a2 United States Patent

Kuzmin

US009317402B2

US 9,317,402 B2
*Apr. 19, 2016

(10) Patent No.:
(45) Date of Patent:

(54) METHODS AND SYSTEMS FOR
GENERATING TEST INFORMATION FROM A
SOURCE CODE

(71) Applicant: Zynga Inc., San Francisco, CA (US)

(72) Inventor: Aleksandr Kuzmin, Santa Clara, CA

(US)
(73) Assignee: Zynga Inc., San Francisco, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/663,321

(22) Filed: Mar. 19,2015
(65) Prior Publication Data
US 2015/0193333 Al Jul. 9, 2015

Related U.S. Application Data

(63) Continuation of application No. 13/323,745, filed on
Dec. 12, 2011, now Pat. No. 9,003,379.

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,613,118 A * 3/1997 Heischetal. ... 717/158
5,909,577 A * 6/1999 Devanbu 717127
6,983,455 B2* 12006 Kuzmin 717/130
7,039,902 B2* 5/2006 Kuzminetal. . .. 717126
7,080,358 B2* 7/2006 Kuzmin 717127
9,003,379 B2* 4/2015 Kuzmin 717/130

2003/0093716 Al* 5/2003 Farchietal. ... 714/34

2006/0053414 Al* 3/2006 Bhandari et al. .. 717/133
2011/0154300 Al* 6/2011 Raoetal. 717/133
2012/0278793 Al* 11/2012 Jalanetal. 717/158
2013/0152043 Al* 6/2013 Kuzmin 717110
2015/0193333 Al* 7/2015 Kuzmin ... 717/124

* cited by examiner

Primary Examiner — Marina Lee
(74) Attorney, Agent, or Firm — Martine Penilla Group, LL.P

(57) ABSTRACT

Systems and methods for generating test information from a
source code are described. One of the methods includes
accessing the source code. The method further includes

A

(51) Int.CL receiving a modification of the source code to generate a
GO6F 9/44 (2006.01) modified source code. The modification includes one or more
GO6F 9/45 (2006.01) instructions that do not affect functions performed by execut-
GO6F 11736 (2006.01) ing the source code. The modification further includes one or

(52) US.CL more instructions for generating test information regarding
CPC GO6F 11/3676 (2013.01); GO6F 8/72 each executable line of the source code.

(2013.01); GOGF 11/368 (2013.01); GO6F
113684 (2013.01) 20 Claims, 13 Drawing Sheets
128A | Tester module 156
Test info. Deter. Module 222
. Coverage information
Modified source determination module 212 |||
130A code 108
o ared, | Reader Executable/Non-
218 | executable Consumption information
—————— » module | L o H—
______ 206 determination determination module 214
R | == module 210
20 | I A |
L Other test info. determination | |
module 216
182A
Cov. 124 -
Test
information 112 Con. 126 e
Other 158

U.S. Patent Apr. 19,2016 Sheet 1 of 13 US 9,317,402 B2

100

102

Accessing a source code

l 106

Receiving a modification of the source code

110

Is an input
regarding testing each executable
line of the source code received

114

Testing each executable line of the source code to /
generate test information

¢ 118

Providing the test information

End

FIG. 1

US 9,317,402 B2

Sheet 2 of 13

Apr. 19,2016

U.S. Patent

291 921A9D JasSN g Y 991 92IA9p JasN
191depe yiompeN |« ~__
vmr\k A odepe yomisN fe>
i 007 991nap AJowsy 051~ azel
30T m_mmﬁV O0E I Zv T 801A8p Alowsy \\
ol leme 19 [T emed 12
=1 91 A 2d | Tl 1Taszl
4 a8zl T ~ L/
0D # P ;>>F «— ANV VYN H\
v 0T o Nl | 14 [«
vel AV W <Nw_.\ mvo\wzﬁ g0})))ﬁl V8l
‘AOD MW AW 82.N0S PaI{POA / 8p02 821N0S [

s SInpow | W v8cl VoS | /
uonew 181891 VYV W v8zZl
oMl 9p02 82IN0S
1891 PaLIPON 9|NPOW Jojuawunsu| s|npow JesJed

) /
44 “—> / —
N Zei Josseao.d iseL 671 Ll 105$9204d «—>
ooinep Induy fe oll > - .
\ S] @omep nduj oIl >
IIABP INAINQO [« 761 9]
T ovl M
061"] so1r8p jnding ob
991
—>

) 89 0
Z 9l P 1 e

U.S. Patent Apr. 19,2016 Sheet 3 of 13 US 9,317,402 B2

Modified Source Code 202

C.F1

Function 1

C.F2
Executable Line 1

Non-executable Line 1

C.F3
Executable Line 2

C.F4
Executable Line 3

C.F5
Executable Line 4

Non-executable Line 2

C.Fo6

Function 2
C.F.7

Executable Line 5

Non-executable Line 3

C.F.8
Executable Line 6

FIG. 3

US 9,317,402 B2

Sheet 4 of 13

Apr. 19,2016

U.S. Patent

CCC SINPO "Ja1e("Ojul 18]

CT 9|Npow JaJs9 |

v8Zl

» 85l U0
) —. 2T uoheuw.oul .
> F oo o v Ol4
€€ > ¥l 'A0D
Vgl
N\
L] 91¢ sInpow -
uoljeulw.aiap -ojul }s8} JayiQ
— U7 | oee
012 oInpow - T '
|| ¥F¢ ainpow uoieuiwidep < uoljeuiw.alep onpows |le—1 —————
uonewJoLul uoldwnsuon 9|qeIN9Xa Jopesy _ "8z
-UON/3|qeIN98xX I A /
- 201 Yocl
Z 12 ©|Npow uoljeuILI8Iep < oemww oﬂw_o_o o
uonewJolul abelanon PLIPON

U.S. Patent Apr. 19,2016 Sheet 5 of 13 US 9,317,402 B2
300
302
|

Read a modified source code

s a line of a source code executable or
non-executable?

304

L

NO

| =

Generate test information for
the executable line

Avoid generating test
information for the non-
executable line

End

FIG. 5

US 9,317,402 B2

Sheet 6 of 13

Apr. 19,2016

U.S. Patent

9 Old

‘{[opoNsSannUSe [2:5e)<<

CLE JUSLLIONS U0V 9 sapnumaopaqyzo:z aponssnnua:piuppe jias]

‘[oseapIoINE<<
UsWaJe)s uoi
0Lt 1615 LoV A [3ur [doqre apoNsepy IOl = apoNsannud <<
} <<
97¢ JuaWwae)s uopipuory —— = (piur 1adns] = jps))j <<
j<<
9z¢ JusWale)s ooy ——» NUK(PY <<
<<
pze uopuyeg —— > SIPONSINNUI AZISYPUAS D)< <
<<
ZzC uonjuegq ——> AP0 uonBIURIdUN)<<
il

