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1
SYSTEM AND METHOD FOR AUTOMATED
BIOLOGICAL CELL ASSAY DATA ANALYSIS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a filing under 35 U.S.C. 371 of interna-
tional application number PCT/EP2011/062630, filed Jul. 22,
2011, published on Jan. 26,2012 as WO 2012/010691, which
claims priority to application number 1012297.6 filed in
Great Britain on Jul. 22, 2010.

FIELD

The present invention relates generally to a system and
method for automated biological cellular assay data analysis.

BACKGROUND

Various systems and methods for analysing biological cell
assay images exist. Some can be made automated or semi-
automated to aid scientists in identifying desirable phenotype
responses to certain stimuli, such as drug compounds, in
high-throughput screening (HTS) applications.

For example, various methods may be used to apply curve
fitting to fit measured cell phenotype data to a mathematical
model or expression in order to try and obtain parameters
indicative of cellular response to various stimuli to aid in drug
discovery [1]. Various other methods use comparisons ofreal
and modelled image data in an attempt to quantify various
biological phenotypes, such as spatiotemporal evolution of a
given biological or physiological system [2, 3].

However whilst such known techniques are useful for lim-
ited sets of circumstances, there is not only a danger of inad-
equate phenomenological fitting expressions being available
to accurately model the assays, but these techniques also
generally cannot provide certain important biological data
because they rely on averaged measured phenotype responses
such as whole field-of-view (FOV) images, for example.

SUMMARY OF THE INVENTION

Various aspects and embodiments of the present invention
have thus been devised bearing in mind the disadvantages of
conventional techniques and with a view to improving the
quantifiable cell phenotype information that can be automati-
cally extracted from actual cell images.

According to a first aspect of the present invention, there is
thus provided a system for automated cellular assay data
analysis. The system comprises a virtual assay module
(VAM) that is operable to generate simulated images of cell
responses to one or more stimuli. The system also comprises
a comparator module that operable to compare the actual and
simulated images, and an analysis module that is operable to
quantify the differences between phenotypes represented by
the actual and simulated images.

According to a second aspect of the present invention, there
is provided a method for automated biological cell assay data
analysis. The method comprises acquiring one or more actual
cell images, creating one or more virtual assay model images,
comparing at least one of the actual cell images to at least one
of the virtual assay model images, and quantifying any dif-
ferences identified by comparing actual and virtual assay
model images to provide at least one difference parameter.

Various aspects and embodiments of present invention may
account for stochastic variations in the response of single
cells, to provide additional useful information relating to, for

30

40

45

2

example, toxological effects and/or for use as part of a feed-
back mechanism to refine dynamically a virtual assay model
such that it is not limited by way of there being only inad-
equate static fitting expressions available.

In contrast, when using conventional techniques which
imply synchronous multi-cell reactions (i.e. where individual
cells all act substantially simultaneously and in substantially
the same way), it would be extremely difficult to account for
any variations in the responses of individual cells, not least
because of the large amount of tracking data that would be
needed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a system for automated cellular assay data
analysis in accordance with an embodiment of the present
invention;

FIG. 2 shows a flowchart depicting a method in accordance
with various embodiments of the present invention;

FIG. 3 shows a virtual assay model image in accordance
with an embodiment of the present invention;

FIG. 4 shows a further technique for analysing differences
between phenotypes represented by actual and simulated
images in accordance with an embodiment of the present
invention;

FIG. 5 shows the dynamics of a single cell toxicological
response;

FIG. 6 shows the dynamics of various single cell transient
responses;

FIG. 7 shows first and second graphs showing how first and
second field-of-view (FOV) averaged time-dependent assay
responses are built-up;

FIG. 8 shows first and second graphs showing various
modelled field-of-view (FOV) averaged time-dependent
assay distribution responses;

FIG. 9 shows the distribution of the FOV response at vari-
ous time points;

FIG. 10 shows a graph illustrating conventional direct
analysis of a time-dependent response by fitting;

FIG. 11 shows an experimental raw TOTO-3 response;

FIG. 12 shows the response of FIG. 11 with fitted data
curves;

FIG. 13 shows an experimental TOTO-3 concentration
response;

FIG. 14 shows a raw time-dependent TMRM response;

FIG. 15 shows the response of FIG. 14 with fitted data
curves; and

FIGS. 16 and 17 show concentration dependencies for the
TMRM responses for two values of drug concentration.

