbiia|

o

U.S. Patent Oct. 13, 2015 Sheet 3 of 4 US 9,160,805 B2

00

Load Balancer —_ 301
Receives Content
Request

l

Apply Load — 302
Balancing | Load
Algorithm Balancer

l

Dispatch Content |~ 303
Request To Edge
Routing Server

l

Edge Routing —— 304
Server Receives
Request

l

Edge Routing —— 305
Server |dentifies Edge
Which Edge Content ~ Routing
Server Requested Server
Content Would Be In

l

Dispatch Content [—— 306
Request To Identified
Edge Caching Server

L

J

Figure 3

U.S. Patent Oct. 13, 2015 Sheet 4 of 4 US 9,160,805 B2

N
(@]

Caching Server —— 401
Receives Content
Request From
Prior Tier

402 5411

Requested

Content Cached
?

Initiate Return Of
Requested Content

Identify Which Of The [~ 421
Next Tier Of Caching
Servers The Requested
Content Would Be In

l

Distribute To Next [~ 422
Tier Caching Server

Figure 4

US 9,160,805 B2

1
PROXY-BASED CACHE CONTENT
DISTRIBUTION AND AFFINITY

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/022,527 filed on Feb. 7, 2011, entitled
“PROXY-BASED CACHE CONTENT DISTRIBUTION
AND AFFINITY,” which issued as U.S. Pat. No. 8,612,550
on Dec. 17, 2013, and which application is expressly incor-
porated herein by reference in its entirety.

BACKGROUND

Content distribution networks are used to deliver all types
of'content from origin servers to client computing systems. To
efficiently deliver such content, distributed cache hierarchies
intervene between origin servers and client computing sys-
tems. When a client issues a request for content, if the content
is available in the hierarchy, the content may often be pro-
vided by the hierarchy rather than having to obtain the content
all the way from the origin server, provided that the content is
found in the hierarchy.

In many cases, the cache hierarchy is partitioned in such a
way that content items are cached mutually exclusively with
one another, while providing a way to route the requests
accordingly and expectedly to find the cached content. There-
fore, when a request is routed to a cache server, the cache
content is expected to be cached by that cache server and it
would likely result in a cache hit, meaning the requested
content is cached by that cache server and thus the cache
server may satisfy the content request directly. One way to do
this is to perform such cache distribution and predictive rout-
ing at the edge caching tier (in a cache hierarchy, this would
be the first tier of cache servers geographically closest to the
client).

A conventional way for a client to determine a location of
cached content in an edge caching tier is for the client to first
provide the Uniform Resource Locator (URL) of the desired
content to an intelligent Domain Name Server (DNS) server.
The intelligent DNS server knows the geographic proximity
of'the cached content, and provides an Internet Protocol (IP)
address of a cache server that would perform well for the
client. The client then requests the content using the IP
address provided by the intelligent DNS server.

BRIEF SUMMARY

At least one embodiment described herein relates to a
distributed caching hierarchy that includes multiple edge
routing servers, at least some of which receive content
requests from client computing systems via a load balancer.
When receiving a content request, an edge routing server
identifies which of the edge caching servers is responsible for
caching the requested content in a predictable manner. Once
the appropriate caching server has been identified, the edge
routing server routes the content request to the appropriate
caching server to maximize the likelihood of a cache hit. The
edge routing server and the edge caching server can be in one
physical server in a cache hierarchy, although that is not
required.

In accordance with at least one embodiment described
herein, when the edge caching server receives the content
request, the edge caching server determines whether the edge
caching server has the content cached. If so, the edge caching
server initiates return of the requested content to the client. If

15

25

30

40

45

2

not, the edge caching server identifies which of the next tier
caching servers is responsible for the requested content in a
predictable manner and routes the now cache-missed content
request to the appropriate next tier caching server. This con-
tinues potentially all the way up the distributed caching hier-
archy until, if necessary, the origin server is reached. When
the next tier caching server receives the requested content, it
caches the requested content, and then initiates return of the
requested content to the client.