/

0ce

US 9,317,402 B2

Sheet 7 of 13

Apr. 19,2016

U.S. Patent

HELRIYNES G ELA BRI

uswalels UoiPy~. e
2€€ JusWajels uoj <J rep——

0EE WOWSNEIS LoV~ ™ = iy 501w 3P aNserY 3 31T| ~ SPONOIA 1l
oo SP WK IPLIO A PWED UOYd I/ X0qR0Y PAIEUS/SOSTIAN) AQDSH, pupd<<
J s <<
8CE USRI UOMPUOO ————— > (s todns] =gy ____; (k<
— £F WrLeTpRIo A puIRD/AU0Yd]/X0qA0)/PAIRLS/SOYSIUAN) P AQDST,)uLId<<

<1
Sy <<

0G¢ -

1 WrRABpLIoAN AureDduoyd/xoqA0)/paaeys/sol/syudil) :AQISE,)putd j<<
97¢ JusWae;s uooy —» HUI(pY) <<

<<

pze uoniuyeq —> {IPONSINNUI AZISIPPUAS W) <<

<<

\ ZZ€ uopuyeq ———> RABRTPLIoA uonwIuwuR[dun®m)<<

14129

U.S. Patent Apr. 19,2016 Sheet 8 of 13 US 9,317,402 B2

- Function call «— 138A
-Start of function <4 402A

-Action statement

— -Loop condition statement <4— 134A
-Start of loop 4 406A404

408A

-Action statement
-End of loop <*— 4068

-Loop condition statement™™ 134B

-Start of loop
-Action statement
-End of loop
-Loop condition statement «——— 134C
-Start of loop
-Action statement
-Action statement

-End of loop
-End of function <«—402B

138B
- Function call <€

-Start of function
-Loop condition statement <4 136
-Start of loop
-Action statement
-Action statement
-Action statement
-End of loop
-Condition statement
-Action statement
-End of function

- Function call «— 138C

-Start of function

-Action statement F I G 8
370

-End of function

US 9,317,402 B2

Sheet 9 of 13

Apr. 19,2016

U.S. Patent

<® mu_u_ g6 aJnbi14 0} panunuo)

®

®

®
W' IBgsSalbold/821n0S/S0l/siusl) 18 08 [%./'86
WrAND +1oDBUBIN[/3IN0S/SOISIUSID | #G | €S [%) 86
wAD+Biyuoy/eoInog/soysiualy | 191 | 8S1 (%) 86
wrijeQmaIAs|qe Lidsie/eainog/soysiudlld | 9¢ | € (%T 26
w-Buygpaz)[eooAZ/uonezI[eo0 TN Z/siusuodwoNZ/aulbuge|iqoNz/paleys/soysiualld | 98 | €8 (%S 96
L9 WeN UOJjeZ|[ed0|\|Z/U011eZ|[ed0 N Z/SiusuodwoNZ/aulbuge|iqoiNZ/paleys/soysiudlld | €1 | 2L [%E26
LI'8PE{UOIOY/30IN0S/SOySIUBID | ZL | |1 [%9' L6
w-a|qe 8)dg/euibuz/suoyd|/xoghoypaseys/soysiualy | 6L | 2L (%116
w-uoijesadoali4peojumoq/eulbu3/suoyd|/xoghoypaleys/sosiually | 65 | 0S [%6°06
W [oqeRUOI4DNZ/I99eT3u0l4/|NINZ/RUIBUTS|IqONZ/paIeYS/SOlSIURID | 992 | /82| %68
w-lebeueydeisinpy/euibug/euoydi/xoghoypaleys/soysiually | €6 | 28 (%1 88
W U0 | UOIEZ||[ed0 N Z/UONEZ|[EO0 TN Z/SIUBUOdWODND/BUIBUTS|IqONZ/PaIYES/SOySIUBID | 9L | ¥l [%S' /8
wrAIIUFISOAIRHUOIOY/90IN0S/SO/SIUBID | GG | 8Y |%Z /8
LI uoljoesue. | SJejSNZ/Suoiorsuel | /suoljoesuel | INZ/aulBu3a|iqojNZ/paleys/soysiually | 62 | Sz |%Z 98
W-uopngyopesINZ/siusuodwogyz/eulbuga|iqojz/paieys/soysiually | 68 | €/ (%8G8

0Sy

US 9,317,402 B2

Sheet 10 of 13

Apr. 19,2016

U.S. Patent

do 9ld ¢Sy
aSy 09t oSy ¥Sv
W S[AUIS IO ISONS/SRIMASNS/UONEZI[EI0 TZ/SIUSUOTWONZ/SUIBUB]IGONZ/PBIEUS/SOTSURID [T ZL T Z} %00k
U UONOBSUEI | SIOQUBISNISOAIOZ/B0IN0S/SOSIUBID |18 | 81[%00}
W' J8JU3UOROY/B0INOS/SOSIUBD 12 | Zei1[%00}
wrAig-+ayoedabewsaunog/soysiualy |1 L | 11{%00L
wrapoNyojegaiudshyoeainog/soysiuslly |61 | 61 ([%007
w-AouaLIN)D0J0Id/84n0g/soysual) | § mm %001
WaBp3PHOM/90INOS/SOYSIUBND |1 2 | 2!|%00L
WIS WI L +3INPaYIS D /S0000/auoyd|/x0gh0y/paseys/soysiueld |1 2 | 2!]%00L
W|9010npoId/8anog/soysiusliy |10y | Ov![%001
W UONOESUE | SPNPOI]YIIOONZ/UOIOBSUE. | /SUOIOESUEL | WZ/ouIBuTaliqoNzZ/paseys/soysiuald |1 6 | gll%004
w-Jabeuepuswiiadx3/e4nog/soysiual) | 0L | 0L |%001
wrJa6e|I A\UO}OY/824N0S/SOl/SIUID Z | T |%00l
W-uoijoesue. | sJoqybiaN|enusjodienAD/80In0g/sol/siusl|o v | ¥ [%00L
W AB18u3)0)0.d/80In0S/S01/SIUBIID 2 | 2 %00l
W uojjoesuel | sioqybisN|eluslodieD|NZ/uoloesuel | juoioesuel | Wz/eulbugs|iqonz/paieys/soysiuali) | 6 | G [%00)

V6 2.nbl4 woJ panuiuod

US 9,317,402 B2

Sheet 11 of 13

Apr. 19,2016

U.S. Patent

0l ©Id

‘peigasted)uayor pasted jos NI} ((0 == ((smeagasied)Suns osred y[

= Swisregdois)) 1 1OTAXT A0 § (., == 1090vIRYWUOIINO) |, LDAIXH A %I 1500 TLOLST :L6LT
96LT

mbm.ﬁoaoe@ﬁug* HH@aowSQUEo@So AXL Nmo.o B ﬁ hchmw ”m\mb—

- B } o ((ngBumggopud > ((ovesgosied)Ld ONDILS LV M

= ngIooereydIe)) L LOAIXA M) ¥% (0 == Susieqdoys) L, LOAdXd ADW %I 0S0°0 0L0LST P6LI
COLT

{ ‘1 = Buisreqdos } ((nd3uLnSIOpPUS == (e1ygasred)dId ONTILS LV ADN %ST 8L0°1 0LOLST TOLI
16L1