DETAILED DESCRIPTION

FIG. 1 shows a system 100 for automated cellular assay
data analysis in accordance with an embodiment of the
present invention. Cellular assay data analysis may, for
example, be used for toxicological screening of pharmaco-
logical compounds by quantifying one or more phenotypes,
such as cytoplasmatic membrane integrity, seen in images of
treated cells. The system 100 may also be used, for example,
for automated high-content screening (HCS) and/or high-
throughput screening (HTS).

The system 100, which is illustrated schematically for
clarity, comprises a light source 102 for producing light 120a.
Thelight 120a is focussed by a condenser 104 onto a test plate
108. The test plate 108 may contain an array of wells or spots
109 to be imaged. The condenser 104 can focus the light 1205
in a focal plane at the test plate 108. The test plate 108 may be
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provided as a consumable product, and the spots 109 might
contain various materials that are able to interact with certain
types of cells (e.g. mammalian cells).

In various embodiments, the test plate 108 may comprise at
least one fiducial marker (not shown) provided to aid in align-
ing the test plate 108 within the system 100. For example, one
or more coloured dyes may be provided within the spots 109.
Such coloured dyes can be identified by various imaging
systems in order to derive data relating to the relative posi-
tioning of the test plate 108 within the system 100. For
example, the system 100 may include a GE IN-Cell Analyzer
1000 that is commercially available from GE Healthcare Life
Sciences, Little Chalfont, Buckinghamshire, U.K., and which
can use four colour channels to image the test plate 108. One
colour channel may thus be dedicated to imaging coloured
fiducial markers provided in various of the spots 109 in order
to obtain data relating to the positioning of the test plate 108
within the system 100.

The system 100 also contains a detector system 112 and a
translation mechanism (not shown). The translation mecha-
nism is configured to move the focus of the light 1205 relative
to the test plate 108 (e.g. by moving the test plate 108 in the
x-y plane). This enables a plurality of actual images to be
acquired from respective of the individual spots 109. Addi-
tionally, the translation mechanism may also be operable to
move the test plate 108 in the z-direction shown in FIG. 1, for
example, in order to bring the spots 109 into focus.

For certain embodiments, only one spot is imaged atatime.
The images acquired are of sufficient magnification to resolve
cells and sub-cellular morphology. With the current GE IN-
Cell Analyzer 1000, this may entail use of'a 20x objective, the
field of view of which is slightly smaller than a single spot.
However, various methods of the invention would also work
for lower power magnification imaging, e.g. on GE IN-Cell
Analyzer 1000 using a 4x objective to image 4-6 spots/image.

An aperture stop 106 is optionally provided between the
light source 102 and the detector system 112, the size of
which may be variable. For example, various differently sized
movable apertures may be rotated into position or a continu-
ously variable iris-type diaphragm may be provided. Image
contrast can be controlled by changing the aperture setting of
the aperture stop 106.

Focussed light 1205 passing through the aperture stop 106
passes through the sample test plate 108 in a transmission
imaging mode. Emergent light 120¢ modulated with image
information relating to material adjacent to an individual spot
109 is collected by an objective lens 110 and focussed 1204
onto the detector system 112, and is used to form an original
image for that spot 109.

Various embodiments of methods of the present invention
are independent of the imaging modality used, e.g. they can
operate with transmission or reflection geometry. For GE
IN-Cell Analyzer 1000 imaging an epi-fluorescence mode
may be used, with both the fiducial marker spots and the assay
signals from the cells being imaged at different excitation and
emission wavelengths. However there is nothing in principle
to prevent a mix of imaging modes being deployed, provided
that they do not interfere. For example, it would be possible to
use a non-fluorescent dye for fiducial marking and to detect
the fiducial marks by absorbance in reflectance or transmis-
sion geometry, while detecting assay signals by epi-fluores-
cence.

The detector system 112 is operable to acquire a plurality
of images from the test plate 108. For example, images may
be obtained each representing different spots 109 or of the
same spot 109 at different points in time. Differences between
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neighbouring spots 109 or temporal changes occurring within
the same spot 109 can thus be analysed.

The detector system 112 is also operably coupled to a
processor 114 that in turn is operable to process the images.
Analysis of the images may be used to provide for toxicologi-
cal screening. Of course, such images may be generated by
the system 100 itself or might be provided from storage
and/or transmitted to the processor 114 from a remote loca-
tion (not shown).

The processor 114 is configured to provide a virtual assay
module (VAM) 115 for generating simulated images of cell
responses to various agents, a comparator module 116 for
comparing the actual and simulated images, and an analysis
module 117 for quantifying the differences between the
actual and simulated images and adjusting the VAM in accor-
dance with any such quantified differences.