This Summary is not intended to identify key features or
essential features of the claimed subject matter, nor is it
intended to be used as an aid in determining the scope of the
claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited
and other advantages and features can be obtained, a more
particular description of various embodiments will be ren-
dered by reference to the appended drawings. Understanding
that these drawings depict only sample embodiments and are
not therefore to be considered to be limiting of the scope of
the invention, the embodiments will be described and
explained with additional specificity and detail through the
use of the accompanying drawings in which:

FIG. 1 illustrates an example computing system that may
be used to employ embodiments described herein;

FIG. 2 illustrates a network that includes a distributed
cache hierarchy;

FIG. 3 illustrates a flowchart of a method for managing a
distributed cache hierarchy in a network from the viewpoint
of'a load balancer and a tier of edge routing servers; and

FIG. 4 illustrates a flowchart of a method for managing a
distributed cache hierarchy in a network from the viewpoint
of a tier of edge caching servers.

DETAILED DESCRIPTION

In accordance with embodiments described herein, a dis-
tributed caching hierarchy includes multiple edge routing
servers, at least some of which receiving content requests
from client computing systems via a load balancer. When
receiving a content request, an edge routing server identifies
which of the edge caching servers is responsible for the
requested content in a predictable manner and routes the now
cache-missed content request to the identified next tier cach-
ing server. First, some introductory discussion regarding
computing systems will be described with respect to FIG. 1.
Then, the embodiments of the distributed caching network
and its example operation will be described with respect to
subsequent figures.

First, introductory discussion regarding computing sys-
tems is described with respect to FIG. 1. Computing systems
are now increasingly taking a wide variety of forms. Com-
puting systems may, for example, be handheld devices, appli-
ances, laptop computers, desktop computers, mainframes,
distributed computing systems, or even devices that have not
conventionally been considered a computing system. In this
description and in the claims, the term “computing system” is
defined broadly as including any device or system (or com-
bination thereof) that includes at least one physical and tan-
gible processor, and a physical and tangible memory capable
ot having thereon computer-executable instructions that may
be executed by the processor. The memory may take any form
and may depend on the nature and form of the computing
system. A computing system may be distributed over a net-
work environment and may include multiple constituent com-

US 9,160,805 B2

3

puting systems. As illustrated in FIG. 1, in its most basic
configuration, a computing system 100 typically includes at
least one processing unit 102 and memory 104. The memory
104 may be physical system memory, which may be volatile,
non-volatile, or some combination of the two. The term
“memory” may also be used herein to refer to non-volatile
mass storage such as physical storage media. I[f the computing
system is distributed, the processing, memory and/or storage
capability may be distributed as well. As used herein, the term
“module” or “component” can refer to software objects or
routines that execute on the computing system. The different
components, modules, engines, and services described herein
may be implemented as objects or processes that execute on
the computing system (e.g., as separate threads).

In the description that follows, embodiments are described
with reference to acts that are performed by one or more
computing systems. If such acts are implemented in software,
one or more processors of the associated computing system
that performs the act direct the operation of the computing
system in response to having executed computer-executable
instructions. An example of such an operation involves the
manipulation of data. The computer-executable instructions
(and the manipulated data) may be stored in the memory 104
of the computing system 100. Computing system 100 may
also contain communication channels 108 that allow the com-
puting system 100 to communicate with other message pro-
cessors over, for example, network 110.

Embodiments of the present invention may comprise or
utilize a special purpose or general-purpose computer includ-
ing computer hardware, such as, for example, one or more
processors and system memory, as discussed in greater detail
below. Embodiments within the scope of the present inven-
tion also include physical and other computer-readable media
for carrying or storing computer-executable instructions and/
or data structures. Such computer-readable media can be any
available media that can be accessed by a general purpose or
special purpose computer system. Computer-readable media
that store computer-executable instructions are physical stor-
age media. Computer-readable media that carry computer-
executable instructions are transmission media. Thus, by way
of'example, and not limitation, embodiments of the invention
can comprise at least two distinctly different kinds of com-
puter-readable media: computer storage media and transmis-
sion media.

Computer storage media includes RAM, ROM, EEPROM,
CD-ROM or other optical disk storage, magnetic disk storage
or other magnetic storage devices, or any other medium
which can be used to store desired program code means in the
form of computer-executable instructions or data structures
and which can be accessed by a general purpose or special
purpose computer.