‘(amygasted)doedsoyym diys asxed [9] 1600 1L0LST :06L1

68L1

mxoﬁﬂtﬁmoﬁféﬁmo&mmn xonﬂtﬁmoﬂ:\%&Aéﬁmo&a %I 6100 0L0LST 88LI
‘IoquInNaU[<-93eISasIed = E@E:ZDE_QEQA-BS,@%SQ %I €S0°0 690LST :LSLI
xopupe<-oreIgasted = xoc::m|>8gA-o§momSm %1 0S0°0 TLOLST ‘98LI

S8LI

‘0= Susregdos wr %I 1S0°0 TLOLST H8LI

No= I9)0RIRYDIUALND TRYD PAUTISUN %] [S0'0 [LOLST €8LI

‘(ore350s1ed)Y Ld DNIYLS ANA [= HJSULISFOPUD, Jeyo pausisun jsuod %[(0S0°0 1LOLST TSLI
“TINN = DJIOWRIBYDIR, JRYD paudisun suod %[7SO0 [LOLST ‘TSLI

~ o (rergosred)d1d DNDILS ANT M
=> (ore3gesied)Y Id DNIYLS LY I 9% (TION =i deigosted)niassyopuieed)Sq %1 7600 TLOLST “08LI

M p0g Al

009

US 9,317,402 B2

Sheet 12 of 13

Apr. 19,2016

U.S. Patent

098G

L1 Ol

uonelepaq————> {

JUSWaR)S UoNoY

urns(; suULNSSN

uonelepeq——>
uoneseoed — ,ﬂ

“nu
SUOEJEIO9P 8 LORIUSA { <, soinquine, @) ($199(qQIIE samqrmejas)

¢SG

6l
8¢
LT
9

ST
g4

€7
(44
| ¥4
0¢

JUSWa.)S Loy

uonesepsq——> 1qOPp repueSol(p!

UORURA — . cyweu anoyyuis)
LOIUISQ ———— IWENUONEZI[EIOTNZ Uopusudjduny)

91
S1
14!
¢l
4!
I
01

U.S. Patent Apr. 19, 2016 Sheet 13 of 13 US 9,317,402 B2

600

Is a modified source code received ?

Testing each executable line of the source code —

Did the source code pass the test?

Compiling the source code to generate an object /
code

End

FIG. 12

US 9,317,402 B2

1
METHODS AND SYSTEMS FOR
GENERATING TEST INFORMATION FROM A
SOURCE CODE

CLAIM OF PRIORITY

This application is a continuation of and claims the benefit
of'and priority, under 35 U.S.C. §120, to application Ser. No.
13/323,745, filed on Dec. 12, 2011 and titled “Methods and
Systems for Generating Test Information From a Source
Code”, and issued on Apr. 7, 2015 as U.S. Pat. No. 9,003,379,
which is incorporated by reference herein in its entirety.

FIELD

The present invention relates to methods and systems for
generating test information from a source code.

BACKGROUND

Software programming has gained popularity and is con-
tinuing to gain popularity. Specifically, software program-
ming for games creates excitement both among players and
software programmers. In software programming, a software
programmer writes a computer program using a computer
programming language, such as C, C++, Assembly Lan-
guage, etc.

Once the computer program is written, the computer pro-
gram is compiled. If the computer program compiles, there
may not be an error in the computer program. On the other
hand, if the computer program does not compile, there usu-
ally is an error in the computer program. However, if the
computer program is large, it is difficult to debug the com-
puter program.

It is within this context that various embodiments of the
present invention arise.

SUMMARY

Embodiments of the present invention provide methods
and systems for generating test information from a source
code.

In one embodiment, a tester module is provided. The tester
module tests each executable line of a source code to generate
test information. In some embodiments, an executable line
excludes a line of the source code that includes only a decla-
ration, excludes a line of the source code that includes only a
definition, excludes a line of the source code that includes
only a function prototype, and/or excludes a line of the source
code that is empty. Moreover, in one embodiment, an execut-
able line includes a line of the source code that includes a
condition statement and/or an action statement. A condition
statement provides a condition for performing an action that
is indicated in an action statement. Moreover, in various
embodiments, a non-executable line is not tested. By testing
each executable line of the source code, a user can look at a
result of the test to quickly and easily determine the execut-
able line that has an error. The user can fix the error to debug
the source code.

In another embodiment, a method for generating test infor-
mation from a source code is described. The method includes
accessing the source code. The method further includes
receiving a modification of the source code to generate a
modified source code. The modification includes one or more
instructions that do not affect functions performed by execut-
ing the source code. The modification further includes one or

10

15

20

25

30

35

40

45

50

55

60

65

2

more instructions for generating test information regarding
each executable line of the source code.

In yet another embodiment, a method for generating test
information from a source code is provided. The method
includes accessing the source code. The method further
includes moditying the source code with one or more instruc-
tions to provide coverage information related to each execut-
able line of the source code or consumption information
related to each executable line of the source code. The opera-
tion of modifying the source code is performed to generate a
modified source code. Moreover, the operation of modifying
is performed to modify each executable line of the source
code.

In still another embodiment, a computer system for gener-
ating test information from a source code is described. The
computer system includes an input device for receiving a
modification of the source code from a user. The computer
system further includes an output device for providing test
information, a memory device for storing the source code,
and a processor. The processor is used for accessing the
source code from the memory device. The processor is further
used for generating a modified source code in response to
receiving the modification. The modification includes one or
more instructions that do not affect functions performed by
executing the source code. Moreover, the modification
includes one or more instructions for generating test informa-
tion for each executable line of the source code.

Other aspects of the present invention will become appar-
ent from the following detailed description, taken in conjunc-
tion with the accompanying drawings, illustrating by way of
example the principles of various embodiments of the present
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present invention may best be
understood by reference to the following description taken in
conjunction with the accompanying drawings in which:

FIG. 1 is a flowchart of a method for generating test infor-
mation from a source code, in accordance with one embodi-
ment of the present invention.

FIG. 2 is a block diagram of a system for generating a
modified source code and testing a source code, in accordance
with one embodiment of the present invention.

FIG. 3 is a diagram of a modified source code, in accor-
dance with one embodiment of the present invention.

FIG. 4 is ablock diagram of a tester module that is executed
to test a source, in accordance with one embodiment of the
present invention.

FIG. 5 is a flowchart of a method for distinguishing
between an executable line and a non-executable line, in
accordance with one embodiment of the present invention.

FIG. 6 shows an ObjectiveC source code, in accordance
with one embodiment of the present invention.

FIG. 7 shows a modified ObjectiveC source code, in accor-
dance with one embodiment of the present invention.

FIG. 8 shows a source code to illustrate a ratio of a number
of a loop condition statement to a number of function calls
within a source code, in accordance with one embodiment of
the present invention.

FIG. 9A is a portion of a view of a table that includes test
information, in accordance with one embodiment of the
present invention.

FIG. 9B is the remaining portion of the table illustrated in
FIG. 9A, in accordance with one embodiment of the present
invention.

US 9,317,402 B2

3

FIG. 10 is a view of an embodiment of a table that includes
test information for each executable line, in accordance with
one embodiment of the present invention.

FIG. 11 shows a source code to illustrate coverage of
executable lines of the source code, in accordance with one
embodiment of the present invention.