The analysis module 117 is further operable to provide
feedback to adjust the VAM 115 in accordance with the quan-
tified differences such that the phenotypes of the actual and
simulated images converge, and to quantify temporally the
differences between the phenotypes represented by the actual
and simulated images. This permits the analysis module 117
to determine a response or time-dependent cell/multi-cell
reaction to application of a stimulus (such as, for example, a
drug treatment etc.). Moreover, by enabling temporal quan-
tification of phenotype responses, responses produced by dif-
ferent techniques (e.g. different fluorescent markers) are
made directly comparable thus allowing an interpretation of
causality to be obtained.

In this embodiment, the analysis module 117 is further
operable to apply stochastical fitting to quantify one or more
response properties of at least one single cell’s response to the
application of one or more stimuli. This further enables the
analysis module 117 to quantify a multi-cellular system’s
heterogeneity during the response using a heterogeneity mea-
surement parameter.

Various embodiments of FIG. 1 can be used to provide
phenomenological response fitting for a high-throughput
screening (HTS) analysis. In one example, the phenotypes are
toxological phenotypes and the quantified differences are
indicative of stimuli toxicity. For example, HTS may be used
to automatically analyse the actual images to quantify the
amounts and/or types of cell membrane disruptions, micro-
nuclei, etc., in order to indicate the relative toxicity of a
candidate drug stimulus. Rapid and accurate automated HTS
can thereby be provided to identify target non-toxic drug
compounds warranting further scientific investigation.

Additionally, the processor 114 can be configured to con-
trol the translation mechanism (not shown) to move the focal
position of the light source 102 relative to the spot plate 108.
The processor 114 may, for example, be provided as part of a
conventional computer system appropriately programmed to
implement one or more of the VAM module 115, the com-
parator module 116 and the analysis module 117, or may be
provided by a digital signal processor (DSP), dedicated appli-
cation specific integrated circuit (ASIC), appropriately con-
figured firmware, etc.

As discussed above, various embodiments of the invention
may be used to automatically screen cells, for example, in
order to detect and quantify specific events that are indicative
of drug toxicity. Such improved automated screening can
thereby reduce the need to test various compounds on human
oranimal models by identifying only those candidates having
the lowest amount of toxicity specific phenotypes.

In certain embodiments, the system 100 as described above
may be used to implement the following method that is
described below in connection with FIG. 2.
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FIG. 2 shows a flowchart depicting a method 200 that may
be used in accordance with various embodiments of the
present invention. The method 200 is for automated biologi-
cal cell assay data analysis, and various more detailed
examples are described below for illustrative purposes in
connection with toxicology analysis.

At step 202 the method 200 comprises acquiring one or
more actual cell images. The actual cell images may be
acquired using, for example, a HTS or may include one or
more stored images previously acquired locally and/or
remotely. For example, actual cell images can be generated at
remote locations and transmitted to a central image process-
ing facility, possibly via the Internet using a secured data link
or virtual private network (VPN).

At step 204 the method 200 comprises creating one or more
virtual assay model images. The virtual assay model images
can be created using a stochastic model, i.e. a model that
simulates a stochastic process whose behaviour is non-deter-
ministic in that a next system state is determined both by the
process’s predictable events and by a random element.

Various embodiments apply stochastic simulation tech-
niques to the analysis of time-dependent responses in cellular
assays. In simulations, cellular assays can be treated as a
statistical ensemble composed of many random dynamic cel-
Iular events. The preferred method uses a procedure of sto-
chastically driven fitting for estimating the properties of a
single cell’s response, as well as assessing a cellular system’s
heterogeneity during the response.

The assay response of a single cell is described in various
terms such as time (duration), amplitude (extent) responses,
and the distribution of the response starting times (e.g. the
centre and margins of the distribution). The advantage of the
temporal description is that it makes responses registered by
different measurement tools (e.g. different fluorescent mark-
ers) immediately comparable, thereby allowing an interpre-
tation of causality (e.g. for early/late reactions indicating the
preceding and subsequent cellular processes). When stochas-
tic techniques are not used, such a method can be reduced to
the fitting of a response to a phenomenological time-depen-
dent expression.

At step 206 the method 200 comprises comparing at least
one of the actual cell images to at least one of the virtual assay
model images. Various techniques may be used, such as for
example least squares fitting, entropy based techniques, etc.
[2, 4].