A “network” is defined as one or more data links that
enable the transport of electronic data between computer
systems and/or modules and/or other electronic devices.
When information is transferred or provided over a network
or another communications connection (either hardwired,
wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a
transmission medium. Transmissions media can include a
network and/or data links which can be used to carry or
desired program code means in the form of computer-execut-
able instructions or data structures and which can be accessed
by a general purpose or special purpose computer. Combina-
tions of the above should also be included within the scope of
computer-readable media.

Further, upon reaching various computer system compo-
nents, program code means in the form of computer-execut-

10

15

20

25

30

35

40

45

50

55

60

65

4

able instructions or data structures can be transferred auto-
matically from transmission media to computer storage
media (or vice versa). For example, computer-executable
instructions or data structures received over a network or data
link can be buffered in RAM within a network interface
module (e.g., a “NIC”), and then eventually transferred to
computer system RAM and/or to less volatile computer stor-
age media at a computer system. Thus, it should be under-
stood that computer storage media can be included in com-
puter system components that also (or even primarily) utilize
transmission media.

Computer-executable instructions comprise, for example,
instructions and data which, when executed at a processor,
cause a general purpose computer, special purpose computer,
or special purpose processing device to perform a certain
function or group of functions. The computer executable
instructions may be, for example, binaries, intermediate for-
mat instructions such as assembly language, or even source
code. Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the
described features or acts described above. Rather, the
described features and acts are disclosed as example forms of
implementing the claims.

Those skilled in the art will appreciate that the invention
may be practiced in network computing environments with
many types of computer system configurations, including,
personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor sys-
tems, microprocessor-based or programmable consumer
electronics, network PCs, minicomputers, mainframe com-
puters, mobile telephones, PDAs, pagers, routers, switches,
and the like. The invention may also be practiced in distrib-
uted system environments where local and remote computer
systems, which are linked (either by hardwired data links,
wireless data links, or by a combination of hardwired and
wireless data links) through a network, both perform tasks. In
a distributed system environment, program modules may be
located in both local and remote memory storage devices.

FIG. 2 illustrates a network that includes a distributed
cache hierarchy. The network 200 includes a number of client
computing systems 201A, 201B, 201C and 201D (collec-
tively referred to as clients 201) and a plurality of origin
server computing systems 202A and 202B (collectively
referred to as origin servers 202) with a cache hierarchy 210
disposed therebetween.

The “origin” server is the server that originally sources the
content. Although content is available on the origin servers
202, that content may often be available within the cache
hierarchy 210 when requested by one of the clients 201. The
ellipsis 201E represents that there may be any number of
clients within the network, and that the number of clients need
not be static. The ellipsis 202C represents that there may be
any number or origin servers within the network, and again
that the number of origin servers need not be static. Each of
the clients 201 and origin servers 202 may be structured as
described above for the computing system 100.

The example cache hierarchy 210 includes a tier of edge
routing servers 211A, 211B and 211C (collectively referred
to as edge routing servers 211), a tier of edge caching servers
212A, 212B and 212C (collectively referred to as edge cach-
ing servers 212) and a second tier of caching servers 213A,
213B, and 213C (collectively referred to as second tier cach-
ing servers 213). The edge routing servers 211 may perhaps
not actually cache content, but instead they identify the edge
cache server for the requested content in a predictable manner

US 9,160,805 B2

5

to increase the likelihood of a cache-hit. In addition, the edge
routing server and the edge caching server are logical roles.
These roles could be served by the same physical server in the
hierarchy. The edge cache servers and the second tier cache
servers actually cache content.

A load balancer 214 receives content requests from the
clients 201 and distributes the content request to one of the
edge routing servers 211 in accordance with a load balancing
algorithm. The load balancer 214 may also monitor a status of
edge routing servers 211 and avoid distributed content
requests to edge routing servers that are not healthy enough to
sufficiently operate on such requests. The requested content
may be video, images, files, sound, music, collaborative
authoring content, or any other content.