FIG. 12 is a flowchart of a method for compiling a source
code that has passed a test, in accordance with one embodi-
ment of the present invention.

DETAILED DESCRIPTION

It should be noted that various embodiments of the present
invention may be practiced without some or all of these spe-
cific details. In other instances, well known process opera-
tions have not been described in detail in order not to unnec-
essarily obscure various embodiments of the present
invention.

FIG. 11is a flowchart of an embodiment of a method 100 for
generating test information from a source code. In one
embodiment, the method 100 is performed by a processor or
a combination of processors. It is noted that a processor, as
used herein, refers to a central processing unit (CPU), a
microprocessor, an application specification integrated cir-
cuit (ASIC), or a programmable logic device (PLD). In some
embodiments, a processor is located within a physical server
or a computer.

As an example, the source code is a C computer program,
a C++ computer program, an ObjectiveC computer program,
or a Java computer program. As another example, a processor
is incapable of using the source code directly to perform an
action of the source code. As yet another example, the source
code is a game code that is executed to play a multimedia
game, such as, a Cityville™ game, a Farmville™ game, a
Forestville™ game, a Holiday Town™ game, or a Poker™
game, all of which are available from Zynga Corporation of
San Francisco, Calif. A multimedia game includes an audio
output or a video output or an animation output or a combi-
nation thereof. In some embodiments, the source code is a
computer program for a word processor application, an excel
spreadsheet application, an email application, or an Internet
browser application.

In operation 102, a source code is accessed 102. The source
code is accessed from a memory device, such as, for example,
a read-only memory (ROM) or a random access memory
(RAM) or a combination thereof. A memory device is an
example of a computer-readable medium. The source code is
read from the memory device to access the source code. The
source code includes one or more executable lines and is in a
form other than a binary form.

In one embodiment, an executable line is a statement that
extends across one or more mathematical lines, such as a line
1 and a line 2, and the statement is used to specify an action to
be performed by a processor or a condition, the truth or falsity
of which is to be checked by the processor. In some embodi-
ments, an executable line is a statement that extends across a
portion of a mathematical line. A statement is a condition
statement or an action statement. An output of a condition is
true or false. In some embodiments, a condition statement is
executed by a processor to check whether a condition in the
condition statement is true or false. In one embodiment, an
action statement is executed to assign a value to a variable, to
perform an arithmetic operation, and/or to perform a logical
operation. An output of an action statement may be one or
more values and/or one or more characters.

As an example, a statement includes a keyword, such as
“for’, “if’, ‘goto’, ‘else’, ‘void’, ‘id’, ‘return’, ‘while’ (while

10

20

35

40

45

50

55

65

4
loop), ‘char’, “int’, ‘loop’, or ‘long’. As an example, the ‘if”
keyword is used to determine whether an input is received
from a real world user. As another example, the ‘while’ key-
word is used to determine whether less than a certain number
of game points are accumulated by the real world user. In one
embodiment, a keyword is a condition for performing one or
more actions. In some embodiment, a keyword is executed to
performing an action. A statement that includes more than
one keyword is a compound statement. A statement that
includes one keyword is a simple statement. As yet another
example, a statement includes an operator, such as an arith-

metic operator (e.g., ‘+°, ‘=, “**, */°, “%’), a Boolean logic
operator (e.g., ‘I’, ‘&), an increment operator (e.g. ‘++’), or
a decrement operator (e.g., ‘—=").

As another example, an executable line is a declarationless
line. For example, an executable line excludes a mathematical
line that includes only a declaration. A declaration declares a
data type, such as, whether a type of a variable is an integer or
a character.

As yet another example, an executable line excludes a
mathematical line that includes only a preprocessing directive
(e.g., #include <text>, @text). The preprocessing directive
causes a compiler program to replace a line having the pre-
processing directive with the text within the processing direc-
tive.

As another example, an executable line is a definitionless
line. For example, an executable line excludes a mathematical
line that includes only a definition. A definition names a
function within the source code. A name of a function may be
‘main’, ‘secondary’, etc. A second function is called by a first
function with a name of the second function. For example, a
‘main’ function calls the second function with a name of the
second function. In some embodiments, the second function
calls the second function with a name of the second function.
In one embodiment, a function is defined between a punctua-
tion mark, such as an open bracket (e.g, open curly
bracket ‘{*) and another punctuation mark, such as a close
bracket (e.g., close curly bracket ‘}*).

Inone embodiment, a function is defined using one or more
conditional statements, which are executed to determine truth
or falsity of one or more conditions. Moreover, a function is
defined using one or more action statements, which are
executed to provide one or more outputs. In this embodiment,
execution of the one or more action statements depends on
truth or falsity of the one or more conditions.

In some embodiments, a function is defined using one or
more action statements, the execution of which does not
depend on a truth or falsity of a condition.

In one embodiment, a function provides one or more arith-
metic results based on one or more arithmetic operations, one
or more logic results based on one or more logic operations,
or one or more results based on one or more arithmetic results
and one or more logic operations.

As an example, a function is executed by a processor to
allow a virtual user in a game to perform an action, such as
walking, building a virtual home, demolishing a virtual build-
ing, deducting credits from an account used to play the game,
transferring credits from one gaming account to another gam-
ing account, chopping virtual trees, selling virtual gold coins,
or entering a virtual home. As another example, a function is
performed to display a prompt to the real user regarding an
operation in a game.

As yet another example, an executable line excludes a
mathematical line that includes only a function prototype. In
other words, an executable line is a function prototypeless
line. A function prototype excludes an action statement and/
or a condition statement of a function but includes a name of

US 9,317,402 B2

5

the function, a data type that is input to the function, and/or
includes a data type that is output as a result of execution of
the function. Examples of a data type include a floating point
number, a character, and an integer.

As another example, an executable line excludes a math-
ematical line that includes only a comment. In other words, an
executable line is a commentless line. A comment within a
mathematical line ofa source code is used to help the real user
understand a meaning of a portion of the source code in the
mathematical line. In some computer programming lan-
guages, a comment starts with a forward slash followed by an
asterisk (“/*”) and ends with another asterisk followed by
another forward slash (“*/7).

As still another example, an executable line is other than a
non-executable line. The non-executable line is ignorable by
a compiler program. A compiler program is executed by a
processor to compile the source code into an object code,
which is understandable by a processor. For example, the
object code is in a binary form.

As another example, an executable line excludes a math-
ematical line that includes only an empty space. In other
words, an executable line is a non-empty line. In one embodi-
ment, a non-empty line includes at least one character that is
other than a space character.

In some embodiments, each executable line is a declara-
tionless line, a definitionless line, a function prototypeless
line, a commentless line, and a non-empty line. In various
embodiments, each executable line is a declarationless line, a
definitionless line, a function prototypeless line, a comment-
less line, and/or a non-empty line.

In operation 106, a modification of the source code is
received. For example, the source code is modified, via an
input device, which is described below, by a real user with one
or more instructions to generate a modified source code. In
this example, the real user uses the input device to prepend
each executable line of the source code with an instruction to
generate a modified executable line. One or more modified
executable lines form the modified source code. The one or
more instructions are executed by a processor to generate test
information, described below, regarding the source code.