At step 208 the method 200 comprises quantifying any
differences identified by comparing (206) actual and virtual
assay model images to provide at least one difference param-
eter. The difference parameter may, for example, correspond
to the minimum value obtained when performing a least
squares fit, entropy optimisation, etc. [2, 4] and can be used
temporally quantify the differences between the phenotypes
represented by the actual and virtual assay model images, for
example, in single cells and/or for responses generated by
collections of such cells (e.g. as quantified by a heterogeneity
measurement parameter).

Having obtained a suitable difference parameter, the vir-
tual image model can be modified in dependence thereon and
an new set of one or more virtual assay model images recre-
ated said using the modified virtual image model. This
enables the method 200 to iteratively provide feedback to
adjust the virtual assay model so as to minimise the values of
the difference parameter in order that the phenotypes of the
actual and virtual assay model images converge. Hence a
virtual assay can be provided that uses stochastic simulation
and phenomenological response fitting suitable for HTS
analyses.
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Various embodiments of the method 200 may be imple-
mented in one or more of hardware, software and firmware.
For example, a system of the type described above in connec-
tion with FIG. 1 may be used, or software upgraded, for such
a purpose.

For example, the method enables the provision of a quan-
titative software package that can combine one or more of the
following functions: a) a dynamic description of a single cell
transient response including its modelling and representa-
tion; b) stochastic simulations; and c) fitting and parameter
estimation. Such a software package enables the generation
of a flexible model of assay response and the comparison of
simulated and measured data. The proposed technique may
also be used without data fitting, to generate a “virtual assay”
i.e. a simulation describing a cellular response. Such simula-
tions might be arranged according to a hypothetical mecha-
nism describing the action of any potential stimulus and
thereby used to predict various complex system responses.

Various examples describing various real-life responses
obtained using the mitochondrial marker TMRM will now be
given. In actual images of cells stained with TMRM, the level
of fluorescence intensity is related to the mitochondrial mem-
brane potential, loss of which can be an indicator of cytotox-
icity.

The toxicity assays used well plate bio-microscopy imag-
ing to obtain actual cell images, using fluorescent markers
and a GE IN-Cell Analyzer instrument, with FOV related
data.

The dynamics of a single cell toxicological response is
related to the toxicological mechanism. A characteristic dura-
tion T of the response can be an indicator of a mechanism or
sub-mechanism sensed by a particular marker (e.g. fluores-
cent in this case). In order to estimate the time T reliably data
was sampled at a rate At<<t. With the GE IN-Cell Analyzer
acquisition can be performed at a temporal multi-scale span-
ning four orders of magnitude. This was defined in terms of
the sampling intervals used as follows:

1) very fast At=1 second (e.g. for analysing ion channel
dynamics)

2) fast At=10 s (e.g. for analysing receptor-mediated protein
kinase translocation)

3) intermediate At=100 s (e.g. for analysing receptor-medi-
ated Rac-1 translocation)

4) slow At=1000 s (e.g. for analysing gene expression)

FIG. 3 shows a virtual assay model image 300 produced in
accordance with an embodiment ofthe present invention. The
virtual assay model image 300 shows an example of a toxi-
cological response for cells stained with TMRM.

Live cells are characterised by a punctuate, vesicular-type,
distribution of TMRM whilst dead cells, compromised cells
or drug treated cells may show a uniform distribution of
TMRM in the cytoplasm.

The virtual assay model image 300 thus shows a mixed
distribution which is a combination of a vesicular image 302
(representing mitochondria) and a non-vesicular image 304
showing the uniform distribution of TMRM in the cytoplasm.

The total intensity if the TMRM signal in the vesicular
image 302, V_, is defined as:

Ves = f 1-ds
vesicles

where [ represents a pixel intensity value and ds spatial posi-
tion of pixels in the image.

Equation 1
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The total intensity if the TMRM signal in the non-vesicular
image 304,V is defined as:

cytoplasm

Equation 2
el I-ds
VAM image—vesicles

From Equations 1 and 2 an relative intensity ratio V,
can be calculated, as follows:

es__ratio

Ves Ves

Ves + Voyoplasm  YvaM image

Equation 3

Vex,rario =

This relative intensity ratio V, ... is a useful parameter,
in which any image proportionality factors applied are sub-
stantially cancelled out, and which can be used to measure the
relative degree of mitosis in the VAM image 300, thus:

“geaq 0V, =1. Equation 4

es__ratio’ “alive”

Summing across the VAM image 300, a toxicological sig-
nature response can be built up by producingaV,, _ histo-
gram 306. SuchaV,_,  histogram 306 can, for exZﬁfple, be
used to quantify the differences between phenotypes repre-
sented by actual and simulated images, in this case when
assessing toxicological responses. Hence in various embodi-
ments phenotypes may be toxological phenotypes and the
quantified differences indicative of stimuli toxicity (e.g. cell
membrane disruptions, presence of micronuclei, etc.).