While the load balancer is a good solution to provide both
high availability and scalability, it does not have any aware-
ness of where in the cache hierarchy the requested content
resides. This is inefficient when it comes to routing requests
for cached contents because its load balancing algorithm does
not help to maximize the likeliness of getting a cache hit. The
principles described herein reduce the impact of this ineffi-
ciency since the edge routing servers more predictably route
the content requests to the edge caching servers. Because the
edge routing servers can determine which edge caching
server is responsible for caching the requested content, by
routing the request to the responsible server, it can increase
the cache-hit ratio.

The example cache hierarchy 210 is kept simple for clarity
in explaining the principles described herein. An actual cache
hierarchy may have any number of tiers of cache servers
intermediating between the origin servers 202 and the clients
201. The cache hierarchy 210 may, in fact, be distributed
across the Internet. Furthermore, the ellipses 211D, 212D and
213D represent that there may be any number of edge routing
servers, edge caching servers, and second tier caching serv-
ers. The number of edge routing servers need not be the same
as the number of caching servers in any tier, and vice versa. In
one embodiment, at least one, but potentially all, of the edge
routing servers may be on the same machine as a respective
edge caching server. For instance, edge routing server 211A
may be on the same machine as edge caching server 212A,
edge routing server 211B may be on the same machine as
edge caching server 212B, and/or edge routing server 211C
may be on the same machine as edge caching server 213C,
although not required. Each of the servers in the distributed
cache hierarchy 210 may be structured as described above for
the computing system 100 of FIG. 1.

FIG. 3 illustrates a flowchart of a method 300 for managing
a distributed cache hierarchy in a network. While the method
300 may be performed in any network having a tier of edge
routing servers and at least one tier of edge caching servers,
the method 300 will now be described with respect to the
network 200 of FIG. 2. Specifically, the arrows in FIG. 2
represent the communications associated with a specific con-
tent request.

The load balancer receives the content request (act 301),
and applies a load balancing algorithm to determine which
edge routing server should handle the content request (act
302). The load balancer then distributes the content request to
the corresponding edge routing server (act 303). The precise
load balancing algorithm is not critical to the principles
described herein and may be random, round robin, or any
other load balancing algorithm because these algorithms do
not have awareness of which server is responsible for caching
particular content. Referring to FIG. 2, the load balancer 214
receives the content requested as represented by arrow 221.
The load balancer 214 determines the edge routing server to

20

30

35

40

45

50

55

6

which the content request is to be routed. In the illustrated
case, the load balancer 214 routes the content request to the
edge routing server 211B as represented by arrow 222.

The edge routing server receives the content request from
the load balancer (act 304) (also as represented by the arrow
222), the edge routing server identifies which of the edge
caching servers the requested content would be in if the
requested content were to be cached within the edge caching
servers (act 305). For example, the edge routing server 211B
may apply the Cache Array Routing Protocol (CARP) using
the Uniform Resource Locator (URL) to identify the corre-
sponding edge caching server. The edge routing server does
not itself cache the requested content. Accordingly, the edge
routing server dispatches the content request to the identified
edge caching server (act 306). Referring to FIG. 2, for
example, the edge routing server 211B routes the content
request to the corresponding edge caching server 212C as
represented by arrow 223. Any of the other edge routing
servers 211 of FIG. 2 may behave the same way with respect
to routing to edge caching servers 212 that are appropriate
given the URL of the content request.

In one embodiment, in addition to routing the requests in a
predictable manner, the edge routing servers also route the
requests in a way that the cached contents on the edge cache
servers are mutually exclusive. For instance, if edge caching
server 212A is responsible for caching a particular content,
then the same content is not cached by another other edge
caching server 212. This behavior allows the cache hierarchy
operator to distribute the contents in a way that there are no
duplicated cached contents in the cache hierarchy, and there-
fore to more efficiently use resources, which would have
otherwise been wasted by caching duplicate contents.