The modification is not performed to modify a function of
the source code. For example, a processor upon receiving the
modification determines whether a function of the source
code is modified. Upon determining so, the processor gener-
ates a prompt that is displayed, via adisplay device, described
below, to the real user and the prompt indicates that the
modification affects the function of the source code. On the
other hand, upon determining that the modification does not
affect the function of the source code, the processor avoids
generating the prompt.

In some embodiments, instead of receiving the modifica-
tion from the real user, a processor is programmed to modify
the source code upon accessing the source code. There is no
manual input received from the real user upon accessing the
source code to modify the source code. In these embodi-
ments, a processor inserts the one or more instructions into
the source code to modify the source code.

In operation 110, it is determined whether an input is
received from the real user via the input device to test each
executable line of the source code. Upon determining that
there is a lack of reception of the input, the method 100 ends.
In some embodiments, upon determining that there is a lack
of reception of the input, a processor continues to determine
whether the input is received.

On the other hand, in response to determining that the input
is received, in operation 114, each executable line of the
source code is tested. For example, the one or more instruc-

10

15

20

25

30

35

40

45

50

55

60

65

6

tions are executed using a tester module, which is described
below, to generate the test information regarding the source
code. In some embodiments, the tester module is executed by
a test processor, which is the same as a processor that per-
forms the operation 110 but is different than a processor that
performs the operations 102 and 106.

In one embodiment, the test information includes coverage
information, consumption information, and/or other test
information. The coverage information provides a number of
times each executable line of the source code is executed
during the test. For example, a first executable line of the
source code is executed twice during the test and a second
executable line of the source code is executed once during the
test.

In some embodiments, the coverage information provides
a percentage of a total number of executable lines within a
source code. The percentage is a percentage of a number of
executable lines that are executed by a processor during a test.

The consumption information provides percentage of a
time cycle, of a hardware resource, consumed by execution of
an executable line during the test. For example, the first
executable line consumes 0.25% of a CPU time cycle that is
counted during execution of the source code during the test
and the second executable line consumes 0.5% of the CPU
time cycle. Examples of a hardware resource include a CPU
and a memory device.

The other test information includes a ratio of a number of
loop condition statements within an executable line of the
source code to a number of function calls within the source
code. In some embodiments, the other test information
includes a ratio of a number of loop condition statements
within an executable line of the source code to a number of
function calls that are made within one or more functions of
the source code. If the ratio is higher than or equal to a
threshold, the ratio indicates to the real user that execution of
an executable line consumes a large percentage of a hardware
resource time cycle. On the other hand, if the ratio is lower
than the threshold, the ratio indicates that execution of an
executable line consumes a medium number or a low number
of a hardware resource time cycle.

In some embodiments, instead of the ratio, an inverse ratio
is calculated. For example, an inverse ratio of a function call
within an executable line within the source code to a number
of'loop condition statements within the source code is deter-
mined. In some embodiments, the inverse ratio of a function
call within an executable line to a number of loop condition
statements within one or more functions of the source code is
determined. If the inverse ratio is lower than the threshold, the
inverse ratio indicates to the real user that execution of an
executable line consumes the large percentage of a hardware
resource time cycle. On the other hand, if the ratio is equal to
or higher than the threshold, the inverse ratio indicates that
execution of an executable line consumes the medium num-
ber or the low percentage of a hardware resource time cycle.

In other embodiments, instead of a ratio of a loop condition
statement within an executable line of the source code to a
number of function calls within the source code, a ratio of a
number of loop condition statements within the entire source
code to a number of function calls within the entire source
code is determined.

Similarly, in one embodiment, instead of an inverse ratio of
a function call within an executable line of the source code to
anumber ofloop condition statements within the source code,
an inverse ratio of a number of function calls within the entire
source code to a number of loop condition statements within
the entire source code is determined.

US 9,317,402 B2

7

Continuing with FIG. 1, in operation 118, the test informa-
tion is provided. For example, the test information is sent via
a network, described below, to a computer. As another
example, the test information is provided to a display device
to display the test information. As yet another example, the
test information is provided to a printer to print the test infor-
mation. The method 100 ends upon providing the test infor-
mation.

FIG. 2 is a block diagram of an embodiment of a system
180 for generating a modified source code 108 and testing a
source code 104. The source code 104 includes one or more
executable lines 128 and one or more non-executable lines
182.

A real user 170 uses an input device 140 to request a
processor 144 to access the source code 104 from a memory
device 142. Examples of an input device include a keyboard,
a touchscreen of a display device, a mouse, a stylus, or a
combination thereof. Upon receiving the request from the real
user 170, the processor 144 reads the source code 104 from
the memory device 142 and provides the source code 104 to
an output device 146. Examples of an output device include a
printer or a display device, such as a cathode ray tube (CRT)
display device, a liquid crystal (LCD) display device, a
plasma display device, or a light emitting diode display
device. In some embodiments, an input device and an output
device are integrated, such as within a touchscreen display
device. The input device 146 and the output device 146 are
coupled with a bus 166 via an input/output (I/O) interface
148. In some embodiments, an I/O interface includes a driver
to drive an output device and/or a port that provides compat-
ibility between a bus and an input device or an output device.
Inone embodiment, an input device and/or an output device is
located outside a user device, which is described below.

Upon providing a representation, such as a printout or a
display, of the source code 104 on the output device 146, the
user 170 modifies the source code 104 using the input device
140. The user 170 inserts one or more instructions 130 to
modify the source code 104.

The user 170 prepends instructions 130 to one or more
executable lines 128. For example, the user 170 prepends the
instruction 130A to the executable line 128A, prepends the
instruction 130B to the executable line 128B, and the instruc-
tion 130C to the executable line 128C. The user 170 avoids
prepending an instruction to the non-executable line 182A
and avoids prepending an instruction to the non-executable
line 182B.

In some embodiments, there is no provision of the source
code 104 on the output device 146. In these embodiments, the
processor 144 modifies the source code 104 by inserting one
or more instructions 130 into the source code 104 to generate
the modified source code 108. The processor 144 executes a
parser module 147 to distinguish executable lines 128 within
the source code 104 from non-executable lines 182. More-
over, the processor 144 executes an instrumentor module 149
to prepend the executable lines 128 with instructions 130.

It should be noted that the processor 144 is used to execute
the parser module 147 and the instrumentor module 149 in
case the source code 104 includes a large number of execut-
able lines. When the source code 104 includes the large num-
ber of executable lines, it is difficult for the real user 170 to
distinguish the executable lines from non-executable lines of
the source code 104 and to prepend the executable lines with
instructions.

The processor 144 stores the modified source code 108 in
the memory device 142 and/or sends the modified source
code 108 via a network adapter 150 and a network 152 from
auser device 186 to another user device 162. In some embodi-

20

40

45

50

8

ments, an input device, a network adapter, and/or an output
device are located outside a user device.

The network 152 is a wired network, such as the Internet or
an Intranet, or a combination of the wired network and a
wireless network, or a combination thereof. In some embodi-
ments, the network adapter 150 is a network interface card
(NIC) that supports wired Ethernet standard or WiFi wireless
standard.