FIG. 4 shows a further technique for analysing differences
between phenotypes represented by actual and simulated
images. This technique applies a so-called “parent method-
ology” in which analysis is undertaken in terms of non-dy-
namic stochastic cellular events.

Nuclear fluorescent images 400, 402 are analysed by com-
parison to modelled data. Actual image 400 shows an image
of diploid cells exhibiting a typical G1 S G2/M distribution,
and actual image 402 an altered distribution characteristic of
induced polyploidy. Both images were obtained using high
throughput high content screening.

Analysis of cell cycle phases in mixed populations is per-
formed by using total integrated nuclear fluorescence (J) his-
tograms.

J= Z Intensity ~ N fuorescent molectues ~ @ Equation 5

nucleus

J =doa” - (L +m),n~ GO, op) Equation 6

1 being determined from a measurement model.
DNA content (a) is modelled by mixture distribution

weights P, Doyt Payr (Where pa,+D2,,.4,+P4,=1, €tc.) such
that:

Pt @) =P, 0@~ 1)4P2y- 2, BoX(1,2 14 4,8 (a-2) Equation 7
Analogously for the case with polyploids:
P piinsn(@) =P 2y 8(a=1)+p3,, 4, Box(1,2)4p,,8(a-2)+
DPan-sn BOX(2,4)+pg,, 0(a-4) Equation 8

Graph 404 shows the modelled DNA content distribution
having applied a two-thousand cell simulation at each fitting
iteration. Similarly, graph 406 shows the analogous case for
polyploids. These can be compared to the processed inte-
grated nuclear fluorescence (J) histograms 408, 410 for the
respective actual images 400, 402 (e.g. using known correla-
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tion measurement techniques) in order to provide a quantified
measurement indicating the differences between actual and
simulated images.

FIG. 5 shows the dynamics of a single cell toxicological
response response, in graph 500. The toxicological response
is transient and shows cell death. The transient response starts
at time t, lasts for a duration T and has an amplitude equal to
B-A.

The dynamic response can be defined as:

B,
A+[B-Al-e”, y=0

y<0 Equation 9

responsel = {
where natural time variable, y, is defined as

-1

T

FIG. 6 shows a graph 600 illustrating the dynamics of
various possible single cell transient responses that can be
modelled.

In the first response curve 602, the response is defined as
per Equation 9, above.

In the second response curve 604, the response is defined
as:

B,
A+[B-Al-(1-¢7), y=20

y<0 Equation 10

response; = {
In the third response curve 606, the response is defined as:

1 Equation 11
response; = A + [B — A] (m)

In the fourth response curve 608, the response is defined as:

Equation 12

1
response; = A + [B — A] -(1 - m)
4

In the fifth response curve 610, the response is defined as:

A,
A+[B-A]-y%e ™, y=0

y<0 Equation 13

responsel = {
In the sixth response curve 612, the response is defined as:

A,
(A+Ky*)-e?+B(l-e), y20

y<0 Equation 14

response; = {

These various response curves can be used to fit single cell
transient responses to enable a VAM to generate simulated
images of cell responses to one or more stimuli which may be
fit iteratively to actual data by an analysis module, for
example. This enables various embodiments of the present
invention to temporally quantify the differences between the
phenotypes represented by actual and simulated images.
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For example, analytical expressions involving some fourto
six parameters defining a single cell response such as start
time, duration, amplitude and shape can all be adjusted to
obtain a best analytical fit.

Moreover, the response, or responses, can be made time-
dependent for one or more cells, multi-cell, inter-cellular
reactions, etc. to a stimulus (such as a drug treatment etc.).

Such a temporal description thereby enables responses
produced by different techniques (e.g. using different fluo-
rescent markers, or even different image modalities) to be
made directly comparable, hence allowing an interpretation
of causality to be obtained.

FIG. 7 shows first and second graphs 700, 720 showing
how first and second field-of-view (FOY) averaged time-
dependent assay responses 712, 732 are built-up.

The responses 712, 732 are generated on the assumption
that the main variability in toxicological response is due to the
t, distribution. The respective FOV-averaged time dependent
responses FOV_response(t) are modelled with the help of
response, () functions using differing time shifts, thus:

Neelis Equation 15

FOV _response(r) = [response, (z, ...

[70,) + 1]
Neetts S

where 1), is an optionally added measurement noise param-
eter.