FIG. 4 illustrates a flowchart of a method 400 for a caching
server at any tier in the distributed cache hierarchy to handle
requests from the prior tier in the distributed cache hierarchy.
For instance, if the caching server was an edge caching server
amongst the edge caching servers 212, the edge caching
server would perform the method 400 in response to receiving
a content request from an edge routing server of the edge
routing servers 211. If the caching server was a second tier
caching server of the second tier caching servers 213, the
second tier caching server would perform the method 400 in
response to receiving the content request from an edge cach-
ing server of the edge content servers 212, and so forth for
subsequent tiers.

Applying method 400 first to the edge caching server tier,
the edge caching server receives the content request from
prior tier in the distributed cache hierarchy (act 401), which
would be the edge routing server in the case where the method
400 is applied to the edge caching server tier. For instance, in
the example of FIG. 2, the edge caching server 212C receives
the content request from the edge routing server 211B as also
represented by arrow 223.

The edge caching server determines whether the requested
content is cached on the edge caching server (decision block
402). If the requested content is cached in the edge caching
server (Yes in decision block 402), the edge caching server
initiates return of the requested content (act 411) to a client
computing system associated with the content request. Refer-
ring to FIG. 2, if the edge caching server 212C had the
requested content, the requested content would be returned
along the reverse path along arrow 233 and arrow 232 in
sequence to the client 201D.

If the requested content is not cached in the edge caching
server (No in decision block 402), the edge caching server
identifies which of the next tier of caching servers the
requested content would be in (act 421) if the requested

US 9,160,805 B2

7

content were to be cached within the next tier caching servers.
The content request is then distributed to the identified next
tier caching server (act 422). For instance, if the requested
content were not in the edge caching server 212C, the content
request would be dispatched to the identified next tier caching
server. In the illustrated case, the CARP algorithm may be
applied by the edge caching server to identify that the
requested content would be cached by the second tier caching
server 213A if the requested content were cached by one of
the second tier caching servers 213. The method 400 would
then be performed for the next tier caching server.

Applying method 400 next to the second tier caching serv-
ers, the second tier caching server receives the content request
from prior tier in the distributed cache hierarchy (act 401),
which would be the edge caching server in the case where the
method 400 is applied to the second tier caching server tier.
For instance, in the example of FIG. 2, the second tier caching
server 213 A receives the content request from the edge cach-
ing server 212C as also represented by arrow 224.

The second tier caching server determines whether the
requested content is cached on the second tier caching server
(decision block 402). If the requested content is cached in the
second tier caching server (Yes in decision block 402), the
second tier caching server initiates return of the requested
content (act 411) to a client computing system associated
with the content request. Referring to FIG. 2, if the second tier
caching server 213 A had the requested content, the requested
content would be returned along the reverse path along arrow
234, arrow 233 and arrow 232 in sequence to the client 201D.
While on the return path the requested content may perhaps
be cached at the edge caching server 212C. Although the
requested content might always be cached in the edge caching
servers encountered in the return path, caching policy might
also be applied in order to determine whether to cache the
returned content.

If the requested content is not cached in the second tier
caching server (No in decision block 402), the second tier
caching server identifies which of the next tier of caching
servers the requested content would be in (act 421) if the
requested content were to be cached within the next tier
caching server. In this case, the next tier would actually be the
origin servers 202. The content request is then distributed to
the identified next tier caching server (act 422). For instance,
if the requested content were not in the second tier caching
server 213 A, the content request would be dispatched to the
identified next tier caching server. In this case, the origin
server 202A may be identified based on the URL itself. The
origin server 202A would then return the requested content
along the reverse path along arrow 235 (thereupon being
potentially cached in second tier caching server 213A), along
arrow 234 (thereupon being potentially cached in edge cach-
ing server 212C), along arrow 233 and along arrow 232.

Accordingly, an effective mechanism for managing a dis-
tributed cache hierarchy is described. The mechanism pro-
vides predictability in where the content request should be
dispatched, while also providing increased hit rate for cach-
ing servers. FIG. 2 also shows an intelligent Domain Name
Server (DNS) server 240 to represent that the presence of the
principles described with respect to FIGS. 3 and 4 are not
inconsistent with the use of an intelligent DNS server. Some
of the content requests may still be dispatched to the intelli-
gent DNS server 440 for handling in accordance with the
prior art.