A network adapter 154 of a user device 162 receives the
modified source code 108 from the network 152 and stores the
modified source code 108 in a memory device 160. A test
processor 132 waits for a request from a user 168 to test the
modified source code 108 by using a tester module 156.

Upon receiving the request from the user 168, the test
processor 132 accesses the modified source code 108 from
the memory device 160 and executes the tester module 156 to
test the source code 104. In some embodiments, the test
processor 132 avoids waiting for the request from the user
168. In these embodiments, the test processor 132 accesses
the modified source code 108 when the modified source code
108 is stored in the memory device 160 and executes the tester
module 156 to test the source code 104. The tester module 156
is a computer program that executes the one or more instruc-
tions 130 and the executable lines 128 to generate the test
information.

In some embodiments, the tester module 156 executes the
executable lines 128 and avoids executing the non-executable
lines 182. For example, the tester module 156 reads each
mathematical line of the modified source code 108 to deter-
mine whether the mathematical line includes any of instruc-
tions 130. Upon determining that the mathematical line
excludes any of instructions 130, the tester module 156 skips
the mathematical line to avoid executing the line. On the other
hand, upon determining that the mathematical line includes
any of instructions 130, the test module 156 executes the
instruction and one of executable lines 128 that is appended to
the instruction.

The test processor 132 executes the tester module 156 with
the modified source code 108 to generate test information 124
for each of the executable lines 128. In some embodiments,
the test information 124 is information regarding each of the
executable lines 128 and excludes information regarding each
of the non-executable lines 182. The test information 124
includes coverage information 124, consumption informa-
tion 126, and other test information 158. The test processor
132 provides the test information 112 from the memory
device 160 to an output device 122, which outputs a repre-
sentation of the test information 112 to a real user 168. The
real user 168 is able to see a representation of the test infor-
mation 124 for each executable line 128.

In some embodiments, the operations performed by the
processor 144 and the test processor 132 are performed by a
single processor. In other embodiments, the operations per-
formed by the processor 144 and the test processor 132 are
performed by more than two processors.

Moreover, in one embodiment, the operations performed
by the user device 186 and the operations performed by the
user device 162 are performed with a single user device.

FIG. 3 is a diagram of an embodiment of a modified source
code 202. The modified source code 202 includes two func-
tions, function 1 and function 2. The function 1 is prepended
with a collection function 1 and the function 2 is prepended
with a collection function 2.

In one embodiment, a collection function is prepended to a
function to inform test processor 132 that the function is being
entered into to execute the function. If the function is not
exited from at end of execution of the function, the test pro-

US 9,317,402 B2

9

cessor 132 determines that the function crashed. Otherwise,
the test processor 132 determines that the function is
executed.

Moreover, the function 1 includes executable lines 1, 2, 3,
and 4 and the function 2 includes executable lines 5 and 6.
Each executable line 1 thru 6 is prepended with a correspond-
ing collection function. For example, the executable line 1 is
prepended with a collection function 2, the executable line 2
is prepended with a collection function 3, the executable line
3 is prepended with a collection function 4, the executable
line 4 is prepended with a collection function 5, the execut-
able line 5 is prepended with a collection function 7, and the
executable line 6 is prepended with a collection function 8.

In one embodiment, a collection function is prepended to
an executable line to inform test processor 132 that the
executable line is being entered into to execute the executable
line. If the executable line is not exited from at end of execu-
tion of the executable line, the test processor 132 determines
that the executable line crashed. Otherwise, the test processor
132 determines that the executable line is executed.

In some embodiments, a function or an executable line
crashes when the function of the executable line has a large
polynomial, a large exponent, or an unrecognizable keyword
that cannot be recognized by the test processor 132.

It should be noted that non-executable lines 1, 2 and 3 are
not prepended with collection functions. For example, there is
a lack of insertion of a collection function that collects test
information regarding the non-executable line 1, a lack of
insertion of a collection function that collects test information
regarding the non-executable line 2, and a lack of insertion of
a collection function that collects test information regarding
the non-executable line 3.

A collection function is an instruction that collects test
information regarding an executable line or a function to
which the collection function is prepended, creates a binary
nested table in which each column includes a type of infor-
mation, such as consumption information, coverage informa-
tion, or other test information, and generates a file that
includes the nested table.

In some embodiments, the source code 202 includes any
number of functions, such as functions 1 and 2, and each
function includes any number of executable lines and/or any
number of non-executable lines. In one embodiment, instead
of'a collection function, an executable line is prepended with
another instruction, such as a ‘printf” function.

FIG. 4 is a block diagram of an embodiment of the tester
module 156. A reader module 206 reads a line 218 of the
modified source code 108 and another line 220 of the modi-
fied source. Upon reading the line 218, an executable/non-
executable (E/NE) determination module 210 determines that
the line 218 includes the executable line 128A. For example,
the E/NE determination module 210 determines that the
instruction 130A is prepended to the executable line 128A to
determine that the line 218 includes the executableline 128A.

Upon determining that the line 218 includes the executable
line 128 A, the E/NE determination module 210 sends the line
218 to a test information determination module 222. The test
information determination module 218 reads the instruction
130A to determine whether the coverage information 124, the
consumption information 126, the other test information 158,
or a combination thereof is to be determined from the line
218. Upon determining that the coverage information 124 is
to be determined, a coverage information determination mod-
ule 212 generates the coverage information 124 by executing
the executable line 128A. Upon determining that the con-
sumption information 126 is to be determined, a consumption
information determination module 214 generates the con-

10

15

20

25

30

35

40

45

50

55

60

65

10

sumption information 126 by executing the executable line
128 A. Upon determining that the other test information 158 is
to be determined, and other test information determination
module 216 generates the other test information 158 by
executing the executable line 128A.

On the other hand, upon determining that the line 220
includes the non-executable line 182A, the E/NE determina-
tion module 210 avoids sending the line 220 to the test infor-
mation determination module 222.

FIG.5 is aflowchart of an embodiment of a method 300 for
distinguishing between an executable line and a non-execut-
able line. In an operation 302, a modified source code is read.
Upon reading the modified source code, in operation 304, it is
determined whether a line of a source code, within the modi-
fied source, is executable or non-executable. For example, it is
determined whether the line of the source code is prepended
by a collection function or another instruction. In response to
determining that the line of the source code is executable, in
operation 306, test information is generated for the execut-
able line. On the other hand, upon determining that the line of
the source code is non-executable, in an operation 308, any
generation of test information regarding the non-executable
line is avoided. The method 300 ends after operations 306 and
308.

It should be noted that although in the above-described
embodiments, an instruction is prepended to an executable
statement, in other embodiments, the instruction is appended
to the executable statement.

FIG. 6 shows an embodiment of an ObjectiveC source code
320. The ObjectiveC source code 320 includes definitions
322 and 324. Thereafter, the ObjectiveC source code 320
includes an action statement 326 that includes a keyword ‘id’
and an object ‘inn’. Then, the ObjectiveC source code 320
includes a condition statement 320 and action statements 330
and 332. The action statements 330 and 332 are executed
when a condition of the condition statement 320 is true.