The first FOV response 712 is built up from time shifted
response, (t) functions 702, 704, 706, 708 and 710. The sec-
ond FOV response 732 is built up from time shifted response,
(t) functions 722, 724, 726, 728 and 730.

FIG. 8 shows first and second graphs 800, 810 showing
modelled field-of-view (FOV) averaged time-dependent
assay distribution responses 802, 804, 812, 814.

Again, the distribution responses 802, 804, 812, 814 derive
from a t, distribution. The t,, distribution may, for example, be
uniform (i.e. a box distribution) or Gaussian in nature. The
modelling technique may thus be akin to a stochastic simu-
lation.

The first graph 800 shows a o/3 distribution response 802
and a o distribution response 804. These distribution
responses were produced for a response, (t) function having a
bell shaped rise, with N_,,,,=60, 1,=0 and a Gaussian distri-
bution for t,, “n”, “0”, 0>>1).

The second graph 810 shows a 0/3 distribution response
812 and a o distribution response 814. These distribution
responses were produced for a response, (t) function having
an exponential drop shape, with N__,, =60, 1,=0 and a Gaus-
sian distribution for t, (“i”, “0”, 0>>1).

A stochastic fitting procedure can thus be applied for esti-
mating:

1) parameters of the distribution of the starting time t,, (e.g.,

Hyo and O,);

2) response duration T; and/or

3) response amplitude (B-A).

The shape of the response can be determined by studying
individual cell response records, e.g. by using a cell tracking
algorithm.

FIG. 9 shows the distribution of the FOV response at vari-
ous time points. The response distribution depends upon the
mentioned parameters and the number of responding cells
N._.;s imaged in the field-of-view.

The response, (t) function had an exponential rising shape
and the t, distribution is uniform (i.e. box shaped). The tem-
poral distributions are shown evolving down each depicted
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10
column for bothN_,_,;,=10 and N,
T varying from column to column.

FIG. 10 shows a graph 1000 illustrating conventional direct
analysis of a time-dependent response by fitting. Raw data
1002 is fit mathematically to the curve 1004.

Such fitting is well-understood and a classical application
of computational mathematics to scientific results. However,
the use of such a technique does possess the following draw-
backs: a) for a single cell, cell tracking data needs to be
collected on a massive scale; b) for a FOV-averaged response,
the technique assumes temporally synchronous reactions of
the cells; and c) there is a danger that a lack of adequate
phenomenological fitting expressions are available.

Various assay response and analysis algorithms were cre-
ated using MATLAB®. They included working versions of
functions and procedures mentioned previously in the
description.

However, in order to verify further the robustness of the
developed methods, these algorithms were tested on FOV-
averaged data generated from a real toxicity assay. The cell-
based experiment involved the influence of several drugs and
the applications of two fluorescent markers during a 5-hour
time course. The general background for such an experimen-
tal study is outlined in the article by O’Brien et al [4].

=100 with p=0 and o and

cells

FIRST EXAMPLE

The first example analyzed the cytoplasmatic membrane
integrity, as indicated by the TOTO-3 marker. TOTO-3 stains
cell nuclei only after cell plasma membrane disruption. The
response, (t) generated by disruption to the membrane is
therefore a curve representing the increase of cell nuclei
intensity in TOTO-3 channel. This intensity was measured by
amicroscopy HTS system. However, the exact moment when
a particular membrane became disrupted was unpredictable.

The analysis therefore used stochastic fitting involving a
single time parameter (the width of the box-shaped distribu-
tion of starting times of the response).

FIG. 11 represents the raw TOTO-3 response. The TOTO-3
response was taken for two values of drug concentration,
denoted “high” and “low”. The bottom panel shows the
response when treated with various control treatments (i.e.
FCCP: p-trifltuoromethoxy carbonyl cyanide phenyl hydra-
zone; CI: calcium ionophore A23187; Triton: Triton-X-100;
Medium: culture medium; DMSO: dimethylsulphoxide).

FCCP is an uncoupler of oxidative phosphorylation in
mitochondria. It is capable of depolarizing plasma and mito-
chondrial membranes and is therefore used as a positive con-
trol for the TMRM stain. FCCP depolarises the mitochondrial
membrane resulting in a TMRM signal decrease compared to
negative controls.

Calcium ionophore A23187 is highly selective for Cal-
cium. This is a positive control for the Fluo4-AM stain. CI
results in an overall increase in the intracellular Calcium
levels therefore resulting in a signal increase in the Fluo4-AM
intensity compared to negative controls.