The present invention may be embodied in other specific
forms without departing from its spirit or essential character-
istics. The described embodiments are to be considered in all
respects only as illustrative and not restrictive. The scope of

15

35

40

45

50

55

8

the invention is, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.
What is claimed is:
1. A distribution network for retrieving cached content
comprising:
a load balancer that receives requests from one or more
client computing systems and then routes said content
requests to one or more edge routing servers, the load
balancer being unaware of where any content corre-
sponding to the content requests may reside in the dis-
tribution network;
a plurality of edge caching servers each caching content
that is mutually exclusive from the cached content of
other caching servers;
one or more edge routing servers hierarchically situated
between the load balancer and the plurality of edge
caching servers, and wherein the one or more edge rout-
ing servers are configured so that they do not indepen-
dently cache content, said one or more edge routing
servers routing content requests received from said load
balancer to one of the plurality of edge caching servers;
wherein said routing is performed according to a predictive
routing protocol which predicts which of the plurality of
edge caching servers contains cached content corre-
sponding to given content request by:
an act of identifying which of the plurality of edge cach-
ing servers is correlated to the given content request
based on the predictive routing protocol, and

an act of routing the content request to the identified
edge caching server without having to first determine
whether the edge routing server contains the
requested content.
2. The network of claim 1, wherein the load balancer routes
the content requests based at least in part on a health status
associated with each of the one or more edge routing servers,
the load balancer being unaware of where any content corre-
sponding to the given content request, resides.
3. The network of claim 2, wherein the load balancer routes
the content requests based at least in part on a load balancing
algorithm.
4. In a distribution network for retrieving cached content, a
hierarchy of servers arranged in tiers for retrieving cached
content, the hierarchy of tiers comprising:
a load balancer that receives requests from one or more
client computing systems and then routes said content
requests to one or more edge routing servers, the load
balancer being unaware of where any content corre-
sponding to the content requests may reside in the dis-
tribution network;
a plurality of edge caching servers each caching content
obtained from one or more origin servers, and the cached
content of each edge caching server being mutually
exclusive from the cached content of other edge caching
servers;
and wherein at least one of the edge caching servers com-
prises:
an edge caching unit having at least one hardware pro-
cessor and memory for caching content that is mutu-
ally exclusive from the cached content of any other
caching unit;

an edge routing unit which receives content requests
from the load balancer, and the edge routing unit
having at least one hardware processor and memory
containing computer-executable instructions which,
when implemented, cause the edge routing unit to

US 9,160,805 B2

9

process one or more content requests received from a
load balancer that is unaware of where any content
corresponding to the content requests may reside in
the distribution network, and the edge routing unit
processing the one or more requests according to a
predictive routing protocol which predicts where
cached content corresponding to requested content
resides in the distribution network by:

an act of identifying which of the plurality of edge cach-
ing servers is correlated to the requested content
based on the predictive routing protocol, and

an act of routing the content request to the identified
edge caching server without having to first determine
whether the edge routing server contains the
requested content.

5. The distribution network in accordance with claim 4,
wherein the edge routing unit sends the given content request
to the edge caching unit and the edge caching unit determines
whether the edge caching unit has the requested content
cached.

6. The distribution network in accordance with claim 5,
wherein the edge caching unit initiates return of the requested
content to a client computing system from which the given
content request was sent.

10

15

20

10

7. The distribution network in accordance with claim 4,
wherein the edge routing unit sends the given content request
to the edge caching unit and the edge caching unit determines
that the edge caching unit does not have the requested content,
and wherein the method further comprises the following:

an act of the edge caching unit identifying which of the

plurality of edge caching servers the given content
request would be in; and

an act of distributing the given content request to the iden-

tified edge caching server.

8. The distribution network in accordance with claim 4,
wherein the edge routing unit sends the given content request
to the edge caching unit and the edge caching unit determines
that the edge caching unit does not have the requested content,
and wherein the method further comprises the following:

an act of the edge caching unit probabilistically identifying

a further tier of edge caching servers at which the given
content request would likely be cached; and

an act of routing the given content request to one of the

edge servers in the identified next tier of edge caching
servers.