FIG. 7 shows an embodiment of a modified ObjectiveC
source code 348, which is generated from the ObjectiveC
source code 320. A ‘printf” function 350 is appended to the
action statement 326. Moreover, another ‘printf” function 352
is prepended to the condition statement 328. Also, another
‘printf” function 354 is prepended to the action statement 330
and another ‘printf” function is prepended to the action state-
ment 332.

FIG. 8 shows an embodiment of a source code 370. The
source code 370 includes three function calls 138 and four
loop condition statements 134 and 136. A function call is
executed by a processor to call a function and then execute the
function. For example, function call 138A is executed to call
a function between a start of function 402A and an end of
function 402B. Similarly, a loop condition statement is
executed by a processor to execute any statements between a
start of loop and an end of loop. For example, the loop con-
dition statement 134A is executed to execute an action state-
ment 404 between a start of loop 406A and an end of loop
406B.

Other test information for an executable line 408A that
includes a loop condition statement 134 A includes a ratio of
a number of loop condition statement 134A to a number of
function calls 138. For example, the ratio of a number, which
is one, of the loop condition statement 134A to a number,
which is 3, of the function calls 138 is 1/3. In one embodi-
ment, other test information for the executable line 408A
includes an inverse ratio of a number of function calls 138 to
a number of loop condition statement 134A.

In some embodiments, other test information for the source
code 370 includes a ratio of a number of loop condition

US 9,317,402 B2

11

statements 134 and 136 within the source code 370 to a
number of function calls 138 within the source code 370. For
example, the ratio of a number, which is four, of the loop
condition statements 134 and 136 to a number, which is 3, of
the function calls 138 is 4/3. In various embodiments, other
test information for the source code 370 includes an inverse
ratio of number of function calls 138 within the source code
370 to a number of loop condition statements 134 and 136
within the source code 370.

FIG. 9A is view of an embodiment of a portion of a table
450 that includes test information and FIG. 9B is a view of an
embodiment of the remaining portion of the table 450. For
example, all executable lines between a starting mathematical
line numbered 73 and an ending mathematical line numbered
85 within a source code file that has a path “Clients/ios/
shared/ZMobileEngine/ZMComponents/ZMStretchBut-
ton.m” consume 85.8% of a CPU time cycle. The mathemati-
cal line number 73 is in a column 454 and the mathematical
line number 85 is in a column 456. As another example, an
executable line within a mathematical line 2 of a source code
file that has a path “Clients/ios/Source/WorldEdge.m” con-
sumes 100% of a CPU time cycle.

A column 452 of the table 450 lists percentages of a CPU
time cycle consumed by a number of lines between a math-
ematical starting line and a mathematical ending line. The
column 454 of the table 450 lists a number of the mathemati-
cal starting line within a source code file, the column 456 lists
a number of the ending mathematical line within the source
code file, and a column 458 lists a path of the source code file.

A real user can determine from the table 450 that lines
mentioned within portion 460 of the table 450 consume 100%
of CPU time cycles and there may be some source code issues
within these lines. For example, source code within the lines
ofportion 460 should be modified to reduce CPU time cycles.

FIG. 10 is a view of an embodiment of a table 500 that
includes test information for each executable line. As shown,
mathematical lines 1780 thru 1784, mathematical lines 1786-
1788, and mathematical lines 1790, 1792, 1794, 1795, and
1797 are executable lines. Moreover, as shown, mathematical
lines 1785, 1789, 1791, 1793, and 1796 are empty lines,
which are examples of non-executable lines. Also, a math-
ematical line 1779 is an example of a non-executable line.

A column 502 of the table 500 shows mathematical line
numbers ranging from 1779 thru 1797 of a source code.
Moreover, a column 504 of the table 500 shows percentages
of a CPU time cycle consumed by executable lines. For
example, execution of an executable line having a condition
statement “if((JK_AT_STRING_PTR(parseState)=—endOf-
StringPtr)) {stopParsing=1;}” consumes 25% of a CPU time
cycle. A real user may notice that the condition statement in
the example consumes an usually higher percentage of a CPU
time cycle than that consumed by the remaining executable
mathematical lines 1780-1784, 1786-1788, 1790, 1794,
1795, and 1797. Accordingly, a real user may determine to
review the condition statement in the mathematical line 1792
to debug the condition statement.

FIG. 11 is a view of an embodiment of a source code 550.
Mathematical lines 10, 11, 18, 19, 23, 26, 27, and 29 are
empty lines. Moreover, mathematical lines 12 and 13 include
definitions. Also, mathematical lines 20 and 21 include a
definition and declarations. Mathematical line 22, 24 and 28
include declarations. Mathematical lines 17 and 25 are
executable lines. A column 552 provides a number of times
executable lines 17 and 25 are executed during a test of the
source code 550. For example, executable line 17 is executed
for zero times and executable line 25 is executed for four

10

20

25

30

40

45

12

times. A real user decides that the executable line 17 has not
been tested at all and may avoid submitting the source code
550 for compilation.

Moreover, in one embodiment, in which test information
indicates that an executable line of a source code is executed
for aunusually large number of times, for example, compared
to other executable lines of the source code, a real user may
decide that there is an error in the executable line that is
executed for the large number of times. In such a case, the real
use may delete the executable line that is executed for the
large number of times to save CPU time cycles.

FIG. 12 is a flowchart of an embodiment of a method 600
for compiling a source code that has passed a test. The method
600 is performed by one or more processors that include the
tester module 156 (FIG. 2) and a compiler module (not
shown). In operation 602, it is determined whether a modified
source code is received. If the modified source code is not
received, the method 600 ends.

On the other hand, if the modified source code is received,
operation 114 is performed. In operation 604, it is determined
whether a source code within the modified source code
passed the test. In some embodiments, the operation 604 is
performed by the compiler module. In one embodiment, the
operation 604 is performed by the tester module 156.

If the source code failed the test, the method 600 ends. On
the other hand, if the source code passed the test, in operation
606, the compiler module compiles the source code to gen-
erate an object code. The method 606 then ends.

It should be noted that in some embodiments, an execution
is performed by a processor. Moreover, in various embodi-
ments, a module, as used herein, is a computer program that
is executed by a processor to perform the operations
described herein as being performed by the module. How-
ever, in one embodiment, a module is implemented in hard-
ware, such as within a PLD or an ASIC, or is implemented in
firmware. For example, the parser module 147 and/or the
instrumentor module 149 may be implemented within the
processor 144 rather than being stored in memory device 142
(FIG. 2).

In one embodiment, a module, as used herein, is embodied
as computer-readable code on a computer-readable medium.
The computer-readable medium is any data storage device
that can store data, which can be thereafter be read by a
computer. Examples of the computer-readable medium
include hard drives, network attached storage (NAS), read-
only memory (ROM), random-access memory, a memory
device, compact disc-ROMs (CD-ROMs), CD-recordables
(CD-Rs), CD-rewritables (RWs), magnetic tapes and other
optical and non-optical data storage devices. The computer-
readable medium can include a non-transitory computer-
readable tangible medium distributed over a network-coupled
computer system so that the computer readable code is stored
and executed in a distributed fashion.