The deteregent/surfactant Triton-X-1000 acts as a positive
control for the TOTO-3 stain. Triton will permeabilise the cell
membranes resulting in a signal increase in the TOTO-3
intensity compared to negative controls.

The culture medium acts as a negative control.

DMSO is used a drug carrier and acts as negative control.

FIG. 12 shows the response of FIG. 11 with fitted data
curves. Data fitting was performed using a response, (t) func-
tion having an exponential rising shape. T was equal to 15
minutes, A=0.5 and B=1.48. The starting time distribution
was box shaped with t,,,,=0 and width,~fitted.
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FIG. 13 shows an experimental TOTO-3 concentration
response showing the logarithm of characteristic time (in
hours) by TOTO-3 response (y-axis) as a function of loga-
rithm of concentration (micromoles) (x-axis) for various drug
compounds.

FIGS. 11 to 13 demonstrate the utility of the analytical
method since it allows for the classifying of drugs quantita-
tively by their mode of action in terms of fast/slow respond-
ers. In particular, it can be seen that three toxic drugs (astemi-
zole, tamoxifen and lovastatin) can be identified by this
method as responding faster than controls. These Figures also
show that increasing concentration of these drugs makes the
response even faster.

SECOND EXAMPLE

The second example analyzed a mitochondrial marker
(TMRM) response. This analysis did not take into account
stochastic effects and was therefore reduced to the usual
fitting procedure for the FOV-averaged response. It was
assumed that all cells started reacting immediately after drug
addition. The reaction of a mitochondrial potential to a per-
turbation (i.e. a drug) is considered to be potentially very
diverse.

The form of analytical expression used for response, (t)
was as follows:

N K ., Equation 16
e

= A(l ]

) +range(l —e7%)

with limits f{0)=A, f(co)=A+range
and where

where range, K and o are three fitting parameters, and A is
fixed being assigned after inspection of the response on
unperturbed cells (i.e. as a baseline).

The expression defined in Equation 16 above is very flex-
ible, and uses as a fitting parameter the single time scale (“t”),
amplitude (“range”) and another parameter (“o.”) for control-
ling response nonlinearity.

FIG. 14 shows the raw time-dependent TMRM response.
The TMRM response was taken for two values of drug con-
centration, denoted “high” and “low”. The bottom panel
shows the response when treated with various control treat-
ments (i.e. FCCP: p-trifluoromethoxy carbonyl cyanide phe-
nyl hydrazone; CI: calcium ionophore A23187; Triton: Tri-
ton-X-100; Medium:  culture medium; DMSO:
dimethylsulphoxide).

FIG. 15 shows the response of FIG. 14 with fitted data
curves. Data fitting was performed using the technique dis-
cussed in relation to Equation 16, above.

FIGS. 16 and 17 show rudimentary “concentration depen-
dencies” (plotted for the two values of drug concentration,
“high” and “low”) of the two important parameters “range”
and “t”.

FIGS. 14 to 17 demonstrate the utility of the fitting method
since they allow for the classification of drugs quantitatively
by their mode ofaction i.e. in terms of fast/slow and suppress-
ing/stimulating characteristics. The latter characteristic is
apparent and is an example of the hormesis exhibited by
etoposide and amodiaquine (i.e. data >100% of the TMRM
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level, showing raised mitochondrial activity). The majority of
the other drugs appear to suppress mitochondrial function and
the drugs leflunomide and dantrolene have no effect. For all
cases studied, analysis of the characteristic time “t” as a
parameter indicates that increasing drug concentration results
in a faster TMRM response.

Various techniques may be used to provide embodiments
of the present invention, such as, for example:

1) direct fitting, which can be applied to many time depen-
dencies recorded from cells with the help of cell track-
ing, or to FOV-averaged responses;

2) indirect fitting, by comparing measured and modelled
FOV-averaged responses in the time domain; and/or

3) indirect fitting, by comparing measured and modelled
distributions ofthe FOV responses at certain time points.

The latter two techniques might use a “t, distribution”
methodology.

Further analysis options may also or alternatively include:

1) concentration dependencies of fitting parameters;

2) perturbations (or drugs) might be classified in the space
defined by fitting parameters; and/or

3) responses of different markers can be ranked according
to their characteristic times.

As previously mentioned, alternative possible methods
exist for constructing the response, (t) model curve(s) used to
represent the basic dynamic cellular event(s), compared to
those explicitly described herein.

In particular, two cases of response,(t) curve generation
that might be beneficial for such simulations include:

1) A bistable assay, i.e. in this system a composite response
originates from two basic response,(t) curves. As an
example one can fit the mixture of two responses with
different timings (providing “high” and “low” levels of
signal at t=0). In this case, bimodal response distribu-
tions are possible. Such a method can be applied to
stochastic simulations.