It should be noted that various embodiments of the present
invention may be practiced with various computer system
configurations including hand-held devices, microprocessor
systems, microprocessor-based or programmable consumer
electronics, minicomputers, mainframe computers and the
like. Some embodiments of the present invention can also be
practiced in distributed computing environments where tasks
are performed by remote processing devices that are linked
through a wire-based or wireless network.

With the above embodiments in mind, it should be under-
stood that the embodiments can employ various computer-
implemented operations involving data stored in computer
systems. These operations are those requiring physical
manipulation of physical quantities. Any of the operations

US 9,317,402 B2

13

described herein that form part of the invention are useful
machine operations. Various embodiments of the present
invention also relate to a device or an apparatus for perform-
ing these operations. The apparatus can be specially con-
structed for a specific purpose. The apparatus is selectively
activated or configured by a computer program stored in the
computer.

Although some operations are described in a specific order,
it should be understood that other housekeeping operations
may be performed in between operations, or operations may
be adjusted so that they occur at slightly different times, or
may be distributed in a system which allows the occurrence of
the operations at various intervals, as long as the operations
are performed in the desired way.

Although the foregoing invention has been described in
some detail for purposes of clarity of understanding, it will be
apparent that certain changes and modifications can be prac-
ticed within the scope of the appended claims. Accordingly,
the present embodiments are to be considered as illustrative
and not restrictive, and the embodiments are not to be limited
to the details given herein, but may be modified within the
scope and equivalents of the appended claims.

What is claimed is:

1. A method for testing a source code, comprising:

receiving the source code, wherein the source code

includes a plurality of executable lines and a plurality of
non-executable lines, wherein each of the plurality of
executable lines includes a functional statement,
wherein the functional statement includes a condition
for execution by a processor or includes an action for
execution by the processor;

parsing the source code to identify the executable lines and

the non-executable lines of the source code; and

upon identifying each of the executable lines and each of

the non-executable lines, generating test information
regarding each of the executable lines of the source code
without testing each of the non-executable lines of the
source code, wherein each of the non-executable lines is
not tested by skipping each of the non-executable lines,
wherein at least one of the non-executable lines defines
a type of variable.

2. The method of claim 1, wherein the source code is
configured to be compiled into an object code, wherein the
object code is in a binary form, wherein the source code is not
in the binary form.

3. The method of claim 1, wherein each of the executable
lines is prepended with a collection function for collecting
test information regarding the executable line, wherein each
of'the non-executable lines is not prepended with a collection
function to avoid collecting test information regarding the
non-executable line.

4. The method of claim 1, wherein each of the non-execut-
able lines includes a comment, or is an empty line, or a
definition, or a pre-processing directive, or a function proto-
type line, wherein the comment provides a meaning of a
portion of one of the non-executable lines that has the com-
ment, wherein the empty line does not include a character,
wherein the definition names a function within the source
code, wherein the pre-processing directive causes a compiler
program to replace a line within the source code having a
portion of the preprocessing directive with text within the
processing directive, wherein the function prototype includes
a name of a function, or a data type that is input to the
function, or a data type that is output as a result of execution
of the function.

5. The method of claim 1, wherein the action is performed
when the condition is satisfied.

10

15

20

25

30

35

40

45

50

55

60

65

14

6. The method of claim 1, wherein the action is a logical
operation or an arithmetic operation or an operation to assign
a value to the variable.
7. The method of claim 1, wherein parsing the source code
is performed to distinguish the executable lines from the
non-executable lines.
8. The method of claim 1, wherein the test information
includes coverage information, wherein the coverage infor-
mation is regarding a number of times each executable line of
the source code is executed during said generating the test
information.
9. The method of claim 1, wherein the test information
includes consumption information, wherein the consumption
information is regarding a percentage of a time cycle of a
hardware resource each executable line of the source code
consumes during said generating the test information.
10. The method of claim 1, wherein each of the non-
executable lines is ignored during said generating the test
information.
11. The method of claim 1, wherein each of the non-
executable lines is ignored during compilation of the source
code.
12. The method of claim 1, whether the type of variable is
an integer or a character.
13. The method of claim 1, wherein the source code
includes a game code.
14. The method of claim 1, wherein each of the executable
lines is a commentless line, a non-empty line, a definitionless
line, and a function prototypeless line.
15. A computer system for generating test information
from a source code, comprising:
a memory device for storing the source code; and
a processor coupled to the memory device,
wherein the processor is configured to receive the source
code, wherein the source code includes a plurality of
executable lines and a plurality of non-executable lines,
wherein each of the plurality of executable lines includes
a functional statement, wherein the functional statement
includes a condition for execution by a processor or
includes an action for execution by the processor,

wherein the processor is configured to parse the source
code to identify the executable lines and the non-execut-
able lines of the source code,

wherein upon identifying each of the executable lines and

each of the non-executable lines, the processor is con-
figured to generate test information regarding each of
the executable lines of the source code without testing
each of the non-executable lines of the source code,
wherein each of the non-executable lines is not tested by
skipping each of the non-executable lines, wherein at
least one of the non-executable lines defines a type of
variable.

16. The computer system of claim 15, wherein the proces-
sor is configured to ignore each of the non-executable lines
during generation of the test information.

17. The computer system of claim 15, wherein each of the
non-executable lines includes a comment, or is an empty line,
or a definition, or a pre-processing directive, or a function
prototype line, wherein the comment provides a meaning of a
portion of one of the non-executable lines that has the com-
ment, wherein the empty line does not include a character,
wherein the definition names a function within the source
code, wherein the pre-processing directive causes a compiler
program to replace a line within the source code having a
portion of the preprocessing directive with text within the
processing directive, wherein the function prototype includes

US 9,317,402 B2

15

a name of a function, or a data type that is input to the
function, or a data type that is output as a result of execution
of the function.

18. A non-transitory computer-readable medium contain-
ing program instructions for causing a computer to perform a
method of:

receiving a source code, wherein the source code includes

a plurality of executable lines and a plurality of non-
executable lines, wherein each of the plurality of execut-
able lines includes a functional statement, wherein the
functional statement includes a condition for execution
by a processor or includes an action for execution by the
processor;

parsing the source code to identify the executable lines and

the non-executable lines of the source code; and

upon identifying each of the executable lines and each of

the non-executable lines, generating test information
regarding each of the executable lines of the source code
without testing each of the non-executable lines of the
source code, wherein each of the non-executable lines is

5

10

15

16

not tested by skipping each of the non-executable lines,
wherein at least one of the non-executable lines defines
a type of variable.

19. The non-transitory computer-readable medium of
claim 18, wherein each of the non-executable lines is ignored
during said generating the test information.

20. The non-transitory computer-readable medium of
claim 18, wherein each of the non-executable lines includes a
comment, or is an empty line, or a definition, or a pre-pro-
cessing directive, or a function prototype line, wherein the
comment provides a meaning of a portion of one of the
non-executable lines that has the comment, wherein the
empty line does not include a character, wherein the definition
names a function within the source code, wherein the pre-
processing directive causes a compiler program to replace a
line within the source code having a portion of the prepro-
cessing directive with text within the processing directive,
wherein the function prototype includes a name of a function,
or a data type that is input to the function, or a data type that
is output as a result of execution of the function.

#* #* #* #* #*