2) Generating the response, (t) with the help of intra-cellu-
lar kinetics modelling, for example by the ordinary dif-
ferential equation (ODE) formalism. In this case, the set
of parameters controlling the shape of the response; (t)
curves coincide with parameters from the biochemical
kinetic model.

Such extensions of the method using bistable responses,
measurement noise introduction and/or ODE-modelled
responses can, for example, be incorporated into a GE IN Cell
Investigator software analysis tool.

Various aspects and embodiments of the present invention
may thus be used to perform virtual experimentation based
upon one or more of: temporal multi-scale responses, single
cell responses, transient responses, characteristic times,
response amplitudes, response starting times, stochastic fit-
ting, bistability, ODE analysis, etc. In various embodiments a
virtual assay model (VAM) can be used with feedback in
order to improve VAM accuracy. Various techniques incorpo-
rating stochastic data and/or stochastic analysis may also be
used.

In various embodiments of the present invention, image
acquisition may be provided to obtain actual images. This
may be done in real-time or by using oft-line processing to
perform image analysis in order to compare VAM output data
to measured responses.

Therefore whilst the present invention has been described
in accordance with various aspects and preferred embodi-
ments, it is to be understood that the scope of the invention is
not considered to be limited solely thereto and that it is the
Applicant’s intention that all variants and equivalents thereof
also fall within the scope of the appended claims.
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2.
3.
4.

The invention claimed is:

1. A system for automated cellular assay data analysis, the
system comprising:

a virtual assay module (VAM) operable to generate simu-
lated images of cell responses to one or more stimuli, the
generated simulated images being created using a sto-
chastic model that simulates a stochastic process
wherein behaviour is non-deterministic in that a next
system state is determined both by predictable events of
the stochastic process and by a random element;

a comparator module operable to compare the actual and
simulated images; and

an analysis module operable to quantify the differences
between phenotypes represented by the actual and simu-
lated images.

2. The system of claim 1, wherein the analysis module is
further operable to provide feedback to adjust the VAM in
accordance with the quantified differences such that the phe-
notypes of the actual and simulated images converge.

3. The system of claim 1, wherein the analysis module is
further operable to quantify temporally the differences
between the phenotypes represented by the actual and simu-
lated images.

4. The system of claim 1, wherein the analysis module is
further operable to apply stochastical fitting to quantify one or
more response properties of a single cell’s response to said
one or more stimuli.

5. The system of claim 1, wherein

the analysis module is further operable to apply phenom-
enological response fitting for a high-throughput screen-
ing (HTS) analysis.

6. The system of claim 1, wherein the analysis module is

further operable to analyse heterogeneity of a multiple cellu-
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lar system in response to said one or more stimuli to deter-
mine a heterogeneity measurement parameter.
7. The system of claim 1, wherein phenotypes are toxo-
logical phenotypes and the quantified differences are indica-
tive of stimuli toxicity.
8. A method for automated biological cell assay data analy-
sis, the method comprising:
acquiring one or more actual cell images;
creating one or more virtual assay model images using a
stochastic model that simulates a stochastic process
wherein behaviour is non-deterministic in that a next
system state is determined both by predictable events of
the stochastic process and by a random element;

comparing at least one of the actual cell images to at least
one of the virtual assay model images; and

quantifying any differences identified by comparing actual

and virtual assay model images to provide at least one
difference parameter.

9. The method of claim 8, further comprising:

modifying a virtual image model in dependence upon said

at least one difference parameter; and

recreating said one or more virtual assay model images

using said modified virtual image model.

10. The method of claim 8, further comprising:

iteratively providing feedback to adjust the virtual assay

model so as to minimise the values of said at least one
difference parameter in order that the phenotypes of the
actual and virtual assay model images converge.

11. The method of claim 8, further comprising:

temporally quantifying the differences between the pheno-

types represented by the actual and virtual assay model
images.

12. The method of claim 8, further comprising:

applying stochastical fitting to quantify one or more

response parameters for a single cell’s responseto one or
more stimuli.

13. The method of claim 8, further comprising:

applying phenomenological response fitting to a high-

throughput screening (HTS) analysis.

14. The method of claim 8, further comprising:

analysing heterogeneity of a multiple cellular system in

response to one or more stimuli to determine a hetero-
geneity measurement parameter.

15. The method of claim 8, wherein phenotypes are toxo-
logical phenotypes and the quantified differences are indica-
tive of stimuli toxicity.
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